Utvärdering av en värmeväxlarpanel
Evaluation of a heat exchanger panel

Ett examensarbete inom maskiningenjörsprogrammet

DANIEL ANDERSSON
EJDER EKEN

Institutionen för tillämpad mekanik
CHALMERS TEKNISKA HÖGSKOLA
Göteborg, Sverige, 2012
Examensarbete 2012:09
Förord

Vi önskar alla en trevlig och intressant läsning.

Daniel Andersson

Ejder Eken

Göteborg maj 2012
Sammanfattning

Projektets syfte var att undersöka en nyframtagen värmeväxlarpanels kyl- och värmeeffekt. Arbetet utfördes åt företaget Panelito i en av Chalmers Fastigheters lokaler där paneler monterades. Vid testerna mättes temperaturer och flöden på luft och vatten in och ut ur systemet under en timmes tid per test.

Avgränsningar som gjordes var att testerna inte utfördes enligt ISO-standard, vilket skulle innebära en sluten kammare, stationära förhållanden och noggrant kalibrerad utrustning med mycket små mätfel. Det togs heller inte hänsyn till tryckskillnader i luftsystemet.

Kyleffekten blev som bäst 83.0 W och värmeeffekten blev som bäst 211.9 W. Resultaten jämfördes med en annan typ av vanligt kylsystem, kylbafflar. Det visade sig att det krävdes fem paneler för att motsvara effekten av en kylbaffel och att driftskostnaden för panelerna var tre gånger mer än för kylbafflarna.
Abstract

The purpose of this project was to examine the cooling and heat power of a new type of heat exchanger panel. The work was done for the company Panelito in one of Chalmers Fastigheters’ facilities where panels were installed. In the tests, temperatures and flows was measured for air and water in and out of the system during an hour per test.

Limitations made were that the tests were not performed according to ISO-standard, which would entail a closed chamber, steady-state conditions and accurately calibrated measuring with very small errors. No account of differences in pressure in the air system was taken.

The results were compared with another type of conventional cooling system, a chilled beam. They indicated that five heat exchanger panels were required to equal the power of one chilled beam and that the running costs were three times higher.
Innehållsförteckning

Beteckningar .. 1

1. Inledning ... 2
 1.1 Bakgrund ... 2
 1.2 Syfte ... 2
 1.3 Avgränsningar ... 3
 1.4 Precisering av frågeställningen ... 3

2. Teoretisk referensram .. 4
 2.1 Tidigare arbeten och forskning .. 4
 2.2 Beskrivning av en värmeväxlarpanel .. 4

3. Metod .. 6

4. Resultat .. 10
 4.1 Beräkning av kyl- och värmeeffekter för paneler 10
 4.2 Resultattabeller .. 11

5. Analys .. 12
 5.1 Resultatanalys .. 12
 5.2 Analys av felkällor .. 12
 5.3 Analys av driftskostnader ... 13
 5.4 Jämförelse med kylbaffel .. 14

6. slutsats .. 16

Källförteckning ... 17

Bilagor
Beteckningar

SP – Sveriges Tekniska Forskningsinstitut
ISO – International Standard Organization
P = Panelens effekt [W]
Pv = Panelens effekt, vatten [W]
Pl = Panelens effekt, luft [W]
\(\Delta T_V\) - Temperaturskillnader mellan in och ut för vatten [°C]
\(\Delta T_L\) - Temperaturskillnader mellan in och ut för luft [°C]
cp,v = Specifik värmekapacitet för vatten \([\frac{J}{\text{kg} \cdot \text{K}}]\)
cp,l = Specifik värmekapacitet för luft \([\frac{J}{\text{kg} \cdot \text{K}}]\)
Tvut = Vattnets uttemperatur [K]
Vin = Vattnets intemperatur [K]
Luftens uttemperatur [K]
Llin = Luftens intemperatur [K]
qm,v = \(\rho_v \cdot q_v\) = Massflödet för vatten,
där \(\rho_v\) = vattnets densitet \([\frac{\text{kg}}{\text{m}^3}]\) och \(q_v\) = vattnets volymflöde \([\frac{\text{m}^3}{\text{s}}]\)
qm,l = \(\rho_l \cdot q_l\) = Massflödet för luft,
där \(\rho_l\) = luftens densitet \([\frac{\text{kg}}{\text{m}^3}]\) och \(q_l\) = luftens volymflöde \([\frac{\text{m}^3}{\text{s}}]\)
1. INLEDNING

