

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering

Göteborg, Sweden, June 2012

Automation of Negative Testing

Master of Science Thesis in the Programme Software Engineering and Technology

GODWIN SEBABI SEMWEZI

The Author grants to Chalmers University of Technology and University of Gothenburg

the non-exclusive right to publish the Work electronically and in a non-commercial

purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work

does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a

publisher or a company), acknowledge the third party about this agreement. If the Author

has signed a copyright agreement with a third party regarding the Work, the Author

warrants hereby that he/she has obtained any necessary permission from this third party to

let Chalmers University of Technology and University of Gothenburg store the Work

electronically and make it accessible on the Internet.

Automation of Negative Testing

GODWIN SEBABI SEMWEZI

© GODWIN SEBABI SEMWEZI, June 2012.

Examiner: SVEN ARNE ANDREASSON

Supervisor: ROBERT FELDT

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering

Göteborg, Sweden June 2012

 Acknowledgements

I would like to thank my supervisors Associate Professor Robert Feldt and Dr. Sigrid Eldh for the support

and guidance they provided throughout this study. This thesis would not have been possible without their

valuable time. I am thankful for the numerous meetings, discussions and feedback that we had, which were

a great inspiration and helped me to focus on the subject and most important issues.

Preface

This Master of Science Thesis is reported here in a hybrid format, i.e.the main content of the Work is

reported as a scientific article conforming to the Empirical Software Engineering Journal‟s template,

complemented by additional appendices relevant for the examinationat Chalmers University of Technology.

Table of Contents

Contents
1 Introduction ... 10

2 Background .. 11

2.1 Input oriented .. 11

2.2 Path oriented ... 12

2.3 Specification oriented ... 12

2.4 Goal oriented ... 12

2.5 Discussion ... 13

3 Methodology ... 13

3.1 Design Research Steps. ... 13

3.2 Research Questions ... 14

4 Related Work ... 14

5 Negative Testing and Test Techniques .. 15

5.1 Software Fault Injection ... 15

5.2 Mutation Testing ... 15

5.3 Apply inputs that force all error messages to occur .. 16

5.4 Explore allowable character sets and data types ... 16

5.5 Find input values that may interact and test combinations of their values 16

5.6 Repeat the same input or series of inputs numerous times ... 16

5.7 Force a data structure to store too many or too few values .. 17

5.8 Force the media to be busy or unavailable ... 17

5.9 Equivalence Partitioning .. 17

5.10 Boundary value analysis ... 18

5.11 Discussion ... 18

6 New Perspective of Negative Testing ... 19

6.1 Negation Testing .. 19

6.2 Negation Testing and Test Techniques ... 20

6.2.1 Equivalence Partitioning ... 20

6.2.2 Fault Injection .. 21

7 NegTest Extension ... 21

7.1 Ruby ... 22

7.2 Unit Testing Framework – MiniTest ... 22

7.3 Data Generator – Rantly .. 22

7.4 NegTest Extension ... 23

7.4.1 A simple example ... 23

7.4.2 Characteristics implemented in the design ... 23

7.4.3 NegationTest module ... 25

7.4.4 NegationController module .. 25

7.5 Techniques implemented in the design ... 25

8 Evaluation and Results .. 26

9 Discussion ... 26

10 Conclusion .. 28

11 References ... 28

APPENDIX A –Negative Testing Techniques ... 30

APPENDIX B – NegTest Design .. 39

APPENDIX C – Using NegTest .. 51

APPENDIX D – NegTest Evaluation ... 60

LIST OF TABLES

Table 1: Classification of NT Techniques .. 18

Table 2: Ruby Random Data Generators from www.rubygems.org .. 23

Table 3 Non Negated Input Response Oracle behavior ... 24

Table 4 Negated Input Response Oracle behavior ... 25

Table 5: Test Candidates from www.rubygems.org ... 26

Table 6: Test Results ... 27

Table 7: Assumption Truth Table .. 48

file:///D:\class\Robert\theremix\Negative_Testing_Report_120521.docx%23_Toc327144990
file:///D:\class\Robert\theremix\Negative_Testing_Report_120521.docx%23_Toc327144995

LIST OF FIGURES

Figure 1 Design Research Method ... 14

Figure 2: Context of negation testing ... 19

Figure 3: Negation testing applied to Web Form example .. 19

Figure 4 Main components of the NegTest extension ... 21

Figure 5: Flow of Control in NegTest Components .. 40

Figure 6: Assumption class hierarchy ... 42

file:///D:\class\Robert\theremix\Negative_Testing_Report_120521.docx%23_Toc327144998
file:///D:\class\Robert\theremix\Negative_Testing_Report_120521.docx%23_Toc327144999

LIST OF SCREEN SHOTS

Screen Shot 1: Results from integer test .. 55

Screen Shot 2: Results revealing absence of conversion bug ... 56

Screen Shot 3: Results revealing unhandled exceptions .. 57

Screen Shot 4: ZeroDivisionError Exception ... 59

Automation of Negative Testing

Godwin Sebabi Semwezi

Abstract

Software testing primarily focuses on ensuring the

right system behavior when the expected inputs are

provided. As software becomes more complex it

presents numerous use cases that are prone to

failures. Testing must explore these use cases to

ensure appropriate system behavior in the presence

of faults, an endeavor often called Negative Testing.

However the knowledge on Negative Testing is

limited which hinders its application to testing. In

this study, the existing knowledge and techniques

for Negative Testing is explored resulting in a new

perspective of Negative Testing. We call this

Negation Testing since the previous term is broad

and has been used in many different meanings. This

new perspective is then implemented as an

extension to a unit testing framework. The

extension is evaluated and results show that the

presented approach can reveal faults and

unexpected behavior in software.

1 Introduction

Developing quality products is important for an

organization to be successful in the new global

economy [1]. Increased software complexity,

competition, customer expectations and improved

internet access have brought the concept of quality

to the forefront [1]. Software testing is one activity

that plays a key role in achieving quality software.

In practice, testing focuses on providing the

expected inputs to software that will ensure the right

system behavior. This is known as positive testing.

However, positive testing is insufficient when

software controls critical systems. Examples of

critical systems include business critical

applications like financial transaction systems,

embedded systems like fly by wire systems or a

pacemaker, and cyber physical systems like remote

surgery or co-operative active safety systems for

road vehicles. Such systems present numerous use

cases resulting in failures that are a risk to human

life. Such use cases may not be covered by positive

testing. Therefore it is increasingly important to also

ensure stable behavior even for use cases that do not

ensure the expected system behavior.

Negative Testing (NT) seeks to provide strategies

and techniques to identify and check unexplored or

unexpected use cases and behavior of software.

However, Negative Testing (NT) is not clearly

defined and understood despite its importance. This

can be attributed to the multiple definitions that

describe NT in different ways. The definitions focus

on one or more but not all possible aspects that can

be used to test systems such as inputs or the context

of execution of a system. Furthermore the

definitions do not guide testers on how aspects of

testing can be derived from system descriptions and

some of the definitions introduce subjectivity issues

by stating that aspects of NT have correct and

incorrect values.

In addition, recent research in Swedish software

industry has shown that more research is needed to

create more generally useful NT techniques [2].

One notable issue with NT techniques is that some

of them are categorized as positive testing

techniques which make it challenging for a tester to

know when positive or NT is being carried out as

there is no clear definition of NT.

This paper presents and describes some but not all

of the different existing NT definitions and

techniques. The paper presents a new perspective of

NT as Negation Testing in which a definition and

description on how the new perspective resolves the

gaps identified in current definitions of NT is

provided. The design of an extension of a unit

testing framework in which Negation Testing is

implemented is then presented and is evaluated and

the results discussed.

This paper is structured as follows: Section 2 gives

background information on selected NT definitions.

Section 3 describes the research methods used in the

study and the research questions guiding the study.

Section 4 presents the related work. Section 5

describes NT techniques. Section 6 presents a new

perspective of NT as Negation Testing (NT‟).

Section 7 describes the design of the NT extension

of a unit testing framework. Section 8 presents the

results of the evaluation of the testing extension.

Section 9 presents a discussion of the results and the

study and Section 10 concludes the paper.

2 Background

Negative Testing (NT) is not clearly defined and is

often referred to with different names. In this

subsection, selected definitions of NT are described

to give a background on how NT is currently being

executed. The definitions are named according to

the main aspect that is explored by NT. The

definitions were obtained as a result of a literature

study of various sources that are referenced besides

each definition.

2.1 Input oriented

Testing to determine the response of the system

outside of what is defined. It is designed to

determine if the system doesn't crash with

unexpected input [3].

This definition describes the NT as an activity that

focuses on supplying unexpected inputs to the

System Under Test (SUT) and observing the

subsequent behavior of the system. The aim is to

verify that the SUT continues functioning and

responds appropriately in the presence of

unexpected inputs. The unexpected inputs have a

low probability of causing the system to exhibit the

expected behavior. In contrast, expected inputs have

a high probability of causing the software to exhibit

the expected behavior.

Software must be able to handle unexpected inputs

and NT seeks to ensure that error handling

mechanisms of the SUT keep the system available

while sending the appropriate responses to end

users. NT test cases can easily be defined by using

inputs derived from the negated specifications of

the SUT.

However, restricting NT to unexpected inputs

leaves software open to exploitation using expected

inputs. This is because systems exist in uncertain

environments which can cause expected inputs to

bring about unexpected behavior. For example,

given that the SUT depends on services of other

systems like databases, expected inputs can bring

about unexpected behavior when the systems they

depend on are unavailable. A soft error, which is a

term used to describe an event when a particle strike

alters binary information in a circuit is another

example. The soft error can alter the value of

expected input bringing about unexpected behavior.

To recover from a soft error, the correct bit values

need to be reloaded into the affected memory

locations. In this case, NT would test that the

correct bits are reloaded when a soft error occurs.

In Addition, the notion of what is viewed as

unexpected input is subjective to the tester i.e. two

people can have different views on what input is

expected or unexpected. This can lead to endless

debates as to which inputs should be used for NT.

2.2 Path oriented

Testing aimed to identify off paths, exception

conditions and other anomalous situations [4].

Path testing is a structural testing method that

involves using the source code of a program to

attempt to find every possible executable path [4].

Following this definition, NT focuses on the path of

execution that results in unexpected system

behavior, also called the abnormal path of

execution. The paths of execution can be derived

from the negated specifications about inputs.

While investigating the abnormal path is important

to execute NT, it restricts NT from the normal path

which is subject to exploitation. There can be

numerous paths of execution in software and it is

difficult to verify all paths. Therefore one cannot

say that what is referred to as the normal path

cannot be manipulated to produce unexpected

system behavior. The normal path should be

investigated when executing NT.

Another issue is that testing the path of execution of

software often requires testers to create situations

that software was not designed to be used and is

sometimes called Creative or Dirty Testing [4]. An

example of such a test is testing if it is possible to

watch a video file in a text editor. Such unrealistic

tests have a negative impact on the overall cost of

the software and the testing effort as they do not

contribute to the improvement of the software. In

addition, highly skilled testers are required to

discover such anomalous failure situations further

increasing the cost of the testing effort.

Furthermore, the identification of the normal and

abnormal path of execution is subjective to the

tester as different testers can have differing views

on what path is normal or abnormal.

2.3 Specification oriented

Negative testing is a test technique that aims to

target execution paths and input, outside what is

clearly defined in the specification of the system

[2].

This definition describes the NT as testing use

cases of software that are not explicitly stated in

the specification of the SUT.

By testing use cases that do not exist in the

specification, testers do not duplicate tests that

already exist reducing on the cost of testing. No

restriction is put on the use of valid or invalid data,

or paths of execution as is with definitions

previously described above.

However, it is not clear as to what constitutes a

negative test with regards to time e.g. If a negative

test reveals a bug in software that is subsequently

resolved and added to the specification of the

software, the test seizes to be a negative test and

becomes a positive test. There is no fine line

between what constitutes a positive test and a

negative test apart from the item being tested in the

former existing in the specification and the latter

being unknown. Perhaps a stronger differentiator

between positive and negative testing is required

other than existence in the specification such as a

relation of the test to the goals or primary functions

of the software.

2.4 Goal oriented

“Testing aimed at showing software does not

work [4]”.

Human beings tend to be highly goal oriented and

thus establishing a good goal has a psychological

effect on testing [5].

The definition above aims to ascertain that software

does not do what it is supposed to do. As a result

the goal of NT is to focus on only those test cases

that result in unexpected system behavior.

This goal is incomplete because it leaves out the test

cases that exhibit expected system behavior. Test

cases that exhibit expected system behavior can be

manipulated in various ways such as changing the

context of execution to produce unexpected system

behavior.

Furthermore, test cases that exhibit expected system

behavior are derived from the system specification

which is often incomplete. This means that there

can be some functionality of the system that is not

yet explored and can cause failures.

