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Sweden
Telephone + 46 (0)31 772 1000

Chalmers Reproservice
Göteborg, Sweden 2001



Abstract

This thesis discusses various aspects of controlling a permanent magnet synchronous ma-
chine with a non-sinusoidal rotor flux density distribution. The transient model of the
machine in the rotor oriented dq-frame is derived, including the non-sinusoidal effects.

The design of current and speed controllers is also discussed. The current controller
is implemented in a permanent magnet machine, intended for hybrid electric vehicle ap-
plications, yielding good results. An algoritm to estimate the rotor position, based on
high frequency signal injection and a non linear observer, is also implemented with good
results. The flux linkage harmonics are measured and the predicted torque and current
ripple are verified by measurements.

Keywords: Current control, non-sinusoidal flux density, permanent magnet, sensorless
control, signal injection, speed control, synchronous machine, torque ripple.
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Chapter 1

The Hybrid Electric Vehicle Concept

The idea of an electrical powered vehicle (EV) has been around for almost 200 years. The
first electric vehicle was built by Thomas Davenport in 1834. Until a few decades ago,
batteries seemed to be the only device capable of storing the energy in a safe manner.
Unfortunately batteries are still not able to store the amount of energy needed to fulfill
the needs of an electric vehicle completely. They also have a low energy to weight ratio
and problems with the recharging of the battery are not completely solved. Currently a
lot of research is focused on the possibility of using fuel cells for producing energy from
hydrogen. Results are promising and fully functioning fuel cells may be the missing link
that will make the EV a competitive alternative to the standard internal combustion
engine (ICE) that is used in today’s cars.

The customers’ demand for an alternative to the combustion engine is, nonetheless,
great. The environmental advantages of low emission and the possibility of using clean
energy sources (like wind or hydro power) together with different forms of governmental
support (environmental taxes, etc.) has forced the vehicle industry to look for an alter-
native to the electric vehicle. In the mid 90s, vehicle manufactures turned their attention
back to hybrid electric vehicles (HEV) (the HEV concept is not new and the first patent
involving HEV technology was filed in 1905 by the American H. Piper [32]). The change of
focus to hybrid technology was done by almost all vehicle manufacturers. Many prototypes
and a few mass produced vehicles are now available1.

Like all modern cars, the hybrid electric vehicle is a complex object and research
on HEVs is divided into many areas. Four different parts distinguish the hybrid electric
vehicle from a standard combustion engine driven car. They are:

• A device to store a large amount of electrical energy.

• An electrical machine to convert electrical power into mechanical torque on the
wheels.

• A modified internal combustion engine adapted to hybrid electric vehicle use.

• A transmission system between the two different propulsion techniques.

1For example, there were 23 hybrid electric vehicles presented at the North American International
Auto Show (NAIAS) in 2000 [33].
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As pointed out above, the device for storing electrical energy could be batteries or hy-
drogen powered fuel cells. The storage need of electrical energy can vary a lot between a
HEV and an EV since the HEV can use the electrical machine to act as a generator and
thereby produce electrical energy, which can be stored and used later. A short discussion
of which type of electrical machine that is used is found in Section 1.1. The combustion
engine must of course also be designed for hybrid electric use. The transmission system
between the combustion engine and the electrical machine is typically of series or parallel
type (or variants thereof). Much research effort is being put into determing which of the
two transmission systems is optimal.

1.1 Electrical Machines for Hybrid Electric Vehicle

Applications

As mentioned above, the hybrid electric vehicle needs an electrical machine to transform
electrical power to mechanical torque on the wheels. The electrical machine needs to
be controlled accurately (control of speed and/or torque) and the only machine that
initially could fulfill these demands was the DC motor [34]. Due to high weight and
a short lifetime the DC motor was gradually replaced by the induction machine (IM).
The induction machine is a robust, well-known device and, with the development of new
power electronics (like the IGBT transistor), many new methods of controlling three phase
machines have been developed. The induction machine is still used in many HEV concepts.

In order to increase the energy efficiency of the HEV, all parts of it have to be very
efficient and, as an alternative, machines of the permanent magnet type have become a
serious challenger to the IM. Recent research has also shown that the reluctance machine
can be used in hybrid electric vehicles with good results [14, 24, 28]. The advantages of
the reluctance machine are that it can be made smaller than the IM and cheaper than
machines of the permanent magnet type due to the high cost of the permanent magnets.

1.1.1 Permanent Magnet Synchronous Machines

The permanent magnet synchronous machine (PMSM) is primarily associated with high
performance applications and is normally fed by a voltage source inverter (VSI). The
machine is of the synchronous type and the rotor field is created by permanent magnets
attached to the rotor. The material of the permanent magnets can differ but the best
materials are of rare earth type, such as Samarium-Cobalt (Sm-Co) or Neodymium-Iron-
Boron (NeFeB) [18]. The NeFeB magnets combine a high flux density with a large coercive
force. Unfortunately, they are still quite expensive but the price has dropped during the
last decade.

The advantage of using permanent magnets in the rotor circuit is that the design of
the machine is simplified and that there are virtually no losses in the rotor circuit since the
rotor is (ideally) free of currents. The latter property is very attractive to the designer of
electrical machines intended for HEV use since it reduces the losses and, thereby, increases
the possible range of action for the vehicle.

The stator winding can be wound in several ways. Machines with trapetzoidally wound
stator windings are called brushless DC machines and should be fed by trapetzoidal
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currents to produce a smooth torque. Another winding method is to wind the stator
sinusoidally. The combination of a sinusoidally wound stator and a permanent magnet
rotor design is the basis of the permanent magnet synchronous machine.

The distribution of the magnets in the rotor can vary significantly. How the magnets
are distributed, of course, affects the flux density field in the air gap. The ideal flux
density field is sinusoidally formed, which will be shown in Section 2. Unfortunately this
increases the complexity and cost of the machine. Many rotor designs try to approximate
the sinusoidally flux density field.

1.1.2 Controlling the Machine

Methods for controlling PMSM drives, connected to different types of converters, have
been developed both for steady state operation and high performance servo control. This
thesis discusses theservo control of the PMSM but a small discussion of the steady state
behaviour of the machine can be found in Section 2.4.

The most advanced type of control of electrical machines is known as vector control.
The term vector control includes many different control methods but they all use different
types of feedback mechanisms for improved control. The standard laboratory setup of a
vector controlled PMSM is shown in Figure 1.1.

Figure 1.1: Basic principle of vector control.

The PMSM is fed by the voltage source inverter (VSI), which is powered by the grid
through an AC/DC converter. For the hybrid electric case, the VSI is fed by a DC source,
such as batteries. The VSI is controlled by a digital signal processor (DSP). A combination
of a fast DSP and a modern VSI can control the voltage in the three phases of the PMSM
very accurately. Note also the feedback devices, which consist of current measuring devices
and rotor position detection. The rotor position detection usually consists of Hall sensors
or a resolver. The term sensorless control usually implies that the rotor position and/or
rotor speed is not measured but estimated from the currents fed to the machine. Using
vector control, various parameters can be controlled, for example rotor speed, angular
position and torque on the shaft. The torque on the shaft is controller in hybrid electric
vehicle applications.
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1.1.3 Torque Ripple in Permanent Magnet Synchronous Ma-
chines

The permanent magnet synchronous machine offers many advantages, such as high effi-
ciency, low inertia and a high torque-to-volume ratio. The major drawback of the machine
type is (apart from the high price of the magnets) the ripple in the produced torque. The
sensitivity of torque ripple, of course, depends on the application. If the machine is used in
a pump system, the torque ripple is of no importance. In other applications, the amount
of torque ripple is critical. For example, the quality of the surface finish of a metal working
machine is directly dependent on the smoothness of the delivered torque [15]. In a hybrid
vehicle application, torque ripple could be a vibration or noise producing source which in
the worst case could affect the exhaustion of active parts in the vehicle.

Torque ripple produced by a PMSM comes from two different sources. The first one
is known as cogging torque. Cogging torque is generated by the interaction of the rotor
magnetic flux and angular variations in the stator magnetic reluctance [15]. Different
methods for reducing cogging torque exist and they mostly rely on changes in the design
of the machine. One usual design method is known as skewing, which can be done on
both the rotor and stator. Skewing can reduce the cogging torque very effectively but
the manufacturing procedure is complicated, which increases the price of the machine
[1]. Another drawback of skewing is that it decreases the average torque produced by
the machine [15]. Other design methods for reducing cogging torque include shifting the
permanent magnets, notching the stator teeth and using different pole arc widths [15, 19].

