

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
Göteborg, Sweden, February 2012

Extending a Web-Based Work Platform to the iOS
Platform
Master of Science Thesis

SEBASTIAN REHNBY

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work
does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author
has signed a copyright agreement with a third party regarding the Work, the Author
warrants hereby that he/she has obtained any necessary permission from this third party to
let Chalmers University of Technology and University of Gothenburg store the Work
electronically and make it accessible on the Internet.

Extending a Web-Based Work Platform to the iOS Platform

SEBASTIAN REHNBY

© SEBASTIAN REHNBY, February 2012.

Examiner: MIROSLAW STARON

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden February 2012

Abstract

This thesis report presents the work carried out at Podio, a company
developing an online work and collaboration platform. The purpose is
to identify and research a number of issues with Podio’s existing mo-
bile application for the Apple iPhone. Based on these findings, common
problems and challenges in mobile application development are presented
and reasoning around possible solutions is given. The problem domain is
approached from a technical, usability, and time-to-market perspective.
This thesis aims to identify the considerations needed when adapting an
existing web-based product to a mobile environment and the inherent
constraints of such an environment. It also takes into consideration the
limitations of mobile devices themselves in terms of physical dimensions
and hardware resources.

Two main priorities are identified as the most important challenges
of developing a high quality mobile application. The first is the adapta-
tion of the desktop user experience to that of a mobile application. The
importance of realizing the strengths and weaknesses of each of them is
considered essential to producing a high quality mobile experience. The
second area is that of request management and local data caching. Be-
cause of the ever-changing environment of mobile devices with varying
connection speed and availability, it is important to handle local data
storage with a great deal of afterthought. In order to build a robust
client application to the Podio API, one also needs to consider the ways
in which the API changes and possibly breaks compatibility with existing
client applications.

Because of the many considerations when dealing with server requests
and data caching, and to ease the development of new features, a stan-
dalone static library called PodioKit is developed. PodioKit provides a na-
tive Objective-C interface to access the Podio API in a convenient and ex-
tendable way. PodioKit utilizes the dynamic properties of the Objective-C
programming language to automate the domain object mapping process
from a simple mapping definition. The primary purpose of PodioKit is to
decouple request management from data persistence and the application
itself, and to reduce code duplication. Although within the Podio appli-
cation PodioKit is used with the Cocoa Core Data framework for local
storage, it does not require nor does it make any assumptions regarding
the underlying storage technology used.

The report concludes that multiple tradeoffs are necessary when adapt-
ing an existing web-based service to a mobile context. They include de-
termining the mobile feature set of the application given the physical and
environmental limitation of mobile devices, as well as finding a balance
between maintainability, testability and performance. It also identifies
the task of managing network connectivity in combination with remote
application data to be the most challenging area in mobile application de-
velopment, one where the right approach depends heavily on the primary
application use cases.

3

Preface

I would like to thank Podio ApS for hosting this thesis project at their office
in Copenhagen during the summer and fall of 2011. I would also like to thank
my supervisors; Phillip Chambers at Podio and Jörgen Hansson at Chalmers
for their help and support throughout this project.

4

Glossary

API Application Programming Interface.

BLOB Binary Large Object.

DOM Document Object Model.

IDE Integrated Development Environment.

MVC Model-View-Controller.

ORM Object-Relational Mapping.

PaaS Platform as a Service.

REST Representational State Transfer.

SaaS Software as a Service.

SDK Software Development Kit.

UI User interface.

5

Contents

1 Introduction 8

2 Background 10

2.1 Podio . 10

2.2 State of Mobile Application Development 13

2.3 iOS . 14

3 Problem Description 15

3.1 Research Areas . 15

3.2 Method . 17

4 Research and Proposed Solutions 18

4.1 The Mobile Context . 18

4.2 Request Management and Data Persistence 26

4.2.1 Stale Data and Validation of API Actions 27

4.2.2 Request Management . 28

4.2.3 Data Persistence . 31

5 Results 35

5.1 Application Design and User Experience 36

5.1.1 App Item . 36

5.1.2 Spaces and Apps . 38

5.2 PodioKit . 40

5.2.1 The Asynchronous Request API 41

5.2.2 Data Persistence . 43

5.3 Assessment of Results . 56

6

6 Conclusion 57

6.1 Discussion . 58

6.2 Future Work . 59

7

1 Introduction

Web-hosted software solutions, often referred to as Software as a Service (SaaS),
have rapidly increased in popularity in the last couple of years. Led by industry
giants such as Google and Facebook, a lot of the work previously performed
by using desktop applications have moved to the Internet, often referred to as
the Cloud. As people access their data and content from a wider variety of
devices, there are several advantages to moving our repository of information
from the desktop to the Internet. It makes data easily accessible from anywhere
to anyone with an web browser and an Internet connection. Smaller companies
can also avoid the cost overhead of implementing and managing a self-hosted
solution.

In parallel, mobile computing has also taken off in the last couple of years.
Many would credit this to the launch of the Apple iPhone, the first mainstream
mobile device that emphasized Internet access and communication, and the
subsequent launch of Google’s Android platform. According to a press release
by International Data Corporation (IDC) [1], smartphone market share had
surpassed that of so called feature phones in Europe by September of 2011.
Because of this recent boom in mobile computing, it has become increasingly
important to SaaS companies to have a mobile strategy, i.e., a way for their
customers to access their service from their mobile devices. The solutions range
from mobile optimized version of web sites accessed through the mobile browser
to native client applications.

Podio [2] is an online work and collaboration platform. It is web-based and
centrally hosted. The goal of Podio is to enable and encourage collaboration in
teams and projects by allowing the customer to customize their workflow and by
providing a social context to working with business-related artifacts. Because
of the flexibility and extendibility of the platform through the use of apps and
an open Application Programming Interface (API), it can also be consider a
Platform as a Service (PaaS) company.

Like other SaaS companies, Podio is dedicated to having a mobile strategy and a
way for customers to interact with their Podio data using their everyday mobile
devices. They do so by offering native client applications for the two largest
mobile platforms, Google’s Android and Apple’s iOS. For the client applications
to be able to interact with the platform, Podio offers an open and full-featured
API. The API contains all the functionality of the platform and the Podio web
site is in fact just another client to the API.

This thesis identifies the problems and challenges associated with developing
a mobile client application as an extension of a SaaS product using a Rep-
resentational State Transfer (REST) web API [3]. It covers the differences,
limitations and advantages of the mobile context, devices and platforms and
suggests strategies for handling these appropriately. It also presents some of
the technical challenges of developing a client application based on remote data
while guaranteeing the user experience. This thesis project uses the existing
iPhone application as the basis and iOS as the target platform for the proposed

8

solutions.

The main research questions this thesis projects aims to address are:

• What are the technical aspects and potential problems that should be
considered when developing a mobile client application, where data is pro-
vided by a remote third-party web service and accessed over a sometimes
unreliable cellular network connection?

• What are the possible solutions to these problems and what are the ad-
vantages and drawbacks of each of them?

• How does one, as a developer, achieve a balance between the end user
experience, development effort and maintainability of the application?

• How does a mobile application respond to changes in the web service it
depends upon?

• What techniques can be used to improve the perceived performance and
usability of a mobile application?

Brief Overview of Results

The results of this thesis project are twofold. The first part addresses the prob-
lems associated with mobile application development in general and the adap-
tation of an existing web-based product into a mobile application in particular.
These results show that to provide a high quality mobile application one should
realize the strengths and limitations of mobile devices and the environments
they are designed to operate in. One should not simply try to create a one-to-
one clone of the web-based version of a product, but instead leverage the context
awareness and mobility inherently available to mobile applications. This part
also suggests a way to determine the feature set of a mobile application based
on the frequency and complexity of the action it is used to accomplish.

The second part of the result is of a more technical nature. It addresses the
technical challenges with managing data and adapting to network availability
in the rapidly changing environment of mobile applications. Using the existing
Podio iPhone application as the base for solving these technical challenges, a new
iOS client library called PodioKit is developed. PodioKit provides a pluggable
and easy to use, native abstraction layer for the Podio API. PodioKit implements
the suggested solutions presented in this thesis to solve existing issues with data
and network request management.

The thesis work itself begins with an evaluation of issues experienced with the
existing Podio iPhone application. Additionally, many core features from the
Podio web site were missing in the existing iPhone application. As the first
part of this thesis is concerned with how to adapt existing web-based function-
ality to a mobile application, implementing these core features based on the
thesis research in this area provides valuable insight and a good starting point

9

for improving the underlying data and request management strategy. Finally,
PodioKit is introduced into the main code base, providing an easy to use and
far less error prone solution to work with the Podio API.

Outline of Thesis Report

The remaining parts of the report are structured as follows:

Chapter 2 provides an in-depth look at Podio as a product and its public API.
A brief overview of the state of mobile application development is given, includ-
ing popular platforms, key stakeholders and platform providers. The mobile
platform used in this thesis project, Apple’s iOS, is also introduced.

Chapter 3 outlines the problems often associated with mobile application devel-
opment and how they differ from those of regular desktop application develop-
ment. It states a number of known problematic areas and presents the method
of work for this thesis project.

Chapter 4 presents the research carried out as part of this thesis project. It
presents proposed solutions to each of the problems described in chapter 3 along
with their respective advantages and disadvantages.

Chapter 5 presents the results of this thesis project. It describes how the findings
in chapter 4 can be used to improve the Podio iPhone application.

Chapter 6 summarizes this thesis and provides a conclusion and a discussion
around the premise and the results of this thesis.

2 Background

This thesis project covers a number of platforms, technologies and methodolo-
gies. The following section provides an introduction to some of these concepts
to give context to the work performed throughout this project.

2.1 Podio

Podio is an online work and collaboration platform. Its goal is to encourage
and ease collaboration in professional teams. Podio provides a flexible platform
for building custom workflows using simple containers and constructs to meet
many different project or team needs.

10

Organizations, Spaces and Apps

In Podio, an organization is the top-level entity. Within an organization the
user can create spaces, typically one per team, department or project. Spaces
can be either invite-only or open for any member of the organization to join.
Spaces have their own activity stream, tasks and members. Figure 1 shows the
space view presented when selecting a space in the gray navigation bar to the
left. The activity stream, shown in the center of figure 1, is an aggregate view
of all recent activity within the space. A member can post status messages to
the stream and any action within the space generates a stream event.

Figure 1: A Podio space

Spaces also have apps, the main tool for building custom workflows. Apps are
shown as a horizontal list of icons above the space activity stream. Throughout
this report, the term app is used to refer to the Podio platform apps, while
application is used for the mobile client application. An app is simply put a
container of posts, or items, similar to a table of rows in a database. What
makes them powerful is the ability for the user to create custom apps from a
set of basic fields, similar to columns in a database. There are multiple types
of fields, for example text, number, category, progress and contact fields. There
are two ways to add apps to a space. The first one is to use a simple drag-and-
drop interface called the App Builder, where users can easily create their own
apps using the basic field types. Once an app has been constructed to contain
a number of fields, users can start creating items within the app. Each item
contains a number of values for each of the fields in the app. As users continue
adding items to the app, it becomes a useful and expressive container for the
data. The second way to get apps is to use the App Store. The App Store
contains pre-built apps created by Podio users. Any user can build a new app
and share it on the App Store. There are also App Packs that are collections of
apps set up to work together to solve a particular problem that might require

11

multiple apps, such as general project management.

Anatomy of a Podio App As mentioned apps are fundamentally collections
of items, and items in turn are posts with values for the various app field types.
Apps and their field types can be modified at any time. However, changes
made to apps with existing items only affects newly created or edited items.
Some field types hold a single value, e.g. the text field, while some can contain
multiple values, e.g. the image field. All items can be interacted with by liking,
commenting or creating tasks on them. Additionally, apps provide a number
of optional features like the ability to add a star rating, approve/disapprove or
RSVP to items. Items with a date field can optionally be added to the Podio
calendar. This makes it possible to create event-based apps, e.g. for meetings.

It is also possible to create cross-references between apps within a space using a
reference field type. This allows the users to hierarchically structure workflows
into subcomponents and aggregate the values of referenced apps. For example,
for a time tracking scenario one might create a Projects app and a Time Sheets
app. The Time Sheets app would have a reference to the Projects app and a
duration field. When a new time sheet item is created, a project item reference
and a duration time is included. The project item can then use a calculation
field to sum up the duration of all time sheets referencing the particular project.
By creating these relationships between simple building blocks users can easily
build rather complex workflows.

Figure 2: Filters panel

12

Another useful app feature is the ability to create filters. Filters are used to
limit the number of items shown when browsing an app, based on the fields it
contains. For example, in the case of the filters panel for the Leads app shown
in figure 2, the view can be filtered to only display leads where the Lead owner
is a certain person and the status is set to Sale. Filters can therefore be used
as a simple reporting tool to track the performance of lead owners.

API and Client Access

Podio provides an external API [4] for third-party client applications. The API
acts as the backend in the decoupled architecture of the Podio platform and is
the only component with immediate access to the database. The API is based
on REST and uses JSON [5] for data representation and the OAuth2 [6] protocol
for authentication.

The Podio web site is a Ruby on Rails [7] application that uses the Podio Ruby
client library [8] to access the API, i.e. there is no direct database access.
Podio provides client libraries for many other programming languages, such as
Python, Java, PHP etc. Because of the design of the Podio architecture, there
is no difference in the data accessible to a third party application and the official
Podio web site, except for a few potentially dangerous actions such as deleting
users. Any Podio user can register for an API key to gain access to the API.