Therefore it is important that the definition of NT

has a goal that allows investigation of both expected

and unexpected system behavior.

2.5 Discussion

The definitions of NT above show that NT can be

carried out in a number of ways. But the

definitions introduce aspects to be considered

when executing NT.

The definitions described in subsections 2.1 – 2.3

introduced inputs as an important aspect to be

considered when executing NT. The path of

execution is dependent on the inputs supplied to

the SUT and hence not considered a concrete

aspect of NT.

The context of execution or the environment of

execution of the SUT is another important aspect.

Subsection 2.1 describes its manipulation as a

cause of failures of the SUT. Hardware, software

or humans that communicate with the system need

to be understood and the ways in which

communication occurs as software

miscommunication with its environment is a

common cause of failure. One major reason why

testing the environment is neglected is that it is

difficult to replicate the environment in which

software will be executed by users [6].

The definition in subsection 2.4 is a goal oriented

definition and emphasizes the use of a good goal

for executing NT. In addition, subsection 2.2

described a good goal as being a way to avoid the

design of test cases that target situations that the

SUT was not created to handle as such test cases

do not contribute to the testing effort.

The characteristics about inputs, context of

execution and the goal can be derived from the

specification, tacit knowledge or from users passed

experience of the SUT.

These three aspects are used to analyze the NT

techniques in the sections that follow.

3 Methodology

The main research method used is the Design

research method described in [7] which is shown in

Figure 1. The sub sections that follow briefly

describe each step which is followed by the research

questions that the study will answer.

3.1 Design Research Steps.

Awareness of the problem is the first step in the

Design Research methodology in which knowledge

about a problem is acquired by studying existing

literature or new developments from industry

related to the study. The output of the step is the

proposal of the study that includes various factors

that are used to evaluate the solution.

Figure 1 Design Research Method

Suggestion is the next step which involves the use

of both knowledge acquired from the awareness

step and new innovative ideas to develop a tentative

design of the envisioned solution. For this study, an

extension of a unit testing framework is designed in

which selected negative testing techniques are

incorporated.

 The Development step follows in which the design

from the suggestion step is implemented resulting in

an artifact. For this study an extension for the Ruby

MiniTest unit testing framework is developed.

The artifact is then evaluated and its performance

based on the factors identified in the Awareness

step is documented. Both qualitative and

quantitative data is documented which is followed

by an in depth analysis of the results resulting in

new hypotheses or explanations to existing

hypotheses which may serve as input to the

awareness step. This may indicate a need for further

research of the study. For this study, the unit testing

extension is used to test various open source

libraries of different complexities and the type and

number of discovered failures documented. The

study is then concluded with a summary of the

findings and lessons learned from the study.

3.2 Research Questions

The main research questions guiding the study

include

1. What are the negative testing techniques?

2. How can the NT techniques be automated?

3. Would the automated techniques be helpful

in finding unexplored use cases and

behavior in a real system?

These questions guide the exploration of the

existing knowledge of NT and creation of ideas that

result in the design and implementation of an

extension of a unit testing framework. This

extension is then evaluated and results obtained

from which the main finding is that the automated

NT techniques are helpful if finding unexplored use

cases and behavior of systems.

4 Related Work

Eldh carried out a study on an operation and

maintenance interface of a telecom middleware

platform with the aim of evaluating the efficiency,

effectiveness and applicability of negative testing

on software systems [2]. The study was conducted

as a part of a thesis, performed by two master

students. The testing techniques used included

positive tests, equivalence partitioning, boundary

value analysis, fault injection, random input

variation and the software attack techniques as

described in [6]. It was concluded that it is difficult

to apply the test techniques for at least some

specific types of software in industry. One reason

identified for this was the lack of time and

motivation of testers to gain a deep understanding

necessary for constructing and challenging the

system. Another reason was that some of the

techniques are not simple to translate to industrial

systems.

However it is not clear as to whether the possible

failure to translate the techniques was due to the

complexity of the techniques or the inability of the

masters‟ students to understand the techniques.

James describes his experience in using negative

testing to test applications [8]. He discusses its

management, techniques used to select, derive and

execute the negative tests. James recognizes the

need for experienced testers in order to carry out

effective negative testing and that NT can reveal

information about the risk model and increase

confidence of the quality of the system.

NT is not yet fully explored and this can be seen

from the limited related work. Much more research

is needed to create more generally useful NT

techniques. From literature we identify the

following issues with some NT techniques:

 The techniques are not easy to understand.

 The techniques are not easy to implement

often requiring a lot of time and skill to

create scenarios that reveal unexplored use

cases. In addition, some techniques are

specific to a given interface.

 The techniques seek extravagant situations

for which software may never be used.

 Essential in the development of the techniques is to

make them directly actionable and useable. This can

take the form of detailed technique descriptions and

examples but ideally the techniques can be

supported with automation and tools. This study

will describe NT techniques, some of which will be

automated and tested.

5 Negative Testing and Test Techniques

This section provides a brief description of existing

techniques that can be categorized as NT testing

techniques.

5.1 Software Fault Injection

This is a technique in which program behavior is

influenced by modifying exception or error

handling code paths of the SUT in order to change

its context of execution. The technique is also

executed by introducing faulty inputs into software

at runtime.

The goal of the technique is to allow for the

evaluation of fault handling procedures, assessment

of the quality of exception handling and

dependability procedures [9]. The technique tries to

match the SUTs responses with the specifications in

the presence of specified faults with the aim of

obtaining a high coverage of the configurations of

the SUT [10].

The techniques key strength lies in the fact that it

targets fault and exception handling routines that

are rarely tested using positive testing.

However the technique requires the modification of

SUT code. This means that the software executed

during the tests is different from the software run by

the end users and hence is not a copy of the user

context. In addition, any errors within the

introduced fault code can lead to incorrect test

results and conclusions about the SUT.

5.2 Mutation Testing

Mutation Testing is a fault-based testing technique

in which faults are introduced into software by

modifying the source code. The modified software

is then executed against a test set to verify that the

faults are detected.

The goal of the technique is to help testers develop

effective tests or identify weaknesses in the test data

used for testing or used in sections of the code that

are rarely accessed during execution [11].

http://en.wikipedia.org/wiki/Error_handling
http://en.wikipedia.org/wiki/Error_handling
http://en.wikipedia.org/wiki/Error_handling
http://en.wikipedia.org/wiki/Execution_(computers)

One issue with mutation testing is that any

statement within the SUT can be modified which

becomes impractical for large software due to the

high computational cost of executing the enormous

number of modifications against a test set.

In addition, mutation testing requires the source

code to be modified. This means that the conditions

under which the software is executed during the test

are not the same as when the software is executed

by the end user and hence is not a copy of the user

context.

5.3 Apply inputs that force all error messages

to occur

This technique focuses on testing the SUT with

inputs that will reveal defined error responses. The

goal of the technique is to test error handling

procedures which are often difficult to develop

correctly to handle various error situations.

However the technique is limited by the fact that it

doesn‟t account for situations in which error

messages are handled at another layer of abstraction

[6]. In this case subjecting a component to a series

of tests will result in numerous failures. Therefore,

the tester must fully understand the implementation

of the application to effectively use this technique.

5.4 Explore allowable character sets and data

types

The goal of the technique is to evaluate the

robustness of the SUT in the presence of reserved

inputs of character sets and various data types.

Different operating systems and programming

languages based on either Ascii of Unicode

character sets have reserved control structures or

symbols that the SUT must be able to handle. For

example the C language has the ++ symbol for

incrementing numerical values. The SUT must be

able to validate such inputs and return the

appropriate error responses.

In addition, the SUT may be tested with various

data types offered by the programming language in

which case the SUT must be able to validate the

invalid data types.

Table 2.2 on page 29-33 in [6] provides a guide for

testers to use in executing the technique. The

technique is efficient in revealing validation errors.

However, numerous errors will be found if

validation is done at a higher level of abstraction. .

5.5 Find input values that may interact and

test combinations of their values

This technique involves testing the SUT with

combinations of inputs that are related or are

involved in the same operations. The goal is to

identify inputs that affect each other in

computations or utilize the same resources and test

different combinations of these inputs so as to

ascertain that the SUT functions for all possible

input combinations.

The values in a relationship should describe aspects

of common resources that can be internal or

external. In addition the values may be used in the

same computations [6].

The major drawback of the technique is that it is not

possible to test all input combinations. A possible

solution would be selecting a representative value

from different partitions identified using the

equivalence partition method.

5.6 Repeat the same input or series of inputs

numerous times

The technique tests whether an application has error

handling procedures for situations in which the

context of execution is modified as a result of all

resources that the SUT is dependent on being

consumed [6].

Continuous repetition of the same inputs uses up

system resources such as memory buffers, data

storage space or communication with remote

resources. In addition, if an application uses a

remote resource, it is difficult for the application

under test to know of the remote systems limitations

and hence developers must have proper mechanism

to prevent the system under test from crashing.

The technique is good for stress testing the

application under test and can also benefit from

automation as it involves executing the same task

repeatedly [2].

However it may not be possible to execute this test

if test resources are limited or not available

5.7 Force a data structure to store too many or

too few values

This technique checks whether appropriate controls

and error handling procedures on data structures or

resources are in place so as to avoid underflow, over

flow or corruption of data [6]. The test is executed

by providing too many, too few or invalid inputs to

the SUT.

The technique reveals errors brought about by the

developers neglect of the limitations of the different

data structures or resources they use. The technique

requires in depth knowledge about the SUT so as to

effectively test the limits of the data structures and

resources.

However, it is difficult to simulate the limits of

some data structures and resources which hinders

the effectiveness of this technique.

5.8 Force the media to be busy or unavailable

This technique tests the SUT to verify that it

operates appropriately during error conditions

related to media. The technique verifies that the

applications return the correct error codes

associated with different kinds of media problems.

The drawback with this technique is that the test

scenarios are difficult to simulate often requiring

more resources than is available to testers. In

addition, some applications have concurrent

processes and it may be difficult to simulate a

scenario in which different processes access the

same resource at the same time.

5.9 Equivalence Partitioning

This technique divides software inputs into

partitions from which test cases can be derived to

uncover classes of errors. A single value from a

partition will be treated similarly by the component

producing the same system behavior and thus can

be used to represent the entire class [12].

This technique can be used for both positive and

negative testing. When used for negative testing, the

focus is on those classes of inputs that cause the

system to exhibit unexpected system behavior.

A key strength of the technique is that there is little

training required and the tester does not need to

understand the implementation. This is due to the

fact that the classes are derived from the

specification of the application that contains

characteristics usually referring to a single

parameter.

However, it is often the case that specifications are

incomplete and therefore not all classes can be

explored. Furthermore, in some situations the tester

will only have access to the software‟s executable

and general knowledge of the functions of software,

but not the specification. In this case, identification

of the partitions is more of guess work.

5.10 Boundary value analysis

This technique examines the boundary values of the

characteristics or properties of software as more

errors tend to occur at the boundaries. The

technique is often considered an extension of

equivalence partitioning in which the boundaries

values of the partitions are the major areas of

interest.

The technique requires that the lower and upper

boundaries of a property or characteristic be

examined. For each boundary, a value at the

boundary, one value below the boundary and one

value above the boundary is required. The technique

can be used for both positive and negative testing.

When used for negative testing, values below or

above the boundary is of interest.

Boundary Value Analysis is valuable technique that

can reveal errors if used correctly. It is easy to

execute, but the major difficulty is in identifying the

boundary conditions. This is because for some

inputs, boundaries cannot be defined. However if

used correctly, the technique can discover

boundaries overlooked by programmers, discover

boundaries resulting from interactions amongst

subsystems and validate requirements.

5.11 Discussion

The techniques in subsections 5.1 to 5.10 describe

different ways of carrying out NT and Table 1

categorizes the techniques in terms of the NT

aspects derived from the definitions of NT in

section 2. Table 1 shows the aspects explored by the

different techniques. Because of this one can

conclude that the techniques are related and are

correctly classified as NT techniques

But, it is not sufficient to conclude that they are NT

techniques. This is because the definitions in section

2 are not exhaustive and there could be other

definitions that were not encountered by the author

and these definitions might explore the same,

different or exclude certain aspects for NT.A

general definition of NT that is not a combination of

other definitions is required.

Another issue is that the techniques are executed in

different ways and the definitions of NT do not

inform a user on how to use the different aspects of

NT to derive NT test cases. For example, fault

injection described in subsection 5.1 manipulates

inputs and the context of execution. But which

inputs or which context or code should be

manipulated and how should they be manipulated to

derive an NT test case. The definition should inform

a tester how to derive NT test cases using any

technique.

Sections 5.9 and 5.10 described equivalence

partitioning and boundary value analysis as

techniques that can be used for both positive testing

and NT. This means that both of these techniques

are hybrid techniques of testing and cannot be

classified as positive or negative. One solution

would be to state that a NT approach was applied to

the techniques to derive NT test cases. Therefore

NT should be defined as an approach to testing [8]

or as a way of thinking to derive test cases.