Detta projekt handlar om testning av en nyframtagen värmeväxlarpanel åt ett innovationsföretag som heter Panelito. Det som söktes är panelens kyl- och värmeffekt, som sedan redovisas i rapporten och i ett faktablad till företaget. I rapporten ges även ledning för antalet paneler som behövs beroende på kylbehovet i ett kontorsrum samt en uppskattning av driftskostnader.

1.1 Bakgrund

Värmeväxlarpanelen är tillverkad av företaget Suncore som arbetar med miljövänliga energilösningar för fastigheter. De har olika produkter vars syfte är att med exempelvis solenergi kunna värma vatten.

Suncorens verksamhet är centrerad kring en speciell platta av ABS-plast som de har arbetat med under en längre tid. Den är tillverkad av två sammanfogade skivor i ABS-plast med en total tjocklek på sju millimeter. Detta gör produkten unik eftersom liknande produkter tidigare tillverkats i någon typ av metall. Den används i de flesta av deras produkter, bland annat i solfångare och i den nyframtagna värmeväxlarpanelen.

Dessa paneler bygger på principen att vatten och luft strömmar genom plattan utan att blandas och värme växlas från det varmare mediet till det kallare. På detta sätt kan luft kylas eller värmas och värmeväxlarpanelen kan användas för att höja eller sänka temperaturen i ett rum.

ABS-plast är en blandning av polymererna akrylnitril, butadien och styren. Dess huvudsakliga fördelar gentemot metaller är att den är billigare, lättare och att ingen korrosion i kontakt med vatten kan förekomma.

1.2 Syfte

Panelito var intresserade av en testning av värmeväxlarpanelens kyleffekt i en annan miljö än i SP:s tester, med värden som för dem är mer realistiska. Därför efterfrågades en testning av värmeväxlarpanelen med andra värden på flöden och temperaturer. Det var en mindre exakt testning än ett test i laboratoriemiljö. Avsikten var att kunna se hur panelerna fungerar i en verklig montering och vilken effekt det då får.

En beräkning av effekten gjordes, men inte enligt SP utan med vedertagna beräkningsmetoder. Därefter, för att sätta resultaten i perspektiv har också en jämförelse gjorts med ett annat kylsystem.
1.3 Avgränsningar

Vid beräkningarna togs inte tryckfall i luftsystemet med, eftersom lämplig mätutrustning inte har funnits till hands.

1.4 Precisering av frågeställningen

Projektets syfte var att undersöka hur stor kyl- och värmeeffekt som erhålls från värmeväxlarpanelerna. Dessutom skulle en jämförelse göras för att se hur panelerna förhåller sig mot ett annat konventionellt kylsystem.
2. TEORETISK REFERENSRAM

I detta kapitel förklaras ingående om tidigare arbete som gjorts med panelerna och dessutom hur de fungerar.

2.1 Tidigare arbeten och forskning

Panelen befinner sig på prototypstadiet och därför finns det väldigt lite praktisk testning av panelen. I tidigare tester som utförts av SP har panelen testats med låga vattenflöden, lägre än vad som brukar användas i verkliga fall.

I SP:s tester har en temperaturökning på fyra grader mellan ut och ingående vatten eftersträvats. De andra värdena, vattentemperatur och vattenflöde, anpassades därefter.

SP testade fyra paneler monterade i serie vad gäller vattenflödet och parallellt för luftflödet.

2.2 Beskrivning av en värmeväxlarpanel

Figur 2.1 Ovansidan av en panel.
Panelens funktion är att växla värmeenergi från det ena mediet till det andra utan någon sammanblandning. I figur 2.1 ses att ett medium, som i detta fall är vatten, kan strömma in via två inlopp genom plattan. Samtidigt kan ett annat medium föras in, som i detta fall är luft, från det stora hålet i mitten.