2.2 State of Mobile Application Development

The popularity of mobile computing and mobile application development has
skyrocketed in the last couple of years with the launch of the iPhone Software
Development Kit (SDK) in combination with the Apple App Store in 2008 and
the Android Market later that year.

The two major mobile platforms for the consumer market are Apple’s iOS and
Google’s Android [9]. iOS is a mobile adaptation of the Mac OS X operating
system used on Apple’s personal computers. The iPhone SDK, released in
2008 and later rebranded as iOS SDK after the launch of the iPad in 2010,
contains a collection of Objective-C-based frameworks for developing native iOS
applications. Objective-C is an object-oriented programming language that is a
strict superset of the C programming language. As with C, there is no garbage
collection offered and the responsibility of memory management is given to the
developer. iOS applications are distributed to users over-the-air (OTA) through
the Apple App Store application available on all iOS devices. If the developer
chooses to charge for an application, Apple keeps 30 percent of the profits of the
sale. Applications must adhere to the Apple App Store Guidelines [10] and pass
through a manual review conducted by Apple for each new version released.

Android is a Linux-based operating system developed by the Open Handset
Alliance [11] led by Google. The Android SDK is Java-based, and applications

13

are compiled into Java byte code and executed on a customized Java virtual
machine. Since Java offers garbage collection, there is no need for manual
memory management. The Android Market is, similar to the Apple App Store,
used to distribute apps to users. However, Android Market requires no review
process and applications can be submitted at anytime and become available to
users immediately.

While the two platforms are similar in many ways, not least because of the
similarity in user interface and feature set, there is much debate over whether
the curated strategy of the App Store is better or worse than the openness of
Android Market. Because of its curated catalog, the quality of the applications
on the App Store tends to be higher in general, while certain functionality
available in an Android app might not be allowed in an iOS app. In addition,
the review process of the App Store makes the process of submitting critical
application bug fixes to users slower.

Another difference is the availability of devices. Android is a licensed operat-
ing system, meaning any device manufacturer can use it on their devices. In
contrast, iOS only runs only on Apple’s own devices such as the iPhone and
the iPad. Because of this, the variety of devices offered by third party man-
ufacturers like Samsung, HTC and Motorola are far greater. The competition
in this market also drives down prices with the use of cheaper hardware and
components, making more Android devices available at a lower price point than
iOS devices.

There are other mobile application platforms, such as Blackberry OS from RIM,
Windows Phone by Microsoft, webOS by HP that offer developers similar ways
develop native applications. However, at the point of this writing none of them
have gained enough popularity to motivate developing a native Podio applica-
tion.

2.3 iOS

iOS was derived from Mac OS X and optimized to run on the iPhone’s mobile
architecture. It is therefore just like OS X a POSIX-based operating system. It
is not, unlike Android, a licensed operating system and it runs exclusively on
Apple’s own hardware. Conceptually, the iOS platform consists of four abstrac-
tion layers [12]:

• Cocoa Touch provides high-level frameworks for easy application devel-
opment. Frameworks interacting with the lower layers are also accessible
to developers in case Cocoa Touch does not expose the desired function-
ality.

• Media provides the functionality related to graphics, audio and video han-
dling. This functionality is divided into frameworks such as Core Graphics,
Core Animation, Core Audio among others.

14

• Core Services includes a number of system frameworks and features.
Examples of such frameworks are Core Data, Core Location, CFNetwork
and Foundation.

• Core OS provides the low-level system features to support the function-
ality of the other layers. This layer handles things like threading, network-
ing, standard I/O, memory management etc.

iOS Applications are developed primarily using the Objective-C programming
language but C, C++ and Objective-C++ can also be used due to the fact that
Objective-C is simply an extension to the C programming language. Applica-
tions are developed using Apple’s Xcode Integrated Development Environment
(IDE), and are debugged either using the iPhone Simulator application bundled
with Xcode or using a tethered physical iOS device.

3 Problem Description

The initial Podio iPhone client application existed prior the start of this thesis
project. The application contained a very limited subset of the Podio plat-
form features and most importantly was missing Podio core features such as
organizations, spaces and apps. The existing application had also been expe-
riencing a number of issues related to concurrent requests and the data model
implementation.

This thesis aims to identify and evaluate the problems experienced with the
existing Podio iPhone client application. In addition, the features providing
the primary appeal of the Podio platform, i.e. organizations, spaces and apps
should be implemented in the iPhone application. The context in which mobile
applications are used is vastly different from the one of the Podio web site and
imposes a completely different set of constraints in terms of connectivity, user
experience, performance and power consumption. These constraints are often
general and are commonly encountered when developing a mobile application as
an extension of an existing product or platform. Therefore the lessons learned
in this project can potentially prove to be valuable in other similar cases. The
purpose of this thesis project is to look at several of the aspects and problems
related to mobile application development, in particular for applications that act
as clients to a remote API, and suggest and argue for their respective solutions.

3.1 Research Areas

Rodrigues et al. [13] identify a number of issues and challenges that need con-
sideration when moving from the robust web integration of a desktop computer
to a less reliable mobile environment. These include data transfer optimization,
performance, user interface design etc. Additionally, other potentially problem-
atic areas include, but are not limited to:

15

• Data Persistence and Request Management

• User Interface

• Changeability

• Reusability

Data Persistence and Request Management

Perhaps the hardest problem related to mobile application development is that
of data persistence. Without a fast or even reliable connection to the primary
application database, there is a potential risk of bad performance, reliability and
perceived quality. There is also the problem of the user interacting with stale or
even deleted content because the local data cache has not been updated with the
latest server side changes. As argued by Christensen [14], the client application
needs to handle these inconsistencies between the server and the client data in
a manner that keeps the application responsive to user interaction.

User Interface

The Podio web interface contains a lot of features and is the primary interface
for interacting with Podio. Not every feature makes sense or is feasible in the
mobile context. Careful considerations and tradeoffs need to be made when
defining the mobile Podio experience. Existing features need to be adapted and
rethought to fit into the physical and environmental constraints of a mobile
device.

Touch-based interface methods like the multi-touch technology used by the
iPhone allows the use of advanced gesture recognition to trigger various actions.
The feasibility, advantages and potential disadvantages of binding actions to
gestures versus visual User interface (UI) elements like buttons should be eval-
uated.

Both iOS and similar popular mobile platforms such as the Android platform
provide views capable of rendering web content within native applications. The
possibility to create reusable interface components within the native application
using web technologies such as HTML5 and JavaScript should be evaluated.

Changeability

Podio is a rapidly changing product and as such, the API changes just as rapidly.
There is a need to identify the structure of and the ways in which the API and
its data change. The mobile client application needs to be robust enough to deal
with such changes. Also, when API changes do require an application update

16

to be released, these client side changes should be as small as possible and easy
to make.

Reusability

Ideally, the software produced during this project should be design in such a
way that it can be reused in other Objective-C-based client applications. It
should also be designed in a way that minimizes code duplication within the
existing code base for common use cases.

3.2 Method

The research method of this project is structured as follows:

First, a pre-study is carried out in order to assess the state of the existing
Podio iPhone client application and identify the cause of its existing problems.
Based on the result of this assessment, available solutions are investigated and
presented along with their respective advantages and disadvantages. The study
also aims to highlight scenarios, other than that of the Podio application, where
one solution might be more appropriate than another one.

Based on the results of the pre-study, a prototype implementation is developed
to demonstrate how the existing iPhone client application can be improved. A
detailed description of the implementation is also provided to explain how the
prototype application addresses the problems identified in the pre-study.

The process of implementing the prototype application is logically separated
into a number of phases, where each phase includes implementing a particular
part of the intended functionality. These phases include:

Improved data persistence and request management The research in this
area and its resulting implementation is to be performed in parallel with the
other phases and should be introduced into the main code base once completed.
The benefit of this approach is that the knowledge of the existing application
code will improve throughout the project and provide a good understanding
of the problem to be solved. Performing a detailed evaluation up-front is not
expected to generate reliable enough results in order to understand the problem
domain and the features and particularities of the Podio API.

Items An item is a single entry in an app containing a number of value fields.
Value fields can be of various types and should therefore be presented differently
in the user interface. Items are commonly referenced from other places in the
iPhone application, currently by providing a simple hyperlink button to the
item web URL that opens up the item view in a non-authenticated web browser
view. This requires the user to log in again to view the item in a browser
window using the regular web interface. This phase includes evaluating possible

17

implementation approaches to provide an in-app view of an item that allows
user interaction and provides a responsive user experience.

Organizations, spaces and apps This phase includes implementing func-
tionality to allow the user to browse organizations, spaces and apps within the
iPhone application. An organization contains a number of spaces that in turn
contains apps and other components such as the activity stream and tasks. An
app contains items with value fields defined by the app configuration. Users use
a simple drag-and-drop interface in the Podio web interface to create apps.

Create and edit app items This phase includes providing the ability to
create or edit existing items directly from within the iPhone application. Each
individual value field type requires a custom edit mode. This iteration depends
on the previous iterations to view apps in order to have a context to which new
items can be added.

4 Research and Proposed Solutions

The research part of this thesis project focuses on two main topics. The first one
is the process of adapting an existing web-based service to the mobile context,
both in feature set, interaction and interface design.

The second part is concerned with data persistence and request management.
The conditions under which mobile devices are used affect the behavior of mobile
applications. The environment of a mobile device varies more than that of a
desktop computer, and as such strategies need to be developed to minimize the
negative effects on the user experience due to these variations.

4.1 The Mobile Context

When redesigning an existing desktop product or service for mobile use, one
needs to carefully consider the differences between the two platforms and en-
vironments. Mobile devices impose hardware restrictions such are screen size,
input methods and limited system resources such as CPU and memory. The
mobile form factor in addition to new input mechanisms such as touch-based
screens also introduce new UI paradigms and interaction patterns [13]. There
are also external environmental factors to consider such as network connectivity
and the availability of on-board device sensors. Dehlinger and Dixon [15] suggest
mobile applications should have defined self-adaptive requirements, specifying
how the application is to deal with these external environmental changes.

A Podio app on the Podio web site contains a large number of UI elements and
functionality. Wasserman [16] argues not to treat the mobile application of an
existing service as an afterthought, but as its own product with unique require-
ments. It is therefore important to not start out with the premise that the mobile

18

version of the service should offer the full feature set of its web-based counter-
part. Instead, one should realize the context and conditions under which one
should be used over the other and then try to leverage their respective strengths.
As noted by Rodrigues et al. [13], people are more likely to use their mobile
devices and applications when their main computer is inaccessible. Therefore,
implementing the most common use cases should be of highest priority for mo-
bile applications. Being selective in specifying the mobile feature set is therefore
essential to feature planning and the user experience.

As described by Christensen [14], “smart” mobile devices come with the strength
of being able to take advantage of their context awareness features. Many smart-
phones of today boast advanced features like GPS capabilities, digital compass
and integrated camera. Most mobile smartphone platforms provide access to
these components to application developers through their respective SDKs. Mo-
bile applications can therefore enhance the user experience by providing the
service with additional contextual data from the user’s device, not available to
a desktop user.

When determining the feature set of the mobile version of a web-based service,
one should consider the frequency of the actions and the work associated with
accomplishing a given use case. Wasserman [16] argues that because of the
limited screen space of mobile devices, user interface design is more important
than ever. He also argues that the primary use case for mobile applications is to
accomplish simple and quick tasks, as opposed to using more complex features
available on the full-featured web site. In Podio, lightweight actions such as
liking, commenting or sending messages are frequent and quick and should be
made easily accessible in the mobile application. Other more heavy actions,
such as creating an app, are less common and are more time-consuming, and
might therefore be more suited to remain a desktop-only feature. The action
of creating an item is somewhere in-between but still common enough to be
considered an important use case in the mobile application, while editing an
existing item is an even more common and lightweight action. Figure 3 shows
a way to visualize the categorization of a number of actions on Podio, where
the frequency with which a regular user performs an action, as well as the time
the action takes to perform has been plotted. The top left quadrant of the
graph includes the actions considered most essential to include in the mobile
application.

19

Figure 3: Plot of the respective frequency and time of various actions

There are also features that are simply not feasible in the mobile context, such
as exporting or importing app data to a spreadsheet file.

User Interface Considerations

The presentation of a Podio app on the iPhone requires consideration of the
conventions, restrictions and capabilities of the iOS platform and the iPhone
device as stated by iOS Human Interface Guidelines [17]. As described by
Benbunan-Fich and Benbunan [18], the ability for a user to perform a given
task is heavily dependent on the familiarity of the environment. Therefore,
common iOS UI paradigms should be used for the UI to be intuitive to the
average iOS user.

It is also important to maintain the Podio look-and-feel and to add to the
perception that the mobile application is a part of the Podio platform. The
navigational patterns and information structure needs to as much as possible be
aligned with that of the web site while still providing a platform-like experience.

Interface Partitioning and Separation of UI Concerns A desktop screen
provides far more screen real estate than a mobile device screen to present app

20

content, which is potentially very large. On the iPhone, the small screen requires
the content to be separated into multiple individual views while allowing for
easy navigation between the two. An example of this shown in figure 4 is
the Comments section of an app item. On the web site, the comments are
shown below the value fields and scrolling up and down between the two is
rather easy. This layout is not a good fit for the iPhone since the item content
area width is narrower, therefore making the vertical scrolling distance to the
comments section much larger for items containing many field or large amounts
of content. The iPhone scrollable UI elements do not offer direct manipulation
of the scrollbar position in the way a normal web browser does, so the user
would need to manually scroll to the top or bottom.

