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Abstract—In this paper, we introduce a 1-bit compressive
sensing reconstruction algorithm that is not only robust against
bit flips in the binary measurement vector, but also does not
require a priori knowledge of the sparsity level of the signal to be
reconstructed. Through numerical experiments, we show that our
algorithm outperforms state-of-the-art reconstruction algorithms
for the 1-bit compressive sensing problem in the presence of
random bit flips and when the sparsity level of the signal deviates
from its estimated value.

I. INTRODUCTION

Compressive sensing is an emerging method for signal

acquisition in which the number of samples ensuring exact

reconstruction of the signal to be acquired is far less than the

one in the conventional Nyquist sampling approach [1]–[4].

In compressive sensing, the signal is acquired by means of

few linear non-adaptive measurements, and then reconstructed

by finding the sparsest solution of the resulting undetermined

system of equations. Exact reconstruction is guaranteed when

the matrix describing the system of equations satisfies the

restricted isometry property and the signal is sufficiently

sparse [4].

In the classic compressive sensing setup, each measurement

outcome is described by a real value. In practice, for further

processing and storage purposes, often the real-valued mea-

surements need to be converted to finite-precision numbers.

Thus, quantization after the measurement is virtually unavoid-

able. Quantized compressive sensing is the general term used

to refer to linear non-adaptive measurements followed by

quantization [5]–[8]. 1-bit compressive sensing refers to the

extreme case where the quantizer is a simple sign comparator

and each measurement is represented using one bit only, i.e.,

+1 or −1 [5], [6], [9]–[14].

1-bit compressive sensing is appealing for hardware imple-

mentation, since a 1-bit quantizer is not only low-cost but

also much faster than more sophisticated scalar quantizers [9].

In many applications in which high sampling rate is needed,

e.g., imaging systems [15], 1-bit compressive sensing is an

attractive solution because it does not suffer from dynamic

range problems.

Several algorithms have been introduced in the literature

for solving efficiently the reconstruction problem in the 1-

bit compressive sensing setting [5], [6], [9]–[14]. In this

paper, we shall mainly focus on renormalized fixed point
iteration (RFPI) [9] and binary iterative hard thresholding
(BIHT) [5], [12]. In order to reconstruct the signal perfectly,

BIHT needs as input the sparsity level of the signal (i.e.,

the number of its nonzero coefficients), while RFPI does

not require such a priori information. These two algorithms

have mostly been analyzed in the setting where the 1-bit

quantized measurement vector is error-free, meaning that the

reconstruction algorithm is fed with a 1-bit quantized version

of the measurement vector. However, in many applications

(e.g., wireless sensor networks) 1-bit quantized measurements

need to be transmitted through a propagation channel to reach

the device where signal reconstruction is performed and this

process may introduce errors, i.e., bit flips.1 Unfortunately,

both RFPI and BIHT perform poorly in the presence of bit

flips. Yan et al. recently introduced a modified version of

BIHT, referred to as adaptive outlier pursuit with sign flips
(AOP-f), that is robust against bit flips in the measurement

vector [16]. Similarly to BIHT, also AOP-f requires a priori
knowledge of the sparsity level of the signal. In many practical

cases, however, the sparsity level of the signal is unknown and

time variant.

In this paper, we introduce an algorithm, which we re-

fer to as noise-adaptive renormalized fixed point iteration
(NARFPI), for solving the reconstruction problem in the 1-bit

compressive sensing setting and in the presence of bit flips.

NARFPI is mainly based on RFPI with a modification derived

from AOP-f [16] to make it robust against bit flips. The main

feature of NARFPI is that, similarly to RFPI, it does not need

a priori knowledge of the sparsity level of the signal.

II. SETUP

Assume a K-sparse data vector x ∈ R
N and a sampling

rule in which each sample is generated by computing the

inner product between x and a measuring vector φi ∈ R
N ,

namely, the ith measurement is given by yi = 〈x, φi〉,
where i = 1, . . . ,M . The vector of measurements and the

measuring matrix, whose rows are φi, are denoted by y and

Φ respectively. Thus,

y = Φx. (1)

We focus on the 1-bit compressive sensing setting where the

vector of 1-bit measurements b is generated by applying the

sign function on y according to

b = sign (y) = sign (Φx). (2)

1Bit flips might also occur during the measurement process [16].