Technique

Reference

Inputs Execution

Context

2.1 X

2.2 X

2.3 X

2.4 X

2.5 X

2.6 X X

2.7 X X

2.8 X

2.9 X

2.10 X
Table 1: Classification of NT Techniques

The section that follows presents a new perspective

of NT in an attempt to provide a general definition

that can fill the gaps identified above.

6 New Perspective of Negative Testing

This section provides a different view of Negative

testing in an attempt to fill the gaps identified in

section 5.11.

6.1 Negation Testing

Several definitions of Negative Testing exist and

different groups of individuals have different views

of what it entails. Therefore a new term, “Negation

Testing” (NT‟) is used so as to facilitate a uniform

view of Negative Testing. Negation Testing (NT‟)

is defined as:

“Negation Testing (NT‟) is an approach to testing

that states a current set of assumptions about the

system and/or the testing and then considers which

tests should be done if one or more of the

assumptions are negated, i.e. no longer fulfilled.”

Software specification, design documents and user

tacit knowledge are sources of information about

the SUT from which a tester can obtain assumptions

about the SUT. Negating these assumptions reveals

new information about the system which can be

used to develop tests for negative testing.

Figure 2 below shows the different areas of interest

of negation testing and is used to describe negation

testing

Below is a description of each area of interest:

 Area A represents a universe of all

information about the SUT both known and

unknown to the tester.

 Area B represents the known information

about the SUT such as the information in

software specification documents. From this,

a tester can derive assumptions about the

SUT.

 Areas C, D and E represent different sub-

universes for which the tester challenges the

SUT to acquire new information.

By negating the assumptions of area B, the tester

can create test cases to challenge the SUT and

acquire new knowledge about the SUT that

constitutes area C. This new knowledge represents

new assumptions that are added to area B.

Subsequently, the new sets of assumptions of B are

negated in relation to D or E to derive test cases.

For example, for a web form with a single input

field that takes values from 1-10, area B includes

the assumption that the field only accepts values

from 1-10. Negating this assumption by supplying a

value in the ranges x<1 and x>10 would constitute

area C. The assumptions about the SUT are then

updated with the new assumptions derived from

negation tests of area C. Testing the application

with a character data type and alphanumeric input

would constitute the new universes, area D and E

respectively. The Figure 3 below illustrates the

scenario described above

Figure 2: Context of negation testing

C

B

D

E

E A

”iway”

Figure 3: Negation testing applied to Web Form example

 C

B

1<=x<=10

D

E

A

x<1, x>10

‘d’

It is important to note the following about negation

testing:

 If no assumptions are specified about a

system, Negation Testing (NT‟) cannot be

clearly defined as there will be no item for

negation.

 NT‟ cannot be defined as a technique, but as

an approach to testing that may be applied to

any testing technique.

 A test case cannot be negative as NT‟ is a way

of thinking to arrive at a given test case.

 The assumptions of the system are derived

from characteristics of system input, context,

use cases, user behavior, system behavior and

tacit or knowledge about the system.

 The sub universes selected should result in test

cases that test the use cases of the software

and not an aspect for which the software was

not intended. The goal of the software should

be considered as a constraint when deriving

sub universes. That is to say, the sub universes

selected should be within the boundaries of

the goal. For example, if the goal of a text

editor is to edit text, the sub universes should

be related to textual aspects of the software

and not try to test the editor with media files

The negation approach means considering the

countermand or reverse of what is already specified.

Therefore, for each candidate testing technique, the

assumptions that can be negated are identified.

These assumptions are then used to derive test

cases.

6.2 Negation Testing and Test Techniques

This section briefly describes how the NT‟

approach is or may be applied to two of the

techniques mentioned in section 4.

6.2.1 Equivalence Partitioning

Equivalence Partitioning (EP) is a test design

technique in which the input domain of a program is

divided into a finite number of input sets or classes.

A representative value of a class of input set is then

tested and the behavior or result observer is

assumed to be the same for any other input in the

class or set. [5].

Equivalence Partitioning (EP) makes the following

assumptions that can be negated to apply NT‟

i. Assumptions derived from input

conditions

In EP, classes of inputs are derived from conditions

or characteristics of inputs. To apply NT‟, the input

conditions which are the assumptions about the

inputs are negated to get the invalid input classes.

For example, a web form that takes input in the

range 1-10, negating this condition would result in

two classes of invalid inputs i.e. x<1 and x > 10.

ii. Assumption that a test on a representative

value of a given class is equivalent to any

other value in that class

EP assumes that a test on a representative value of a

given class is equivalent to any other value in that

class. Negating this assumption implies that not all

values in a class will produce the same behavior

from an application. This can stimulate

identification of universes to test or use of other

techniques to test the classes of inputs.

 Building on the web form example above, a java

version of the application returns the absolute value

of the integer entered in the input field. Assuming

the application correctly handles inputs in the x < 1

class, the application should be able to return a

positive value for-2147483648; otherwise a

negative value is returned which would be an

invalid output. This is because the java absolute

function returns a negative value for -2147483648.

6.2.2 Fault Injection

Fault Injection is a technique that validates the

dependability of systems in which controlled

experiments are executed and the systems behavior

observed in presence of faults explicitly introduced

into the system [10]. According to Arlat [13] fault

injection has two main goals:

i. Validation of fault handling methods and

mechanisms with respect to the inputs they

have been designed to cope with.

ii. Support system design by applying the

negative results of fault injection to initiate

feedback loops to improve the test procedures

and fault tolerance mechanisms.

From the above description, the assumptions below

are derived which in turn are negated when the

technique is executed:

i. Assumptions about the inputs of the system

under test.

One of the goals of fault injection seeks to test fault

handling methods and mechanisms with respect to

inputs they were designed to cope with. This means

that assumptions about valid inputs are known. These

assumptions are then negated to identify invalid

inputs. These invalid inputs are then injected into the

system to test the error handling mechanisms.

ii. Assumptions about the context of execution

of the system under text

Fault injection methods involve manipulating the

context in which the system under test executes during

normal operation such as changing code or the amount

of supporting resources available. This means that

assumptions about the context required for normal

system execution are known which can be negated to

identify system states, injection times or test points

at which faults can be injected.

For example, consider an application requires 10

megabytes of memory to operate normally. Negating

this assumption about memory context of the

application would result fault injection tests being

generated to test how the system performs when not

enough memory is available.

7 NegTest Extension

In this section we introduce the design of an

extension of a unit testing framework for negative

testing called NegTest. NegTest is developed in

Ruby programming language as an extension to the

MiniTest unit testing framework which is the

standard testing framework included with the ruby

system. The extension is developed based on the

Negation Testing perspective described in section 6

Figure 3 shows the basic structure of the main

components of the extension.

The NegTest functionality is imported into

MiniTest where a negation test case is defined. The

test case specifies the assumptions about the inputs

of the SUT and the expected behavior of SUT when

tested with negated and non negated data.

Figure 4 Main components of the NegTest extension

The Negation Controller module receives the

negation test case which first builds a truth table of

possible combinations of negated and non negated

data depending on the number of assumptions of

inputs specified. The NegationController randomly

selects a combination from the truth table. For each

assumption, a value of True causes the

NegationTest module to randomly select amongst

sub universes returning negated data from the data

generator. A value of False causes the NegationTest

module to return non negated data from the data

generator. The returned sets of data are then tested

against the SUT while checking that the expected

behavior for negated or non negated behavior data

is maintained. The results are then returned to

MiniTest.

The sections that follow describe the main

components of the NegTest extension.

7.1 Ruby

The extension is developed in Ruby programming

language. Ruby is a high level dynamic language

which means that it allows a program to modify

itself at runtime. This makes it easy to extend the

programs with new functionality. It is also an object

oriented language having all its features

implemented as objects. A key feature of Ruby is

duck typing [14] which means that objects are

described by specific data types, but rather by what

the objects can and cannot do. This is particularly

useful when testing as it allows any data to be run

against the SUT to reveal faults. Another key

feature of Ruby is the possibility to pass code

segments called blocks from one object to another.

This is important when defining templates of test

cases as will be shown in the design of the

extension. These features make ruby an attractive

programming language to use for this study.

7.2 Unit Testing Framework – MiniTest

MiniTest is the standard unit testing framework

included with the Ruby system version 1.9. It is an

updated version of its slower predecessor called

Test Unit. MiniTest provides a small and fast unit

testing framework with a vast number of assertions

that can be easy extended with new functionality.

The test cases defined within MiniTest are similar

to those defined in other testing framework which is

an advantage as the time required learning how to

use the tool is shortened. Consequently, an

extension with similar structure will also be quick to

learn MiniTest also provides features for Behavioral

Driven Development (BDD) testing, a Bench

marking feature which assesses the performance of

algorithms and a mock object framework for

stubbing out code.[14] This set of features makes

MiniTest a good tool for the negative testing

extension.

7.3 Data Generator – Rantly

The data generator used for the extension is

extracted from Rantly testing tool. The generator

has features for generating the following kinds of

random data: fixed numbers, floats, strings, ranges

of numbers or characters, strings generated from

regular expressions, selecting values from a set,

controlling the frequency of the kind of data

generated and guards for filtering data. One major

advantage of Rantly over other generators is it does

not depend on any predefined data dictionaries for

generating from which data is retrieved. Instead

Rantly has functions that generate different forms of

random data. Table 2 shows some ruby random data

generators and identifies key differences between

the generators features

Generator Dictionary /

Pre defined

values

Regular

expression

Guards

Rantly X X

Faker X

Forgery X

Randexp X X

Random

data

X

Table 2: Ruby Random Data Generators from

www.rubygems.org

7.4 NegTest Extension

The NegTest extension provides logic for

manipulating user specified input assumptions into

a form that can be used to get data from the data

generator. The generated test data is then run

against the end user specified oracles to test the

SUT. The extension consists of two main modules,

a NegationController and a NegationTest module.

In this sub section, a simple example is introduced

which is used to explain aspects of the design and is

followed by a description of the NegationTest and

NegationController modules

7.4.1 A simple example

A simple program input_int_1_10 (input) takes a

single string value as input. It must be possible to

convert the input into an integer. The program

verifies that the value is in the range 1-10. The

method returns the value if it is in the range 1-10.

Below is the pseudo code for the method:

Convert input into an integer

If 1 < = input < = 10

return input

Else

return “Must be an integer in the range [1, 10]”

A ruby tester might define the following test cases

using MiniTest:

Positive test cases

 def test_int_1

 assert_equal 1, input_int_1_10(1)

 end

 def test_int_2

 assert_equal 2, input_int_1_10(2)

 end

Negative test cases

def test_int_0

 assert_equal "Must be an integer in the range [1,

10]", input_int_1_10(0)

 end

 def test_int_11

 assert_equal "Must be an integer in the range [1,

10]", input_int_1_10(11)

 end

def test_string_11

 assert_equal "Must be an integer in the range [1,

10]", input_int_1_10(“11”)

 end

The tests above are not exhaustive but are an

example of the tests expected to be generated by the

NegTest extension.

7.4.2 Characteristics implemented in the design

NegTest is designed to test the SUT with different

kinds of negated and non-negated inputs. Using the

perspective of Negation Testing which is described

in section 6, the extension provides features for

defining negated and non – negated assumptions

about the inputs. The extension randomly selects

between the negated and non-negated assumptions

to generate negated or non – negated data

respectively.

As NegTest is an extension of a unit testing

framework, it must exhibit the main characteristics

of a unit testing framework. That is to say, it must

provide features for the definition of a test case

which includes an initialization of input values, the

SUT and specification of an oracle which returns

the result of the test. In addition, in the event that a

failure is encountered, the error details should be

displayed and no other test should be run.

The NegTest extension is designed to verify that the

SUT returns the expected response when tested with

either negated or non negated inputs. A fault in the

SUT is discovered if unexpected behavior is

realized while testing with either negated or non

negated data. A Non Negated Input Response

Oracle (N-NIR0) and a Negated Input Response

Oracle (NIRO) is defined.

The Non Negated Input Response Oracle (N-NIRO)

returns a decision based on the expected behavior of

the SUT for non - negated input. Following the

simple example described in sub section 7.1, any

input that is in the range 1 to 10 is non negated

input and hence the Non Negated Input Oracle (N-

NIRO) expects the response from the SUT to be the

input supplied from the range 1 to 10. In such a

case, the oracle will return a value of true. If the

response from the SUT is not the same as the input

supplied, the oracle returns false.

Table 3 illustrates the behavior of the N-NIRO

described above. The table shows that when a non

negated input of 2 is returned by the SUT, N-NIRO

returns true. When the error message is returned for

the negated input of 11, N-NIRO returns false.