Vid låga vattentemperaturer kyls den ingående luften och därmed kyls ett rum. Vid höga vattentemperaturer värms den ingående luften och det sker en uppvärmning av ett rum. En förenklad bild av hur panelen fungerar kan ses i figur 2.3.

Figur 2.2 Undersidan av en panel, med sex luftutlopp.

Figur 2.3 En förenklad bild av panelens funktion, sett från långsidan.
3. METOD

I testerna användes åtta värmeväxlarpaneler med en yta på 0.72 m² och 2.7 kg torrvikt vardera. De monterades i en lokal med två fönster med den sammanlagda arean 3.92 m². Lokalen har ett vanligt undertak med en yta på 61.5 m². Lokalens ventilation var avstängd under mätningarna. På så sätt påverkades inte rumstemperaturen av luften i övriga huset. Under testerna hölls ljuset släckt och inga andra effektkällor fanns.

Suncore har gjort uppskattningar för bedömning av hur många paneler som behövs i ett rum. De har bedömt att 15-20 % av en takyta skall täckas av paneler för att uppnå en tillräcklig kyleffekt.

Lokalen var för stor för att uppfylla detta krav och delades av med en provisorisk vägg. Den bestod av två lager av plast med isolering emellan. Den nya takyтан blev 37.4 m². Denna vägg antogs hindra värmöverföring i samma grad som en vanlig vägg.

De åtta panelerna som användes täckte totalt 15.2 % av takytan, vilket ligger inom ramarna för företagets rekommendationer. Placeringen av dessa paneler fördelades symmetriskt för att uppnå en jämn kylning i rummet, enligt figur 3.1. Här ses att panelerna är seriekopplade två och två i fyra rader.

Figur 3.1 Placering av panelerna.

Vid monteringen kopplades ett vattensystem och ett fläktsystem till panelerna.

Fläktsystemet bestod av en fläkt, parallellt kopplad till panelerna med lika långa slangar, så att flödet fördelades lika. Fläkten placerades i den andra delen av det avskärmade rummet. Den ingående luften som låg på ca 19-21°C togs därifrån och blandades inte med luften i ”panelrummet” som även ses i figur 3.1.
Vattensystemet bestod av plaströrs som sattes ihop med plastslangar och fästes i panelerna. Kopparrör sattes fast där vattentemperaturen skulle mätas.

I projektet testades två olika inkopplingar för vattenledningarna, diagonalt och rakt kopplade. Se figur 3.2.

Ett förtest gjordes, som gick ut på att se vilken koppling som var bäst för de kommande testerna.

Figur 3.2 Inkoppling till förtest. Diagonal kopplade till vänster och rakt kopplade till höger.

Panelerna parallellkopplades i par om två serier, där ena paret hade dubbla vatteninflöden medan det andra paret hade en av ingångarna igenproppad. Förtestet gick ut på att se om det var någon skillnad på kyleffekten mellan de olika inkopplingssätten.

Anledningen till att panelerna inte parallellkopplades var för sig var att det var en praktiskt svårare lösning.

Tydligt sågs att det rakkopplade flödet hade bättre effekt, med en högre temperaturhöjning på vattnet. Detta presenteras i tabell 3.1.

Tabell 3.1 Jämförelse mellan olika metoder för koppling.

<table>
<thead>
<tr>
<th>Koppling</th>
<th>Vattenflöde (l/s)</th>
<th>Vatten, in (°C)</th>
<th>Vatten, ut (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagonalt kopplad</td>
<td>0.03</td>
<td>15.0</td>
<td>15.3</td>
</tr>
<tr>
<td>Rakt kopplad</td>
<td>0.03</td>
<td>15.0</td>
<td>16.1</td>
</tr>
</tbody>
</table>

I panelerna med dubbla inflöden fördelades vattnet så att all värmeväxlaryta utnyttjades och gav den bästa effekten. Nackdelarna är att det krävdes fler slangar att
koppla in och monteringen blev något mer invecklad. I panelerna med en ingång igenproppad uteslöts en liten mängd värmeväxlayta i de två hörnen där det inte strömmade vatten. Detta ses i figur 3.3. Däremot krävdes färre slangar och det leder till en lättare installation.

![Diagram](image1)

Figur 3.3 Vattenströmning vid enkelt respektive dubbelt inflöde.