The binary measurements vector b is transmitted over a noisy

channel, which causes random bit flips. We denote the number

of bit flips (a random variable) by L and the resulting binary

measurement vector (after bit flips) by b̃. Note that L is

the number of negative elements in b � b̃, where � denotes

element-wise product.

III. RECONSTRUCTION ALGORITHMS

In the first part of this section, we review RFPI and AOP-

f. While RFPI has been designed for the noiseless case (no

bit flips), AOP-f is robust against bit flips. However, AOP-f

requires a priori information about the sparsity level K of x.

In the second part of this section, we present our contribution,

namely, a reconstruction algorithm, which we refer to as

NARFPI, that solves the 1-bit reconstruction problem in the

presence of bit flips without requiring a priori knowledge of

the sparsity level K of x.

A. Review of RFPI and AOP-f

RFPI, which is designed for the noiseless case b̃ = b, is

based on the following reconstruction procedure [9]: find the

vector x̂ with the smallest �1-norm satisfying

b� Φx � 0 (3)

where � denotes element-wise inequality. Since the trivial

solution to this problem is x̂ = 0, an energy constraint over

the reconstructed signal must be further imposed. The choice

in [9] is to force the reconstructed signal to be on the �2-

ball of unit radius, which yields the following constrained

minimization problem:

x̂ = argmin
x

‖x‖1
s.t. b� Φx � 0

‖x‖2 = 1. (4)

To solve (4) efficiently, a barrier cost function is introduced in

[9], which, together with Lagrange multiplier method, yields

the following approximation of (4)

x̂ = argmin
x

‖x‖1 + λ
∑
i

C([b� Φx]i)

s.t. ‖x‖2 = 1 (5)

where

C(x) =

{
x2/2, if x < 0

0, otherwise
(6)

is the barrier cost function and [·]i denotes the ith element of

the vector argument. Note that when λ is sufficiently large,

the solution of (5) coincides with the solution of (4). Since

the function C(·) in (6) is convex, a simple gradient descent

algorithm can be used to solve (5). The RFPI algorithm used

in [9] to solve (5) is a variation of the fixed point continuation

algorithm proposed in [17].

As we shall numerically illustrate in Section IV, RFPI has

poor performance in the presence of bit flips. Differently from

RFPI, AOP-f introduced in [16] is robust against bit flips.

Specifically, given a priori information on the number of bit

flips L, AOP-f tries to identify the entries of b̃ affected by

bit flips. Let Ω ∈ {−1, 1}M be the vector containing the

estimated positions of the bit flips ([Ω]l = −1 means that

a bit flip occurred in position l). AOP-f solves [16]

(
x̂, Ω̂

)
= argmin

x,Ω

∥∥∥∥(b̃�Ω� Φx
)−∥∥∥∥

2

s.t.
1

2

∑
i

(1− [Ω]i) ≤ L

‖x‖0 ≤ K

‖x‖2 = 1 (7)

where K is the sparsity level of x, L is the number of bit

flips, and [
(x)

−
]
i
=

{
|[x]i| , if [x]i < 0

0, otherwise.
(8)

AOP-f solves (7) by iterating between the following two steps:

Step 1: given Ω̂, find

x̂ = argmin
x

∥∥∥∥(b̃� Ω̂� Φx
)−∥∥∥∥

2

s.t. ‖x‖0 ≤ K

‖x‖2 = 1. (9)

Step 2: given x̂, find

Ω̂ = argmin
Ω

∥∥∥∥(b̃�Ω� Φx̂
)−∥∥∥∥

2

s.t.
1

2

∑
i

(1− [Ω]i) ≤ L. (10)

In words, first x̂ is determined by solving (9), based on the

current estimation of Ω̂. Then, Ω̂ is updated by solving (10),

based on the new estimation of x̂. As shown in [16], the

optimization problem in (10) can be solved analytically and

its solution is given by

[
Ω̂
]
i
=

⎧⎨
⎩−1, if

[(
b̃� Φx̂

)−]
i

≥ β

1, otherwise.

(11)

Here, β is the Lth largest entry of the vector
(
b̃� Φx̂

)−
. Note

that both the exact number of bit flips L in b̃ and the sparsity

level K of x need to be given to AOP-f as a priori information.