The second torque ripple source is generated by the interaction of the stator current
magnetomotive forces and the magnetic field produced by the rotor. This torque, naturally,
depends on both the construction of the stator and the rotor field. Different winding
methods (like using short-pitched windings or fractional-slot-pitched windings) can reduce
torque ripple. In order to minimize torque ripple, the rotor field produced by the magnets
has to be sinusoidal. A sinusoidal field is, unfortunately, hard to manufacture since the
design of the rotor magnets are complex and, thus, make the machine more expensive.

Control Methods for Reducing Torque Ripple

So far only design methods for reducing torque ripple have been discussed. The other
method for reducing torque ripple in an existing machine is to use control schemes that
reduce torque ripple. The basic goal of these control schemes is to control the current
so that the ripple is cancelled out (this is known as harmonic injection). These methods
have been applied for the last two decades. The shape of the injected current is not
uniquely determined and an additional constraint is often added (to minimize ohmic
losses, for example) [4, 22]. The shape of the ideal current, which minimizes torque ripples
usually sets high demands on the current controller used. Holtz et al. use a predictive
deadbeat current controller, which can control the current very accurately [13, 30]. The
parameters of the current controller proposed by Holtz must be accurately set and a
self-commissioning scheme is developed to identify the machine parameters [13]. Knowing
the parameters well is of importance for all methods developed. Petrović et al. control
the machine using an adaptive speed controller, which identifies the back-emf harmonics
produced by the non-sinusoidal rotor field during operation [27].
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1.2 Previous Work at the Department

A permanent magnet synchronous machine and voltage source inverter, suitable for HEV
applications, have been designed and constructed at the department by Tech. Lic Johan
Hellsing and Tech. Lic Joachim Linström. The machine has four rotor poles of salient
type and is water cooled. Data and pictures of the machine and inverter can be found
in Appendix C-D. Since the machine is intended for HEV applications it has a very high
energy efficiency. The maximum measured efficiency, in steady state, is approximately
95.5% [20]. For a complete description of the machine and inverter see [12, 20].
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Chapter 2

Transient Model of the Permanent
Magnet Synchronous Machine

In many textbooks treating transient phenomena of electrical machines, the permanent
magnet synchronous machine is often treated as a special case of the electrically excited
synchronous machine [26, 29]. It is almost always assumed that the flux linkage1 is sinu-
soidally distributed [2, 18, 26, 29, 31]. Since this thesis focuses only on the permanent
magnet synchronous machine with non-sinusoidal flux distribution, an accurate deriva-
tion of its transient model is needed. The following derivation is based on these four
assumptions:

• The stator winding is sinusoidally distributed around the periphery of the air gap.

• The effect of stator slots on the rotor angle dependence of the inductances is ne-
glected.

• Linear magnetic conditions (no saturation).

• No temperature or frequency dependence of the resistances and inductances.

Since the stator winding is sinusoidally distributed, the three phases can be represented
as three phase vectors, fa, fb and fc, which could be either current or voltages. The phase
vectors are fixed in direction with the angle 2π/3 between them (note that the direction
of the phase vectors is fixed but the amplitude of each vector may vary independently of
the other ones). Figure 2.1 shows the phase vectors and the dq-coordinate system which
is fixed to the rotor position (θ is the angle between fa and the rotor position in electrical
radians).

1In this derivation the term flux is used instead of flux linkage in order to save space.
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Figure 2.1: The phase vectors and the dq-coordinate system.

To transform the phase vectors to the dq-coordinate system we use the following
equations:

fd = K [fa cos θ + fb cos(θ − 2π/3) + fc cos(θ + 2π/3)] , (2.1)

fq = −K [fa sin θ + fb sin(θ − 2π/3) + fc sin(θ + 2π/3)] . (2.2)

We choose K = 2
3

which yields an amplitude invariant transformation. In order to
set up a transformation matrix of these equations, a third equation is needed since the
right sides of Equations (2.1)–(2.2) contain three unknowns. We, therefore, introduce the
zero-sequence equation

f0 =
1

3
(fa + fb + fc) . (2.3)

Now the matrix formulation of equations (2.1)–(2.3) can be written as

fd

fq

f0


︸ ︷︷ ︸
fdq0

=
1

3

 2 cos θ 2 cos(θ − 2π
3

) 2 cos(θ + 2π
3

)
−2 sin θ −2 sin(θ − 2π

3
) −2 sin(θ + 2π

3
)

1 1 1


︸ ︷︷ ︸

Tdq,ph

fa

fb

fc


︸ ︷︷ ︸
fph

. (2.4)

Tdq,ph is known as the Blondel-Park-transformation matrix. The inverse can be written
as

T−1
dq,ph = Tph,dq =

 cos θ − sin θ 1
cos(θ − 2π

3
) − sin(θ − 2π

3
) 1

cos(θ + 2π
3

) − sin(θ + 2π
3

) 1

 . (2.5)
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2.1 Modelling Non-Sinusoidal Flux Distribution

The assumed radial flux density, Br(θ), is shown in Figure 2.2 [12].

Figure 2.2: The assumed radial flux density in the air gap.

Here τm is the magnetic pole pitch expressed in electrical radians (τm = 0.65π for the
machine at the department [12]). Br(θ) can be expanded into a Fourier series as

Br(θ) =
∞∑
i=1

B(2i−1) cos [(2i − 1)θ] = B1 cos θ + B3 cos(3θ) + B5 cos(5θ) + · · · . (2.6)

The analytic calculation of the Fourier coefficients yields Bi = 4B̂
πi2

sin(iτm/2), where

B̂ = Bm(0). We can see that the magnitude of the coefficients decreases rapidly with
increased i. To calculate the flux induced in one phase, we assume that the stator wind-
ing is of partial uniform distribution form [29]. This means that each phase winding is
distributed over an angle β with constant turn density (see Figure 2.3). For a two pole
machine (which the derivation is based on) β = 2π/3.

To calculate the induced flux in phase a we use the standard form Ψ =
∫
s
B ·ds. Since

we have assumed a radial distribution of the flux density field this flux can be calculated
as

Ψm,a(θ) = k
Nc∑
j=1

[∫ θ+αj/2

θ−αj/2

Br(θ
′)rslsdθ′

]

= k
Nc∑
j=1

[∫ θ+αj/2

θ−αj/2

rsls

( ∞∑
i=1

B(2i−1) cos [(2i − 1)θ′] dθ′
)]

= krsls

Nc∑
j=1

∞∑
i=1

[∫ θ+αj/2

θ−αj/2

B2i−1 cos [(2i − 1)θ′] dθ′
]

. (2.7)

Here Nc is the number of coils in the stator winding for phase a and αj is defined in
Figure 2.3. rs is the inner radius of the stator and ls is the length of the stator. k is an
arbitrary constant, which depends on the specific design of the stator. Evaluating the
integral yields
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Ψm,a(θ) = 2krsls

Nc∑
j=1

∞∑
i=1

[
sin [(2i − 1)αj/2]

B(2i−1) cos [(2i − 1)θ]

(2i − 1)

]
. (2.8)

The important conclusion that can be drawn from Equation (2.8) is:

The induced flux linkage from the rotor magnets in the stator winding can also be
expressed as a sum of odd cosines where the coefficients decrease rapidly.

Ψm,a(θ) =
∞∑
i=1

Ψ(2i−1) cos [(2i − 1)θ] = ψ1 cos θ + ψ3 cos(3θ) + ψ5 cos(5θ) + · · · (2.9)

Figure 2.3: Simplified model of the stator winding for phase a.

From the geometry in Figure 2.1 we can see that the flux induced in each phase from
the rotor magnets (Ψm,a(θ), Ψm,b(θ) and Ψm,c(θ)) can be written asΨm,a(θ)

Ψm,b(θ)
Ψm,c(θ)

 =

 Ψm,a(θ)
Ψm,a(θ − 2π/3)
Ψm,a(θ + 2π/3)

 = Ψm,ph. (2.10)

We now transform Ψm,ph to the dq0-coordinate system using Equation (2.4). Performing
this quite tedious calculation yields (note the change of variable names in the last step)

Ψm,dq0 = Tdq,phΨm,ph =

ψ1 + (ψ5 + ψ7) cos(6θ) + (ψ11 + ψ13) cos(12θ) + · · ·
(−ψ5 + ψ7) sin(6θ) + (−ψ11 + ψ13) sin(12θ) + · · ·

ψ3 cos(3θ) + ψ9 cos(9θ) + ψ15 cos(15θ) + · · ·


=

ψm + ψd6 cos(6θ) + ψd12 cos(12θ) + · · ·
ψq6 sin(6θ) + ψq12 sin(12θ) + · · ·
ψ03 cos(3θ) + ψ09 cos(9θ) + · · ·

 . (2.11)

It is important to note that Equation (2.11) is valid only for this choice of the Blondel-
Park transformation matrix Tdq,ph. Sometimes Tdq,ph is defined with a positive sign on
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the second row (se Equation (2.4)). This means that the second row in Equation (2.11)
will also change signs (the last term of Equation (2.15) will also change signs).