Resultaten visade att rak koppling var mer fördelaktig och den diagonal kopplingen byttes till rak koppling. Se figur 3.4.

![Diagram](image2)

Figur 3.4 Panelens koppling vid huvudtesterna.

Vattnet till systemet tillfördes via en vattenkran och fördes slutligen ut i avloppet. Nackdelen med detta system är att temperaturen varierade i olika grad.

Sensorer programmerades i en dator, där en timer ställdes in för hur lång tid en sensor ska logga. Testerna pågick en timme där ett mätvärde registrerades var trettionde sekund, vilket ses i bilagorna. Ibland har fel under testerna lett till att delar av resultatvärdena inte kunnat användas och fick tas bort. Dessa sensorer användes för att mäta vatentemperaturer på vissa intressanta punkter i systemet där kopparrör hade fästs.

Sensorer placerades vid vattnets in- och utlopp. Dessutom placerades även sensorer vid ett av panelens luftinlopp, utlopp och en fritt hängande i rummet på cirka 1.6 meters höjd från golvet. Notera att luftsensorerna sattes vid den andra panelen i serien. Startvärden som användes presenteras i tabell 3.2 för kylning av rummet och i tabell 3.3 för uppvärmning av rummet.

Tabell 3.2 Värden på flöden och temperatur för kylning av rummet.

<table>
<thead>
<tr>
<th>Test nr.</th>
<th>Rums-temperatur (°C)</th>
<th>Vattenflöde (l/s)</th>
<th>Vatten, in (°C)</th>
<th>Luftflöde (l/s)</th>
<th>Inlufts-temperatur (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>19.7</td>
<td>0.036</td>
<td>12.0</td>
<td>11.6</td>
<td>19.8</td>
</tr>
<tr>
<td>2</td>
<td>20.1</td>
<td>0.036</td>
<td>13.5</td>
<td>11.6</td>
<td>20.1</td>
</tr>
<tr>
<td>3</td>
<td>20.1</td>
<td>0.036</td>
<td>14.9</td>
<td>11.6</td>
<td>20.3</td>
</tr>
<tr>
<td>4</td>
<td>19.7</td>
<td>0.049</td>
<td>14.5</td>
<td>11.6</td>
<td>20.3</td>
</tr>
</tbody>
</table>

Tabell 3.3 Värden på flöden och temperatur för uppvärmning av rummet.

<table>
<thead>
<tr>
<th>Test nr.</th>
<th>Rums-temperatur (°C)</th>
<th>Vattenflöde (l/s)</th>
<th>Vatten, in (°C)</th>
<th>Luftflöde (l/s)</th>
<th>Inlufts-temperatur (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20.6</td>
<td>0.034</td>
<td>24.2</td>
<td>11.6</td>
<td>21.0</td>
</tr>
<tr>
<td>2</td>
<td>20.9</td>
<td>0.032</td>
<td>30.9</td>
<td>11.6</td>
<td>21.2</td>
</tr>
<tr>
<td>3</td>
<td>20.5</td>
<td>0.034</td>
<td>35.4</td>
<td>11.6</td>
<td>20.3</td>
</tr>
<tr>
<td>4</td>
<td>20.5</td>
<td>0.032</td>
<td>40.9</td>
<td>11.6</td>
<td>21.4</td>
</tr>
</tbody>
</table>
4. RESULTAT

Resultatvärdena från testerna sammanställdes och redovisas nedan i tabellform, se tabell 4.1 och 4.2. Med resultatvärdena beräknades panelernas kyl- och värmeeffekt med hjälp av ekvationerna 4.1–4.5 vilket redovisas i samma tabeller.

4.1 Beräkning av kyl- och värmeeffekter för paneler

Kyleffekten \(P_V \) beräknades genom att multiplicera vattnets specifika värmekapacitet med vattnets massflöde och temperaturskillnaden mellan ingående och utgående temperatur. Kyleffekten \(P_L \) beräknades på samma sätt men med luftens parametrar.

Beräkningarna gjordes genom att medelvärden togs från loggarna. Mellan sex och tio värden av 120 användes. Anledningen till att så få värden användes var att variationerna i temperatur var små och gav ett bra medel. Se bilagor och jämför med resultattabellerna.