The specific version of AOP-f we have described is referred to

in [16] as AOP-�2-f. There exists also an �1 version of AOP-

f, (AOP-�1-f) which minimizes

∥∥∥∥(b̃�Ω� Φx
)−∥∥∥∥

1

instead

of

∥∥∥∥(b̃�Ω� Φx
)−∥∥∥∥

2

in (7). Determining the regime where

AOP-�1-f outperforms AOP-�2-f is an open issue. In this paper,

we will consider only AOP-�2-f, for simplicity.



B. Noise-Adaptive Renormalized Fixed Point Iteration
(NARFPI)

Inspired by (7), we modify (4) to account for bit flips as

follows: (
x̂, Ω̂

)
= argmin

x,Ω
‖x‖1

s.t.
(
b̃�Ω

)
� Φx � 0

1

2

∑
i

(1− [Ω]i) ≤ L

‖x‖2 = 1. (12)

To solve (12) efficiently, we can apply the same relaxation

step as in (5) and approximate (12) by(
x̂, Ω̂

)
= argmin

x,Ω
‖x‖1 + λ

∑
i

C
([(

b̃�Ω
)
� Φx

]
i

)

s.t.
1

2

∑
i

(1− [Ω]i) ≤ L

‖x‖2 = 1. (13)

The optimization problem in (13) is still non-convex and

consists of a combination of discrete and continuous variables.

Similarly to [16], our approach is to use a two-step iterative

algorithm. In the first step, Ω̂ is fixed and the algorithm finds

the optimum x̂ as follows:

x̂ = argmin
x

‖x‖1 + λ
∑
i

C
([(

b̃� Ω̂
)
� Φx

]
i

)
s.t. ‖x‖2 = 1. (14)

Note that the only difference between (5) and (14) is that b

is replaced by
(
b̃� Ω̂

)
in the argument of the function C(·).

Hence, we can use RFPI to solve (14). In the second step, we

use x̂ obtained from (14), to find Ω̂ as follows:

Ω̂ = argmin
Ω

∑
i

C
([(

b̃�Ω
)
� Φx̂

]
i

)

s.t.
1

2

∑
i

(1− [Ω]i) ≤ L. (15)

The minimization in (15) can be rewritten as (10). Therefore,

the solution of (15) is (11).

The details of NARFPI are shown in Algorithm 1. Step a)

of Algorithm 1 is taken one to one from RFPI in [9]. The

algorithm is initialized with x0 = Φ†b̃/
∥∥∥Φ†b̃

∥∥∥
2

where Φ†

denotes the pseudo-inverse of Φ; furthermore, Ω̂ in (14) is set

to the all-one vector in the first iteration.

IV. NUMERICAL RESULTS AND DISCUSSION

In this section, we study the robustness of NARFPI to bit

flips and compare its performance with RFPI [9] and AOP-

�2-f [16]. Throughout this section, the dimension of x is

N = 1000. The position of the nonzero elements in x is

chosen uniformly at random and the amplitude of the nonzero

elements is generated according to a zero-mean Gaussian

variable with unit variance. The M × N measuring matrix

Algorithm 1 NARFPI

1) Inputs: vector of 1-bit measurements b̃ ∈ {±1}M ,

measuring matrix Φ, number of bit flips L, number of

outer iterations no, number of inner iterations ni

2) Initialization: descent step-size δ, initial estimate

[Ω]i = 1 for all i, b = b̃ and x0 = Φ†b̃
‖Φ†b̃‖

2

, initial

coefficient λ1 = M
3) Outer iteration: For l = 1, . . . , no

a) Inner iteration: For k = 1, . . . , ni

i) One-sided quadratic gradient:
s ← (diag (b) Φ)

T
(b� Φxk−1)

−

ii) Gradient projection on sphere surface:
g ← 〈s,xk−1〉xk−1 − s

iii) One-sided quadratic gradient descent:
h ← xk−1 − δg

iv) Shrinkage (�1 gradient descent):
[u]i ← sign ([h]i)max

{
|[h]i| − δ

λl
, 0
}
, for all i

v) Normalization: xk ← u
‖u‖2

b) Find the location of noisy bits and flip them:
Update Ω from (11). b ← Ω� b̃.

c) Initialize next inner iteration:
x0 ← xni , λl+1 ← cλl, where c is a fixed constant.