Now we assume that the stator inductances in the d- and q-directions (Ld and Lq) are
constant and independent of the rotor position2. This means that we can write the total
flux in the stator as

Ψdq0 =

Ld 0 0
0 Lq 0
0 0 L0


︸ ︷︷ ︸

L

id
iq
i0

 + Ψm,dq0. (2.12)

Using matrix formulation, the phase voltages of the stator can now be written asva

vb

vc


︸ ︷︷ ︸
vph

=

Rs 0 0
0 Rs 0
0 0 Rs


︸ ︷︷ ︸

Rs

ia
ib
ic


︸︷︷ ︸
iph

+
d

dt
(Ψph) . (2.13)

Noting that Ψph = T−1
dq,phΨdq0, we now transform Equation (2.13) to the dq0-coordinates

and multiply both sides with Tdq,ph, which yields

vdq0 = Tdq,phRsT
−1
dq,phidq0 + Tdq,ph

d

dt

(
T−1

dq,phΨdq0

)
. (2.14)

The last term on the right side in Equation (2.14) can, after some tedious manipulation,
be expressed as

Tdq,ph
d

dt

(
T−1

dq,phΨdq0

)
=

d

dt
(Ψdq0) +

 0 −ωr 0
ωr 0 0
0 0 0

Ψdq0 (2.15)

where ωr = dθ
dt

is the electrical rotor speed. Equation (2.14) can now be written

vdq0 = Rsidq0 + L
d

dt
(idq0) +

d

dt
(Ψm,dq0) +

 0 −ωr 0
ωr 0 0
0 0 0

 (Lidq0 + Ψm,dq0) . (2.16)

In component form, Equation (2.16) can be written:

vd = Rsid + Ld
did
dt

− ωrLqiq + (−ψq6 − 6ψd6)︸ ︷︷ ︸
Ψd6

ωr sin(6θ) +

(−ψq12 − 12ψd12)︸ ︷︷ ︸
Ψd12

ωr sin(12θ) + · · · , (2.17)

2This is not an obvious assumption, since non-sinusoidal flux distribution also leads to a position
dependence of the inductances. These harmonics have often been identified using finite element methods,
which is out of the scope for this thesis. Observer-based methods for estimating these harmonics have
been developed recently [21] and should be considered in future modelling and control of the machine.
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vq = Rsiq + Lq
diq
dt

+ ωrLdid + (ψd6 + 6ψq6)︸ ︷︷ ︸
Ψq6

ωr cos(6θ) + (2.18)

(ψd12 + 12ψq12)︸ ︷︷ ︸
Ψq12

ωr sin(12θ) + ωr ψm︸︷︷︸
Ψm

+ · · · ,

v0 = Rsi0 + L0
di0
dt

− ωr 3ψ03︸︷︷︸
Ψ03

sin(3θ) − ωr 9ψ09︸︷︷︸
Ψ09

sin(9θ) + · · · . (2.19)

2.2 Mechanical Dynamics

Assuming a stiff rotor shaft, the linearized mechanical dynamics can be expressed as

J
dωm

dt
= Te − Tl − Tfric. (2.20)

Here J is the total moment of inertia of the rotor. Tfric is the friction torque and is
normally modelled Tfric = Bωm where B is known as the friction coefficient. ωm is the
mechanical rotor speed, which can be expressed in electrical quantities as ωm = ωr/np

where np is the pole pair number. Tl is the load torque and Te is the electrical torque,
which must be derived.

2.2.1 The Electrical Torque Expression

It is shown in Appendix A that the general expression for electrical power, using matrix
formulation, is

Pe =
3

2

(
uT

dq0idq0

)
. (2.21)

Equations (2.17)–(2.18) can be viewed as a circuit diagram shown in Figure 2.4 where
Rs = diag(Rs, Rs, Rs), L = diag(Ld, Lq, L0) and E is the back-emf vector, which can be
written as

E =

 −ωrLqiq + ωrΨd6 sin(6θ) + ωrΨd12 sin(12θ)
ωrLdid + ωrΨq6 cos(6θ) + ωrΨq12 cos(12θ) + ωrΨm

−ωrΨ03 sin(3θ) − ωrΨ09 sin(9θ)

 . (2.22)

Figure 2.4: Equation (2.17)–(2.18) viewed as a circuit diagram.
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In Figure 2.4 we can see that electrical power is dissipated in the resistance matrix
and in the back-emf vector. The power produced in the resistances is losses and does not
contribute to the electrical torque (it produces only heat). The back-emf vector produces
the mechanical torque, which can be calculated using the well-known relation

Te =
Pe

ωm

=
npPe

ωr

. (2.23)

Since Pe can be expressed using Equation (2.21), the torque expression becomes

Te =
npPe

ωr

=
3np

2ωr

(
ET idq0

)
=

3np

2
[Ψmiq + (Ld − Lq)idiq + (Ψd6 sin(6θ) + Ψd12 sin(12θ))id +

(Ψq6 cos(6θ) + Ψq12 cos(12θ))iq − i0(Ψ03 sin(3θ) + Ψ09 sin(9θ))]. (2.24)

Now i0 = ia+ib+i3
3

= 0 since the machine is wye-connected and the neutral is isolated3.
This simplifies the torque expression to

Te =
3np

2
[Ψmiq + (Ld − Lq)idiq + (Ψd6 sin(6θ) + Ψd12 sin(12θ))id +

(Ψq6 cos(6θ) + Ψq12 cos(12θ))iq]. (2.25)

2.3 Summary of the Transient Model

In summary, the transient model of the permanent magnet synchronous machine with a
non-sinusoidal flux distribution can be expressed with the following three equations4:

vd = Rsid + Ld
did
dt

− ωrLqiq + ωrΨd6 sin(6θ) + ωrΨd12 sin(12θ), (2.26)

vq = Rsiq + Lq
diq
dt

+ ωrLdid + ωrΨq6 cos(6θ) + ωrΨq12 cos(12θ) + ωrΨm, (2.27)

J
dωr

dt
=

3n2
p

2
[Ψmiq + (Ld − Lq)idiq + (Ψd6 sin(6θ) + Ψd12 sin(12θ))id +

(Ψq6 cos(6θ) + Ψq12 cos(12θ))iq] − npTl − Bωr. (2.28)

The difference between the standard model of the PMSM and the above is that the
electrical torque is now a function of the rotor position. This leads to torque ripple oscilla-
tions which have to be minimized in order to control the machine exactly. All parameters
except the amplitude of the flux harmonics (Ψd6, Ψq6 etc) can be experimentally de-
termined with standard testing procedures (see Part III for the determination of flux
harmonics).

3The zero-sequence current can, however, be used to contribute to the torque provided that the
machine is not wye-connected, which was pointed out in [3].

4The model has the same form as the models stated (not derived) in [3, 22, 27].
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2.4 Steady State Model

Since the transient model has now been derived we can easily extract from it a model,
valid only for steady state operation. Studying Equations (2.26)–(2.27) we can start with
removing the time derivatives since the current is constant in steady state operation.
We can also remove harmonics of the back-emf. The coupling ωrLd,q can be represented
by constant reactances, ωrLd,q ⇒ Xd,q since the speed is constant during steady state
operation. Doing this and representing it with phasors leads to the following equations:

V d = RsId − jXqIq, (2.29)

V q = RsIq + jXdId + E. (2.30)

Here E represents the fundamental back-emf. Adding these two equations, using V d+V q =
V s and Id + Iq = Is, we find the steady state phasor equation of the salient permanent
magnet synchronous motor.

V s = RsIs + jXdId − jXqIq + E. (2.31)

This equation can also be represented as a phasor diagram, which is shown in Figure 2.5.
The angles ϕ and δ are introduced in the figure. ϕ is the usual phase angle, which relates
how much active and reactive power the motor consumes. δ is known as the power angle
and it relates the active power consumed as well as the stability of the operation point. See
[29] for an excellent discussion of steady state behaviour and power angle characteristics
of synchronous machines.