Observera att vid kylning är luft det varmare mediet och vid uppvärmning är det vatten.

Ekvationer som har använts vid kylberäkningar

\[
P_V = c_{pv} * q_{mv} (T_{vut} - T_{vin}) \tag{4.1}
\]

\[
P_L = c_{pl} * q_{ml} (T_{lin} - T_{lut}) \tag{4.2}
\]

Ekvationer som har använts vid värmeberäkningar

\[
P_V = c_{pv} * q_{mv} (T_{vin} - T_{vut}) \tag{4.3}
\]

\[
P_L = c_{pl} * q_{ml} (T_{lut} - T_{lin}) \tag{4.4}
\]

Ekvationen som har följts i alla beräkningar

\[
P = P_V = P_L, \text{ gäller för en ideal värmeväxlar} \tag{4.5}
\]

\[
P = \frac{J}{kg * K} * \left(\frac{kg}{m^3} * \frac{m^3}{s} \right) * K = \frac{J}{s} = W, \quad \text{enhetskontroll}
\]
4.2 Resultattabeller

Testparametrarna gäller för två paneler i serie, förutom luftflödet som gäller för en. Notera att temperaturändringen i rummet är ett resultat av åtta samtidigt arbetande paneler. Ändringen påverkar inte resultaten.

Tabell 4.1 Testresultat för kylning av rummet.

<table>
<thead>
<tr>
<th>Test nr.</th>
<th>Vattenflöde (l/s)</th>
<th>Luftflöde (l/s)</th>
<th>Rumstemp. start (°C)</th>
<th>Rumstemp. slut (°C)</th>
<th>Vatten, in (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.036</td>
<td>11.6</td>
<td>19.7</td>
<td>18.3</td>
<td>12.0</td>
</tr>
<tr>
<td>2</td>
<td>0.036</td>
<td>11.6</td>
<td>20.1</td>
<td>19.3</td>
<td>13.5</td>
</tr>
<tr>
<td>3</td>
<td>0.036</td>
<td>11.6</td>
<td>20.1</td>
<td>19.3</td>
<td>14.9</td>
</tr>
<tr>
<td>4</td>
<td>0.049</td>
<td>11.6</td>
<td>19.7</td>
<td>19.1</td>
<td>14.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test nr.</th>
<th>Vatten, ut (°C)</th>
<th>ΔT, vatten (°C)</th>
<th>Luft, in (°C)</th>
<th>Luft, ut (°C)</th>
<th>ΔT, Luft (°C)</th>
<th>Kyleffekt/panel (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Vatten Luft</td>
</tr>
<tr>
<td>1</td>
<td>13.0</td>
<td>1.0</td>
<td>19.8</td>
<td>17.4</td>
<td>2.4</td>
<td>75.5 66.6</td>
</tr>
<tr>
<td>2</td>
<td>14.6</td>
<td>1.1</td>
<td>20.1</td>
<td>18.1</td>
<td>2.0</td>
<td>83.0 55.5</td>
</tr>
<tr>
<td>3</td>
<td>15.8</td>
<td>0.9</td>
<td>20.3</td>
<td>18.6</td>
<td>1.7</td>
<td>67.9 47.2</td>
</tr>
<tr>
<td>4</td>
<td>15.2</td>
<td>0.7</td>
<td>20.3</td>
<td>18.5</td>
<td>1.8</td>
<td>71.9 50.0</td>
</tr>
</tbody>
</table>

Tabell 4.2 Testresultat för uppvärmning av rummet.