Table 3 also introduces test types A and C that

represent tests of the SUT using the N-NIRO with

non negated and negated data respectively. When

the N-NIRO returns true for Test A, the test passes

or is successful. Otherwise the test fails. When the

N-NIRO returns false for Test C, the test passes or

is successful. This is because we expect the SUT to

not return the negated input, but return the error

message. Otherwise the test fails.

Test

Type

Input

Type

Example SUT

Response

N-NIRO

Reponse

Test

Status

A Non

Negated

2 2 True Pass

C Negated 11 Must be

an integer

in the

range [1,

10]",

False Pass

A Non

Negated

2 null False Fail

C Negated 11 11 True Fail

Table 3 Non Negated Input Response Oracle behavior

The Negated Input Response Oracle (NIRO) returns

a decision based on the expected behavior of the

SUT for negated input. Following the simple

example described in sub section 7.1, any input that

is not in the range 1 to 10 is negated input and

hence the Negated Input Oracle (NIRO) expects the

response from the SUT to be the error message. The

oracle will return a value of true. If the response

from the SUT is not the error message, the oracle

returns false.

Table 4 illustrates the behavior of the NIRO

described above. The table shows that when the

error message is returned by the SUT because of the

negated input of 11, NIRO returns true. When any

value other than the error message is returned for

the negated input of 11, NIRO returns false. Table 4

also introduces test types B and D that represent

tests of the SUT using the NIRO with non negated

and negated data respectively. When the NIRO

returns false for Test B, the test passes or is

successful. This is because we expect the SUT to

not return the error message, but return the non

negated input. Otherwise the test fails.

When the NIRO returns true for Test D, the test

passes or is successful. Otherwise the test fails.

Test

Type

Input

Type

Example SUT

Response

NIRO

Reponse

Test

Status

B Non

Negated

2 2 False Pass

D Negated 11 Must be

an integer

in the

range [1,

10]",

True Pass

B Non

Negated

2 Must be

an integer

in the

range [1,

10]",

True Fail

D Negated 11 11 False Fail

Table 4 Negated Input Response Oracle behavior

7.4.3 NegationTest module

The NegationTest module processes end user

specified assumptions and returns negated or non –

negated random data from the data generator.

Fixnum, float, string, Boolean and nil types are the

default sub universes provided by NegationTest

module. If an assumption states that non negated

data consists of Fixnums, the NegationTest module

randomly selects a sub universe from floats, string,

Boolean and nil types and a value is return from the

selected sub universe. The NegationTest module

provides classes and methods for getting fixnums,

floats, string, Boolean and nil values from the data

generator from which other custom sub universes

can be constructed. The module defines the syntax

used by the end user to specify the input

assumptions. The module also allows custom

generators to be defined by the end user for

situations in which complex types of data are

required. The test data generated is returned to the

NegationController module.

7.4.4 NegationController module

The NegationController module receives user

defined assumptions which are forwarded to the

NegationTest module to obtain input data from the

random generator.

When the NegationController receives input

assumptions, a truth table is constructed. The

different combinations of True and False values are

then used to direct the NegationTest module to

return negated or Non Negated data. A True value

returns negated data and a false value returns non

negated data.

The NegationController has the logic that will run

the generated inputs against the N-NIRO and NIRO

to test the SUT and report the results to MiniTest.

7.5 Techniques implemented in the design

The test techniques implemented in the design

include equivalence partitioning, exploring all

allowable character sets and data types and find

input values that may interact and test combinations

of their values whose descriptions can be found in

sections 5.9, 5.3 and 5.4 respectively.

The inputs generated by the extension are either in

the negated or non negated classes depending on the

assumption specified by the tester. This

functionality is distributed across strings, numbers,

Boolean and nil values which are the basic types in

ruby that can be used to construct complex types

such as arrays in Ruby. In order to test different

combinations of inputs, the NegationController

creates a truth table for each input or set of input

assumptions and which is used to direct the

NegationTest module to create negated or non

negated data.

8 Evaluation and Results

The evaluation was carried so as to ascertain that

the NegTest tool can be used to discover faults in

applications. Various test candidates were used in

the evaluation and are listed in Table 5. For each

candidate, select methods were identified that take

one or more parameters. Each candidate was tested

10 times so as to ensure that different types of data

and different combinations of data for multiple

parameter methods can be tested. NegTest will run

a total of 200 tests assuming no failures are

encountered to stop execution. Therefore a total of

2000 tests were run for each test candidate.

Test

Candidate

Methods #Parameters

or type

Bookland EAN.valid

ISBN.valid

ISBN10.valid

ISBN.to_isbn_10

Identifier.checksum

Identifier.payload

1

1

1

1

1

1

Chronic parse 1

Versionomy create 5

ICalendar add_event event object

Simple

Statistics

mean 1 array on

numbers
Table 5: Test Candidates from www.rubygems.org

Table 6 shows the results obtained from testing the

test candidates with the NegTest extension. The

table shows the average time (Avg Time) taken for

the 10 test runs of each test candidate with each run

consisting of a maximum of 2000 possible tests.

The table shows the total number of failures for the

four test types A, B, C and D described in section

7.4.2 Table 3 and Table 4, the total number of

successful tests run before a fault or unexpected

behavior is encountered and the total number of

tests not run.

9 Discussion

The results of the study show that using the

Negation Testing approach, test techniques can be

automated so as to be able to generate test cases that

can discover unexpected or unexplored behavior in

real systems. NegTest generated test cases

consisting of negated inputs that brought about

failures, many of which were exceptions that were

caused by inputs of the wrong data type. In

addition, NegTest was able to identify a fault in one

test candidate that did not cause the test candidate to

fail. The Chronic test candidate expects unique

string key words which are parsed and the

corresponding date returned. However negated

random string input combinations were able to

return a valid date and hence an indication of a fault

is the program.

The study shows that Negative Testing is not clearly

defined. The study described four different

definitions of Negative Testing with each definition

seeking to test one or more aspects about systems

such as inputs and execution context. The

definitions described were not exhaustive, but their

existence indicates the need for a general and clear

description of Negative Testing.

In the study test techniques that can be categorized

as negative testing techniques were described in

terms of their purpose, and strengths and

weaknesses of the techniques with accompanying

examples. Analysis of the techniques revealed gaps

in the current understanding of negative testing. The

gaps occur because no clear description of negative

testing exists. In Section 2, four different definitions

of NT were introduced that test different aspects

about systems. This means that the NT techniques

can be executed in four different ways which leaves

testers with the challenge of selecting definition to

follow. Therefore a more general definition is

required that clearly describes NT.

Furthermore, the definitions state aspects such as

inputs and context of execution which are to be

explored when testing the SUT with test techniques.

But the definitions do not state how these aspects

are derived or used to derive negative test cases.

In addition, some techniques that can be used for

negative testing can also be used for positive testing

raising the question of whether negative testing is a

technique or an approach that can be applied to any

test technique.

Negation Testing described in section 6 fills the

gaps mentioned above describing negative testing as

an approach that can be applied to any test

technique and also specifies how aspects of testing

can be derived from system descriptions and used

for negation testing

The design of the NegTest extension described in

section 7 shows that negative testing techniques can

be automated using the negation testing approach.

Three techniques described in section 7.5 are

implemented in the design. These techniques were

selected because they explore the inputs aspect of

the SUT which are derived from the SUT

specification, and do not require knowledge of

various structures used in the SUT.

The NegTest extension was designed with the Ruby

system which comes with a standard unit testing

framework called MiniTest. MiniTest is a fast

testing tool which can be seen from the short time

taken to execute the tests in Table 6.

Ruby was particularly useful because of its duck

typing feature that allows objects to be described by

what they do rather than being associated with a

specific data type. This feature makes it possible to

assemble different types of data in a single data set

which can be used to test the SUT.

In addition, Ruby has methods that enable

permutations and combinations of data to be

computed. These methods were considered when

designing the NegTest extension.

Using the design described in section 7, it was

possible to define input assumptions of various

complexities for the test candidates using both the

default and custom input generators. However this

was challenging for test candidates in which some

but not all the characteristics of the input

assumptions was known. In such a case, it was

difficult to determine if certain unexpected

behavior.

The NegTest extension did not perform in terms of

running a complete set of tests. This is because

Candidate

Method

Avg Time

(secs)

A B C D SuccesfulTests

Run

Tests Not

Run

EAN.valid 0.014001 0 0 10 0 1014 986

ISBN.valid 0.013301 0 0 10 0 1024 976

ISBN10.valid 0.013401 0 0 10 0 1008 992

ISBN.to_isbn_10 0.019601 0 0 10 0 988 1012

Chronic.parse 0.403323 0 0 0 2 1912 88

Versionomy.create 0.158009 0 0 10 0 74 1926

ICalendar 0.029001 0 0 10 0 1001 999

Simple Statistics 0.043002 0 0 0 10 1034 966
Table 6: Test Results

when a failure was encountered, no other tests could

be run. This is the default behavior of a unit testing

framework. Because of this the remaining test data

is never used to test the SUT for unexpected

behavior. This is shown in table 6 as the tests not

run against the candidates. It is desirable to have all

test data tested. As further work, the design should

allow all tests to be run.

The NegTest extension explored the test candidates

using the four kinds of tests A, B, C and D. Some of

the failures realized by the NegTest extension did

not bring about failures in the candidates. Instead

the candidates showed new behavior that would

need to be explored so as to ascertain the conditions

under which they occurred. This shows that

Negative testing should not only focus on finding

those use cases that cause the SUT to fail, but to

also cause the SUT to exhibit new behavior that

does not result in failure of the SUT.

The results in Table 6 show that in some cases more

negated inputs were generated than the non –

negated inputs and vice versa. This is because the

generation of negated or non –negated inputs is

random. As further work, fairness could be

implemented so that an equal number of non –

negated and negated inputs to be generated.

In addition, the design could be extended to

incorporate other test design techniques using the

different aspects of Negative Testing identified in

section 2. The current design uses input

assumptions to test the SUT. Further work could

explore different ways of testing the context of

execution of the SUT.

For the evaluation of NegTest, there were 10 test

runs for each candidate totaling to 2000 tests. The

aim was to be able to test the candidates with as

much random data as possible. Key questions on

Negation Testing would be on how many tests

should be run, how many sub – universes should be

used for negation and generally the time used for

testing. One recommendation would be to use the

assumptions indentified as a control and test each

assumption. The assumptions about the SUT should

be tested within the allowed time and budget for the

current release. Other assumptions are carried on to

the next release and tested then. This is not a full

proof solution. However the questions raised above

can also be explored as further work.

10 Conclusion

Negative Testing is not a technique, but rather an

approach to testing that can be applied to test

techniques. It seeks to discover unexpected

behavior of systems that may or may not result in

the failure of the SUT. Negative Testing explores

various aspects about systems and both negated and

non-negated characteristics of these aspects should

be tested. The automation of testing techniques to

which the negative testing approach has been

applied can reveal unexpected behavior from the

SUT.

11 References

1. K. Naik, P.Tripathy. Software Testing and Quality

Assurance Theory and Practice. New Jersey, John

Wiley and Sons, 2008.

2. S. Eldh. “On Test Design.” PHD, Marladarlen

University, Sweden, 2011.

3. “ Negative Test”. Internet:

http://en.wikipedia.org/wiki/Negative_test [Jan. 13,

2012].

4. B. Beizer. Software Testing Techniques, VNR,

International Thomson Computer Press, 2nd ed.

Boston, 1990.

5. G. J. Myers. The Art of Software Testing. New

Jersey, John Wiley And Sons, 2004

6. J. A. Whittaker. “How to Break Software: A

Practical Guide to Testing”, Addison-Wesley,

2003

7. V. Vaishnavi, B. Kuechler. “Design Science

Research in Information Systems”. Internet:

http://desrist.org/design-research-in-information-

systems/ [Jan. 13, 2012]

8. J.Lyndsay. Positive View On Testing.[On-Line]

Available: http://www.workroom-

productions.com/papers/PVoNT_paper.pdf [Jan

24,2012].
9. A.Cyrille, B.Armin, and H.Shinichi. Exhaustive

Testing of Exception Handlers with Enforcer. [On-

line] Available:

staff.aist.go.jp/c.artho/papers/fmco-2006.pdf [Jan

24, 2012].

10. H. Haissam , R. Ayoubi , R. Velazco. A Survey on

Fault Injection Techniques. [On-line] Available:

www.citemaster.net/getdoc/9045/04-Hissam.pdf

[Feb 20, 2012].

11. Y. Jia, M. Harman. An Analysis and Survey of the

Development of Mutation Testing. [On-line]

Available:

http://www.dcs.kcl.ac.uk/pg/jiayue/repository/TR-

09-06.pdf [Feb 18, 2012].

12. P. Amman, J. Offutt. Introduction to Software

Testing. Cambridge, Cambridge University Press,

2008.