Figure 4: Item comments on the Podio web site are shown below the value fields

Another argument for content separation other than scrolling is minimizing
view content. Each unit of functionality within a single view requires additional
UI components for interaction, decreasing the available space for displaying
content. For example, displaying the comments below the value fields requires
an additional floating text entry bar to post a new comment. The entry bar
would be placed at the bottom of the view and would take away additional
screen space from the item content.

Based on the above considerations, related item content such as comments
should ideally be displayed as separate views, easily reachable from the app
item content view by a single button tap. This way the user can easily toggle
between the app item and comments view without losing its scrolling position
in either one.

21

Another example of seemingly independent item-related content is the associ-
ated files. These could also potentially be displayed in a separate view. In
this case one needs to consider how they are displayed on the web site, which
is similar to how an app item field is displayed with a header and sub-items.
Considering that the interaction with app item files requires no additional UI
components such as the entry bar in the comments case, it is reasonable to
display these files below the app item fields similar to the web site interface.

Gesture-Based Interaction When using gesture-based interaction, it is im-
portant to consider the discoverability and intuitiveness of a given gesture. Lei
and Wong [19] refer to this as the low affordance of gestures, and argue that
gestures should be carefully designed to be simple, intuitive and not easily con-
fused. To achieve this, they suggest limiting the number of available gestures
or use context-specific gestures with supporting visual hints. Another way to
improve the usability of gestures is to use well-known platform-specific gestures
common across application. An example of such a common gesture in iOS is
swipe-to-delete in lists. Although platform vendors in general provide user in-
terface guidelines for application developers and designers, the are also cases
where the community invents new UI paradigms that become so popular they
become a kind of de facto standard for the platform. One example of this is
the pull-to-refresh gesture invented by Brichter for his iPhone Twitter client
application Tweetie [20].

The discoverability, and therefore the accessibility, of a gesture should reflect
the importance of the action. A rarely used feature could be triggered by a more
complex gesture, while common ones such as deleting an entry in a list, should
be easier to access. In terms of providing contextual actions, gestures are similar
to the classic desktop context menu that appears when a user right-clicks on
a mouse. However, gestures are less scalable since the number of comfortable
gestures is limited and of various complexity while a desktop context menu
provides multiple equally accessible actions.

Presentation Techniques

To implement the item view, the most complex view to be implemented in this
project, a number of techniques can be used. The item view contains a number
of fields of various type, as well as files and metadata such as the item title and
creator. It should also be possible to edit existing and create new items. The
requirements of the item view are:

• Integrated and accessible from within the existing iPhone application

• Native or near native look, feel and performance

• Already viewed items should be accessible offline

• Intuitive to users of both Podio and the iOS platform

22

In addition, the following characteristics are desirable but not required:

• Cross-platform

• Offline support

• Adding apps to iPhone home screen

• Adding remote updatable field types

There are several approaches supported by the iOS platform to be considered:

• Native UI framework Cocoa Touch includes a native UI framework
named UIKit. The existing iPhone application is built using this frame-
work. Views are created and composed programmatically or using Apple’s
Interface Builder tool that is a part of the Xcode IDE.

• Embedded web content using UIWebView UIKit provides a native
view classs, UIWebView, used to render web content within a native ap-
plication. This includes HTML, Javascript and CSS support, and it uses
the open source rendering engine WebKit [21] to render its content.

• Third party cross-platform framework With the recent rise of the
mobile application development industry and the number of available mo-
bile platforms, several new tools and frameworks have emerged which en-
ables cross platform application development based on web technologies
such as HTML and JavaScript. A single code base can then be used
to output native applications for multiple platforms. Examples of such
platforms are Appcelerator Titanium [22] and PhoneGap [23].

The following sections investigate the above technologies and determine the
most suitable solution for implementing the app item view.

Native UI Framework Implementing the item view natively means using
the UIKit UI framework provided by Apple as a part of the iOS SDK. UIKit,
written in Objective-C, has been optimized for the iPhone and iPhone platforms
and performs very well on its hardware. The UIKit controls and UI components
are available and common, although customizable, across all native iOS appli-
cations. It also includes navigational components that implement the common
navigation and interaction patterns of the platform. Therefore, using UIKit
would provide the user with interface familiarity from the rest of the platform
when using the Podio application. The iOS platform uses hardware-accelerated
animated transitions extensively to provide context to user actions, improving
the user’s understanding of the view hierarchy and interface layout [24].

The interface is created programmatically or using Interface Builder, a sub-
component of Xcode. Views can be immediately accessed and manipulated

23

from the application code using Objective-C. Because of Objective-C being a
compiled language and the hardware acceleration of the user interface, UIKit
interfaces provide extremely smooth animations and near instant user interac-
tion feedback, traits that iOS users have come to expect from iOS applications
in general.

Additional authentication is not a problem when using UIKit, as the views are
just presenters of the application data. Also, since the existing iPhone applica-
tion was initially developed using UIKit no additional integration is needed.

Using the native view framework is also an advantage when dealing with lo-
cally cached data. When using Core Data, implementing the view layer using
the same SDK makes integration easy and Cocoa Touch provides a number of
ways to easily associate and present local data. One such example is the NS-
FetchedResultsController class, which observes changes in the model layer and
notifies the controller object of when and how to update the interface.

The interest in Objective-C has skyrocketed since the launch of the iPhone SDK
in 2008, moving from position 38 in October 2006 to being the 6th most pop-
ular programming language exactly 5 years later according to Tiobe Software’s
Programming Community Index [25]. However, because of it’s tight coupling
with Apple-related platforms it is still considered a niche language in enter-
prise software development. Hence, a decision to pursue a development project
using the iOS SDK requires a commitment to learning Objective-C or hiring
someone already familiar with the language. Therefore, a disadvantage of using
the native SDK is the added learning curve, a fact that is heavily emphasized
by competing third party platforms providing cross platform solutions based
on well-established web technologies such as HTML and JavaScript. However,
if knowledge of Objective-C is not an issue then productivity and development
speed can be considered as good if not better than other web-based frameworks,
not least because of the available development tools available and the quality of
the iOS SDK.

The greatest disadvantage of using the native SDK is platform dependency.
Podio wants to offer solutions on all major mobile platforms used in business
and as such, minimizing effort and development time by using cross-platform
solutions has a clear advantage.

Embedded Web Content Using UIWebView UIKit provides a custom,
called UIWebView, a view class capable of rendering web content. It is based
on the WebKit [21] rendering engine just like the default iOS browser applica-
tion Safari. It provides rich support for technologies such as HTML, CSS and
JavaScript.

When using a UIWebView, there are two options; loading the remote web page
with the item content from a server, or bundle the web page as a resource within
the application package and inject the desired data into it. Also, web views are
inherently slower to render their content than a native view based on its reliance

24

on a generic web rendering engine and the Document Object Model (DOM). For
interactive views, this can negatively affect the user experience since users have
come to expect a certain level of responsiveness from the platform.

The first option of fetching the item content from the server has the advantage
of being reusable across platforms. Therefore, it minimizes the effort of creating
custom views for each individual mobile platform using their respective native
SDK. For example, an item view web page could be reused in a native Android
application that provides a view component similar to UIWebView. However,
the design and behavior might anyway need to be adapted depending on the
client platform to conform to the client specific interface paradigms. However,
attempting to maintain client-specific customizations of a shared component
decreases the greatest benefit, namely cross-platform reusability. In contrast,
ignoring client differences by having the interface behaving identically on all
platforms could have a jarring effect on the user experience when a user action
does not yield the expected result for that platform. The second option of
bundling the web content as a local resource in the application package has
fewer advantages since it cannot be controlled remotely. Other than that the
same reasoning applies to both options.

Another issue is integration with the rest of the application. In a highly func-
tional view such as the item view, a user interacts with the view to preview
images, edit text etc. It is not possible, without complex workarounds, to trig-
ger native application code from for example JavaScript. In the case of loading
the content remotely, it would also impose a potential security risk. Therefore
the JavaScript code running in the web view is restricted to the APIs exposed
to it. Hardware resources such as the camera or address book are therefore
inaccessible. However, JavaScript can be injected and evaluated into the web
view from native code, which makes it possible to populate a skeleton HTML
resource from application data.

Tools available are also a factor. Objective-C and use of the native SDK is the
default assumption on the iOS platform and its supporting tools. Xcode and
its companion applications, such as Interface Builder and Instruments, provide
powerful development and debugging tools. When developing complex logic and
javascript for a web view, the tools are more limited.

Overall, using embedded web-based views in a native application is a reasonable
solution when presenting static or near-static content with heavy formatting
and various resource types such as images and styling. For functional views
that require deep integration with the rest of the application, the advantages
are seemingly overshadowed by the disadvantages. The issues with using web-
based technologies for building highly functional mobile applications can in part
be explained by the ”Impedance Mismatch” problem presented by Mikkone and
Taivalsaar [26], where they argue that the original purpose of the web as a
document-sharing platform has a number of inherent problems when used as an
application platform.

25

Third Party Frameworks The success of the Apple App Store has caused a
wave of third party application frameworks to appear, such as Appcelerator Ti-
tanium [22] and PhoneGap [23]. The advantages they offer are that apps can be
developed using web technologies such as HTML, JavaScript and CSS instead of
Objective-C, a more low-level and less common programming language. How-
ever, PhoneGap and Titanium accomplish this goal in different ways. PhoneGap
is primarily used to wrap a web application in a web-based view, and provides an
extensive JavaScript API to access native platform features and hardware, such
as the built-in camera. Titanium on the other hand uses the JavaScript source
files to generate native applications for various platforms using their native UI
controls.

Both of these solutions promote the advantage of not having to learn Objective-
C and instead use web technologies that are considered more common and ad-
vantageous in their cross-platform support. In addition, they emphasize the
time-to-market advantage of being able to use the same code to build apps for
multiple platforms.

The greatest disadvantage of committing to one of these frameworks at an early
stage is the risk of adding an extra layer and hence, an additional dependency,
on top of Apple’s iOS SDK. New features added to the iOS SDKs has to gain
official support in the third party frameworks before becoming accessible to the
developer. This poses a potential competitive threat since other applications
might not be restricted by such a dependency. Also, given the young age of
these frameworks, their future can be viewed as somewhat uncertain. This risk
was manifested in October 2011, when Adobe Systems Inc acquired PhoneGap.

There is a clear place and advantage to these third party application frame-
works, but for a long-term application projects one should consider the risk of
the added dependency. For short-term projects or for companies with limited
development resources but high demand for multi-platform presence they offer
a good alternative. For example, PhoneGap could be ideal when developing
promotion applications for events such as festivals, sporting events and the like.

For this project, there is an existing Podio iPhone application built using the
native iOS SDK. Pursuing the use of a third party framework would not be
feasible since all existing functionality would need to be rebuilt using the new
framework. Additionally, the application needs to be maintained for a long time
in parallel to the other Podio client interfaces and the benefits of these third
party frameworks does not motivate the risk of an added dependency.

4.2 Request Management and Data Persistence

To keep application data up-to-date it needs to be regularly fetched from the
Podio API to update the local data cache. As argued by Gopal [27], caching
data on the client device itself is important to be able to interact with already
downloaded data when network connectivity is unreliable or lost. Maintaining a
data cache in a persistent model layer also makes it accessible to multiple view

26

controllers of the application.

Because the main thread in an iPhone application is responsible for reacting to
user input and rendering the user interface, the network requests to the Podio
API needs to be delegated to background threads to keep the user interface
responsive. The following sections describe how to balance request and data
management and keeping the user data up-to-date while keeping the application
responsive to user interaction.

4.2.1 Stale Data and Validation of API Actions

Each Podio API request is associated with a user account by including an access
token string in the “Authorization” HTTP header of every request that requires
authentication. The access token is used by the API to identify the user who
wishes to perform the operation. The API uses a permission system to determine
if the authenticated user is authorized to perform the requested action on a
particular resource object. In addition, when requesting a resource object from
the API, the response includes a list of rights dictating the actions the user is
allowed to perform on the given object. This allows the client application to
adapt the user interface based on these rights, e.g. display an “Edit” button.
However, if the client application were to, by accident, perform an unauthorized
action, the API would return an error.

The API-side validation can be of use when working with stale data. Before any
further discussion, one needs to define what is meant by stale data. As a client
application, the remote Podio database is considered to contain the canonical
state of all data. Prior to any action on a remote resource object, the object
itself needs to be fetched by the client through an API request. A subsequent
modifying request can then be performed on that object. This means that the
time between the two requests always is greater than zero, which inevitable
allows for the possibility that the data changed in between by another user or
system event.

The conclusion is that the client application can provide a better user experience
by being optimistic in its execution of actions, i.e. to act based on the state
of the cached state of an object and by gracefully handling any API errors.
There also needs to be a reasonable default behavior for when the data should
be updated, to minimize the time between the fetch request and the modifying
request. The conclusion is that a reasonable rule of thumb is to use the cached
state of an object when requested to immediately populate the interface and at
the same time initiate a refresh request for that particular object and update
the interface once completed, as shown by figure 5.

27

Figure 5: Sequence diagram for loading a detailed view of a task

The underlying data also follows different change patterns. For example, admin
users are allowed to change the configuration and user permissions of an app,
but these changes are less common than for example changing or creating items.
By identifying these usage patterns, one can make informed decisions on when
data needs to be refreshed from the API, and the consequences of using stale
data.

4.2.2 Request Management

Request management is concerned with managing network request to the Podio
API. Requesting data from a remote server takes a considerable amount of time
and should be handled on a background thread. Request management includes
initiating, monitoring requests and handling the returned data.

API Requests and Threading iOS applications are multithreaded. The
main thread is responsible for executing the main run loop that listens for user
and system events. It performs the corresponding action and updates the user
interface accordingly. It is critical to the user experience to not block the main
thread with long-running synchronous operations such as network requests or
file system operations, as it would cause the interface to become unresponsive.
Therefore, the main thread should only be used for short tasks and interface
rendering. All other operations should be delegated to background threads.