4) Output: x̂ = xni

Φ has independent entries following a zero-mean Gaussian

distribution with variance 1/M . We set the probability that

a bit flip occurs to P = 3% and give MP to NARFPI and

AOP-�2-f as estimate of the number of bit flips L. Note that

the actual number of bit flips L in general does not coincide

with MP . Finally, the number of outer iterations no is set to

20, the number of inner iterations ni is set to 200, and c = 1.1.

First, we consider the scenario in which the sparsity level

K ∈ [1, 19] is a random variable with symmetric discrete

triangular distribution with mean 10 and variance σ2
K ∈ [0, 25].

We assume that the probability distribution of the sparsity

level is not known to the reconstruction algorithms, which

have knowledge only of the mean value 10 of the sparsity

level. Consequently, we give 10 to AOP-�2-f as estimate of the

sparsity level of the signal. Furthermore, we set the number

of binary measurements to M = 2000. This setting is beyond

the classical compressive sensing goal of few measurements,

i.e., M � N . Note though that, since we represent each

measurement by only one bit, we can afford more measure-

ments for a given bit budget compared to more sophisticated

quantized compressive sensing approaches. The quality of the

reconstruction is measured in terms of the received signal
to noise ratio (RSNR) defined as E

(
‖x‖22

)
/E

(
‖x− x̂‖22

)
.

The performance of the three algorithms is averaged over 100
realizations for each value of σ2

K .

In Fig. 1, the RSNR (dB) of the three algorithms is shown.

As it can be seen, NARFPI outperforms RFPI in the presence

of bit flips. As can be seen from Fig. 1, the average RSNR of

AOP-�2-f decreases as the variance of K increases. In contrast,
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Fig. 1: The performance of NARFPI, RFPI and AOP-�2-f when

K is generated according to a triangular distributions with

mean 10 and different variance σ2
K .

the average RSNR of NARFPI is constant and independent of

σ2
K . RFPI exhibits also a constant RSNR as σ2

K varies, but its

performance is poor because of the presence of bit flips.

To investigate whether NARFPI apparent superior perfor-

mance occurs also for other M values, and—at the same

time—to assess in a more fundamental way the sensitivity of

AOP-�2-f to mismatch between the actual sparsity level and

the estimated sparsity level, we consider another scenario in

which K is fixed to a value between 1 to 19 (but AOP-�2-f

is still given 10 as estimate) and consider different values of

M . The other parameters in this numerical experiment are the

same as in the previous simulation.

In Fig. 2, we plot 1/RSNR (i.e., the reconstruction error) in

linear scale as a function of K for both NARFPI (Fig. 2.a) and

AOP-�2-f (Fig. 2.b). As expected, the reconstruction accuracy

of NARFPI increases when the sparsity level K decreases. In

addition, the reconstruction error of NARFPI seems to grow

linearly. On the contrary, the reconstruction error of AOP-�2-f

is almost constant for K ≤ 10 but appears to grow faster than

linearly in K when K exceeds 10. This comes perhaps as no

surprise given that AOP-�2-f solves (7) under the constraint

that ‖x‖0 ≤ K and that we give K = 10 to AOP-�2-f as

estimate of the signal sparsity level.

By comparing Fig. 2.a and Fig. 2.b we see that, in the

regime where the number of measurements is large compared

to the signal dimension (e.g., M/N = 2), NARFPI outper-

forms AOP-�2-f for all values of K. However, in the regime

where the number of measurements is small compared to the

signal dimension (e.g., M/N = 0.3) AOP-�2-f outperforms

NARFPI for K > 10.

V. CONCLUSIONS

To summarize, Fig. 1 and Fig. 2 show that NARFPI yields a

lower estimation error than RFPI and AOP-�2-f in the presence

of random bit flips and when the sparsity level of the signal

deviates from its estimated value. The linearity of NARFPI

reconstruction error in the sparsity level K implies that when

the sparsity level K randomly varies according to a symmetric

distribution, the reconstruction error of NARFPI is constant,
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Fig. 2: The estimation error of NARFPI and AOP-�2-f as a

function of the number of binary measurements M and of the

sparsity level K of x.

i.e., it does not depend on the variance of K.

Further gains both in performance and in complexity com-

pared to AOP-�2-f might be obtained by replacing RFPI in

step a) of our algorithm with the restricted step shrinkage
method recently proposed in [6].
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