Figure 2.5: The phasor diagram of the steady state model.
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Chapter 3

Design of Current Controllers

This section discusses the design of current controllers. The design procedure basically
follows the work published by Harnefors et al. [8, 9, 10] but the focus is solely on the
present permanent magnet machine for which the transient model was derived in Section
2.

To derive the current controller, we first assume that the current dynamics are much
faster than the mechanical dynamics. This means that we can regard ωr as constant when
designing the current controllers. The electrical dynamics are then described by Equations
(2.26)–(2.27), which can be represented as a block diagram as shown in Figure 3.1.

Figure 3.1: Electrical dynamics represented as a block diagram.

Here v = [vd vq]
T and i = [id iq]

T. E is the back-emf vector acting as a load disturbance.

E =

[
ωr (Ψd6 sin(6θ) + Ψd12 sin(12θ))

ωr (Ψm + Ψq6 cos(6θ) + Ψq12 cos(12θ))

]
. (3.1)

The transfer function matrix G consists of two, non-coupled, first order systems which
can be written (s denotes the Laplace variable)

G =

[
1

sLd+Rs
0

0 1
sLq+Rs

]
. (3.2)

W represents the coupling of Equations (2.26)–(2.27) and is
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W =

[
0 ωrLq

−ωrLd 0

]
. (3.3)

First, we need to decouple the equations. We also add an active damping the purpose
of which is to decrease the negative effects of the load disturbance E. We, therefor, set
v = v′ − Wi − Rai. Here Ra = diag(Ra,d, Ra,q) is the active damping (diag denotes the
diagonal matrix). With this choice of v we can draw the block diagram as shown in Figure
3.2 (regarding the selection of active damping, see Section 3.1.1).

Figure 3.2: The decoupled dynamics.

3.1 Design of Current Controllers Using Internal Model

Control

The current controller C is designed with the internal model control method (IMC). IMC
is described in detail in [25] but the basic idea of the method is that the feedback is
only to contain information about disturbances and model errors. The structure of IMC
is shown in Figure 3.3. Gplant is the actual plant (i. e. the actual machine). In this case,
G′ is the first order system shown in Figure 3.2 and the standard choice for selecting C

is then C = G′−1L where L = diag
(

αc

s+αc
, αc

s+αc

)
and αc is a design parameter.

Figure 3.3: IMC structure.

The structure in Figure 3.3 can not, of course, be realized since Gplant is not exactly
known. The IMC structure can, however, be realized as a classical negative feedback
structure as shown in Figure 3.4. Studying Figure 3.3, the following relation is easily seen

v = −C (i − G′v) + Ciref . (3.4)

Solving for v yields

v =
(
C−1 (I − CG′)

)−1 (
iref − i

)
(3.5)
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where I is the identity matrix. Equation (3.5) can be simplified using ordinary matrix
algebra to

v = (I − CG′)−1
C

(
iref − i

)
. (3.6)

Studying Figure 3.4 we see that v′ = F
(
iref − i

)
(ignoring the disturbance E).

Comparing this with Equation (3.6) we can conclude that the IMC controller C can be
realized as a classical controller F where

F = (I − CG′)−1
C = αc

[
Ld +

Rs+Ra,d

s
0

0 Lq + Rs+Ra,q

s

]
=

αc

s
G′−1. (3.7)

Figure 3.4: Classical control structure.

Equation (3.7) shows that the controller F consists of two PI-controllers for the d- and
q-currents, respectively. The closed loop system Gcl can now be calculated and is

Gcl = (I + G′F)
−1

G′F =

[
αc

s+αc
0

0 αc

s+αc

]
. (3.8)

The closed looped system consists of two, stable decoupled first order systems with
its poles in s = −αc. From elementary control theory it is known that the rise time,
tr,c, of a first order system is given by tr,c = ln 9

αc
. This means that the design parameter

αc is determined by the desired rise time. Since the PI-controllers are expressed only in
machine parameters and αc they are now designed.

3.1.1 Selection of Active Damping

We now return to how the active damping is to be chosen to dampen out the load distur-
bance E. Figure 3.4 can also be represented with the following equation:

i = (I + G′F)
−1

G′F︸ ︷︷ ︸
Gcl

iref − (I + G′F)
−1

G′︸ ︷︷ ︸
Gdist

E. (3.9)

Calculating Gdist yields

Gdist =

[
s

(s+αc)(sLd+Rs+Ra,d)
0

0 s
(s+αc)(sLq+Rs+Ra,q)

]
. (3.10)

We want the disturbances to be damped out as fast as the closed loop, Gcl, so we choose

Ra,d = αcLd − Rs and Ra,q = αcLq − Rs which yields Gdist = diag
(

s
Ld(s+αc)2

, s
Lq(s+αc)2

)
.

This means that the disturbances have a double pole in s = −αc, which will dampen out
the disturbances as fast as Gcl, which has a single pole in s = −αc.
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3.1.2 Summary of Current Controller Design

The design of the current controllers using the internal model control method yields two
PI-controllers, which are restated here for clarification. αc = ln 9/tr,c where tr,c is the
desired rise time (in seconds) of a current step response.

d-axis: kp,d = αcLd, ki,d = αc (Rs + Ra,d), Ra,d = αcLd − Rs

q-axis: kp,q = αcLq, ki,q = αc (Rs + Ra,q), Ra,q = αcLq − Rs

The current controller designed with IMC has many advantages. It yields very fast step
responses without overshoots. It is proven to be stable since the poles of Gcl are real and
negative. Its most useful advantage (at least according to the author) is, however, that
the controllers are expressed in machine parameters and the desired rise time only. This
means that the time consuming design procedure using root locus analysis, Bode plots
etc. is avoided.

3.1.3 Torque Ripple Minimization with the IMC Current Con-
troller

To study how the IMC current controller can reduce torque ripple, we start with studying
the electrical torque expression, which is restated here for convenience.

Te =
3np

2
[Ψmiq + (Ld − Lq)idiq + (Ψd6 sin(6θ) + Ψd12 sin(12θ))id +

(Ψq6 cos(6θ) + Ψq12 cos(12θ))iq]. (3.11)

We see that the constant torque term is given by Ψmiq and the reluctance moment (Ld −
Lq)idiq. A simple, but not the most energy effective [4], method of controlling the torque1

is to set irefd = 0. This does not take advantage of the reluctance moment that the machine
can produce due to its saliency. Assuming perfect control of id and assuming Ψq6 � Ψq12

means that irefq is given by

irefq =
2T ref

e

3np (Ψm + Ψq6 cos(6θ))
≈ 2T ref

e

3npΨm︸ ︷︷ ︸
irefq,DC

− 2T ref
e

3npΨ2
m

Ψq6︸ ︷︷ ︸
irefq,6

cos(6θ). (3.12)

where the last step is simply a Taylor expansion keeping the first two terms. We see that
the reference current in the q-direction contains a constant term irefq,DC and a term irefq,6,
varying with six times the rotor speed (assuming θ = ωrt). This current reference yields
a ripple free torque2. Defining ω′

r = 6ωr and assuming θ = ωrt we see that irefq,6 cos(6θ) =
irefq,6 cos(ω′

rt). The gain and phase plot of Gcl(2,2)(jω
′
r) is given in Figure 3.5 (note that

1In [4] the most energy effective (most torque per current rate) current reference is calculated using
both a numerical and a simplified on-line torque estimation method. No details of the actual current
controller implementation is mentioned, however.

2One of the earliest schemes that proposed this type of current references can be found in [17].
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Figure 3.5 is not a Bode plot since the axes are not logaritmic). The rise time is set to
tr,c = 2 ms ⇒ αc = ln 9/tr,c ≈ 1098 s−1, which is also used in the implementations.

The base speed of the machine is ωr = 400π rad/s ⇔ ω′
r = 2400π rad/s. The phase

and amplitude plot show considerable differences between the ideal values (unity gain and
no phase shift). For example, the gain is only 0.91 and the phase error −24.5◦ at w′

r = 500
rad/s. The reason for this is, of course, that Gcl(2,2)(jω

′
r) is a first order filter, which filters

out frequencies above the break frequency αc. The conclusion that can be drawn is:

Although the IMC current controller can follow constant references very accurately, it
cannot control the current to yield a ripple-free torque at higher speeds.

(a) |Gcl(2,2)(jω′
r)|. (b) ∠Gcl(2,2)(jω′

r).

Figure 3.5: Amplitude and phase plot of Gcl(2,2)(jω
′
r), 0 ≤ ω′

r ≤ 2400π rad/s.