<table>
<thead>
<tr>
<th>Test nr.</th>
<th>Vattenflöde (l/s)</th>
<th>Luftflöde (l/s)</th>
<th>Rumstemp. start (°C)</th>
<th>Rumstemp. slut (°C)</th>
<th>Vatten, in (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.034</td>
<td>11.6</td>
<td>20.6</td>
<td>20.9</td>
<td>24.2</td>
</tr>
<tr>
<td>2</td>
<td>0.032</td>
<td>11.6</td>
<td>20.9</td>
<td>21.2</td>
<td>30.9</td>
</tr>
<tr>
<td>3</td>
<td>0.034</td>
<td>11.6</td>
<td>20.5</td>
<td>20.9</td>
<td>35.4</td>
</tr>
<tr>
<td>4</td>
<td>0.032</td>
<td>11.6</td>
<td>20.5</td>
<td>21.7</td>
<td>40.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test nr.</th>
<th>Vatten, ut (°C)</th>
<th>ΔT, vatten (°C)</th>
<th>Luft, in (°C)</th>
<th>Luft, ut (°C)</th>
<th>ΔT, Luft (°C)</th>
<th>Värmeffekt/panel (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Vatten Luft</td>
</tr>
<tr>
<td>1</td>
<td>23.4</td>
<td>0.8</td>
<td>21.0</td>
<td>22.3</td>
<td>1.3</td>
<td>56.7 36.1</td>
</tr>
<tr>
<td>2</td>
<td>29.8</td>
<td>1.1</td>
<td>21.2</td>
<td>24.4</td>
<td>3.2</td>
<td>73.2 88.8</td>
</tr>
<tr>
<td>3</td>
<td>32.4</td>
<td>3.0</td>
<td>20.3</td>
<td>26.6</td>
<td>6.3</td>
<td>211.9 174.8</td>
</tr>
<tr>
<td>4</td>
<td>38.9</td>
<td>2.0</td>
<td>21.4</td>
<td>27.4</td>
<td>6.0</td>
<td>132.7 166.5</td>
</tr>
</tbody>
</table>
5. ANALYS

5.1 Resultatanalys

Mätnoggrannheten för vattentemperaturerna är bättre än för luften. Därför har vatteneffekterna använts i beräkningar och jämförelser. Resultaten visar att bäst effekt fås vid vattentemperaturerna 13.5°C för kylning och vid 35.4°C för uppvarmning.

Enligt ekvation 4.5 ska för en ideal värmeverkare lufteffekten och vatteneffekten vara lika. Det kan ses i resultattabellerna 4.1 och 4.2 att resultaten avvek från detta ideala förhållande. Anledningen till detta är inte fastställd men många möjliga felkällor har diskuterats i avsnitt 5.2.

Liknande tester har utförts av en annan exjobbsgrupp från Chalmers. Resultaten i detta projekt är i god överensstämmelse med deras, vilket tyder på att dessa resultat är rimliga.5

5.2 Analys av felkällor

Här diskuterar de felkällor som har uppstått under testerna och som kan bidra till sämre resultat, men som är godtagbara enligt Panelitos krav på noggrannhet.

En möjlig felkälla var sträckan som vattnet färdas i rören. En längre sträcka bidrar till en höjning eller sänkning av vattentemperaturen beroende på konvektion. Det beror på att värme överförs genom rören mellan den omgivande luften och vattnet.
Troligtvis ledde detta till en mindre temperaturändring när vattnet färdas från inloppet fram till panelerna som sänker effekten. Denna felkälla har inte tagits hänsyn till eftersom det var problematiskt att mäta temperaturerna vid panelerna.

Seriekoppling av paneler medför till en liten effektöversättning gentemot parallellkoppling. Vattnet som lämnar den första panelen i en serie har ändrat temperatur. Det leder till en något försämrad kyleffekt i den andra panelen, eftersom lägre temperaturskillnad minskar möjligt värmeutbyte mellan vatten och luft.

Det får noteras att den ingående luften mättes i den bakre panelen i serien. Det kan ha bidragit till ett sämre resultat för lufteffekten på grund av vattnets temperaturändring i panel två, vilket resulterar i ett mindre värmeutbyte.

5.3 Analys av driftskostnader

Priset för kallvatten är ungefär 15 kr/m³ och fjärrvärme kostar 0.812 kr/kWh, vilket är kostnaden för varmvattnet. Denna uppskattning ansågs kallvatten vara vatten upp till 15°C och varmvatten över det. I beräkningen motsvarade en dag 12 timmar och en månad 30 dagar.

Dessa kostnader gäller för den uppsättning paneler som använts i detta projekt. Det är tänkt att det ska ge en ungefärlig bild av vad det kostar att använda panelerna.