13. J. Arlat, A. Costes, Y. Crouzet, J. C. Laprie, D.

Powell. “Fault Injection and Dependability

Evaluation of Fault Tolerant Systems”, IEEE

Transactions on Computers, 42 (8), pp. 913-923,

August 1993.

14. D. Thomas, C. Fowler, and A. Hunt. Programming

Ruby. The Pragmatic Programmer’s Guide.

Pragmatic Programmers, Addison Wesley , 2009.

http://desrist.org/design-research-in-information-systems/
http://desrist.org/design-research-in-information-systems/
http://www.workroom-productions.com/papers/PVoNT_paper.pdf
http://www.workroom-productions.com/papers/PVoNT_paper.pdf

APPENDIX A –Negative Testing
Techniques

Appendix A gives a detailed description of the techniques categorized as

Negative Testing Techniques.

1. Fault Injection

This is a technique in which the quality of exception or dependability features of the SUT are

tested and assessed by introducing faults or failures into the SUT [9]. The technique tests the

possible configurations of the SUT and verifies that the SUT behaves as is stated in the

specifications in the presence of faults.

When applied to software, this technique involves altering the state of the SUT by applying

changes to the software that will result in the execution of exception or error handling code

paths. The changes are applied to the SUT directly or a layer between the SUT and any

supporting software such as an operating system from which faults are injected. This

technique is effective in exploring fault and exception handling code that is often left untested

by positive testing. The changes can take various forms such as code modification, erroneous

input flags and memory faults

To execute the technique, the tester must have a good understanding of the operations, code

and behavior of the system so as to be able to identify system states, injection times or test

points at which faults can be injected. This requires an initial and in depth analysis of the

SUT. The inputs for the technique include the specification, code, knowledge about the

environment of the system and experience using the application [10].

There are two main ways in which the technique is applied to software i.e. Compile time

injection and Run time injection.

Compile time injection involves modification of the source or assembly code to introduce

faults into the SUT. The code is modified in areas in which there is sufficient interaction or

communication between components for the fault to be realized. When the SUT is run, the

faulty code is executed. As an example, consider a function that divides numbers as illustrated

below:

 A=4/2;

A compile time injection example would involve modifying the source code to:

A=4/0;

This simple change is similar to the errors made by developers. Error handling mechanisms

should detect such errors in software. Compile time injection does not allow faults to be

introduced into the software as it is executing.

Runtime injection involves the use of a trigger to introduce a fault into running software. The

trigger used to introduce the fault is implemented in three main ways:

i. Code insertion involves the addition fault injection code to the original source code

that will inject the fault as the SUT is running. The key difference between code

insertion and compile time injection is that the former involves addition of fault

injection code which is executed at runtime whereas the latter modifies the original

source code and the fault introduced at compile time

http://en.wikipedia.org/wiki/Error_handling

ii. Exception or trap transfers control to a fault injector when certain conditions are

satisfied by the SUT. The fault injector introduces the fault and the SUT resumes

execution with the new faulty state.

iii. Timeout involves the injection of a fault as the SUT is executing, but after a given

amount of time. This method is suitable for simulating faults that occur periodically.

The timer may be implemented in software or hardware and requires no modification

of the source code.

For the technique to be effective for NT, faults introduced must cause code paths that handle

faults and exceptions to be executed. In addition, the software used to inject faults into the

system must not affect the system behavior i.e. the software is independent of the system

under test and any errors within the fault injection software does not affect the system under

test.

The techniques key strength lies in the fact that it targets fault and exception handling routines

that are rarely tested using positive testing. The technique also enables applications and

software to be tested which could not be realized with hardware fault injection. No special

hardware is required to carry out the testing using the technique which reduces the cost of the

testing effort.

However some of the methods used to execute the technique require the modification of the

source code. This means that the software executed during the test is not the same as the

software run by the end users and hence is not an accurate replica of the user context. In

addition, errors within the introduced fault code can lead to incorrect test results about the

system under test. Furthermore, areas of the SUT that cannot be accessed by software cannot

be tested.

2. Mutation Testing

Mutation Testing is a fault-based testing technique in which faults are introduced into

software by means of syntax changes. The modified software is then executed against a test

set to verify that the faults are detected. The technique helps testers develop effective tests or

locate weaknesses in the test data used for the program or in sections of the code that are

seldom or never accessed during execution.

The code containing the modified syntax changes is called a mutant of the original program.

The technique only targets faults which are close to the correct version of the program with

the hope that these will be sufficient to simulate all faults [11].

To execute the technique, the tester requires knowledge of the different parts of the source

code that can be modified to test the system for faults. The tester modifies the original

program, adding small syntactic changes to create mutants or the modified program. For

example, given the Boolean expression below:

If (A <B) return 1;

http://en.wikipedia.org/wiki/Execution_(computers)

A possible mutant could be:

If (A>B) return 1;

Any statement within software can be mutated as the statements shown in the statement above

and thus the number of mutants that can be created from software depends on the size of the

software.

For large software, mutation testing becomes impractical due to the high computational cost

of executing the enormous number of mutants against a test set. To tackle this problem,

techniques that attempt to reduce the number of techniques and increase speed of execution

are being developed. In [11] the following cost reduction techniques are identified:

 Mutant sampling: This randomly selects a set of mutants from a group of mutants.

 Mutant clustering: utilizes clustering algorithms to identify mutants.

 Selective Mutation: Seeks to identify a set of all mutants that can be derived from

mutation operators without reducing test quality.

 Higher order mutation: seeks to identify uncommon mutants that detect unique faults.

Another set of cost reduction techniques focuses on optimizing the process by which mutants

are run [11]. These include Strong, Weak and Firm Mutation and run time optimization.

Like fault injection in the previous section, mutation testing requires the source code to be

modified meaning that the conditions under which the software is executed during the test are

not the same as when the software is executed by the end user and hence is not an accurate

replica of the user context.

3. Apply inputs that force all error messages to occur

This technique focuses on the utilization of input values that will cause the SUT to exhibit

error messages with the aim of ascertaining that the errors or behavior produced matches the

behavior stated in the system specification. This technique targets the error handling code

which is often difficult to develop for various situations.

In [6], the following aspects of input data that are targeted:

i. Invalid data types will generate errors for example, providing an integer where a string

in expected

ii. Providing inputs or sets of inputs whose length is greater than the expected length for

an input, or providing a null value.

iii. Considering the boundary values of inputs which tend to reveal errors as these values

are not handled well by developers.

To execute this technique, information about the characteristics of the inputs is required, in

particular the data type, length of the inputs and boundary information. These can be obtained

from the specification of the software or the source code. In addition, knowledge about the

errors messages and the conditions under which the errors are invoked is required.

For example, given an input field that accepts only characters, entry of a numeric value should

generate an error in the application.

The technique is easy to use for software that is well specified to include the error messages

and conditions as the tester simply refers to the specification to derive the test. The technique

can help reveal input data that can bring about subtle, rare or unique errors that the developers

did not anticipate [6].

However the technique is limited by the fact that it doesn‟t account for situations in which

input validation that results in the generation of error messages occurs at another layer of

abstraction [2]. In this case subjecting a component to a series of tests will result in numerous

failures. Therefore, the tester must fully understand the implementation of the application to

effectively use this technique.

4. Explore allowable character sets and data types

This technique checks whether the SUT has validation mechanisms to prevent failures caused

by character sets or data types that the SUT was not designed to use.

Different operating systems and programming languages based on either Ascii of Unicode

character sets have reserved control structures or symbols that the SUT must be able to

handle. For example the C language has the ++ symbol for incrementing numerical values.

The SUT must be able to validate such inputs and return the appropriate error responses.

To execute this technique, knowledge about the platform on which the application is to be

developed is required. This information can often be obtained from the specification

document. In addition, the SUT may be tested with various data types offered by the

programming language in which case the SUT must be able to validate the invalid data types.

It should be noted that the test should not be limited only to the application under test but also

the external systems the application interacts with which could supply erroneous values.

The technique is rather complex to execute. This can be seen from the reference table

provided in [6] (Table 2.2 on page 29-33) to guide testers in executing the technique.

Table 2.2 on page 29-33 in [6] provides a guide for testers to use in executing the technique.

The technique is efficient in revealing validation errors. However, numerous errors will be

found if validation is done at a higher level of abstraction.

5. Find input values that may interact and test combinations of their values

This technique involves testing the SUT with combinations of inputs that are related or are

involved in the same operations. The goal is to identify inputs that affect each other in

computations or utilize the same resources and test different combinations of these inputs so

as to ascertain that the SUT functions for all possible input combinations.

For example, for a function that adds two of its parameters, the parameters are the values

whose combinations are to be tested.

[6] suggests that the values in a relationship should describe aspects of a common internal

resource or be used in the same internal computation or calculation. This information can be

derived from the design of the application and the source code.

The major drawback of the technique is that it is not possible to test all input combinations.

Whittaker suggests selecting a good subset from the possible combinations. A possible

solution would be selecting a representative value from different partitions identified using

the equivalence partition method.

6. Repeat the same input or series of inputs numerous times

The technique tests whether an application has error handling procedures for situations in

which the context of execution is modified as a result of all resources that the SUT is

dependent on being consumed [6].

Continuous repetition of the same inputs uses up system resources such as memory buffers,

data storage space or communication with remote resources. In addition, if an application uses

a remote resource, it is difficult for the application under test to know of the remote systems

limitations and hence developers must have proper mechanism to prevent the system under

test from crashing.

To execute the technique, the tester needs a good understanding of the application inputs,

operation and the environment or external resources that the application interacts with. The

inputs that the user is expected to use are good candidates for the test. Then the way the inputs

are used internally is considered i.e. if they use up resources or interact with other systems.

These inputs are then used to execute the same procedure until the application fails.

The technique is good for stress testing the application under test and can also benefit from

automation as it involves executing the same task repeatedly [2].

7. Force a data structure to store too many or too few values

This technique checks whether appropriate controls and error handling procedures on data

structures or resources are in place so as to avoid underflow, over flow or corruption of data

[6]. The test is executed by providing too many, too few or invalid inputs to the SUT.

The technique reveals errors brought about by the developers neglect of limitations of the

different data structures they use. The data structures also include external resources that the

application uses.

To execute the technique, the tester requires knowledge about the different data structures and

resources that can be exploited of the application. The source code and information about the

applications environment are good sources of information. An example of a simple data

structure is an array whose size is not checked before attempting to add a new value to the

array. Addition of a value when the array has reached its capacity will result in an error.

8. Force the media to be busy or unavailable

This technique tests the SUT to verify that it operates appropriately during error conditions

related to media. The technique verifies that the applications return the correct error codes

associated with different kinds of media problems.

This is common in concurrent applications that try to access a single resource. For example, a

multithreaded application that updates a database will cause a deadlock when more than one

process attempts to update the database.

To execute the technique, the tester requires in depth knowledge about the operation and

environment of the system under test.

The drawback with this technique is that the test scenarios are difficult to simulate often

requiring more resources than is available to testers. In addition, some applications have

concurrent processes and it may be difficult to simulate a scenario in which different

processes access the same resource at the same time.

9. Equivalence Partitioning

This technique divides software inputs into partitions from which test cases can be derived to

uncover classes of errors. A single value from a partition will be treated similarly by the

component producing the same system behavior and thus can be used to represent the entire

class [12].

This technique can be used for both positive and negative testing. When used for positive

testing, the focus is on those classes of inputs that cause the system to exhibit the expected

system behavior. When used for negative testing, the focus is on those classes of inputs that

cause the system to exhibit unexpected system behavior.

Partitions of inputs are identified from the characteristics of the program, inputs, environment

and behavior of a given software unit. The characteristics can be derived from the

specification and constraints of the software. The inputs can be method parameters, global

variables, objects representing current state or user level inputs to a program, depending on

the kind of software artifact being analyzed [12].

 [12] suggests the following general strategies for identifying the different partitions from

each characteristic or constraint:

 Valid values that cause the system to exhibit expected system behavior should be

considered. This also applies to ranges of values which can be divided into smaller

sets of partitions exercising different functionality. This is because different

combinations of the inputs can result in unexpected system behavior and thus must be

explored

 Invalid values that cause the system to exhibit unexpected system behavior should be

considered. This should not be limited to the details stated in the specification, but

should include less obvious values such as wrong data types or null values. One way

to identify the less obvious values is to obtain values that contradict the characteristics

or constraints of the inputs [8]. For example, use of characters where integers are

required.

 Boundary values should be considered i.e. values that are at or close to the boundaries

of the input. For example, given a range

 Check that no value belongs to more than partition so as to avoid duplication in the

results

A key strength of the technique is that there is little training required and the tester does not

need to understand the implementation. This is due to the fact that the classes are derived

from the specification of the application that contains characteristics usually referring to a

single parameter.