3.2 A Torque Ripple Minimization Technique Based

on Amplitude and Phase Error Estimation

As we have seen, the IMC current controller gives a very rapid step response and has
many advantages. Due to the phase and amplitude errors that occur when the controller
is trying to follow a varying reference it is not ideal for torque minimization techniques.
This section describes a technique to both reduce torque ripples and to keep the IMC
current controller. In order to do this, the phase and amplitude errors that occur have to
be compensated for.

The first problem that has to be dealt with is how to measure or approximate phase
and amplitude errors. Studying Equation (3.12), we can approximate iq as

iq ≈ irefq,DC + iq,6 cos(6θ + ϕ). (3.13)
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Now we denote the amplitude and phase of the time varying part of Equation (3.13) as
îq,6 and ϕ̂. To estimate these phase and amplitude errors we use the MIT rule [35]. The
basic idea is to minimize the error e defined as

e = iq,6 cos(6θ + ϕ) − îq,6 cos(6θ + ϕ̂). (3.14)

If e → 0 we know that ϕ̂ = ϕ and îq,6 = iq,6. According to the MIT rule, the parameters
ϕ̂ and îq,6 are to be updated with the following update rule

d̂iq,6

dt
= −γ1e

∂e

∂îq,6

, (3.15)

dϕ̂

dt
= −γ2e

∂e

∂ϕ̂
. (3.16)

where γ1 and γ2 are parameters, which set the adaptation rate [35] (see Appendix B).
These equations can easily be discretized using forward difference techniques, for example.
The basic idea now is that when the phase and amplitude error is approximated with ϕ̂
and îq,6 we simply change the amplitude and phase of the reference value irefq .

iref,shift
q = irefq,DC +

irefq,6

îq,6

irefq,6 cos(6θ − ϕ̂) (3.17)

The control structure is showed in Figure 3.6 where Est and Shift denote the estimator
and reference shift, respectively. Studying Figure 3.6 and Equation (3.17) we can see that
some problems arise. The first one is that iref,shift

q contains îq,6 in the denominator. This can

lead to instabilities for small îq,6. Another problem is that when ϕ̂ is estimated correctly
then the reference value vill be shifted with ϕ̂. This will change the actual current so that
it has the correct phase which will lead to ϕ = 0. But if ϕ = 0, then the reference value
will not be shifted. This will lead to oscillations in the phase (the same problem will occur
in the amplitude). This means that the shifted reference method, at least in its current
form, cannot be used in a closed loop. When the operating point is shifting the phase and
amplitude approximation has to be done again and during that time the reference must
not be changed.

Figure 3.6: Phase and amplitude shift structure.

Figure 3.7-3.8 show simulation results for the proposed method of shifting the reference
value. The figures show the maximum steady state torque ripple in percent. The figures

21



have three graphs comparing the shifted reference method (	), the standard IMC con-
troller not following any varying reference (∗) and the IMC controller following a varying
reference according to Equation (3.12) (
). The simulations show that the shifted refer-
ence method can reduce ripple compared to the standard IMC controller and the IMC
controller trying to follow a varying reference. At very slow speeds, the phase and ampli-
tude estimator does not work properly. This is probably due to numerical errors since the
forward difference method is used to implement the estimator (Equations (3.15)–(3.16)).
Of course, a very good knowledge of the flux harmonics is needed in every operating
point to calculate the correct current reference. The flux harmonics are changing in every
operating point due to saturation and temperature so a flux linkage observer is needed in
order to control the torque accurately.

Figure 3.7: Simulated maximum steady state torque ripple at Tload = 5 Nm.

Figure 3.7-3.8 also show that the IMC controller following a constant reference re-
duces the torque ripple compared to the IMC controller following the reference given by
Equation (3.12). This is because the active damping cannot dampen out the harmonics
in the back-emf completely (cf. Equation (3.9)). This harmonics produce current ripple.
At certain operating points this current ripple agrees well with Equation (3.12) and the
torque becomes smooth.

The conclude, the shifted reference method requires a very accurate knowledge of
the flux linkage harmonics to work properly. To achieve this, a flux linkage observer is
needed. The method, in its current form, can only be used in steady state and it does not
work properly at low speed due to numerical problems with the implementation of the
estimators (Equations (3.15)–(3.16)).
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Figure 3.8: Simulated maximum steady state torque ripple at Tload = 45 Nm.
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Chapter 4

Design of the Speed Controller

This section discusses the design of the speed controller published by Harnefors [11]. The
mechanical dynamics are governed by Equation (2.20), which is restated here, expressed
in electrical radians

dωr

dt
=

1

J
(npTe − npTl − Bωr) . (4.1)

We can still assume that the electrical dynamics are much faster than the mechanical sys-
tem. This means that with an accurate current controller (like the IMC current controller)
we can set Te = T ref

e and regard T ref
e as an input signal to Equation (2.20). Treating the

load torque as a disturbance (neglecting it) we can design a speed controller with the IMC
using the same methods as described in Section 3. The result is

kp =
αsJ

np

, ki =
αsB

np

where αs is the bandwidth of the speed controller (αs = ln 9/tr,s where tr,s is the desired
rise time of the speed loop). The drawback of the IMC design procedure is that the
integration term, ki, is a function of the friction coefficient B. This is not a good property
since the friction coefficient is hard to determine (it varies with speed, temperature, weight
on the shaft etc). One solution would be to assume B = 0 and perform the IMC design
procedure again but the result is simply a P-controller and the integration term is needed
to remove remaining errors and to dampen out oscillations.

The proportional term, kp, is, however, not expressed in B so we keep that term and
introduce an active damping in T ref

e written as

T ref
e = T ref′

e − Baωr. (4.2)

Here Baωr is the active damping term. The transfer function from ωr to T ref′
e can be

written (s denotes the Laplace variable)

G(s) =
ωr(s)

T ref′
e (s)

=
np/J

s + npBa/J + B/J
. (4.3)

To simplify G(s) we set αs = npBa/J + B/J . Solving for Ba yields

Ba =
Jαs − B

np

≈ Jαs

np

(4.4)
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where the last approximation is valid if αsJ � B. With this choice of Ba, G(s) is written

G(s) =
np

Js + Jαs

. (4.5)

Now we can introduce the PI-controller GPI = kpe+ ki

s
e where e is the speed error and kp

is the proportional term given by the IMC design procedure. This means that the closed
looped system can be written

Gcl(s) =
GPIG

1 + GPIG
=

kinp + Jαss

kinp + Js(s + 2αs)
. (4.6)

We want the closed loop system to be of first order, Gcl(s) = αs

s+αs
. With this choice of

Gcl, solving Equation (4.6) for ki yields ki = Jα2
s/np.

4.1 Summary of Speed Controller Design

The design of the speed controller uses internal model control to design the proportional
term of the PI controller, treating the load torque as a disturbance. The integration term
is calculated with the help of an active damping and with a desire for a closed loop of
the first order. The controller is restated here for clarification. αs = ln 9

tr,s
where tr,s is the

desired rise time of the speed loop. Since the speed loop is added as an outer loop to the
current loop it is suggested that αs is chosen at least a decade slower than αc.

PI-controller: kp = αsJ
np

, ki = Jα2
s/np

Active damping: T ref
e = T ref′

e − Ba, Ba = Jαs

np
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Chapter 5

Sensorless Control of the Machine
using Saliency

This section describes a method to estimate the rotor position and the rotor speed based
on the injection of high frequency voltages. The method presented here is based on the
work by Corley and Lorenz [5] together with the position and speed estimator proposed
by Harnefors and Nee [7].

The basic idea is to inject a high frequency voltage in the assumed d-direction. From
the current in the assumed q-direction the actual rotor position can be extracted. The
actual and assumed rotor position (d-direction) is shown in Figure 5.1 where hats (̂ )
denote an estimated parameter.

Figure 5.1: Actual dq-coordinates and estimation (d̂q̂).