<table>
<thead>
<tr>
<th>Test nr.</th>
<th>Vattenflöde (l/s)</th>
<th>Vatten, in (°C)</th>
<th>Kostnad att kyla 37.4 m² i en månad (kr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.036</td>
<td>12.0</td>
<td>2 800</td>
</tr>
<tr>
<td>2</td>
<td>0.036</td>
<td>13.5</td>
<td>2 800</td>
</tr>
<tr>
<td>3</td>
<td>0.036</td>
<td>14.9</td>
<td>2 800</td>
</tr>
<tr>
<td>4</td>
<td>0.049</td>
<td>14.5</td>
<td>3 812</td>
</tr>
</tbody>
</table>
I tabell 5.1 ses att det kostar 2 800 kronor för att kyla ett rum på 37.4 m² under en månads tid med värmeväxlarpaneler och mellan 3 000-4 000 kr att värma det. motsvarande driftskostnader för att använda kylbafflar i en månads tid blir 972 kr för kylning och 1 222 kr för uppvärmning. Detta är kostnader när endast kranvatten används och inte återanvänds på något sätt.

Observera att undersökningar har gjorts för att använda detta system tillsammans med markvärm. Se projekt Analys av värmeväxlar och klimatsystem för en mer ingående analys.

5.4 Jämförelse med kylbaffel

För att sätta resultaten i perspektiv jämfördes panelerna med en kylbaffel, som är en annan typ av kylsystem som vanligtvis används. En kylbaffel är en värmeväxlar med metallrör som vatten flödar igenom.

Nedan följer ett exempel med kylning av ett kontorsrum med tre personer.

Ett kontorsrum på 30 m² innehåller tre datorer med 100 W, tre bordslampor på 28 W och två taklampor med 3x35 W. De tre personerna i rummet avger vardera 70 W vid sittande arbete. Det totala kylbehovet är 804 W. För att täcka det behövs 10 värmeväxlarpaneler, som skulle ta upp en area på 7.2 m², cirka 24 % av takets yta i det här fallet. Alternativt skulle två kylbafflar kunna användas, vilket skulle kräva en area på ungefär 4.7 %.

<table>
<thead>
<tr>
<th>Test nr.</th>
<th>Vattenflöde (l/s)</th>
<th>Vatten, in (°C)</th>
<th>Kostnad att värma 37.4 m² i en månad (kr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.034</td>
<td>24.2</td>
<td>1 496</td>
</tr>
<tr>
<td>2</td>
<td>0.032</td>
<td>30.9</td>
<td>2 492</td>
</tr>
<tr>
<td>3</td>
<td>0.034</td>
<td>35.4</td>
<td>3 320</td>
</tr>
<tr>
<td>4</td>
<td>0.032</td>
<td>40.9</td>
<td>4 068</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Vattenflöde (l/s)</th>
<th>Vatten, in (°C)</th>
<th>Kostnad för 37.4 m² i en månad (kr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kylning</td>
<td>0.025</td>
<td>15</td>
<td>972</td>
</tr>
<tr>
<td>Uppvärmning</td>
<td>0.025</td>
<td>35</td>
<td>1 222</td>
</tr>
</tbody>
</table>

Tabell 5.4 Exempel på kylbehov i ett kontorsrum.

<table>
<thead>
<tr>
<th>Kontorsrum 30 m²</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3 personer</td>
<td>210 W</td>
<td></td>
</tr>
<tr>
<td>3 datorer</td>
<td>300 W</td>
<td></td>
</tr>
<tr>
<td>3 bordslampor</td>
<td>84 W</td>
<td></td>
</tr>
<tr>
<td>2 taklampor</td>
<td>210 W</td>
<td></td>
</tr>
<tr>
<td>Kylbehov totalt</td>
<td>804 W</td>
<td></td>
</tr>
</tbody>
</table>

Tabell 5.5 Jämförelse av värmeväxlarpaneler och kylbafflar.