However, it is often the case that specifications are incomplete and therefore not all classes

can be explored. Furthermore, in some situations the tester will only have access to the

software‟s executable and general knowledge of the functions of software, but not the

specification. In this case, identification of the partitions is more of guess work.

This technique has high chances of uncovering unknown system behavior as it generates test

inputs or scenarios that are outside what is stated in the specification. However, for well

specified systems such as safety critical systems, less unknown system behavior may be

discovered.

10. Boundary value analysis

This technique examines the boundary values of the characteristics or properties of software

as more errors tend to occur at the boundaries. The technique is often considered an extension

of equivalence partitioning in which the boundaries values of the partitions are the major

areas of interest.

[5] identifies the following differences between boundary value analysis and equivalence

partitioning:

 Rather than selecting any element in an equivalence class as being representative,

boundary-value analysis requires that one or more elements be selected such that each

edge of the equivalence class is the subject of a test.

 Rather than just focusing attention on the input conditions (input space), test cases are

also derived by considering the result space (output equivalence classes).

The technique requires that the lower and upper boundaries of a property or characteristic be

examined. For each boundary, a value at the boundary, one value below the boundary and one

value above the boundary is required. The technique can be used for both positive and

negative testing. When used for negative testing, values below or above the boundary is of

interest.

Partitions of inputs and outputs are identified from the characteristics of the program, inputs,

environment and behavior of a given software unit. The characteristics can be derived from

the specification and constraints of the software. The inputs can be method parameters, global

variables, objects representing current state or user level inputs to a program, depending on

the kind of software artifact being analyzed [12].

Boundary Value Analysis is valuable technique that can reveal errors if used correctly. It is

easy to execute, the major difficulty being the identification of the boundary conditions. If

used correctly the technique can discover boundaries overlooked by programmers, discover

boundaries resulting from interactions amongst subsystems and validate requirements.

APPENDIX B – NegTest Design

Appendix B gives a description of the design of the NegTest extension

Introduction

NegTest is designed as an extension to the MiniTest unit testing framework with the purpose

of automatically generating test cases and testing the SUT. Section 7.4.2 of the paper

described characteristics implemented in the design which can be interpreted as the general

requirements to be achieved by the design of the extension.

The diagram below shows the major components of the NegTest extension.

Figure 5: Flow of Control in NegTest Components

Below is a description of the flow of control in the NegTest extension shown above.

1. The end user defines the input assumptions, the valid and invalid oracle and submits

the test.

2. The NegationController receives the assumptions and generates a truth table based on

the submitted assumptions.

3. The NegationController randomly selects a set from the truth table and selects a single

value that is used to set a variable that informs the NegationTest module if negated or

non – negated data should be returned. The assumption is forwarded to the

NegationTest module

4. Based on the assumption and the status variable, the Negation test module queries the

data generator

5. The data is returned to the NegationTest module

6. The test data is returned to the NegationController module

7. The NegationController runs the generated inputs against the Non –Negated Input

Response Oracle and the Negated Input Response Oracle

8. The NegationController reports the results to MiniTest.

Three techniques are implemented in the design. In the design, the techniques are dependent

on one another as described below:

a) Equivalence Partitioning

The NegTest extension generates two classes of input which are negated and non –

negated data. This is achieved by selecting a Boolean value from a truth table

generated from the assumptions submitted for testing. If a value of True is selected,

negated data is returned. Otherwise non – negated data is returned.

b) Find input values that may interact and test combinations of their values

For tests that involve multiple input assumptions, a truth table is constructed giving

the different combination of True and False value pairs for the inputs. When

generating a single set of values for the assumptions, a single set is selected from the

truth table and for each assumption the corresponding True or False value is selected

to generate data as is described above for equivalence partitioning.

c) Explore allowable character sets and data types

For each type of data to be returned, NegTest requires a specification of the non –

negated form of the input. The negated form is them any other type that is not equal to

the non – negated type. For example is an assumption requires integers as non negated

data, the negated data would consist of strings, floats, Boolean values etc.

The design requires a negated and non – negated routine to be developed. In the

negated routine, the other types not equal to the non – negated type are randomly

selected and the data generator returns this data.

The selection between the non – negated and negated routine is based on the Boolean

value select from the truth table

The sections that follow describe the design of the NegationTest and NegationController in

detail.

1 NegationTest

The NegationTest module defines accessor methods and assumption classes that are used to

query random data from the random data generator. This section describes the components

that enable the NegationTest module to perform its task.

1.1 Assumption Classes

The assumption classes define methods that interact with the data generator to return specific

kinds of data. The classes use data generator public methods and syntax to get data. All

classes inherit from the Assumption class which defines a single public method that

“generate” that is used to query the data generator for data.

The child classes use the ruby construct called a Proc to define the kind of data that is

required. A Proc is a block or set of ruby statements that can be bound to a variable. The Proc

defined in a child class is then passed to the parent Assumption class which will query the

data using the generate method.

Below is class hierarchy of the assumption classes.

Figure 6: Assumption class hierarchy

Three main assumption child classes are provided which are used to query the main types of

data in ruby which include Fixnum (Integers), Floats, String, Boolean and nil. Each class

specifies different ways by which these types can be specified.

All methods in the child classes receive a single Boolean variable which is used to determine

if negated data should be returned (True), and if non – negated data should be returned

(False). This means that each method defines how negated and non – negated data will be

queried from the data generator.

The module defines a module parameter is_violated which is used to determine if negated

(is_violated=True) or non - negated (is_violated=False) data should be returned

Each of the classes defines various methods. Each method must define a routine that is used to

return negated or non-negated data.

The sub sections that follow provide a description of the classes.

1.1.1 Number_Assumption class

This class queries the data generator for negated and non- negated fixnum and float values. It

has the following methods:

i. Type

This method queries the data generator for fixnum and float values when non – negated values

are required. The method will return any fixnum in the range -1073741823 to 1073741823.

The method will return any float in the range Float::MIN to Float::MAX. Float::MIN and

Float::MAX are special ruby constants

The method takes a Boolean value as a parameter that is used to determine if negated or non

negated data should be returned. It also takes a fixnum value that indicates how many

numbers should be returned.

When negated fixnum values are required, the random generator is queried to randomly select

a single data type from a set consisting of a float, Boolean, string or nil value. Based on the

selected data type, a corresponding value is returned.

Similarly, when negated float values are required, the random generator is queried to

randomly select a single data type from a set consisting of a fixnum, Boolean, string or nil

value. Based on the selected data type, a corresponding value is returned.

ii. Range

This method queries the data generator for fixnum of floats in a specified range. The method

takes a Boolean value as a parameter that is used to determine if negated or non negated data

should be returned. It also takes a fixnum value that indicates how many numbers should be

returned.

In addition, the method takes an array of range objects as a parameter. The range objects

consist of the upper and lower limit values of a given range. Multiple ranges can be specified.

When non – negated data is required, fixnums or floats that are in the ranges specified are

returned.

When negated fixnums are required, either fixnums not in any of the ranges are returned or

the random generator randomly selects a single data type from a set consisting of a float,

Boolean, string or nil value. Based on the selected data type, a corresponding value is

returned.

Similarly, when negated floats are required, either floats not in any of the ranges are returned

or the random generator randomly selects a single data type from a set consisting of a fixnum,

Boolean, string or nil value. Based on the selected data type, a corresponding value is

returned.

iii. Set

This method receives a set of fixnum or float values which are considered to be the only non –

negated values. The values in the set must be returned whenever non – negated data is

required.

The method takes a Boolean value as a parameter that is used to determine if negated or non

negated data should be returned. It also takes a fixnum value that indicates how many

numbers should be returned.

When negated fixnums are required, any fixnum not in the set and any value of float, string

Boolean or nil type can be returned

When negated floats are required, any float not in the set and any value of fixnum, string

Boolean or nil type can be returned

1.1.2 String_Assumption class

This class queries the data generator for negated and non- negated string values. It has the

following methods:

i. Type

This method queries the data generator for string when non – negated values are required. The

method takes a Boolean value as a parameter that is used to determine if negated or non

negated data should be returned. It also takes a fixnum value that indicates how many

numbers should be returned.

When non – negated data is required, random string values are returned. When negated data is

required, any value of a fixnum, float, Boolean or nil data type is returned.

ii. Regex

This method queries the data generator for string values based on simple regular expressions.

The method takes a Boolean value as a parameter that is used to determine if negated or non

negated data should be returned. It also takes a fixnum value that indicates how many

numbers should be returned.

When non – negated data is required, random string values are returned. When negated data is

required, any value of a fixnum, float, Boolean or nil data type is returned or a string that does

not match the regular expression is returned.

iii. Set

This method receives a set of string values which are considered to be the only non – negated

values. The values in the set must be returned whenever non – negated data is required.

The method takes a Boolean value as a parameter that is used to determine if negated or non

negated data should be returned. It also takes a fixnum value that indicates how many

numbers should be returned.

When negated strings are required, any string not in the set and any value of float, fixnum

Boolean or nil type can be returned

1.1.3 Boolean_Assumption class

This class queries the data generator for negated and non- negated boolean values. It has the

following methods:

i. Type

This method queries the data generator for Boolean values when non – negated values are

required. The method takes a Boolean value as a parameter that is used to determine if

negated or non negated data should be returned. It also takes a fixnum value that indicates

how many numbers should be returned.

When non – negated data is required, random boolean values are returned. When negated data

is required, any value of a fixnum, float, string or nil data type is returned.

1.2 Accessor Methods.

The Accessor methods provide a means through which the assumption classes can be used to

get data. They form the syntax used by the end user to specify assumptions of inputs. Some of

the methods can only used as a parameter for another accessor when stating a specific

characteristic about an input assumption. Below is a description of the methods

i. Integer

This method takes another accessor method as a parameter and returns non- negated or

negated fixnum values based on the parameter. If no parameter value is provided, the type

method of the Number_Assumption class is used to query data.

ii. Float

This method takes another accessor method as a parameter and returns non- negated or

negated float values based on the parameter. If no parameter value is provided, the type

method of the Number_Assumption class is used to query data.

iii. String

This method takes another accessor method as a parameter and returns non- negated or

negated string values based on the parameter. If no parameter value is provided, the type

method of the String_Assumption class is used to query data.

iv. Boolean

This method returns non- negated or negated boolean values. The type method of the

Boolean_Assumption class is used to query data.

v. Range

This method takes an array of ranges as a parameter and returns an array of range objects.

This method must be used as a parameter.

vi. Set

This method takes a list of values as a parameter and returns the list. This method must be

used as a parameter.

vii. Regex

This method takes a regular expression as a parameter and returns the expression. This

method must be used as a parameter for the String method.

1.3 Default Syntax

Below is the allowed syntax provided by the module by default.

Integer () – returns non – negated or negated fixnums

Integer(range([RangeA,RangeB])) – returns non – negated or negated fixnums in the range

RangeA and RangeB. RangeA and RangeB are expressed in the form a..z where a and z are

fixnums

integer(set(a,b,c)) – returns non – negated and negated fixnums using the set a, b and c. a, b

and c are fixnums

float() – returns non – negated or negated floats

float(range([RangeA,RangeB])) – returns non – negated or negated floats in the range

RangeA and RangeB. RangeA and RangeB are expressed in the form a..z where a and z are

floats

float(set(a,b,c)) – returns non – negated and negated floats using the set a, b and c. a, b and c

are floats

string() – returns non – negated or negated string values

string(set(a,b,c)) – returns non – negated and negated strings using the set a, b and c. a, b and

c are strings

string(regex(expression) – returns non – negated and negated strings based on the regular

expression.

1.4 NegationController module.

The NegationController module provides a single Controller class with methods for receiving

user specified assumptions, oracles and running the tests against the SUT. This section

describes the components that enable the NegationController module to perform its task.

1.4.1 Controller class

The Controller class receives user assumptions. The assumptions are defined using the

accessor syntax defined in the NegationTest module. The accessors are added to the

Controller class using ruby mixin syntax (Include NegationTest). By using the mixin syntax,

the accessors can be accessed within the Controller class as instance methods of the

Controller class.

The Controller class defines the following methods:

i. Initialize

This is method receives user specified assumptions as ruby Procs and the user defined oracles

as blocks. Both Procs and blocks consist of ruby statements. The method sets the number of

tests to be run with a value of 100.

ii. Get_permutation.