28

The Foundation framework provides abstractions for asynchronous task execu-
tion through convenience classes such as NSThread, NSOperation, and NSOper-
ationQueue to make the creation and management of background threads easier.
The NSThread class represents a single executing thread while NSOperation is
a more abstract concept meant to encapsulate a unit of work but it is not nec-
essarily executed on separate thread. Instead, a NSOperationQueue instance
manages a number of NSOperation objects and their execution based on their
own configuration and that of the queue.

A NSOperationQueue provides the threads used to execute its operations. It
is therefore convenient in an iPhone application to setup different queues for
different long-running tasks. An operation queue can reuse the same thread for
executing multiple operations as long as they are configured to run sequentially
[28]. One such queue is used for all dispatched API requests in the application.

In the Podio iPhone application, NSOperation can provide a flexible and config-
urable way to execute API requests. A popular Objective-C library used for such
HTTP-based requests is ASIHTTPRequest [29]. The ASIHTTPRequest library
provides a custom subclass of NSOperationQueue called ASINetworkQueue as
well as multiple convenient NSOperation subclasses that implements the HTTP
protocol.

Threading and Core Data The Core Data framework defines several re-
strictions on how it can be used in a multi-threaded application. For further
explanation of Core Data key classes and concepts read the introduction chapter
about Core Data as a persistence layer [30].

It important to pay attention to the restrictions stated by the framework docu-
mentation when using Core Data in a multi-threaded environment. Perhaps the
most important one is the fact that a single NSManagedObjectContext instance,
used for accessing stored objects, can only be used by one thread at a time. This
means there needs to be at least one object context exclusive to the main thread
to update the interface, and one for every asynchronous background thread that
interacts with the Core Data store.

The Request Lifecycle The typical lifecycle of an request made to the Podio
API can be described as follows:

1. An action is triggered by an event such as user input.

2. The action is detected and handled on the main thread. An NSOperation
object is instantiated and added to the network queue.

3. The main thread continues execution of the run loop while the network
queue dispatches the operation. The network queue executes its operations
concurrently or in sequence depending on its configuration.

4. The request completes.

29

5. The response data is passed to the main thread.

When the request completes in step 4, the application needs to take care of the
returned data. The Podio API returns a response body containing data in the
form of a serialized JSON [5] string. The JSON string needs to be parsed into
a native collection data structure, such as an NSArray or NSDictionary. While
there are many freely available open source libraries for parsing JSON, JSONKit
[31] is seemingly the most popular [32] at the time of this writing. JSONKit
is a full document parser, meaning it outputs nested NSArray or NSDictionary
objects that holds the complete structure of the parsed JSON string.

In some cases with the Podio API, the response data does not represent an entire
resource object. This is usually the case when creating, updating or deleting
objects. In these cases, the response instead contains only the identifier of the
related object. In this case the data can be passed to the main thread as-is,
without further processing.

In the previous version of the iPhone application, passing data to the main
thread was handled by using the notification mechanism [33] provided by the
Foundation framework. It is based on the Observer [34] pattern and provides
the ability for any object to register as an observer of a particular notification,
identified by an NSString object, posted by any other object. Each notification
is distributed through an NSNotificationCenter instance and is delivered to all
observers registered with that notification center. One can choose to observe all
notifications of a given type, or only the ones posted by a particular object.

One problem that arises when working with asynchronous background opera-
tions is the need to execute some custom code on the main thread once the
request completes. There might also be a need to handle the success and failure
cases independently. Hence, there is a need to identify which request finished.
The previous request management implementation used the aforementioned no-
tification mechanism to message all observing view controllers once a request
completed. It provided some context to this notification by including an inte-
ger as a request type to identify which API operation was called. This showed
to be an error prone approach since multiple view controllers could be active
and registered to notifications of the same request types. For example, when
an image was uploaded to create a new status message, the profile picture of
the user would change since both view controllers used that same request type
to upload a picture. This indicates that the request completion code needs to
be executed with more granular control than using a request type, ideally on a
per-request basis. The previous approach also resulted in large amount of boil-
erplate code since each new view controller needed to register and unregister to
request completion notifications.

The second scenario and the common case when performing a HTTP GET
request to a given resource URL, is that the response data is a serialized rep-
resentation of a single or collection of remote resource object. Listing 1 shows
the response for getting a single comment object.

30

Listing 1: Response string for fetching a comment

1 {

2 "comment_id": 123456,

3 "value": "This is the comment body",

4 }

The above data contains the serialized data fields of the remote resource object.
To be able to effectively use this object within the application and persist it
to the client database for offline access, it needs to be transformed into a na-
tive domain object and stored locally. The proposed strategy for doing so is
described in the next section.

4.2.3 Data Persistence

After successfully receiving the data of a remote resource object it needs to be
transformed into a native domain object for easy use within the native appli-
cation. The iOS system frameworks are in large parts built using the Model-
View-Controller (MVC) pattern [35]. Therefore, Apple encourages developers
to build model-driven applications [36] where multiple view controllers can share
and react to changes in the model layer, as shown by figure 6.

Figure 6: Keeping data in controllers vs. a separate model layer

There are several benefits to keeping data in a separate model layer:

• Shared data - Avoids duplication of data and redundant API requests if
multiple controllers are interested in the same data.

31

• Minimizing memory usage - Keeping application data in the model
layer, for example in a database, removes the need to keep everything in
memory and allows for lazy loading [37] of model objects. Controllers
are always kept in memory once allocated and will therefore keep all its
associated data in memory as well.

• Persisting data across application launches - Controller objects are
continuously allocated and deallocated, sometimes without the control of
the application developer.

• Offline access - If Internet connectivity is lost, the user is still able to
browse already downloaded data.

To be able to store the response data locally a persistence strategy is needed.
iOS offers multiple solutions for this as described in the next section. There
also needs to be a mechanism for transforming the collection objects generated
by the parsing step into native persist-able domain objects, a step that from
here-on is referred to as data mapping.

iOS Persistence Solutions The iOS platform offers a number of solutions
for persisting data:

• File system

• SQLite

• Core Data

Data can be stored as files in the file system. Each application on iOS is assigned
a sandboxed file system directory in which it can store arbitrary files. However,
this approach is not suitable to store complex objects structures since files and
directories are not ideal for querying or filtering data, but rather have to be
traversed and inspected.

SQLite is a library that implements a file-based full-fledged SQL database.
SQLite support was included in the initial version of the iPhone SDK, while
Core Data support was not added until iPhone SDK 3.0.

Core Data is an framework for object-graph management and persistence. The
underlying storage mechanism is configurable and Core Data provides four de-
fault storage types; SQLite, XML, binary or in-memory, as well as the ability
to create custom ones. Given the size of the Podio domain model and the de-
sire to maximize performance as well as minimizing memory usage, SQLite is
seemingly the best option according to Apple’s Store Types and Behaviors chart
[38].

Core Data provides change tracking for objects in the graph including insertions,
updates and deletions. It provides property validation, undo management and

32

other useful features. All changes to the database are made through an NSMan-
agedObjectContext instance. A single object context should be exclusive to a
single thread to avoid concurrency issues, and changes in contexts are communi-
cated across threads using the Foundation framework’s notification mechanism
[39]. Because of Core Data’s use of notifications, any part of an application can
observe changes made to an object context. For example, a view controller can
be notified of a deleted object and remove that object from the view. There is a
performance overhead associated with using Core Data [40], but for a complex
domain model the benefits typically outweighs this drawback.

In Cocoa Touch, built in large parts around on the MVC pattern [34], Core
Data provides a sophisticated model layer. Because of its use of notifications, it
is easy for the view layer to observe and update itself in response to changes in
the model. When using Core Data as a persistent cache to store remote data it
is possible to simply have the main thread use local data to populate the view,
and to trigger asynchronous refresh operations. Upon completion, the remote
data is imported into the database on a separate thread. The view layer is
notified of these changes on the main thread and can update itself accordingly.
In the event of lost network connectivity the user should still be able to browse
any previously stored data. This approach is encouraged by Apple to improve
the user experience [41].

The above indicates that Core Data is the most suitable persistence solution
for most non-trivial iOS applications. The next section describes the process
of populating the database with native domain objects created from remote
response data.

Data Mapping The process of data mapping is to lookup, instantiate and
populate native model objects from the response data returned by the API. Op-
tionally these objects can also be persisted locally. Section 4.2.3 suggests that
Core Data would be the preferred persistence strategy for the Podio application.
Core Data enables seamless persisting of native Objective-C objects. The data
mapping process can be a time-consuming task for large data and should there-
fore be delegated to a background thread. The application code interacts with
the Core Data persistent store through an NSManagedObjectContext instance.
As previously mentioned, object contexts need to be exclusive to a single thread
to avoid concurrency issues.

Core Data was used in the previous version of the iPhone application, where the
mapping process was initiated by creating a background import operation. This
background operation defined a custom mapping procedure for each request
type unique to the resource URL of the request. This resulted in problems
when parsing, mapping and persisting data because of code duplication. It also
resulted in a close coupling between the domain objects, mapping logic and
network code, which in turn reduces testability and maintainability.

The goals of the new data mapping process should be:

33

• Decouple mapping from the domain object type This makes it
possible to use the same mapping code across applications with different
domain objects. It also improves testability.

• Customizable mapping definitions Mapping definitions need to be
easily defined. The definition grammar and features should be developed
based on the needs of the iPhone application and the structure of the API
response data.

• Standalone and generic mapping process The actual mapping pro-
cess should be generic and decoupled from the underlying data store.
Having a persistence layer should be optional. This is important if the
mapping implementation should be reused in future projects possibly not
reliant on Core Data for persistence.

• Testability The mapping process and definitions should be easily
testable. This requires it to be decoupled from any network code while
still being usable in such a context.

As described in section 4.2.2, remote resource objects are returned from the
API in serialized form, where the name/value pairs of each JSON object repre-
sents the remote object’s data fields. These data fields need to be mapped to
native domain object instance variables. Objective-C 2.0 includes a language
features called properties. Properties provide a simple way to automatically
define accessor methods for instance variables, similar to getters and setters in
Java. Listing 2 shows the use of properties as accessor methods using the dot
notation.

Listing 2: Objective-C properties using dot notation

1 @interface Person : NSObject {

2 NSString *name;

3 }

4

5 @property (copy) NSString *name;

6

7 @end

8

9 @implementation Person

10

11 @synthesize name;

12

13 - (void)greet {

14 Person *person = [[Person alloc] init];

15 person.name = @"Sebastian";

16 NSLog(@"Hello %@", person.name); // => "Hello Sebastian"

17 }

18

19 @end

In addition, Foundation provides an informal protocol named NSKeyValueCod-
ing (KVC) [42]. KVC can be used to call an accessor method indirectly by name

34

instead of explicit invocation. Listing 3 shows how the above greet method
would look using KVC.

Listing 3: Objective-C properties using KVC

1 - (void)greet {

2 Person *person = [[Person alloc] init];

3 [person setValue:@"Sebastian" forKey:@"name"];

4 NSLog(@"Hello %@", [person valueForKey:@"name"]);

5 }

Objective-C is a dynamic language with an extensive runtime library [43]. This
library in combination with KVC provides a good foundation for building a
generic mapping strategy using Fowler’s Metadata mapping and Data Mapper
patterns using Reflective Programming [37]. The ability to access object prop-
erties at runtime using a string representation of its name also suggests that a
declarative approach can be used for constructing object-mapping definitions.
While Fowler’s examples focus on Object-Relational Mapping (ORM) mapping
and this project focuses on mapping data from a network request, the mapping
problems are fundamentally similar.

As stated by Fowler [37], using reflective programming and metadata mapping
does have performance implications. However, he also suggests that relative to
the execution time of database queries during mapping, the increase in execution
time is unlikely to have a significant impact on overall performance. In this
project the mapping process is a sub-task of requesting data from a remote
API, which also includes a network request. In this context the added overhead
is likely to be negligible.

As previously stated the mapping process should be independent from the un-
derlying persistence strategy. However, object lookup, creation and deletion is
usually very much dependent on the underlying implementation. Hence, the
responsibility of these actions can be delegated to the persistence layer by pro-
viding a simple interface to implement. The Repository pattern [37] could be
used to achieve this.

5 Results

The result of this thesis project consists of two main parts. The first part
is the implementation of the feature improvements intended by this project,
including the final navigational structure and interface design. The second one
is PodioKit, a library developed to improve the request management and data
persistence layer of the Podio iPhone application. These results are based on the
findings and reasoning around best practices in mobile application development
in section 4.

35

5.1 Application Design and User Experience

The resulting interface design of the iPhone application is based on the observa-
tions made in section 4, and primarily affects the app, item and space sections
of the application. The goal being to consider both the user experience and the
technical aspects of presenting data in a intuitive way.

5.1.1 App Item

As described in section 2, an item is a collection of fields. Fields can be of
various types and need individual presentation and interaction logic. However,
field types rarely change. An app item can be referenced from multiple places
on Podio, including the activity stream and in tasks. Because of this it was
the first piece of functionality to be implemented as it could be treated as a
standalone view to be loaded from multiple places within the application.

Several technologies were considered in section 4 to create the app item view.
The result was to create a native view based on UIKit and create custom controls
for each of the field types. The reasoning being that since field types rarely
change this is an acceptable one-time effort. There would also be enough time
to release a new application version in a reasonable time in the event of an
added field type. Figure 7 shows an example of how a simple item looks in the
iPhone application and the web site respectively.