From Figure 5.1 we can calculate the voltages in the d- and q-directions from the
injected voltages in the d̂- and q̂-directions.

vd = vd̂ cos(θ̂ − θ) − vq̂ sin(θ̂ − θ) (5.1)

vq = vd̂ sin(θ̂ − θ) + vq̂ cos(θ̂ − θ) (5.2)

If we now define the angular error, θ̃, as θ̃ = θ − θ̂ we can write Equations (5.1)–(5.2) in
matrix form:

v =

[
cos θ̃ sin θ̃

− sin θ̃ cos θ̃

]
︸ ︷︷ ︸

T

v̂. (5.3)
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The inverse is v̂ = T−1v. Now a high frequency voltage is injected in the d̂-direction,

v̂ =

[
V cos ωet

0

]
. (5.4)

Here ωe � ωr. Now we want to compute the currents that this voltage produces. At
standstill ωr = 0 rad/s. Assuming that {ωeLd, ωeLq} � Rs we can reduce Equations
(2.26)–(2.27) to

v = L
d

dt
i. (5.5)

Here v = [vd vq]
T, i = [id iq]

T and L =

[
Ld 0
0 Lq

]
. To calculate the current we simply

integrate Equation (5.4):

i = L−1

∫ t

0

vdt. (5.6)

Since the actual rotor position is not known we transform Equation (5.4) to the estimated
coordinates using Equation (5.3).

î = T−1L−1

∫ t

0

T v̂ dt. (5.7)

If θ̃ is changing slowly compared with the high frequency signal (cos ωet) we can regard
T as constant and move it out from the integration sign.

î = T−1L−1T

∫ t

0

v̂ dt. (5.8)

Computing the product T−1L−1T yields

î = T−1L−1T

∫ t

0

v̂ dt =

(
Lq + Ld

2LqLd

I +
Lq − Ld

2LqLd

[
cos 2θ̃ sin 2θ̃

sin 2θ̃ − cos 2θ̃

]) ∫ t

0

v̂ dt. (5.9)

The current in the d̂- and q̂-directions can now be calculated and is

id̂ =
Lq + Ld

2LqLd

V

ωe

sin ωet +
Lq − Ld

2LdLq

V

ωe

sin ωet cos 2θ̃, (5.10)

iq̂ =
Lq − Ld

2LdLq

V

ωe

sin ωet sin 2θ̃. (5.11)

Multiplying iq̂ by sin ωet and filtering out the constant term with a low-pass filter (LPF)
yields

ε = LPF{iq̂ sin ωet} =
Lq − Ld

4LqLd

V

ωe

sin 2θ̃. (5.12)

We can see that ε is zero if Ld = Lq, which is the case for non-salient machines. This
means that the method cannot be applied on this type of machine. Using Equation (5.12)
and solving for θ yields

θ = θ̂ +
1

2
arcsin

(
4LdLqωeε

V (Lq − Ld)

)
− nπ, n = 0,±1,±2, · · · (5.13)

Equation (5.13) shows that this method yields an uncertainty of π electrical radians. This
uncertainty can be removed if the machine is properly lined up (θ ≈ 0 rad) before starting
or using some suitable initiation process.
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5.1 A Non linear Observer for Estimation of Rotor

Angle and Rotor Speed

The injection of a high frequency voltage, as described in the previous section, leads to an
error signal, ε. To estimate the rotor position and speed some kind of observer has to be
applied to make sure that the estimated values converge to the actual ones. This section
describes the non linear observer proposed by Harnefors.

The observer is written in state space form, which is implemented using the forward
difference approximation.

˙̂ωr = γ1ε, (5.14)

˙̂
θ = ω̂r + γ2ε. (5.15)

γ1 and γ2 are constants and should be chosen as

γ1 =
2ρ2ωeLdLq

V (Lq − Ld)
, (5.16)

γ2 =
4ρωeLdLq

V (Lq − Ld)
. (5.17)

The poles of the linearized observer are then placed in −ρ and should be selected as

ρ =

√
αs�ωref

sin 2θ̃max

(5.18)

where αs is the bandwidth of the speed loop. �ωref is the maximum change of the speed
reference (assuming that it changes in steps) and θ̃max is the maximum allowed position
estimation error.
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Part III

Implementations
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Chapter 6

Measurement of Flux Linkage
Harmonics

It is possible to measure the flux harmonics Ψd6, Ψd2, etc. by measuring the open-circuit
phase voltages at constant speed, transforming the voltages to the dq-coordinates and then
perform a frequency analysis using the Fast Fourier Transform (FFT). The transformation
to the dq-coordinates requires an accurate value of the electrical angle θ. The rotor position
angle can be approximated from the measured rotor speed or the period of the measured
voltage (see below). Another method is to study Equation (2.11) and (2.17)–(2.18). We
see that the flux harmonics can be expressed as

Ψd6 = −ψq6 − 6ψd6 = −(−ψ5 + ψ7) − 6(ψ5 + ψ7) = −5ψ5 − 7ψ7, (6.1)

Ψd12 = −ψq12 − 12ψd12 = −(−ψ11 + ψ13) − 12(ψ11 + ψ13) = −11ψ11 − 13ψ13, (6.2)

Ψq6 = ψd6 + 6ψq6 = ψ5 + ψ7 + 6(−ψ5 + ψ7) = −5ψ5 + 7ψ7, (6.3)

Ψq12 = ψd12 + 12ψq12 = ψ11 + ψ13 + 12(−ψ11 + ψ13) = −11ψ11 + 13ψ11. (6.4)

The open-circuit phase voltage va during constant speed (θ = ωrt) can be expressed as

va =
dΨm,a

dt
= −ψ1ωr sin(ωrt) − 3ψ3ωr sin(3ωrt) − 5ψ5ωr sin(5ωrt) + · · · . (6.5)

Since vb = dΨm,a(ωrt−2π/3)

dt
and vc = dΨm,a(ωrt+2π/3)

dt
it is easy to show that va + vb + vc = 0

(at least in the ideal, open-circuit case). Equation (6.5) shows that flux harmonics can be
found by performing a frequency analysis on −va. The angular speed, ωr, can be extracted
from the period time, T , since ωr = 2π

T
, so no angular position is needed to determine the

harmonics. We see that ψ1 is found at the frequency ωr and 3ψ3 is found at the frequency
3ωr, and so on. To measure the phase voltage va we can either measure the line-to-neutral
voltage or, if the neutral point is unavailable, measure two line voltages1 as

(va − vb) − (vc − va) = va − vb − vc + va = 3va. (6.6)

Figure 6.1(a) shows va at ωr = 130 rad/s. The sampling frequency is 5 kHz and the signal
is not filtered. The small ripple on the signal is due to the interaction between the stator

1The author wishes to thank Mr. Vladan Petrovic [27] for tips on measuring two line voltages if the
neutral point is unavailable.
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slots and the rotor. The frequency of this ripple is 21 times the fundamental, which can
be seen in Figure 6.1(b). Note that the fundamental is much bigger than the harmonics
(the top of the fundamental is not shown) and Figure 6.1(b) only shows a zoom of the
harmonics.

(a) Open-circuit line-to-neutral volt-
age va at ωr = 130 rad/s.

(b) Frequency plot of va at ωr = 130
rad/s.

Figure 6.1: Measurement of the open-circuit voltage, va.

With the measurement system used it was easy to measure both the rotor position and
the three phase voltages. The dq-transformation was done in Matlab and Figure 6 shows
frequency plots of vd and vq (note that the peak of the fundamental in vq is not shown).
The expected harmonics are multiples of 6 and this is clearly seen in both vd and vq.
The measurement showed that harmonics of order 12 are small compared to harmonics of
order 18. vd also has harmonics of order 0.5, 1 and 2. These harmonics are probably due to
asymmetries in the stator/rotor design and were neglected. The most significant harmonic
is Ψq6 which is approximately 6% the size of Ψm. The result of the measurements is shown
in Table 6.1.

Ψm 103.91 mWb
Ψd6 2.30 mWb
Ψd12 0.26 mWb
Ψd18 0.57 mWb
Ψq6 6.22 mWb
Ψq12 1.60 mWb
Ψq18 2.04 mWb

Table 6.1: Measured flux harmonics in the dq-coordinates.
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(a) vd. (b) vq.

Figure 6.2: Frequency plot of vd and vq and ωr = 130 rad/s.
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Chapter 7

Implementation of the Current
Controller

The current controller described in Section 3 is easily implemented. The controller algo-
ritm is written in C-code, which is compiled to machine code suitable for the DSP-system
(information about the DSP-system can be found in Appendix C). In order to avoid inte-
gration windup in the overmodulation range, a back-calculation algoritm [8] is used. The
rotor speed is calculated from the rotor position given by the resolver using a backward
Euler differentiation and a first order Butterworth low pass filter to reduce the noice in
the differentiation process [20].

7.1 Step in iq

The voltage source inverter (VSI) is fed by a DC voltage, udc, which was set to 100 V. In
the first measurement the current references were set irefd = 0 A and irefq = ±15 A. The
sign of irefq (and the sign of the electrical torque) is changed to keep −50 ≤ ωr ≤ 50 rad/s.
The rise time, tr,c, is set at 2 ms. The permanent magnet machine is connected, through
a gearbox, to a DC machine. No load torque is applied to the shaft.