This method receives a list of assumptions and creates a truth table of all possible negated and

non - negated combinations of the input variables. For example, if the assumption represents a

single value, the table will consist of only a single True and False value. If assumptions for

two inputs are provided, the following combinations are provided

Single Input Two Inputs

Input 1 Input 1 Input 2

True
False

True True

True False

False True

False False
 Table 7: Assumption Truth Table

iii. Single_assumption

This method is executed when a single assumption is provided. It returns a value based on the

assumption and the randomly selected Boolean value from the truth table which determines if

a negated or non – negated value should be returned.

iv. Assumptions

This method is executed when multiple assumptions are provided. It returns a set of values

based on the assumptions and the randomly selected set of Boolean values from the truth table

which determines if a negated or non – negated value should be returned. For example if a 2

input values are provided, a truth table similar to the one in table 6 is created for the two

inputs. The assumption method will randomly select a single row from the table and for each

input, set the is_violated variable with the appropriate Boolean value.

v. Assert_when_holds

This method takes a user defined Non – Negated Input Response Oracle as a parameter. The

Oracle returns a decision based on the expected behavior of the SUT for valid input. The

oracle is defined as a ruby block that consists of the assertion to be tested.

vi. Assert_when_violates

This method receives a user defined Negated Input Response Oracle as a parameter. The

Oracle returns a decision based on the expected behavior of the SUT for invalid inputs. The

oracle is defined as a ruby block that consists of the assertion to be tested. In addition to the

oracle, the method also receives a list of exceptions that may be raised when invalid data is

submitted to the SUT.

vii. Run_neg_tests

This method runs negated and non – negated data through both the valid and invalid oracles.

The method also reports the results of the tests.

2 Exposing the NegTest functionality to MiniTest

In order to expose the NegTest functionality to MiniTest, a new method “given_assumptions”

is added to the MiniTest::Assertions module. The “given_assumptions” method takes a block

as a parameter. The block consists of a single call of the assert_when_holds and

assert_when_violates methods in which the valid and invalid oracles are defined. Below is the

general structure of the given_assumptions method.

 given_assumptions(list_of_assumptions) do

 assert_when_violates do |generated_input|

 valid oracle definition

 end

 assert_when_violates (any_raised_exceptions) do |generated_input|

 invalid oracle definition

 end

 end

Sequence of steps involved in the execution of a test run.

i. After the user has specified the test using the given_assumptions method as shown

above, a NegationController object is created which receives the assumptions and the

two oracles.

ii. If a single assumption is provided, the single_assumption method is called. Otherwise

the assumption method is called.

iii. Based on the number of assumptions provided, an array of true and false values (truth

table) is generated. For example, a single value would return an array with

[True,False]. If two parameters are provided, the array contains all possible

combinations for both parameters as shown below:

[[True,True] , [True,False], [False,True], [False,True]]

iv. A value is selected from the truth table. For single parameter only one value is

selected. For multiple assumptions, a set is selected

v. The is_violated variable which determines if negated(is_violated=True) or non –

negated data will be returned is set to a single value from the truth table and then the

data generator is queried for a single value based on the assumption.

vi. Negated data is added to a negated data array and non – negated data added to a non

negated data array.

vii. The data in both run through both oracles and results reported.

3 Adding Custom Generators

To add a custom generator, a class that inherits from the class assumption must be developed.

In addition an accessor must be defined to access the class. Both class and accessor must be

added to the NegationTest Module. In situations where the existing generators are required,

the syntax defined in section 2.4 of Appendix B can be used but only within an accessor.

Otherwise the class for the corresponding generator can be used.

To use the custom generator, add the file with the custom generator to the test script using the

ruby “require” construct.

APPENDIX C – Using NegTest

Appendix C gives a description of how the NegTest extension can be used with

MiniTest

USING NEGTEST

NegTest is an extension of the ruby MiniTest unit testing framework that aids ruby testers to

define assumptions about inputs, generate random inputs based on the assumptions and run

them against the System Under Test (SUT). This section describes the use of the NegTest

extension. A simple example is introduced which is used to describe the extension.

A simple example

A simple program input_int_1_10 (input) takes a single string value as input. It must be

possible to convert the input into an integer. The program verifies that the value is in the

range 1-10. The method returns the value if it is in the range 1-10. Below is the pseudo code

for the method:

If input is greater than or equal to 1 and less than or equal to 10

 return input

Else

 return “Must be an integer in the range [1, 10]”

Following from the above example, a ruby tester might define test cases using MiniTest as

shown below:

Positive tests

 def test_int_1

 assert_equal 1, input_int_1_10(1)

 end

 def test_int_2

 assert_equal 2, input_int_1_10(2)

 end

Negative tests

def test_int_0

 assert_equal "Must be an integer in the range [1, 10]", input_int_1_10(0)

 end

 def test_int_11

 assert_equal "Must be an integer in the range [1, 10]", input_int_1_10(11)

 end

def test_string_11

 assert_equal "Must be an integer in the range [1, 10]", input_int_1_10(“11”)

 end

The tests above are not exhaustive but are an example of the tests expected to be generated by

the NegTest extension.

Negation Test case

Naik and Tripathy [1] describe a test case as a pair of input and expected outcomes from the

SUT. A test case more specifically consists of an initialization of test data if required, a call to

the system under test and a decision whether the test succeeds or not also known as an oracle.

A negation test case consists of the same components which are described below.

Initialization

This involves the definition of the assumptions about the inputs to be submitted to the SUT.

The NegTest extension provides methods for defining the assumptions as ruby Proc objects

which are blocks of code bound to a set of local variables and can be accessed in different

contexts. The tester defines assumptions that cause the system to exhibit the expected

behavior which are valid inputs

The simple example states that the method takes a string value that can be converted to an

integer and is in the range 1 <= x <=10. Using the NegationTest extension, this can be defined

in the following ways:

i. Using String assumptions

 Proc.new{string(set("1","2","3","4","5","6","7","8","9","10"))}

This states that the string values 1 to 10 are the only valid values. Negating this assumption

results in any string not in the set defined. A string regular expression can also be used to

define the assumption.

Because ruby is not typed, it is possible for the assumption to be defined in terms of non

string values as shown below:

ii. Using Integers of FixNum

 Proc.new{integer(range(1..10))}

This states that integer values in the range 1 to 10 are valid values. Negating the assumption

above results in any integer not in the range 1-10

iii. Using Floats

 Proc.new{float(range(1..10))}

This states that float values in the range 1 to 10 are valid values. Negating the assumption

above results in any float not in the range 1-10

Any of the assumptions defined above will cause the random generator to generate valid and

invalid data. NegTest has methods that return random strings, numbers, Boolean and nil

values. In addition, ranges and sets can be defined for the string and number generators.

Strings can also be defined using regular expressions.

Call to the SUT

The call to the SUT involves stating the SUT and the test input value. For the simple example,

the call to the SUT is:

 input_int_1_10 (generated_input)

The generated_input is a random value generated by the random generator based on the

assumption defined.

The Oracle

NegTest requires the definition of a valid and an invalid oracle. The Non-Negated Input

Response Oracle returns a decision based on the expected behavior of the SUT for valid input.

For the simple example, the oracle checks that the value returned by the SUT is the same as

the integer representation of the input generated by the random generator as shown below:

assert_when_holds do|generated_input|

 assert_equal generated_input.to_i, input_int_1_10(generated_input)

end

The Negated Input Response Oracle returns a decision based on the expected behavior of the

SUT for invalid inputs. For the simple example, the oracle checks for the error message

returned when invalid data is provided to the SUT.

assert_when_violates do | generated_input |

 assert_equal "Must an integer in the range [1, 10]",

input_int_1_10(generated_input)

end

When the tests are run, the oracle carries out four different kinds of tests A, B, C and D that

are described in section 7.4.2

The resultant Negation test case is shown below:

def test_input_int_1_10

 a=Proc.new{integer(range(1..10))}

 given_assumptions(a) do

 assert_when_holds do | generated_input |

 assert_equal generated_input.to_i, input_int_1_10(generated_input)

 end

 assert_when_violates do | generated_input |

 assert_equal "Must an integer in the range [1, 10]",

t.input_int_1_10(generated_input)

 end

 end

end

Results

The data generator creates 100 random inputs that are either valid or invalid based on the

assumption provided. Since the inputs have to be tested with the Non-Negated Input Response

Oracle and Negated Input Response Oracle, a maximum of 200 tests can be run. The results

from the test defined above are shown in the screen shot below

Screen Shot 1: Results from integer test

The results show 54 tests of valid inputs against each oracle. This also means that the

generator created 54 valid inputs. The results also show 46 tests of invalid inputs against each

oracle. This also means that the generator created 46 invalid inputs.

The results above which are based on the assumption in section 1.2 (ii) do not show any

failure and hence cannot reveal the bug in the program pseudo code. However, using

assumption in section 1.2 (i), the bug can identified as shown below:

Screen Shot 2: Results revealing absence of conversion bug

The results show that one test was run that resulted in an exception for string input 8. The

results also show that an argument error occurred when attempting to compare a string with 1.

The results include a trace to the section of the code that caused the error.

 From this error we can deduce that the string input is not being converted to an integer and

hence the bug. Correcting this bug by introducing the conversion will enable tests equivalent

to the total number of valid inputs to be run successfully.

Invalid inputs that cannot be converted to integers will raise exceptions as shown in the

screenshot below

Screen Shot 3: Results revealing unhandled exceptions

To correct the error such as the one above, the tester must modify the SUT to handle

exceptions after which all tests will be run successfully.

Another simple example

This example demonstrates some of the other features of the NegTest Extension. A simple

program check_divide_by_zero, takes two integers, a and b, and divides a by b. The

specification does not include a check for b not being equal to zero and hence is a source of a

failure. Below is the pseudo code for the program that excludes the check of b being equal to

zero.

If (a and b are integers)

 x= a / b

 return x

else

 return “The input values must be integers”

The assumptions for a and b can simply be defined as shown below:

Pair A

 a=Proc.new{integer()}

 b=Proc.new{integer()}

Pair B

 a=Proc.new{integer()}

 b=Proc.new{integer(set(0,1,2,3))}

Assumptions in Pair A consider all integers from the smallest integer (-1,073,741,823) to the

largest integer (1,073,741,823) to be valid values. The chance of b ever being equal to 0 is one in

over 2 million tests cases. So assumption b in Pair A has lower chances of revealing the error.

In assumption b of Pair B, b has a higher chance of revealing the bug and hence a better

assumption

The complete specification of the test is shown below:

def test_check_divide_by_zero

 a=Proc.new{integer()}

 b=Proc.new{integer(set(0,1,2))}

 given_assumptions(a,b)do

 assert_when_holds do |input|

 res=0

 if(input[1] != 0)

 res=input[0] / input[1]

 end

 assert_equal res , check_divide_by_zero(input[0],input[1])

 end

 assert_when_violates do |input|

 assert_equal "The input values must be integers"

,check_divide_by_zero(input[0],input[1])

 end

 end

end

Below is a screen shot of the results from the test

Screen Shot 4: ZeroDivisionError Exception

The screen shot shows that a single test was run with the value of a=262681064 and b=0 and

resulted in a ZeroDivisionError exception. After correcting the error in the specification and

the code, the Negated Input Response Oracle needs to be modified to include the new

response from the SUT for handling case when b is equal to zero. For example:

assert_when_violates do |input|

 assert_includes["The input values must be integers",”b cannot be equal to 0”]

 ,check_divide_by_zero(input[0],input[1])

end

In addition the assumption for b needs to be modified to reflect to valid values excluding 0 as

shown below:

b=Proc.new{integer(range([(-1073741823..-1),(1..1073741823)]))}

b is valid in the range -1073741823 to -1 and 1 to 1073741823. NegTest allows multiple

ranges to be stated for a given input

At this point, the division by zero error has been resolved and the only errors that can occur

are exceptions that occur due types that are not integers. These errors can be resolved by

adding the exception handling code for each new exception.

APPENDIX D – NegTest Evaluation

Appendix D gives a detailed description the evaluation of the NegTest extension

with three test candidates.

Bookland – ISBN.to_isbn_10

Bookland is a library that provides methods for validating and converting International

Standard Book Numbers. The library can be found online at

https://github.com/hakanensari/bookland. The Method Under Test (MUT) is the

ISBN.to_isbn_10 method whose purpose is to convert ISBN 13 numbers to ISBN 10

numbers.

The method accepts string inputs consisting of 13 numbers. The numbers must start with a 3

digit sequence of 978 or 979. This is followed by 9 numbers. The last number is a checksum

which is computed using the formula below:

X13=(10 – (x1+3x2+x3+3x4+…+x11+3x12)mod 10)mod 10

If X13 == 10 then X13= 0

Examples of valid ISBN 13 numbers include:
9780802409430

9781891595240

The method first ensures that a valid ISBN 13 number is provided returning a

Bookland::InvalidISBN exception if an invalid number is provided. The method then attempts

to convert the ISBN 13 number into an ISBN 10 number. The method returns the ISBN 10

number.