Figure 7: Item view

An app item view contains a lot of information. In order fit all of it on the
smaller screen, it is important to separate primary information from secondary
information and, if possible, even consider not including the latter. For example,

36

an item category field has a number of categories and each of them can be either
selected or deselected. When only viewing an item, the more relevant of the two
is the selected state. Hence, only the selected categories are shown in the iPhone,
while both selected and deselected categories are shown on the web site. This
provides extra context to the item data at the expense of extra screen space.
However, this does not work as well on the iPhone.

Another example is the image field type. On the web site, the full images are
shown inline. On the iPhone, showing full images would force the user to scroll
long vertical distances. Also, fetching full size images for each item view would
increase network data usage and latency, an unnecessary cost if the user never
intended to view the full images. Instead, images are displayed in a small grid
as shown by figure 8. It uses scaled down images from the server to give the
user initial previews. The user can then tap a grid tile to view the full sized
image.

Figure 8: Taxi receipt shown in image preview grid

As an example of interface partitioning, the item comments are accessible by
tapping the speech bubble in the bottom right corner of the screen in 7. This
action initiates a flip animation of the entire view and reveals the comments on
the “back” as shown by figure 9.

37

Figure 9: Item comments

In contrast, on the web site comments are shown underneath the item fields.
This approach is reasonable since most users browse the web site using large
landscape oriented monitors. The default orientation on the iPhone is portrait.
This makes the content area narrower and as a result item fields and their
content occupy more vertical space. This further increases the scrolling distance
to access comments. Also, by providing comments with its own full-screen view
there is more room for related view elements such as a button for adding a new
comment and the comment text entry bar.

5.1.2 Spaces and Apps

A space contains a number of things that should be present on a per-space basis
in the iPhone application:

• Activity stream

• Apps

• Tasks

• Contacts

A space is displayed as its own view with a bottom tab bar, as shown in figure 10.

38

Figure 10: A space has several subsections, shown as tabs in the space view

Figure 11: Space apps are shown as a grid to provide platform familiarity

Tapping the Apps tab displays the new interface for browsing apps within a
space, shown in figure 11. The apps are laid out in a grid pattern, similar to the
iPhone main home screen. Since the concept of Podio apps is similar to that of
native iPhone applications, although simpler in functionality, presenting them
in a similar manner provides some interface familiarity. For example, most users
would recognize that the small page indicator at the bottom indicates that they
can access more apps by swiping right to left. Some users might also know that
an icon in this kind of grid layout might respond to a long press gesture. On
the iPhone home screen, a long press puts the whole screen in edit-mode and

39

allows the user to reorganize or remove apps. In the Podio application’s apps
grid, a long press presents a contextual menu with a few options, such as “Add
to Home Screen”. Such an option is more of a shortcut since it is available in
other places of the app, which this makes the discoverability of such a feature
less of a priority. When the user launches one of the apps in the grid, she is
presented with the app view, shown by figure 12.

Figure 12: An app is displayed as a list of items

The app view is a simple list of items with the ability to filter previously created
items by tapping the green “Filters” button. To delete an item in the list, a
common platform-wide swipe gesture is used to reveal a “Delete” button. Even
though not immediately discoverable, the deletion-gesture is common enough
throughout the platform to use for a relatively common action such as deletion.
The benefit is that no additional screen space is needed to always show a delete
button.

Several features have also been intentionally left out because they do not make
any or enough sense in the mobile application. Examples of such features are
Excel export and import, the ability to modify apps or manage space or app
settings.

5.2 PodioKit

PodioKit is a static Objective-C library built on top of the Foundation frame-
work and a few other supporting libraries. It is intended to provide a reusable
request management and data mapping mechanism for use with the Podio API.
It is designed to work with iOS 4.0 or greater. The goals of PodioKit are:

40

• Podio API interfaces Provide a set of native interface classes to access
the various Podio API areas.

• Reusability and encapsulation Provide an easy to use library that
encapsulates communication with Podio API and is reusable across appli-
cation projects.

• Customizability Allow for extending the functionality of the library and
customize behavior depending on the application design and storage strat-
egy.

• Modularity Allow for better testability by decoupling the various library
components, such as network request management and data mapping.

• Decouple model from mapping Be model-agnostic and allow a client
application to use domain objects of any type with existing mapping def-
initions.

• Simple block-based API Providing an opaque block-based API for
making API requests and getting native domain objects in return.

• Minimal configuration Require minimal configuration to start using
the library within a client application.

• Test coverage Provide good test coverage of the library code to ensure
correct behavior.

The next couple of sections describe, in more detail, PodioKit and how it ac-
complishes the goals stated above.

5.2.1 The Asynchronous Request API

To provide the application with a way to perform an API request, PodioKit
leverages the addition of blocks [44] in iOS 4.0. Blocks are a C-level imple-
mentation of closures, which are similar to anonymous functions but with the
advantage that they capture the state of the lexical scope in which they are cre-
ated. This means they keep a reference to any objects in scope at their creation,
including the current object’s self referencing variable self.

Blocks in Objective-C are treated just like regular objects and can copied to
the heap by using the copy method defined by NSObject. Because of this it
is possible to treat blocks as regular instance variables of an object such as an
NSOperation. This provides a way to attach a callback block to an API request
to be called upon completion. Since the API request executes in a background
thread and the callback code should be executed on the main thread where
it was created, the libdispatch library’s dispatch async C function is used.
This way the correct callback code is executed upon completion of the API
request. Identifying the callback code on an instance basis rather than using
request types and notification-based callbacks eliminates many issues with the
previous iPhone application. Listing 4 shows how using blocks can provide a
short and simple way to initiate an API request and handle its result.

41

Listing 4: API request block

1 [[PKTaskAPI requestForTaskWithId:32452] startWithCompletionBlock:^(

NSError *error, PKRequestResult *result) {

2 if (error == nil) {

3 // Success...

4 } else {

5 // Failure...

6 }

7 }];

requestForTaskWithId returns a PKRequest object which defines the
API interface and HTTP parameters to be used in the request. Then
startWithCompletionBlock is called to add the request to the network queue.
Listing 5 shows the actual creation of the request object.

Listing 5: API request creation

1 + (PKRequest *)requestForTaskWithId:(NSUInteger)taskId {

2 NSString *uri = [NSString stringWithFormat:@"/task/%d", taskId];

3 PKRequest *request = [PKRequest requestWithURI:uri method:

PKAPIRequestMethodGET];

4

5 return request;

6 }

The PKRequest can be further configured on a per-application basis. For ex-
ample, an object-mapping object can be attached to be used when mapping the
response data to native domain objects. Object mapping is explained in detail
in section 5.2.2. When adding the request to the network queue, it is passed to
a singleton class named PKRequestManager. PKRequestManager is responsible
for creating and managing asynchronous background request operations. The
operations themselves are instances of PKRequestOperation, which is in itself a
subclass of NSOperation.

NSOperation, and subsequently PKRequestOperation, also provides a way to
cancel an operation by invoking its cancel method. Calling this method does
not immediately interrupt the operation, but the operation code can check for
a cancellation request at any time and terminate gracefully. This can be used
in the iPhone application to avoid requiring the user to wait for a request to
complete. Previous versions of the application presented a modal loading view
on top of the current interface while performing an API request. It did so
because it could not let user navigate to another view based on potentially stale
data. In the version using PodioKit, a request can be explicitly cancelled when
the user navigates away from the current view. The request operation then
checks if it was cancelled before storing the local data and if so discards the
response.

42

5.2.2 Data Persistence

The Podio iPhone application uses Core Data for persistence, and SQLite as its
underlying storage. The domain objects are Core Data entity objects, i.e. sub-
classes of the NSManagedObject class. The API response data is mapped to
the domain objects’ property methods through a mapping process described in
section 5.2.2. In brief, PodioKit uses subclassing of the parent class PKOb-
jectMapping to define mapping behavior for domain objects. Object mappings
can be reused and nested to create complete mapping structures for the response
data.

The following sections describe the principles used when modeling the Core
Data model schema based on the Podio domain model and the response data
structure.

Response Data Structure The API response body contains a JSON for-
matted string representing the serialized data fields of remote resource objects.
It is parsed by the client application into native Objective-C collection objects
like NSArray and NSDictionary. A single resource object is represented by an
NSDictionary while an NSArray is used to represent a collection of objects. A
response object data field is referred to as an attribute and consists of a key and
a value. An attribute is mapped to a native Objective-C object property, which
is an accessor to an object’s instance variable.

Listing 6 shows the API response body for fetching a single task object.

Listing 6: Get task response

1 {

2 "task_id": 174753,

3 "text": "Task text",

4 "due_date": "2011-08-01",

5 "description": "Task description",

6 "comments": [

7 {

8 "comment_id": 574482,

9 "value": "Comment on task",

10 }

11],

12 "responsible": {

13 "user_id": 123456,

14 "type": "user",

15 "name": "Sebastian Rehnby"

16 }

17 "ref_type": "space",

18 "ref": {

19 "space_id": 38212,

20 "name": "Test space"

21 },

22 }

43

The response data can be of varying depth with several nested object types.
For example, a top-level domain object can have a relationship to a collection
of objects of another entity type. A Comment object might have an property
field named files containing a collection of CommentFiles objects. The nesting
of objects in a single response is essential in API design [45] to avoid requiring
the client to make additional requests for sub-objects. However, it is a tradeoff
since a larger response body increases response time and data usage, and as a
result potentially has a negative effect on the user experience. Therefore it is
important to know in which context the data is to be used. For large collections
of objects, pagination can be used to limit the number of objects included in
the response.

The following attribute types for a resource object have been identified:

• Static attribute - The type and structure of the value are always
known. This is the most common type of attribute and can be
immediately mapped to a native object property.

• Dynamic attribute - An attribute where the value format varies de-
pending on another static attribute, e.g. a “type” field of the same object.
For example, the task object in listing 6 above has an attribute named ref
whose content depends on the value of the static attribute ref type.

Dynamic attributes cannot simply be mapped as a sub-object using their own
PKObjectMapping sub-class since the value format of the dynamic attribute
needs to be determined at runtime based on the value of another static attribute.
Two suggested ways of solving this problem are:

1. Add domain object properties for every possible dynamic sub-
attribute For example, say the ref type attribute has a two possible val-
ues; “item” and “space”. The “item” ref type would indicate that the ref
attribute value contains static attributes named item id and title. For the
“space” ref type, the ref attribute value would contain the static attributes
space id and name. Using this approach, the domain object would have
four properties, itemId itemTitle, spaceId and spaceName.

2. Store dynamic attribute values as a Binary Large Object
(BLOB) property Because the dynamic attribute value is unknown
and varies, the attribute cannot be expressed as an object relationship
in the database schema. But by viewing the dynamic attribute value
simply as complementary data to the parent object, it becomes clear
that it is only relevant in the context of its parent object and will most
likely not need to be accessed in isolation. This allows for constructing a
custom object at runtime and serializing it into a BLOB column in the
database schema. BLOB data is supported by Core Data through the
Transformable attribute type, capable of serializing any object as long as
it conforms to the NSCoding [46] protocol. The serializable objects can
also be nested as long as they all conform to the NSCoding protocol.

44

PodioKit uses the second option to handle dynamic attributes.

Podio Domain Model Design Core Data model schemas are defined in a
.xcmodel file in the Xcode project. The Podio domain model consists of a large
number of entities and relationships. On the server side the database schema
can be modeled as a relatively direct translation of the domain model. However,
additional considerations need to be made for a client application based on the
intended use of the cached data. One should consider how the data is presented
in the user interface and the restrictions that maintaining relationships between
entities put on the ability to refresh data and navigate the interface.

Data is requested over a mobile network connection usually tied to a user sub-
scription plan, for example paying a monthly fee to the network provider. These
data plans commonly have an upper limit in data usage per billing cycle. This
makes data usage a shared resource between applications on the device and
should be considered and respected when developing a data caching strategy.
As described by Christensen [14], the two key parameters to optimize applica-
tion data usage is to first limit the number of request and secondly limit the
size of each requests.

The Podio API provides few ways for a client to tell the server the scope of
the data to return in order to reduce the request size. Therefore it is desirable
to use as much of the data returned by a single requests as possible, including
returned sub-objects. In many cases the need for the data of these objects differs
depending on the context in which they are to be presented. An example is an
item object. Such an object can appear as its own top-level entity by requesting
its data through the /item/{item id} API operation. In this case, the entire
item is shown in the interface and therefore all of its data should be persisted,
including its Field and Value sub-objects.

The item object is also returned as a sub-object in the API operation
/item/app/{app id}. In this case, the API returns a list of item objects.
The iPhone application calls this operation to display a listing of the items
in a given app. All that is needed to populate the list of items is the title
and createdBy attributes of each item. Parsing and storing more data than
necessary would increase parsing times and database space usage for items that
will likely never be viewed in full. There also needs to be a reference to the
top-level app object. This relationship can be defined in the Core Data schema
by adding a relationship between the two to allow a simple call to [app items]

to get all of the items from the database.

Because of these two very different uses of the item object, it makes sense
to separate the Core Data entity types for these operations, named Item and
AppItem. The naming of the latter indicates that this entity is used for items in
the context of an app. This leads to duplication of some item data stored in both
entity type collections, but the drawbacks can be considered minor compared
to the benefits for handling the data. This approach can been referred to as
“Optimized Data Types” [36].