Figure 7.1: Current in q-direction during step changes in the reference value.

33



Figure 7.1 shows the measured iq. Figure 7.2 shows a zoom of the step response. We
can see that the response contains no overshoots and that the desired value of iq has
been reached. Studying the measurements further, the rise time of the current step is
approximately 2.5 ms, which corresponds well to the desired rise time (2 ms).

Figure 7.2: Zoom in of the measured step response of iq.

7.1.1 Approximation of Moment of Inertia and Friction Torque

Since the implemented current controller is very fast and accurate it makes it possible to
approximate the moment of inertia of the shaft, J , and the friction torque, Tfric, which
are not known. Rotor speed variations during the measurements are shown in Figure
7.3. Since the currents are known we can calculate the electrical torque using Equation
(3.11) and neglect the ripple terms. The rotor speed changes almost linearly, which implies
constant acceleration but the acceleration depends on the sign of ωr. This implies that
friction torque can be modelled as a constant term only depending on the sign of ωr.

Tfric = Bfric · ωr

|ωr| = Bfric · sign(ωr), −50 ≤ ωr ≤ 50 rad/s (7.1)

Naturally, this assumption is only valid in the measured speed range (−50 ≤ ωr ≤ 50
rad/s). The two different slopes, which are calculated using a first order polynom fit, of
wr, gives us two equations which make it possible to solve for both J and Tfric. The result
is

J = 168.9 · 10−3 kgm2,

Bfric = 2.36 kgm2/s.
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Figure 7.3: The electrical rotor speed, ωr, during the current step measurement.

7.1.2 Simulation of the Machine

Since all parameters of the system are known, it is possible to simulate the machine using
Equations (2.26)–(2.28). The step response is shown in Figure 7.4 where the both the
measured (boxes) and simulated (circles) responses are shown. A 10% error is added to
each parameter in the simulation. The period and appearance of the simulated speed
pulsation (from −50 rad/s to 50 rad/s) was approximately the same as the period of
the measured speed pulsation. This shows that the approximations of J and Bfric are
acceptable.

Figure 7.4: Measured and simulated step response of iq.

The simulations show a very small ripple in iq due to the harmonics in the back-emf,
which are handled as a disturbance in the control system (cf. Figure 3.1). The ripple is
small because the speed is so low, ωr ≤ 50 rad/s ⇒ ω′

r ≤ 300 rad/s (compare with figure
3.5). This frequency is low so the current controller can remove the disturbance.
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7.2 Implementation of the Sensorless Algoritm

A few parameters have to be set correct in order to get the sensorless algoritm to work
properly (see Chapter 5). The amplitude and frequency of the injected high frequency
voltage was set to V = 7 V and fe = 400 Hz. The poles of the linearized observer were
set so ρ ≈ 42. In order to get the system to work properly the bandwidth of the current
controller was set to αc ≈ 183 (the rise time of the current controller was lowered from
2 ms to 12 ms). The low pass filter was a first order Butterworth filter with a break
frequency of 80 Hz designed with the Signal Processing toolbox in Matlab.

7.2.1 Step in iq

In order to see if the sensorless algoritm worked properly, it was tested with the same
procedure as in Section 7.1. This means that the current reference in the q-direction
changed stepwise, irefq = ±15 A and the d-reference current was set to irefd = 0 A. The
results of the measurements are shown in Figure 7.5–7.9.

Figure 7.5: Measured iq and irefq .

Figure 7.5 shows the actual current in the q-direction. Comparing this with Figure
7.1, we can see that the current contains more ripple but the current controller is working
properly. Due to the injected high frequency voltage in the d-direction, the d-current
oscillates at 400 Hz and this ripple is clearly seen in Figure 7.6 (note the different time
scales).
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Figure 7.6: Measured id and irefd = 0.

Figure 7.7: Measured rotor angle, θ and estimated rotor angle θ̂.

Figures 7.7–7.9 show the measured and estimated rotor position and rotor speed. We
can see that the estimated values are very close to the measured ones. Figure 7.8 shows the
estimated rotor error, θ̃ and θ̃ ≤ 0.06 rad. When the rotor position passes zero it changes
stepwise from 2π to zero and this causes θ̃ to be very big during one or two samples. This
is shown as the small spikes in θ̃. Since the estimation works properly, θ̃ ≈ 0 rad and
Equation (5.10) can be approximated as

id ≈ V

Ldωe

sin ωet ≈ 14 sin(ωet) .

This is one of the drawbacks of this type of sensorless algoritm. Since vd = V sin ωet this

means that the instantaneous power varies as p(t) = vd(t)id(t) = V 2 sin(2ωet)
Ldωe

. This power
flows between the DC-link and the machine and increases system losses.
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Figure 7.8: Rotor angle estimation error, θ̃.

Figure 7.9: Measured rotor speed, ωr and estimated speed ω̂r.
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Chapter 8

Measurement of Torque and Current
Ripple

To verify if the model derived in Part II is valid, the torque and current of two different
operation points were measured and compared with simulations. The current was mea-
sured with the built in LEM modules in the VSI and transformed, online to the rotor
fixed dq-coordinates using the resolver signal. The torque was measured with a torque
transducer mounted on the shaft of the machine. See Appendix D for pictures of the
measurement setup and [20] for a complete description of the laboratory setup.

8.1 No Load Measurement

In the first measurement, no load is applied to the shaft and the load torque consists only
of the friction torque. Figure 8.1 shows the measured and simulated currents, in d- and
q-direction, during one electrical period. The measured rotor speed is ωr = 160.7 rad/s
which is slow since the base speed is ωbase = 1257 rad/s. The dashed graphs are simulated
currents. The upper graphs in the figure show the measured and simulated currents. In
the lower graphs the measured current is filtered using a fifth order Butterworth low pass
filter with a break frequency at ωbreak = 40ωr. The break frequency was chosen to filter
disturbances in the small load measurement (see Section 8.2). The current references are
set to irefd = 0 A and irefq = 12.7 A. The current ripple is due to harmonics in the back-emf
(cf. Equation (3.9)).

Figure 8.2 shows the measured (upper graph) and simulated (lower graph) torque
spectra. The peaks at 6ωr, 12ωr and 18ωr are clearly seen in both simulations and mea-
surements. This is also due to the harmonics in the back-emf (cf. Equations (2.24)–(2.25)).
The measured values also show a large peak at 11.5ωr but this peak is speed dependent
and is specific of this operating point. This peak could be produced by the pulse-width-
modulation (PWM) pattern produced by the VSI or by mechanical oscillations. Limita-
tions of the derived model, the accuracy of the used spectral analysis and the bandwidth
of the torque transducer are three sources of error, since the amplitude of the measured
and simulated torque peaks are not corresponding exactly.
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(a) id. (b) iq.

Figure 8.1: No load currents, iq and id, during one electrical period. Dashed graphs are
simulated results.

Figure 8.2: Measured (upper) and simulated (lower) no load torque.

8.2 Small Load Measurement

In this measurement, the DC machine controls the speed of the PMSM. The DC machine
is controlled with a thyristor converter and a large inductance (20 mH) is connected
between the thyristor converter and the DC machine to smoothen out the DC-current.
The speed is held at ωr = 62 rad/s, torque producing currents are injected in the PMSM
and the torque and current is measured. The current references are set to irefd = 0 A and
irefq = 5.7 A

Figure 8.3 shows the measured and simulated currents during one electrical period.
The upper graphs show the actual, non filtered currents (and simulations). In the lower
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graphs the measured currents are filtered using the same filter as in Section 8.1. The
measured currents are much more distorted during load but the filtered currents agree
roughly with the simulations (dashed).

(a) id. (b) iq.

Figure 8.3: Small load currents, id and iq, during one electrical period. Dashed graphs are
simulated results.

Figure 8.4: Measured (upper) and simulated (lower) small load torque.

The measured and simulated torque spectra do not agree well in amplitude sense but
the peaks at 6ωr, 12ωr and 18ωr are clearly seen. Figure 8.5 shows the total measured
torque spectra and it can be seen that the ripple also consists of low order harmonics
(0.5ωr, 1ωr, 2ωr etc.). A large peak of order 24ωr is also shown. This peak is due to the
cogging torque produced by the machine. The order of the cogging torque is the number
of stator slots divided by the pole pair number The machine has 48 stator slots and the
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pole pair number is 2. Since the the load of the machine is so small the cogging torque is
the dominant ripple harmonic in this measurment.