To test this method using NegTest extension, a custom generator was defined to be able to

return the valid ISBN 13 numbers and negated data of any other type and format that does not

match the ISBN 13. The method accessor is called isbn_number and is used to state the

assumption as shown below

Below is the test that is run in minitest. The test oracles below include a method

ISBN10.valid? which was verified to return true when a valid ISBN 10 number is supplied.

def test_isbn_to_isbn10

 a=Proc.new{isbn_number()}

 given_assumptions(a)do

 assert_when_holds do |input|

 assert_equal

true,(Bookland::ISBN10.valid?(Bookland::ISBN.to_isbn_10 input))

 end

 assert_when_violates(Bookland::InvalidISBN) do |input|

 assert_equal

false,(Bookland::ISBN10.valid?(Bookland::ISBN.to_isbn_10 input))

 end

 end

end

https://github.com/hakanensari/bookland

The Non-Negated Input Response Oracle expects a value of true to be returned from the test.

For the actual test of the to_isbn_10 method, the value returned from the test is verified using

the ISBN10.valid? method which checks if the number returned is a valid ISBN 10 number.

The method returns true for a valid ISBN 10 number and false otherwise.

The Negated Input Oracle expects a value of false to be returned from the test. For the actual

test of the to_isbn_10 method, the value returned from the test is verified using the

ISBN10.valid? method which checks if the number returned is a valid ISBN 10 number. The

method returns true for a valid ISBN 10 number and false otherwise.

In addition, the Negated Input Oracle expects an InvalidISBN exception to be thrown for

invalid string representations of ISBN 13 numbers.

The ISBN function is then tested with the four test types introduced In section 7.4.2.

Test A passes when a valid ISBN 13 input to the to_isbn_10 method returns a valid ISBN 10

number. This number will return true from the ISBN10.valid? method. The Non- Negated

Input Response Oracle returns true. The test fails otherwise and this would mean that the

to_isbn_10 method cannot convert a valid ISBN 13 number to a ISBN 10 number.

Test B passes when a valid ISBN 13 input to the to_isbn_10 method returns a valid ISBN 10

number. This number will return true from the ISBN10.valid? method. The Negated Input

Response Oracle returns false. The test fails otherwise and this would mean that the

to_isbn_10 method cannot convert a valid ISBN 13 number to a ISBN 10 number.

Test C passes when an invalid input to the to_isbn_10 method raises an InvalidISBN

exception. The Non- Negated Input Response Oracle returns false. The test fails otherwise

and this would mean that either the to_isbn_10 method can convert an invalid input in to an

ISBN 10 number or some other value is returned.

Test D passes when an invalid input to the to_isbn_10 method raises an InvalidISBN

exception. The Negated Input Response Oracle returns true. The test fails otherwise and this

would mean that either the to_isbn_10 method can convert an invalid input in to an ISBN 10

number or some other value is returned.

The table below shows the results of 10 test runs on the ISBN.to_isbn_10? method. The table

shows the time for each test, the error identified , the input or type that caused the error, the

test type where the failure occurred, and the number of successful tests for each test type A,

B, C and D which are described in section 6.4

Test # Time
(seconds)

Error

Input /
DataType

Failed
Test
Type

A B C D Tests Run

1 0.020001 NoMethodError
Exception

boolean C 48 48 0 0 97

2 0.021001 NoMethodError
Exception

boolean C 53 53 0 0 107

3 0.020001 NoMethodError
Exception

boolean C 52 52 0 0 105

4 0.017001 NoMethodError
Exception

Fixnum C 36 36 0 0 73

5 0.019002 NoMethodError
Exception

boolean C 48 48 0 0 97

6 0.019001 NoMethodError
Exception

Float C 42 42 0 0 85

7 0.021001 NoMethodError
Exception

Fixnum C 58 58 0 0 117

8 0.020001 NoMethodError
Exception

Fixnum C 50 50 0 0 101

9 0.018001 NoMethodError
Exception

nil C 49 49 0 0 99

10 0.021001 NoMethodError
Exception

boolean C 53 53 0 0 107

The results show that 100% of the tests of type A pass the test returning a valid ISBN 10

number. 100% of the tests of type B pass the tests returning a valid ISBN 10 number.

However, 100% of the tests of type C fail. The results show that non string types cause a

NoMethodError exception. Close analysis of the exception details shows that the application

fails when trying check that the invalid value is a valid ISBN 13 number. The method

attempts to call a “match” method which is not defined for none string types. This is an

indication that no input validation control structures were put in place to ensure that only

string types can be used as inputs. In addition it indicates that no exception handling controls

were put in place to handle the NoMethodError exception.

The results do not show any exception being caused by a string value. In an attempt to

discover if other string representations of numbers can cause the application to fail, the

assumption specification was updated to include the NoMethodException. By doing this, tests

of type C and D can be run for all invalid string representations of ISBN 13 numbers.

After running the tests again, 100 % of the tests of type C passed. The test showed that the

invalid input caused the SUT to correctly raise an InvalidISBN error.

100% of the tests of type D pass. This means that the invalid string inputs correctly raise the

InvalidISBN error.

Chronic – Chronic.parse

Chronic is a date and time parser. The library can be found online using the url

https://github.com/mojombo/chronic. The method under test, parse, accepts various forms of

inputs representing dates and times which can be viewed using the link provided above.

To test the method, a single string representation „tomorrow‟ was used. The keyword

„tomorrow‟ will cause the library to return the next day details while using the current date as

a start date. The method returns an empty string or a nil value when it fails parse the input

value to generate the correct date.

For this test, no custom generator is required. Instead, the string generator is used to always

return the keyword „tomorrow‟ for no-negated inputs and any other data for negated inputs.

Below is the test defined in MiniTest using NegTest

def test_parse_tomorrow

 a=Proc.new{string(set('tomorrow'))}

 given_assumptions(a)do

 assert_when_holds do |input|

 assert_equal

Date.today+1,(((Chronic.parse(input)).to_s == "") ? "" :

 Date.parse((Chronic.parse(input)).to_s))

 end

 assert_when_violates do |input|

 assert_includes

["",nil],(Chronic.parse(input))

 end

 end

end

The Non- Negated Input Response Oracle expects a value equivalent to tomorrows date to be

returned from the test. For the actual test of the Chronic.parse method, the value returned

from the test is converted to a Date object and its string representation returned. The oracle

returns true if tomorrows date is returned.

The Negated Input Response Oracle expects an empty string or a nil value to be returned from

the test of the Chronic.parse. The oracle returns true when a nil or empty string are returned.

The Chronic.parse method is tested with the generated data and the four tests A,B,C and D

introduced in section 7.4.2 are run.

Test A passes when the equivalent of tomorrows date is returned for valid input to the

Chronic.parse method. The Non- Negated Input Response Oracle returns true. The test fails

https://github.com/mojombo/chronic

otherwise and this would mean that the Chronic.parse method cannot return tomorrows date

when an input with keyword „tomorrow‟ is provided.

Test B passes when the valid input „tomorrow‟ is provided to Chronic.parse method returns

tomorrows date. The Negated Input Response Oracle returns false as there is no match to nil

and an empty string. The test fails otherwise and this would mean that the Chronic.parse

method cannot return tomorrows date when an input with keyword „tomorrow‟ is provided.

Test C passes when an invalid input to the Chronic.parse method returns an empty string or

nil value. The Non- Negated Input Response Oracle returns false. The test fails otherwise and

this would mean that either the Chronic.parse method can return tomorrows date or some

other value when supplied with invalid input.

Test D passes when an invalid input to the Chronic.parse method returns an empty string or

nil value. The Negated Input Response Oracle returns true. The test fails otherwise and this

would mean that either the Chronic.parse method can return tomorrows date or some other

value when supplied with invalid input.

The table below shows the results of 10 test runs on the Chronic.parse method. The table

shows the time for each test, the error identified , the input or type that caused the error, the

test type where the failure occurred, and the number of successful tests for each test type A,

B, C and D which are described in section 6.4

Test # Time Errors

Input Failed
Test
Type

A B C D Tests Run

1 0.417024 46 46 54 54 200

2 0.429024 54 54 46 46 200

3 0.428025 54 54 46 46 200

4 0.399022 40 40 60 60 200

5 0.418024 49 49 51 51 200

6 0.424025 52 52 48 48 200

7 0.414023 Returned
the
current
date

iX,,6a D 47 47 50 49 194

8 0.414024 49 49 51 51 200

9 0.273016 Returned
the
current
date

4,u444 D 37 37 22 21 118

10 0.416024 45 45 55 55 200

The results show that 100% of the tests of type A, B and C pass. However tests of type D

reveal errors in the MUT. The string values “iX,,6a” and “4,u444” return the current date. The

invalid oracle expected the method to return a nil or empty string.

The error detected is of significance because it means all the keywords are subject to this

failure or bug that can go unnoticed. The error was not detected in Test C because of the

definition of the oracle that was expecting tomorrows date.

Versionomy – Versionomy.create

Versionomy is a version number library that creates, manipulates, parses and compares

version numbers of various forms. It can be found online at

https://github.com/dazuma/versionomy

The method under test is Versionomy.create which returns an object of type versionomy. The

method accepts a hash table of symbols or an ordered array of values. The initial assumptions

about the inputs are:

The version number created consists of 7 parts that accept the following types of data.

:major, :minor, :tiny, :tiny2, patch_number, patch_number_minor – integers > 0, nil and false

which return 1. Any other values will return 0

:releasetype - integers > :alpha, :beta, :final, nil

The specification create method was not clear and hence complete assumptions could not be

specified.

To test the create function, the simplest form of a version number consisting of the major,

minor, tiny, tiny2 and release type sections is tested. Below is the tests run in MiniTest using

the NegTest extension.

def test_create_without_patchlevel
 major=Proc.new{integer(range(1..INTEGERMAX))}
 minor=Proc.new{integer(range(1..INTEGERMAX))}
 tiny=Proc.new{integer(range(1..INTEGERMAX))}
 tiny2=Proc.new{integer(range(1..INTEGERMAX))}
 release=Proc.new{string(set(:beta,:alpha,:final,nil))}

 given_assumptions(major,minor,tiny,tiny2,release)do
 assert_when_holds do |input|
 assert_equal true,(Versionomy.create(:major => input[0],
:minor => input[1], :tiny => input[2],:tiny2=>input[3],:release_type=>input[4]).major) > 0
 end

 assert_when_violates(Versionomy::Errors::IllegalValueError)
do |input|

 assert_includes [0],(Versionomy.create(:major => input[0],
:minor => input[1], :tiny => input[2],:tiny2=>input[3],:release_type=>input[4]).major)

 end
 end

 end

The Non- Negated Input Response Oracle expects true to be returned from the test. For the

actual test of the Versionomy.create method, an object is created and the major component of

the object is checked to ascertain that it is an integer that is greater than zero. The oracle

returns true if the major portion is indeed an integer greater than zero.

https://github.com/dazuma/versionomy

The Negated Input Response Oracle expects 0 to be returned from the test of the

Versionomy.create method. The oracle returns true when a 0 is returned.

The Versionomy.create function is then run against the four tests A,B,C and D introduced in

section 7.4.2

Test A passes when major component returned for valid input to the Versionomy method is

an integer greater than zero. The Non- Negated Input Response Oracle returns true. The test

fails otherwise and this would mean that the Chronic.parse method cannot return tomorrows

date when an input with keyword „tomorrow‟ is provided.

Test B passes when the valid input „tomorrow‟ is provided to Chronic.parse method returns

tomorrows date. The Negated Input Response Oracle returns false as there is no match to nil

and an empty string. The test fails otherwise and this would mean that the Chronic.parse

method cannot return tomorrows date when an input with keyword „tomorrow‟ is provided.

Test C passes when an invalid input to the Chronic.parse method returns an empty string or

nil value. The Non- Negated Input Response Oracle returns false. The test fails otherwise and

this would mean that either the Chronic.parse method can return tomorrows date or some

other value when supplied with invalid input.

Test D passes when an invalid input to the Chronic.parse method returns an empty string or

nil value. The Negated Input Response Oracle returns true. The test fails otherwise and this

would mean that either the Chronic.parse method can return tomorrows date or some other

value when supplied with invalid input.

The table below shows the results of 10 test runs on the Versionomy.create method. The table

shows the time for each test, the error identified , the input type, the test type where the failure

occurred, and the number of successful tests for each test type A, B, C and D.

Test # Time Error

Input Failed
Test
Type

A B C D Tests Run

1 0.159009 Negative
Number

 C 3 3 0 0 7

2 0.158009 Floating
point
numbers

 C 4 4 0 0 9

3 0.155009 string qwefsdt(^g C 3 3 0 0 7

4 0.156009 float C 1 1 0 0 3

5 0.155009 Negative
number

 C 3 3 0 0 7

6 0.157009 Floating C 2 2 0 0 5

7 0.154009 Floating C 3 3 0 0 7

8 0.156009 string 01nhO! C 4 4 0 0 9

9 0.157009 String tybungd C 3 3 0 0 7

10 0.173010 Negative
number

 C 6 6 0 0 13

The results show that inputs involving negative numbers, floating point numbers and random

strings were returning valid version numbers. From this we can conclude that either the initial

assumptions about the inputs are wrong or the library has bugs that need to be resolved.