45

However, the comment object is an example where the above does not apply.
A comment object is presented in the same way everywhere in the application
and it is always showing the same data; the author, text and creationDate.
Comments can therefore be stored as the same Core Data entity regardless of
the parent entity to which it is attached. This is a significant advantage since
we do not have to duplicate the domain objects for its multiple sub-objects like
link, file and question. In this case the comment object has two static attributes,
refType and refId to reference the parent, forming a sort of inverse unidirectional
association. For this occasion Core Data provides a mechanism called Fetched
Properties to declare this relationship in the model schema to allow immediate
access to the comments from the parent like [parent comments], similar to a
regular Core Data relationship.

Model Migrations The Podio model schema is as previously mentioned de-
fined in a Core Data model file. Core Data provides a versioning mechanism
for managing changes to this model schema between releases. An older schema
should never be changed but rather a new incremental model version should be
created within the model file. Core Data ensures schema compatibility between
a new application version and the existing persistent store by performing a hash
comparison of the schema.

When the application model version is incremented, the existing store needs to
be migrated to use the new schema. Core Data provides an easy mechanism
called Lightweight Migration [47] for simple changes such as adding a new entity
or attribute. A Mapping Model [47] is needed for more complex schema changes.
It requires defining how data stored using the old schema should be transformed
to match the new one.

The Podio server side domain model changes rapidly and often in significant
ways. However, the initial version of the iPhone application was missing a
large part of the functionality of the Podio platform such as organizations,
spaces and apps. At that stage model changes could be managed fairly well
using lightweight migrations. However, with more features and added model
complexity in later versions the model schema changes significantly in every new
release. Creating mapping models for each of these versions quickly becomes
both cumbersome and error prone.

Instead, an alternative and far simpler approach is to delete the existing data
store between application versions. The primary use case for storing local data is
to provide a caching layer to improve the user experience and offline capabilities.
The local database is entirely populated by remote data, and can therefore be
re-populated from the server. By purging the database, i.e. invalidating our
local cache, cached data is lost temporarily until it is re-downloaded. However
the benefit of not having to manage model schema migrations is considered to
outweigh the drawbacks. In addition, since iPhone application upgrades are
distributed over-the-air (OTA) through the Apple App Store, it is likely that
the user has a functioning network connection at the time of the upgrade and
will be able to re-download any deleted data.

46

Data Mapping Data mapping is the process of creating and populating na-
tive domain objects from the API response data. To address the issues in the
previous version of the iPhone application described in the chapter 4, a new
mechanism for performing data mapping was developed as part of PodioKit. To
make it possible to populate a domain object from an NSDictionary containing
the deserialized object data, one needs to extract the data from each attribute,
transform it and assign the corresponding domain object property the resulting
value. A number of options were considered to achieve this:

1. Subclassing - This means providing a top level class in PodioKit that
defines the object properties, such as Task or a Space. This is a problem
since Objective-C does not support multiple inheritance. For example,
to use Core Data as the persistence layer, the object is required to be a
subclass of NSManagedObject. Therefore it is not possible to require the
object to inherit from a second PodioKit object that defines the object
structure.

2. Protocols - Provide an interface for each object type in PodioKit and
require the domain objects to implement them. However, protocols do
not include behavior, only method declarations.

3. Key-Value Coding (KVC) - Key-Value Coding [42] is an informal pro-
tocol in Foundation, which leverages the dynamic properties of Objective-
C. It allows accessing object properties indirectly by using the string rep-
resentations of the method names to invoke the target selector. Since
Objective-C is a dynamically typed language, any object that responds to
the selector identified by the property name string can be invoked. This
is potentially dangerous since it triggers a runtime exception if the object
does not implement the selector, but can be avoided by adding a runtime
check before calling the method.

PodioKit uses the third option and relies on KVC. Building on top of the runtime
features of Objective-C allows for creating powerful and generic mapping code
based on the Data Mapper and Meta Mapping patterns [37] using Reflective
Programming [37]. However, it requires caution since potential bugs are less
likely to be caught by the compiler. This further increases the need for proper
test coverage.

PodioKit provides a generic way to map response data to native objects by
defining a reusable mapping strategy for a remote resource using a subclass of
PKObjectMapping for each resource object type. Object mappings can also be
combined, nested and reused for multiple API operations. An example of an
open source library that uses a similar strategy is RestKit [48].

There are a number of key classes and protocols that are a part of the mapping
process:

• PKMappableObject A protocol required to be implemented by every native
class that is used as the domain object for a PKObjectMapping subclass.

47

This protocol is needed by PKObjectMapper to determine things such as
object identity.

• PKObjectMapping This class is subclassed to define object mappings for
the response data to the native domain object’s value properties.

• PKAttributeMapping A class describing how an attribute should be
mapped to a specific domain object property.

• PKObjectMappingProvider Every client application should provide a cus-
tom subclass of this class or use the default mapping provider class in-
cluded in PodioKit to define the domain model object class for each object
mapping to be used within the application.

• PKObjectMapper The object mapper is the core of the mapping process
and is responsible for evaluating and applying all the mapped properties
to a single or collection of domain objects.

• PKObjectRepository The object repository is an abstraction used to de-
couple the creation, lookup and deletion of domain objects. Its imple-
mentation differs depending on the underlying persistence layer and its
interface is only concerned with object class and identity.

• PKObjectMapperDelegate The delegate object to receive updates from the
object mapper during the mapping process. For example, in the case of
Core Data the delegate is notified once the mapping completes in order to
save the changes.

• PKMappingManager The mapping manager is responsible for providing
each new request operation with an object mapper. It is needed because
different persistent stores need different threading behavior. Core Data
for example needs a separate NSManagedObjectContext for each thread,
i.e. each concurrent request operation.

The object mapper performs a recursive mapping of the data based on the
top-level object mapping and nested sub-mappings. It evaluates every attribute
mapping and updates the resulting property value accordingly. Figure 13 shows
a UML diagram of the mapping class relationships.

48

Figure 13: UML diagram of attribute mapping classes

Listing 7 shows a simplified version of a task object returned from the server in
JSON format.

Listing 7: Simplified task object in JSON format

1 {

2 "task_id": 12345,

3 "text": "This is a task",

4 "status": "active",

5 "created_on": "2012-02-08 12:11:06",

6 "created_by": "Sebastian Rehnby",

7 "files": [

8 {

9 "file_id": 11122,

10 "name": "Report.docx",

11 },

12 {

13 "file_id": 11123,

14 "name": "Presentation.ppt",

15 }

16],

17 "comments": [

18 {

19 "comment_id": 654232,

20 "value": "A comment on a task object",

21 "created_by": "Sebastian Rehnby",

22 "ref_type": "task",

23 "ref_id": 12345,

24 }

25]

26 }

There are several types of attribute mappings. The following describes how
these can be used to map the JSON object in listing 7 to a native domain

49

object.

PKValueMapping A value mapping immediately sets the object property
value to that of the response data attribute. Use of this mapping requires that
the parsed value is of the same type as the domain object property. This is the
most common and straightforward way of mapping an attribute to an object
property. Listing 8 shows how to define a value mapping.

Listing 8: Simple value mapping

1 [self hasProperty:@"taskId" forAttribute:@"task_id"];

Value mappings also allow for an optional block parameter to be used to evaluate
or transform the attribute value, as shown in listing 9.

Listing 9: Value mapping with transformation block

1 [self hasProperty:@"createdOn"

2 forAttribute:@"created_on"

3 block:^id (id attrValue, NSDictionary *objDict, id parent) {

4 return [NSDate dateFromDateTimeString:attrValue];

5 }];

PKRelationshipMapping A relationship mapping represents a one-to-one
or one-to-many relationship, depending on if the parsed response data is an
NSArray or an NSDictionary. When the object mapper applies this mapping
it also configures the parent-child relationship. Listing 10 shows how to define
a relationship mapping.

Listing 10: Relationship mapping

1 [self hasRelationship:@"files"

2 forAttribute:@"files"

3 inverseProperty:@"task"

4 inverseScopeProperties:[NSArray arrayWithObject:@"taskId"]

5 objectMapping:[POFileMapping mapping]];

PKStandaloneMapping A standalone mapping can be regarded as a rela-
tionship mapping without an explicit relationship. As shown in listing 11, it is
similar to a regular object mapping but with an optional context given by the
parent object.

Listing 11: Standalone mapping

1 [self hasMappingForAttribute:@"comments"

2 objectMapping:[POCommentMapping mapping]

3 scopePredicateBlock:^NSPredicate *(id parent) {

4 return [NSPredicate predicateWithFormat:@"referenceType == \"task\" &&

referenceId == %@", [parent taskId]];

5 }];

The use of standalone mappings is relevant when there is an underlying per-
sistent store from which data can be loaded. The standalone sub-objects of

50

response hierarchies are not be directly accessible through a parent object prop-
erty, but the data is still persisted and is accessible by querying the persistent
store.

When mapping object data retrieved from a remote server, there is a risk of
unmappable object structure being included in the response. For example, there
are a number of item field types that the client application knows how to handle
in the user interface. To provide a robust client application, there needs to be
a way for the client to inspect the data prior to mapping and determine if the
field type is supported. If the type is not supported, the data for such an object
should not be mapped. PKObjectMapping provides the ability to do so by
overriding the shouldPerformMappingWithData: method shown in listing 12.

Listing 12: Method to override for filtering the object data to be mapped

1 + (BOOL)shouldPerformMappingWithData:(NSDictionary *)data {

2 NSString *type = [data objectForKey:@"status"];

3 return [type isEqualToString:@"active"];

4 }

Listing 13 shows a simple example of an object mapping definition for the Task
domain object. Notice there is no relation defined to the parent object for the
standalone mapping.

Listing 13: Complete object mapping definition for the task domain object

1 @interface PKTaskMapping : PKObjectMapping

2 @end

3

4 @implementation PKTaskMapping

5

6 + (BOOL)shouldPerformMappingWithData:(NSDictionary *)data {

7 NSString *type = [data objectForKey:@"status"];

8 return [type isEqualToString:@"active"];

9 }

10

11 - (void)buildMappings {

12 // Properties

13 [self hasProperty:@"taskId" forAttribute:@"task_id"];

14 [self hasProperty:@"text" forAttribute:@"text"];

15 [self hasProperty:@"createdOn"

16 forAttribute:@"created_on"

17 block:^id (id attrValue, NSDictionary *objDict, id parent) {

18 return [NSDate dateFromDateTimeString:attrValue];

19 }];

20

21 // Relationship

22 [self hasRelationship:@"files"

23 forAttribute:@"files"

24 inverseProperty:@"task"

25 inverseScopeProperties:[NSArray arrayWithObject:@"taskId"]

26 objectMapping:[PKFileMapping mapping]];

27

28 // Standalone

51

29 [self hasMappingForAttribute:@"comments"

30 objectMapping:[POCommentMapping mapping]

31 scopePredicateBlock:^NSPredicate *(id parent) {

32 return [NSPredicate predicateWithFormat:@"referenceType == \"task\"

&& referenceId == %@", [parent taskId]];

33 }];

34 }

35

36 @end

Once the mapping process completes the mapping manager, acting as the object
mapper delegate, is notified. It saves the changes made to the object context,
which triggers the NSManagedObjectContextDidSaveNotification notification on
the background thread. The mapping manager on the main thread observes this
notification and the changes are merged to the main thread’s object context.
Once the changes are merged, all view controllers interested in the changed
objects are notified and the user interface is updated, as shown in figure 14.

Figure 14: Sequence diagram of a finishing API request

Object ordering and pagination Object ordering needs to be considered
when storing objects in Core Data. Core Data entities are treated as un-ordered
collections of objects, i.e. there is no absolute ordering between them and noth-
ing similar to the auto incrementing primary key feature found in relational
databases such as MySQL. In many cases the object order is implied by the
order of the objects in the API response and cannot be derived from the object
attributes. For example, a list of comment objects could in practice be ordered
by their creation date, but the order of a collection of item objects for an app is
only given by their relative order in the API response. Since the user interface is
not populated from the API response but from Core Data, that ordering needs
to be maintained when storing the objects.

In PodioKit, providing an optional sequence property name in the object map-

52

ping helps with maintaining the response object order. At runtime, the object
mapper looks up the sequence property on the target object and automatically
increments its value when parsing a collection of objects from the API response.

Pagination is another problem when working with parsing potentially large col-
lections of objects, such as the items in an app. Fetching all objects at once
from the server would increase processing time on both server and client side
as well as data transfer time. It would also result in a larger memory and stor-
age footprint for the client. For such cases, the Podio API provides the ability
to request a limited range of the entire collection by providing offset and limit
query parameters. The offset parameter is also used by the object mapper as the
sequence starting number when determining the value of the sequence property
during the mapping process. This allows us to provide good UI performance
and incrementally fetch the content of a collection when needed.

Object Identity Object identity plays an important role in a data-driven
iPhone application. In order to provide context to changes in the user interface
it is necessary to know why and how the underlying data was changed. As
previously mentioned a server side object is serialized into a JSON string, which
is then parsed by the client application before being persisted as a native domain
object in local Core Data store. However, the data store may already contain
the “same” object with obsolete data.

When updating the data store with fresh data there are two options. The first
is to discard the old data completely in favor inserting new objects created
from the response data. The second option is to find the corresponding existing
object and update it with the new data.

The first option is straightforward, but introduces some issues. One problem
is that it is impossible to tell apart the objects that have changed and the
ones that remained unchanged on the server side. This means they cannot be
treated differently, for example by only updating the changed ones. Another
problem that arises in the case of Core Data is the ability to give context to
data updates in the user interface, for example by using animations. In a typical
iOS application the user interface reacts to changes in the model layer based on
the type of changes that occur. One such example is a simple listing of objects.
An update event triggered by the model layer causes a list entry to update its
data in-place. In contrast, a deletion followed by an insertion into the data store
would fully remove the entry from the list and then insert a new one with fresh
data. This communicates to the user that the object was replaced, which is
different from the actual cause; a simple data field update.