<table>
<thead>
<tr>
<th>Kontorsrum 30 m²</th>
<th>Värmeväxlar panel</th>
<th>Kylbaffel²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kyleffekt per enhet</td>
<td>83.0 W</td>
<td>437 W</td>
</tr>
<tr>
<td>Vattenflöde</td>
<td>0.036 l/s</td>
<td>0.025 l/s</td>
</tr>
<tr>
<td>Antal enheter som krävs</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>Vikt per enhet utan vatten</td>
<td>2.7 kg</td>
<td>16.7 kg</td>
</tr>
<tr>
<td>Takyta som krävdes</td>
<td>24.0 %</td>
<td>4.7 %</td>
</tr>
</tbody>
</table>

Jämförelser av driftskostnader kunde däremot göras. Kostnaderna blev ungefär tre gånger lägre för kylbafflarna eftersom de är mer effektiva och kräver lägre vattenflöden.

I tabell 5.5 ses att en panel har lägre vikt än en kylbaffel. Med en lägre vikt räcker det troligen med en installatör. Det leder då till minskade kostnader gentemot tyngre system som kräver två installatörer.

6. Slutsats

Panelens effekt har beräknats från uppmätta data. I tabellen nedan redovisas de högsta och lägsta värdena som mätts upp.

Tabell 6.1 Högst och lägst uppmätta effekter.

<table>
<thead>
<tr>
<th></th>
<th>Uppvärmning</th>
<th>Kylning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Högst uppmätt effekt (Vid vattentemperatur)</td>
<td>211.9 W (35.4°C)</td>
<td>83.0 W (13.5°C)</td>
</tr>
<tr>
<td>Lägst uppmätt effekt (Vid vattentemperatur)</td>
<td>56.7 W (24.2°C)</td>
<td>67.9 W (14.9°C)</td>
</tr>
</tbody>
</table>

Den maximala kyleffekten uppmättes då vattentemperaturen var 13.5°C och den bästa uppvärmningseffekten vid 35.4°C. Resultaten gäller för de parametrar som har används i dessa tester och utfördes på serier med två paneler. Används längre serier leder det antagligen till lägre effekt.

För kylning kan temperaturen 12-15°C användas utan att effekten påverkas. För uppvärmning verkar högre temperaturer ge bättre effekt, men runt 35°C eller över rekommenderas.

Det har uppskattats av Suncore att endast 15-20 % av takytan skall täckas av paneler för att en tillräcklig kyleffekt skall uppnås. Men i det exemplet som har illustrerats i tabell 5.4 och 5.5 har det beräknats att det krävs 24 % för att uppfylla kylbehovet i ett normalt kontorsrum. Den avgörande faktorn för valet av antalet paneler är hur stort kylbehovet är i ett rum. Ju fler elektroniska produkter som används desto större kyleffekt krävs.

Källförteckning

Elektroniskt material

1. Ta kontrollen över inomhusmiljön – välj klimatsmart!
 http://www.suncore.se/suncore/produkterna/suncore-klimattak/ (2012-04-03)
2. CBC Aktiv kylbaffel
3. Vad kostar fjärrvärme?
 http://www.goteborgenergi.se/Privat/Produkter_och_priser/Fjarrvarme/Priser_och_erbjudande_i_Goteborg__Partille_och_Ale (2012-05-17)

Rapporter

Böcker

BILAGOR

Bilaga 1 – Resultat från kylningstester
Bilaga 2 – Resultat från uppvärmningstester
Bilaga 1: Resultatloggar från kylningstester

Figur 1. Resultat kyltest 1, luft. Motsvarande vattenlogg för test 1 finns ej, på grund av datorfel. Den orange linjen är från en ej använd sensor.
Figur 2. Resultat kyltest 2, luft.
Figur 3. Resultat kyltest 2, vatten.
Figur 4. Resultat kyltest 3, luft.
Figur 5. Resultat kyltest 3, vatten.
Figur 6. Resultat kyltest 4, luft.
Figur 7. Resultat kyltest 4, vatten.
Bilaga 2: Resultatloggar från värmningstester

Figur 1. Resultat värmningstest 1, luft.
Figur 2. Resultat värmningstest 1, vatten.
Figur 3. Resultat värmningstest 2, luft.
Figur 4. Resultat värmningstest 2, vatten.
Figur 5. Resultat värmingstest 1, luft.
Figur 6. Resultat värmningstest 1, vatten.
Figur 7. Resultat värmingstest 1, luft.
Figur 8. Resultat värmningstest 1, luft.