Figure 8.5: Cogging torque (24th harmonic).
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Chapter 9

Conclusions

This thesis has discussed different aspects of control of permanent magnet synchronous
machines. The effects of the non-sinusoidal flux linkage was included in the transient model
of the machine. The flux linkage harmonics were measured from an open-circuit voltage
measurement. The predicted current and torque ripple harmonics are multiples of 6 and
this was shown in the measurements. The torque ripple produced by the cogging torque
and the flux linkage harmonics is not believed to be a problem in HEV applications, due
to the large moment of inertia of a car which will dampen out ripple very efficiently.

The method to reduce torque ripples using shifted references requires very accurate
knowledge of the flux linkage harmonics and cannot, in its current form, be implemented
in a closed loop. If these problems are solved the method may be of use.

The described current controller, based on internal model control, was implemented
with good results. The predicted current step responses agreed well with the measure-
ments and no overshoots were observed. Since the current controller followed the current
references accurately, it was possible to approximate the moment of inertia of the shaft
and the constant friction torque at low speeds. Due to the harmonics in the back-emf the
current contains small oscillations which could not be damped out entirely by the chosen
active damping.

The saliency of the machine made it possible to control the machine, without a rotor
position sensor, using high frequency signal injection. This was also implemented in the
laboratory and tested, with good results, at low speeds, with no load.

9.1 Further Work

Regarding the flux linkage harmonics, more detailed open-circuit voltage measurements
should be carried out in the whole speed range for a more complete determination of them.
The back-emf during operation can also be determined using different kind of observers
[27, 13]. Implementing a fully functioning back-emf observer is of importance since it
should make it easier to analyze the large current ripple at high loads, reported in [20]. A
flux linkage observer will also make it possible to analyze the behaviour of the flux linkage
harmonics in the flux-weakening region.

The inductances in the machine should be carefully measured and inductance har-
monics [22, 21] and saturation phenomena [23] should be taken into account.
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Methods to determine the most energy efficient current references in the whole oper-
ation region, have been developed [4, 16] and they should be implemented and validated
experimentally (this requires a detailed knowledge of all machine parameters).

Regarding the sensorless algoritm, many parameters have to be set correctly, in order
to get it working properly. This should be further analyzed and the proper function of the
sensorless algoritm must be demonstrated in the whole operating region of the machine.
The sensorless algoritm consumes reactive power which flows between the DC-link and
the machine. This may increase the system losses and they should be investigated. If a
resolver is mounted in the machine for HEV applications and the sensorless algoritm is
used as a backup system, the sensorless algoritm must be demonstrated to work correctly
during a resolver failure in the whole operating region.
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Appendix A

Calculation of Electrical Power in
dq0-coordinates

To calculate an expression for the electrical power Pe in the dq0-coordinates, we start by
evaluating the product of the voltage and current in these coordinates.

uT
dq0idq0 =

(
(Tdq,phuph)

T Tdq,phiph

)
=

(
uT

phT
T
dq,phTdq,phiph

)
. (A.1)

Evaluating the product TT
dq,phTdq,ph yields

TT
dq,phTdq,ph =

1

9

 5 −1 −1
−1 5 −1
−1 −1 5

 . (A.2)

Plugging this expression into Equation (A.1) leads to

uT
dq0idq0 =

uT
ph

9

 5ia − ib − ic
−ia + 5ib − ic
−ia − ib + 5ic

 . (A.3)

Since the machine is wye-connected without a neutral connection, ia + ib + ic = 0, which
simplifies Equation (A.3) to

uT
dq0idq0 =

6uT
ph

9
iph =

2

3
(uaia + ubib + ucic) . (A.4)

This means that the electrical power can be expressed as

Pe =
3

2

(
uT

dq0idq0

)
. (A.5)
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Appendix B

Selection of γ Parameters for the
MIT Update Rule

The MIT rule uses the following parameter estimation update law

d̂iq,6

dt
= −γ1e

∂e

∂îq,6

, (B.1)

dϕ̂

dt
= −γ2e

∂e

∂ϕ̂
. (B.2)

γ1 and γ2 are parameters that have to be set and e is given as

e = iq,6 cos(6θ + ϕ) − îq,6 cos(6θ + ϕ̂). (B.3)

Evaluating Equations (B.1)–(B.2) leads to the following expressions where ˙̂iq,6 and ˙̂ϕ
denote the time derivative of each parameter (note that the approximation θ ≈ ωrt is
used).

˙̂iq,6 = eγ1 cos(6ωrt + ϕ̂), (B.4)

˙̂ϕ = −eγ2îq,6 sin(6ωrt + ϕ̂). (B.5)

Linearizing these two equations around the point ϕ̂ = ϕ and îq,6 = iq,6 yields the linearized
matrix A

A =

∂ ˙̂iq,6

∂îq,6

∂ ˙̂iq,6

∂ϕ̂

∂ ˙̂ϕ

∂îq,6

∂ ˙̂ϕ
∂ϕ̂


(ϕ̂=ϕ,̂iq,6=iq,6)

(B.6)

Calculating this matrix yields

A =

[ −γ1 cos2(6ωrt + ϕ) γ1iq,6 sin(6ωrt + ϕ) cos(6ωrt + ϕ)
γ2iq,6 sin(6ωrt + ϕ) cos(6ωrt + ϕ) −γ2i

2
q,6 sin2(6ωrt + ϕ)

]
. (B.7)

To analyze the stability of this linearized system we compute the characteristic polynomial

det(sI − A) =
s

2

(
γ1 + γ2i

2
q,6 + 2s + (γ1 − γ2i

2
q,) cos(2(6ωrt + ϕ))

)
. (B.8)
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To simplify the equations we set γ1 = γ2 = γ. This yields

s

2
(γ + γi2q,6 + 2s + (γ − γi2q,) cos(2(6ωrt + ϕ))). (B.9)

This is an algebraic second order equation in s and the solution is s1 = 0 and

s2 = −γ

2
(1 − cos(12ωrt + 2ϕ)) − γi2q,6

2
(1 − cos(12ωrt + 2ϕ)) . (B.10)

We can see that s2 ≤ 0. The solution, s1 = 0, means that the estimator has one pole in
origo which can lead to oscillatory behaviour.
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Appendix C

Laboratory Setup Data

This appendix contains a list of important parameters of the laboratory setup used in this
thesis (both in the implementations and simulations). See [12, 20] for a more complete
description. The parameters denoted by an asterisk (∗) have been measured by the author
during this thesis project.

Motor data

Parameter Value
Type Permanent magnet synchronous machine
Rotor magnet material NeFeB
Base speed ωr,base = 1257 rad/s ⇔ nbase = 6000 rpm
Maximum speed nmax = 12000 rpm
Rated current 160 A
Rated voltage (line-to-line) 220 V
Number of pole pairs np = 2
d-axis inductance Ld = 0.2 mH
q-axis inductance Lq = 0.5 mH
Armature resistance Rs = 13 mΩ/phase
Fundamental flux linkage∗ Ψm = 103.9 mWb
6:th harmonic in flux linkage, d-axis∗ Ψd6 = 2.30 mWb
12:th harmonic in flux linkage, d-axis∗ Ψd12 = 0.26 mWb
18:th harmonic in flux linkage, d-axis∗ Ψd18 = 0.57 mWb
6:th harmonic in flux linkage, q-axis∗ Ψq6 = 6.22 mWb
12:th harmonic in flux linkage, q-axis∗ Ψq12 = 1.60 mWb
18:th harmonic in flux linkage, q-axis∗ Ψq18 = 2.04 mWb

Drivetrain data

Parameter Value
Loading machine DC machine connected through a reduction gearbox
Moment of inertia∗ J = 168.9 · 10−3 kgm2

Friction coefficient∗ Bfric = 2.36 kgm2/s, −50 ≤ ωr ≤ 50 rad/s.
Reduction gearbox ratio 3.09 : 1
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DSP data

Parameter Value
DSP Model TMS320C30
Sampling frequency fs = 5.859 kHz

VSI data

Parameter Value
Transistor type IGBT
Switching frequency fsw = 5.859 kHz
Maximum DC-link voltage 450 V
Maximum collector current 600 A
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Appendix D

Pictures of Laboratory Setup

Figure D.1: Picture of total laboratory setup.

Figure D.2: Close view of PMSM.
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Figure D.3: Picture of the voltage source inverter.

Figure D.4: DSP-system with control computer.
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