Because of the problems stated above, there is a need to be able to determine
the identity of an object, remote or local. The mapping mechanism of PodioKit
requires each mappable target class to conform to an Objective-C protocol called
PKMappableObject. It defines a class method identityPropertyNames that
requires the conforming class to implement this method and return an instance
of NSArray containing the property names used to determine object identity.

53

The object mapper uses these property names to lookup the corresponding
attribute mapping in the object mapping to extract the property value from the
response data. It then dynamically constructs an identity predicate and uses
the object repository to look up the existing object. If the object does not yet
exist, a new instance is created; otherwise the existing one is updated.

identityPropertyNames returns an array since in some occasions a single prop-
erty is not sufficient to determine object identity. If nil is returned from this
method, all response objects are considered new and the existing objects not in
the response collection are deleted.

Performance A consequence of the dynamic mapping strategy used in Po-
dioKit is an added performance overhead. As with any library or framework
introducing additional abstraction layers, maintainability takes precedence over
highly optimized code. The primary reason for the added performance overhead
is the generic style of the mapping process, where very few assumptions are be
made about the structure of the response data. Instead, the mapping process
relies on inspection and lookup of the mapping definitions. PodioKit also dy-
namically constructs database queries in the form of NSPredicate instances to
determine object identity. These queries are more generic that they would be if
constructed on a case-by-case basis and therefore they take longer to evaluate.

To assess the performance of iPhone applications, the Xcode development tools
include a companion application called Instruments. Using Instruments one can
gather a vast number of metrics in real-time while the application is running in
the simulator or on a device. Some of these metrics include execution time for
individual methods, Core Data performance and memory allocations.

Instruments is of help when identifying the main performance bottlenecks in
the Podio iPhone application as a whole, and PodioKit in particular. The
measurements show that during the mapping process, the most time is spent
accessing the SQLite database through Core Data.

Optimizing Core Data After observing execution during the mapping pro-
cess, it became clear that a considerable amount of time is spent evaluating
the rather complex database queries constructed. PodioKit expresses object
identity using NSPredicate instances created dynamically by the object map-
per. Querying the database is inherently slower than accessing in-memory data,
and there are a number of optimizations that have been used to both avoid and
decrease the execution time of database queries. These include:

• Use of indices Core Data model schemas offer the ability to define in-
dices on entity attributes. Since the underlying storage for Core Data is
SQLite the benefit is the same as with a regular database index, namely
faster lookup. The approach used in PodioKit is to create indices for any
attribute that is used to determine object identity.

• Conditional predicate creation Depending on the domain object iden-

54

tity properties, one can choose to create different format identity predi-
cates. For example, some object types might have a single identity prop-
erty, while others have more.

• Avoid database access Making a round trip to the database is quite
fast, but accessing in-memory objects is faster. Therefore, one could iden-
tify cases where going to the database to find an existing object is not
needed. One such case is when updating child relationships of top-level
object types. For example, if a task object is to be updated and is found
in memory, its files relationship is accessible through that parent prop-
erty and thus, there is no need to access the database to map each of the
underlying file objects. Instead, one can look for the object in the rela-
tionship collection first and only access the database if the file object was
not found.

Optimizing the Mapping Process

There are a number of ways in which one can improve the runtime performance
of the mapping process. Although method dispatching and memory allocation
is fast in Objective-C, in great numbers they both contribute to a significant
performance overhead.

• Minimize call depth Objective-C is a dynamic language and therefore
determining the actual function pointer to execute for a given method call
required runtime inspection of the class hierarchy. Reducing the depth
and number of method calls is one way to achieve a small performance
gain.

• Use the right data structure Objective-C native collection objects
have, as is the case with all data structures, different strengths and weak-
nesses [49]. These characteristics affect lookup time, iteration performance
and inclusion testing etc.

• Use autorelease pools Autorelease is a feature of the Objective-C run-
time where decrementing an object’s retain count can be delayed until the
end of the run loop. This makes memory management easier but has some
side affects. The mapping process creates a large amount of autoreleased
objects that are not deallocated until the operation finishes. This often
impacts memory usage and general performance. Cocoa provides a way
to define scopes of autoreleased objects by using autorelease pools. When
a pool is deallocated, the release method is called for all autoreleased
objects created within that autorelease pool. This decreased the time
autoreleased objects remain in memory and, thus, improves performance.

Performance Measurements

Table 1 shows measurements performed on physical devices attached to a Mac
computer. The timing data shows the time it takes to instantiate and map

55

the activity stream response data to native objects, including the full hierarchy
of relationships and properties. Two scenarios are used. Full stream refers to
mapping of a page, i.e. the 20 most recent stream events, while clearing all old
stream data. Stream offset refers to the paging behavior used for fetching and
additional 20 stream events while keeping any previously cached page of the
stream.

Full stream (s) Stream with offset (s)
Model Old method PodioKit Old method PodioKit
iPhone 4S 0.765 1.542 0.704 1.332
iPhone 4 1.232 4.46 1.21 2.453
iPhone 3GS 1.66 5.331 1.735 4.401

Table 1: Time comparison for mapping the activity stream response data using
the old mapping strategy and PodioKit respectively

Table 1 shows that there is a significant added performance overhead when
using PodioKit. For the iPhone 4S, PodioKit roughly doubles the time to map
and store the response data compared to the old method. For the iPhone 4 and
iPhone 3GS the mapping time is even slightly worse.

5.3 Assessment of Results

The approach used in PodioKit to dynamically map remote data attributes to
native objects is not as customizable as performing data mapping on a case-by-
case basis as was the case with the previous mapping strategy. On the other
hand, the advantages are high cohesion and reduced duplication by the intro-
duction of a number of key concepts for defining object mappings, while keeping
the actual definitions simple and hiding the complexity of the mapping process
on the library level. This approach improves overall maintainability, reusability
and testability because of its modularity and the separation of concerns like
network request management, object mapping and persistence logic. However,
because of the sometimes hard to map structure of the API response, there is
still a need to be able to use the response data itself as input to the mapping
process. Fortunately, Objective-C blocks make this possible as they can be used
to attach behavior to a mapping definition to be evaluated during mapping.

From a performance perspective, PodioKit does not perform as well as the previ-
ous implementation during object mapping, as shown by Table 1. The primary
reason is that the previous implementation handled object mapping on a case-
by-case basis and could therefore provide a very optimized implementation for
each API operation and its response. Additional abstractions layers such as
PodioKit affect performance negatively in exchange for modularity and high
cohesion between its subcomponents. High cohesion in turn has many desirable
side effects such as usability, testability, maintainability and reusability among
others [50, 51].

56

The tradeoff to be made is that of determining what the acceptable performance
impact is in exchange for the aforementioned benefits. In the case of the Po-
dio iPhone application, the threshold for acceptable performance is not a fixed
number but is instead defined by the user-perceived performance. The numbers
in table 1 has shown to be acceptable both from a user’s perspective and for
the following additional reasons:

• Mapping Complexity Table 1 shows the measurements of mapping the
20 most recent objects in the Podio activity stream. This is the most com-
plex mapping operation in the Podio iPhone application since the server
response contains the most relationships and sub-entities of any other API
operation used by the application. As PodioKit is used throughout the
application, this is considered the worst-case scenario in terms of data
mapping. In many other places of the application only a single object
or far less complex data is returned from the server, decreasing mapping
times significantly.

• Advancements in Mobile Computing The advancement in computing
power available in mobile devices as demonstrated by the chipsets used in
both the iPhone 4 and the iPhone 4S shows that performance will become
less of a problem with time. Also, because of the limited number of iOS
device models in the market, it is fairly easy to get some insight in how
the application performs on each of them.

• Further Optimization PodioKit can most likely be optimized further.
The initial implementation focused on conceptual simplicity and proof of
concept. More can be done in terms of identifying and optimizing the
data mapping process.

An analogy can be made with the performance of user interface rendering. The
first couple of iOS devices, namely the original iPhone and the iPhone 3G had
rather limited memory and CPU power. Thus, a lot of techniques were devel-
oped by the community to optimize the rendering of complex view hierarchies to
improve the user experience. These optimizations came at the cost of maintain-
ability and the inability to utilize the system provided mechanisms for interface
layout such as automatic resizing of views. With the iPhone 4 and 4S, the
benefit of these optimizations are now less obvious and one can now write in-
terface code the way that was intended by the frameworks and still get good
performance.

6 Conclusion

In this thesis project, we have investigated the issues experienced with the ex-
isting Podio iPhone application. We used these findings to identify common
problem and challenges in mobile application development in terms of perfor-
mance, user experience and maintainability. We concluded that the hardest part

57

with developing a mobile application is related to request management and local
data caching due to the environmental variations mobile devices are subjected
to.

We also looked at how an existing product or service can be rethought and
restructured to provide the best mobile experience possible by acknowledging
the restrictions but also the advantages, such as context awareness and inherent
mobility, of mobile devices. We suggested a method for determining the feature
set of mobile applications based on identifying lightweight and heavyweight
actions, and the accessibility of these features through the use of gesture-based
actions.

Finally, our research was used in practice to implement a robust and flexible
request and data management library, PodioKit, for the Podio iPhone applica-
tion. PodioKit is a standalone static library linked to the main Podio application
project at compilation time. It takes a dynamic approach to mapping remote
data returned as JSON strings from the API to native Objective-C object types,
capable of being persisted using a local Core Data store. Object mappings can
be customized and nested to create a mapping hierarchy to fit any client ap-
plication’s data model, regardless of the type or lack of persistence strategy.
PodioKit also encapsulated much of the Podio API operations through a set
of native API classes. This removes the need to redefine these calls in a client
application and makes it suitable as an addition to the Podio family of open
sourced client libraries.

The research was also used to bring new features such as organizations, spaces
and apps to the iPhone application. A large part of realizing these features
included reconsidering the user experience and interface design for the iPhone.

6.1 Discussion

When working with the Podio API it becomes clear that it has been developed
with the Podio front-end Ruby on Rails application in mind. This is noticeable
through the operation interfaces available and the structure of the response
data. For example, many translation strings used in the interface are composed
by the front-end and are not provided by the API. Instead the API returns
simple enumeration values used by the front-end to compose these strings. This
works well when the front-end and API can be deployed at the same time and
are always consistent, but for other client applications who are independent
from the development of the API it can become a cumbersome task to keep the
client consistent with the API. Many would perhaps argue that the correct way
to handle this is to have a properly versioned API to guarantee compatibility.
The Podio API is however not versioned and for good reasons. To support the
rapid development speed at Podio and the frequency with which new features
are deployed, maintaining compatibility with older API versions would become
a rather big task in itself. Perhaps this is something that can be improved in
the future, but at the current state of Podio as a product this is not feasible.

58

Because mobile applications has entered the consumer space fairly recently, at
least on a broad scale, it has been quite difficult to find relevant and formal
research in the field, a fact acknowledged by Wasserman [16]. Perhaps more
have been written internally in the enterprise space, but the research available
does not seem to be as extensive as in many other software engineering fields.
Additionally, there seems to be a lot of varying opinions in the developer com-
munity and no well-defined best practices or de facto standards on how to deal
with some of the issues presented in this thesis.

6.2 Future Work

In the future, more time could be spent on optimizing PodioKit and identify-
ing its bottlenecks. More work could also be done in collaboration with the
Podio developers to make the Podio API more friendly and optimized for third
party application developers and hopefully more Cocoa-based applications can
be build using PodioKit.

The Podio Android application is still lacking many of the key features avail-
able in the iPhone application. Given the growth of the Android platform,
collaboration with the Android developers is necessary to improve the applica-
tion to support the same features as on the iPhone. Such a task could provide
additional insight around issues related to mobile application development.

Podio already offers a number of API client libraries, available as open source
software. In the same way PodioKit could be open sourced for others to use in
Cocoa related projects. Any opportunity for Podio customers to use the API
and build their own custom solutions would ultimately benefit the platform and
the company as a whole.

59

References

[1] International Data Corporation (IDC), Smartphones Outstrip Feature
Phones for First Time in Western Europe as Android Sees Strong Growth
in 2Q11, Says IDC, http://www.idc.com/getdoc.jsp?containerId=

prUK23024911 (September 2011).

[2] Podio ApS, Podio, https://company.podio.com (November 2011).

[3] R. T. Fielding, Architectural Styles and the Design of Network-based Soft-
ware Architectures, Ph.D. thesis, University of California, Irvine (2000).

[4] Podio ApS, Getting started with Podio API, https://developers.podio.
com (November 2011).

[5] Introducing JSON, http://www.json.org (October 2011).

[6] OAuth 2.0, http://oauth.net/2 (November 2011).

[7] Ruby on Rails, http://rubyonrails.org (November 2011).

[8] podio-rb, https://github.com/podio/podio-rb (November 2011).

[9] Android, http://www.android.com (October 2011).

[10] Apple Inc., App Store Review Guidelines, http://developer.apple.com/
appstore/guidelines.html (December 2011).

[11] Open Handset Alliance, http://www.openhandsetalliance.com (Novem-
ber 2011).

[12] Apple Inc., iOS Technology Overview, http://developer.apple.

com/library/ios/#documentation/Miscellaneous/Conceptual/

iPhoneOSTechOverview/IPhoneOSOverview/IPhoneOSOverview.html

(December 2011).

[13] J. J. P. C. Rodrigues, M. Oliveira, B. Vaidya, New Trends on Ubiquitous
Mobile Multimedia Application, EURASIP Journal on Wireless Commu-
nications and Networking (2010) 1–11.

[14] J. H. Christensen, Using RESTful web-services and cloud computing to
create next generation mobile applications, Proceeding of the 24th ACM
SIGPLAN conference companion on Object oriented programming systems
languages and applications OOPSLA 09 (2009) 627–633.

[15] J. Dehlinger, J. Dixon, Mobile Application Software Engineering: Chal-
lenges and Research Directions, Proceedings of the Annual Workshop on
Software Engineering and Mobile Application Development 2011 (2011)
27–30.

[16] A. I. Wasserman, Software Engineering Issues for Mobile Application De-
velopment, Proceedings of the FSE/SDP workshop on Future of software
engineering research - FoSER ’10 (2010) 397–400.

60

http://www.idc.com/getdoc.jsp?containerId=prUK23024911
http://www.idc.com/getdoc.jsp?containerId=prUK23024911
https://company.podio.com
https://developers.podio.com
https://developers.podio.com
http://www.json.org
http://oauth.net/2
http://rubyonrails.org
https://github.com/podio/podio-rb
http://www.android.com
http://developer.apple.com/appstore/guidelines.html
http://developer.apple.com/appstore/guidelines.html
http://www.openhandsetalliance.com
http://developer.apple.com/library/ios/#documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/IPhoneOSOverview/IPhoneOSOverview.html
http://developer.apple.com/library/ios/#documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/IPhoneOSOverview/IPhoneOSOverview.html
http://developer.apple.com/library/ios/#documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/IPhoneOSOverview/IPhoneOSOverview.html

[17] Apple Inc., iOS Human Interface Guidelines - Human Interface Prin-
ciples, http://developer.apple.com/library/IOS/#documentation/

UserExperience/Conceptual/MobileHIG/Principles/Principles.

html (October 2011).

[18] R. Benbunan-Fich, A. Benbunan, Understanding user behavior with new
mobile applications, The Journal of Strategic Information Systems (2007)
393–412.

[19] P. I. Lei, A. K. Wong, The Multiple-Touch User Interface Revolution, IT
Professional, Volume 11, Issue 1 (2009) 42–49.

[20] L. Brichter, User Interface Mechanics - US Patent 2010/0199180
A1, http://www.patentlens.net/patentlens/patent/US_20100199180

(August 2010).

[21] The WebKit Open Source Project, http://www.webkit.org (November
2011).

[22] Appcelerator, http://www.appcelerator.com (November 2011).

[23] Nitobi, PhoneGap, http://phonegap.com (November 2011).

[24] Apple Inc., Core Animation Programming Guide, http://developer.

apple.com/library/mac/#documentation/Cocoa/Conceptual/

CoreAnimation_guide/Introduction/Introduction.html (Novem-
ber 2011).

[25] TIOBE Software BV., TIOBE Programming Community Index, http:

//www.tiobe.com/index.php/content/paperinfo/tpci/index.html

(November 2011).

[26] T. Mikkonen, A. Taivalsaari, Apps vs. Open Web: The Battle of the
Decade, Proceedings of the Annual Workshop on Software Engineering and
Mobile Application Development 2011 (2011) 22–26.

[27] H. Gopal, Resource-Aware Mobile Device Application, Dr. Dobb’s Journal
(2006) 10–16.

[28] Apple Inc., Concurrency Programming Guide - Migrating Away from
Thread, http://developer.apple.com/library/ios/#documentation/

General/Conceptual/ConcurrencyProgrammingGuide/

ThreadMigration/ThreadMigration.html (October 2011).

[29] Ben Copsey, All-Seeing Interactive, ASIHTTPRequest, http:

//allseeing-i.com/ASIHTTPRequest (October 2011).

[30] Apple Inc., Core Data Programming Guide - Introduction to Core Data
Programming Guide, http://developer.apple.com/library/mac/

#documentation/cocoa/conceptual/coredata/cdprogrammingguide.

html (October 2011).

[31] JSONKit, https://github.com/johnezang/JSONKit (December 2011).

61

http://developer.apple.com/library/IOS/#documentation/UserExperience/Conceptual/MobileHIG/Principles/Principles.html
http://developer.apple.com/library/IOS/#documentation/UserExperience/Conceptual/MobileHIG/Principles/Principles.html
http://developer.apple.com/library/IOS/#documentation/UserExperience/Conceptual/MobileHIG/Principles/Principles.html
http://www.patentlens.net/patentlens/patent/US_20100199180
http://www.webkit.org
http://www.appcelerator.com
http://phonegap.com
http://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/CoreAnimation_guide/Introduction/Introduction.html
http://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/CoreAnimation_guide/Introduction/Introduction.html
http://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/CoreAnimation_guide/Introduction/Introduction.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://developer.apple.com/library/ios/#documentation/General/Conceptual/ConcurrencyProgrammingGuide/ThreadMigration/ThreadMigration.html
http://developer.apple.com/library/ios/#documentation/General/Conceptual/ConcurrencyProgrammingGuide/ThreadMigration/ThreadMigration.html
http://developer.apple.com/library/ios/#documentation/General/Conceptual/ConcurrencyProgrammingGuide/ThreadMigration/ThreadMigration.html
http://allseeing-i.com/ASIHTTPRequest
http://allseeing-i.com/ASIHTTPRequest
http://developer.apple.com/library/mac/#documentation/cocoa/conceptual/coredata/cdprogrammingguide.html
http://developer.apple.com/library/mac/#documentation/cocoa/conceptual/coredata/cdprogrammingguide.html
http://developer.apple.com/library/mac/#documentation/cocoa/conceptual/coredata/cdprogrammingguide.html
https://github.com/johnezang/JSONKit

[32] Cocoanetics Blog, JSON versus PLIST, the Ulti-
mate Showdown, http://www.cocoanetics.com/2011/03/

json-versus-plist-the-ultimate-showdown (March 2011).

[33] Apple Inc., Notification Programming Topics, http://developer.

apple.com/library/IOS/#documentation/Cocoa/Conceptual/

Notifications/Introduction/introNotifications.html (October
2011).

[34] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements
of Reusable Object-Oriented Software, Addison-Wesley, 1994.

[35] Apple Inc., Cocoa Fundamentals Guide - Cocoa Design Patterns,
http://developer.apple.com/library/ios/#documentation/

Cocoa/Conceptual/CocoaFundamentals/CocoaDesignPatterns/

CocoaDesignPatterns.html (October 2011).

[36] Apple Inc., Building a Server-driven User Experience (Video), http://

developer.apple.com/videos/wwdc/2010/?id=117 (June 2010).

[37] M. Fowlers, Patterns of Enterprise Application Architecture, Addison-
Wesley, 2002.

[38] Apple Inc., Core Data Programming Guide - Persistent Store Features,
http://developer.apple.com/library/mac/#documentation/Cocoa/

Conceptual/CoreData/Articles/cdPersistentStores.html (October
2011).

[39] Apple Inc., Core Data Programming Guide - Concurrency with Core Data,
http://developer.apple.com/library/ios/#documentation/cocoa/

conceptual/coredata/Articles/cdConcurrency.html (October 2011).

[40] Apple Inc., Core Data Programming Guide - Core Data Perfor-
mance, http://developer.apple.com/library/ios/#documentation/

cocoa/conceptual/coredata/Articles/cdPerformance.html (October
2011).

[41] Apple Inc., Network Apps for iPhone OS - Part 1 and 2 (Video),
http://developer.apple.com/videos/wwdc/2010/?id=207 and http:

//developer.apple.com/videos/wwdc/2010/?id=208 (June 2010).

[42] Apple Inc., Key-Value Coding Programming Guide, http:

//developer.apple.com/library/ios/#documentation/Cocoa/

Conceptual/KeyValueCoding/Articles/KeyValueCoding.html (Oc-
tober 2011).

[43] Apple Inc., Objective-C Runtime Programming Guide, http:

//developer.apple.com/library/ios/#documentation/Cocoa/

Conceptual/ObjCRuntimeGuide/Introduction/Introduction.html

(October 2011).

[44] Apple Inc., Blocks Programming Topics, http://developer.apple.com/
library/mac/#documentation/Cocoa/Conceptual/Blocks/Articles/

00_Introduction.html (October 2011).

62

http://www.cocoanetics.com/2011/03/json-versus-plist-the-ultimate-showdown
http://www.cocoanetics.com/2011/03/json-versus-plist-the-ultimate-showdown
http://developer.apple.com/library/IOS/#documentation/Cocoa/Conceptual/Notifications/Introduction/introNotifications.html
http://developer.apple.com/library/IOS/#documentation/Cocoa/Conceptual/Notifications/Introduction/introNotifications.html
http://developer.apple.com/library/IOS/#documentation/Cocoa/Conceptual/Notifications/Introduction/introNotifications.html
http://developer.apple.com/library/ios/#documentation/Cocoa/Conceptual/CocoaFundamentals/CocoaDesignPatterns/CocoaDesignPatterns.html
http://developer.apple.com/library/ios/#documentation/Cocoa/Conceptual/CocoaFundamentals/CocoaDesignPatterns/CocoaDesignPatterns.html
http://developer.apple.com/library/ios/#documentation/Cocoa/Conceptual/CocoaFundamentals/CocoaDesignPatterns/CocoaDesignPatterns.html
http://developer.apple.com/videos/wwdc/2010/?id=117
http://developer.apple.com/videos/wwdc/2010/?id=117
http://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/CoreData/Articles/cdPersistentStores.html
http://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/CoreData/Articles/cdPersistentStores.html
http://developer.apple.com/library/ios/#documentation/cocoa/conceptual/coredata/Articles/cdConcurrency.html
http://developer.apple.com/library/ios/#documentation/cocoa/conceptual/coredata/Articles/cdConcurrency.html
http://developer.apple.com/library/ios/#documentation/cocoa/conceptual/coredata/Articles/cdPerformance.html
http://developer.apple.com/library/ios/#documentation/cocoa/conceptual/coredata/Articles/cdPerformance.html
http://developer.apple.com/videos/wwdc/2010/?id=207
http://developer.apple.com/videos/wwdc/2010/?id=208
http://developer.apple.com/videos/wwdc/2010/?id=208
http://developer.apple.com/library/ios/#documentation/Cocoa/Conceptual/KeyValueCoding/Articles/KeyValueCoding.html
http://developer.apple.com/library/ios/#documentation/Cocoa/Conceptual/KeyValueCoding/Articles/KeyValueCoding.html
http://developer.apple.com/library/ios/#documentation/Cocoa/Conceptual/KeyValueCoding/Articles/KeyValueCoding.html
http://developer.apple.com/library/ios/#documentation/Cocoa/Conceptual/ObjCRuntimeGuide/Introduction/Introduction.html
http://developer.apple.com/library/ios/#documentation/Cocoa/Conceptual/ObjCRuntimeGuide/Introduction/Introduction.html
http://developer.apple.com/library/ios/#documentation/Cocoa/Conceptual/ObjCRuntimeGuide/Introduction/Introduction.html
http://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/Blocks/Articles/00_Introduction.html
http://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/Blocks/Articles/00_Introduction.html
http://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/Blocks/Articles/00_Introduction.html

[45] P. Dix, Service-Oriented Design with Ruby and Rails, Addison-Wesley,
2010.

[46] Apple Inc., Archives and Serializations Programming Guide,
http://developer.apple.com/library/mac/#documentation/Cocoa/

Conceptual/Archiving/Archiving.html (October 2011).

[47] Apple Inc., Core Data Model Versioning and Data Migration
Programming Guide, http://developer.apple.com/library/

ios/#documentation/Cocoa/Conceptual/CoreDataVersioning/

Introduction/Introduction.html (October 2011).

[48] RestKit, http://restkit.org (January 2012).

[49] M. Gallagher, NSArray or NSSet, NSDictionary or NSMapTable, http:

//cocoawithlove.com/2008/08/nsarray-or-nsset-nsdictionary-or.

html (December 2011).

[50] M. B. Linda Badri, F. Toure, Exploring Empirically the Relationship
between Lack of Cohesion and Testability in Object-Oriented Systems,
Communications in Computer and Information Science, 2010, Volume 117
(2010) 78–92.

[51] S. D. Bart Du Bois, A. Taivalsaari, Refactoring - Improving Coupling and
Cohesion of Existing Code, Proceedings of the 11th Working Conference
on Reverse Engineering (WCRE’04) (2004) 144–151.

63

http://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/Archiving/Archiving.html
http://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/Archiving/Archiving.html
http://developer.apple.com/library/ios/#documentation/Cocoa/Conceptual/CoreDataVersioning/Introduction/Introduction.html
http://developer.apple.com/library/ios/#documentation/Cocoa/Conceptual/CoreDataVersioning/Introduction/Introduction.html
http://developer.apple.com/library/ios/#documentation/Cocoa/Conceptual/CoreDataVersioning/Introduction/Introduction.html
http://restkit.org
http://cocoawithlove.com/2008/08/nsarray-or-nsset- nsdictionary-or.html
http://cocoawithlove.com/2008/08/nsarray-or-nsset- nsdictionary-or.html
http://cocoawithlove.com/2008/08/nsarray-or-nsset- nsdictionary-or.html

	Introduction
	Background
	Podio
	State of Mobile Application Development
	iOS

	Problem Description
	Research Areas
	Method

	Research and Proposed Solutions
	The Mobile Context
	Request Management and Data Persistence
	Stale Data and Validation of API Actions
	Request Management
	Data Persistence

	Results
	Application Design and User Experience
	App Item
	Spaces and Apps

	PodioKit
	The Asynchronous Request API
	Data Persistence

	Assessment of Results

	Conclusion
	Discussion
	Future Work

