
 Numerical Prepackaging with PMC lid − Efficient and Simple 
Design Procedure for Microstrip Circuits including the Packaging  

 
1Ahmed Kishk, 2Ashraf Uz Zaman and 2Per-Simon Kildal 

 
1 Department of Electrical and Computer Engineering  

Concordia University , Montreal, Quebec  H3G 1M8, Canada 
kishk@encs.concordia.ca 

 
2 Department of Signals and System 

Chalmers University of Technology, Göteborg, SE-41296, Sweden 
zaman@chalmers.se ; per-simon. kildal@chalmers.se 

  
 

Abstract ─ The paper presents an efficient method 
for the design of printed microstrip circuit with 
packaging in mind, referred to as numerical 
prepackaging with a Perfectly Magnetic 
Conductive (PMC) lid.  The method comprises 
making the design including the packaging from 
the start by using a PMC lid, rather than first 
designing the open-aired circuit and thereafter 
considering the packaging effect and the often 
required retuning of the circuits themselves. By 
using an analysis with a PMC lid, the complete 
microstrip circuit structure is bounded by the 
ground plane, which can be assumed to be a 
Perfect Electric Conductor (PEC), and the PMC 
lid. The advantage is that no parallel plate modes 
can propagate between PEC and PMC plates if the 
spacing is smaller than effectively quarter of 
wavelength. This provides an ideal numerical 
packaging without cavity resonances. At the same 
time the computational domain is strongly limited 
by the plates so that the computation time is 
significantly reduced compared to that of finite 
element method (FEM) or finite difference time 
domain method (FDTD) requiring the use of 
Perfect Matching Layers (PML) for the open-aired 
case, and having convergence problems for the 
packaged case due to the resonances.  By using 
numerical packaging with PMC lid, the ideal PMC 
lid has to be realized afterwards e.g. by using a lid 
of nails. This is still a minor task compared to 
existing approaches.  

  

Index terms- Shielded microstrip line, PMC, 
PEC, Cavity Resonance, FDTD, FEM. 

I. INTRODUCTION 
In the design of printed microwave circuits 

using numerical methods such as Finite Deference 
Time Domain Method (FDTD) [1], Finite Element 
Method (FEM) [2], Finite Integral Method [3] or 
any volume type formulations, it is necessary to 
limit the computational space using virtual 
boundaries such as radiation boundaries [4] or 
perfect matching boundaries [5]. In order to use 
such boundaries some restriction should be 
enforced to make valid computations. For 
example, it is recommended that the distance 
between these boundaries and the actual circuits to 
be in order of a quarter wavelengths at the low 
frequency to have reliable results.  Some of the 
perfect matching boundary conditions require 
several layers [1] that in some cases would be 
eight layers. Such requirement regarding the 
distance of the virtual boundaries increases the 
overhead of computational time and storage.  After 
reaching a final circuit design in such way, one 
will always need to package the circuit. In order to 
have a compact package circuit it is important that 
the package cavity be very close to the circuit. 
However, such packaging should not affect the 
circuit performance. Some engineers might use 
resistive loading inside the packaging cavity to 
suppress resonances of the cavity appearing within 
the operating frequency band. Such a technique 
increases the losses and reduces the circuit 
efficiency.  It would be better if the packaging is 
not affecting the circuit efficiency and at the same 
time be compact and nearly lossless. However, as 
the packaging gets closer to the circuit, packaging 
might interact with the circuit and affect its 



performance and the designer might find that some 
tuning of his circuit is necessary to achieve the 
desired performance.  Such a tuning may be quite 
tedious to perform and requires experience in 
designing circuits. 

Here, we propose an efficient procedure to 
design printed circuits with packaging in mind.  
Packaging is needed for mechanical protection, 
but also to shield the circuits from outside strong 
fields and interference, and to prevent any possible 
radiated emissions from the circuit.  In some cases 
resistive loading inside the package cavity can be 
used to suppress high order modes.  Here, we 
propose, during the initial design to use perfect 
magnetic conductor (PMC) lid to shield the circuit 
and to consider it as an ideal packaging approach, 
which also will confine the computational domain.  
From the circuit point of view one might consider 
the PMC as an open circuit surface dual to the 
perfect electric conductor (PEC) that is a short 
circuit surface.  Note that a metal surface to a very 
good approximation can be considered a PEC in 
electromagnetic (EM) field analysis. PMC and 
PEC surfaces can be used as boundaries that limit 
the computational domain.  Since PMC could be 
considered as an open circuit, its influence on the 
printed circuit is much smaller than a PEC (i.e. a 
metal surface). Possible parallel plate waveguide 
modes will be suppressed as far as the effective 
height of the parallel plates between the ground 
PEC and the PMC is less than a quarter 
wavelength [6].  One might object on using PMC 
as it does not exist in nature, but nowadays we can 
artificially realize PMC or high impedance 
surfaces or what is referred to as artificial 
magnetic conductor (AMC) using periodic 
surfaces.  There are many ways to realize such 
surfaces, but it is important to realize it in a 
way that will not increase the losses of the 
system. Actually, the PMC lid packaging 
relates more to realizing a parallel-plate cut-
off (or stopband) between PEC and AMC, and 
different ways of realizing this are studied 
numerically in [7]. The simplest realization is 
in terms of a lid of nails or pins, for which the 
practical demonstration of usefulness to packaging 
is described in [8]. 

The PMC prepackaging is a result of research 
on soft and hard surfaces originating from a 
generalization of the corrugated surfaces used in 

corrugated horn antennas. This surface concept 
was first defined in 1988, and improved in 1990 
[9]. The hard surface was already in 1996 applied 
to realize what today is known as cloaking [10]. 
The original soft surface is a transverse PEC/PMC 
strip grid acting as an anisotropic electromagnetic 
bandgap (EBG) surface, as explained in [11] and 
[12]. The ideal PEC surface, PMC and PEC/PMC 
strip grids are in [12] referred to as canonical 
surfaces. The use of simplified canonical 
representations of advanced periodic surfaces with 
many details is very important in conceptual and 
numerical work; in conceptual work they improve 
physical understanding and creativity, and in 
numerical work they are fast and convenient to use 
in initial studies. The canonical surface concept 
has e.g. resulted in the present PMC prepackaging 
approach. Note that canonical representation of the 
EBG surface is proposed in [13], although not yet 
being so generally applicable as the PEC, PMC 
and PEC/PMC strip grid. The EBG surface can 
also be used to create parallel-plate cut-off [7]. 
The concepts of soft and hard surfaces and 
canonical surfaces are also the background of the 
gap waveguide technology, as introduced in [6], 
verified by measurements in [8] and [14], and 
studies by plane wave spectral domain solutions in 
[15] and by classical subdomain plane wave 
expansions in [16]. The latter theoretical work is 
extended to more analytic expressions in [16]. 
There exists three types of gap waveguides; ridge 
gap waveguide, groove gap waveguide and 
microstrip gap waveguide [18]. The PMC 
packaged microstrip line of the present paper is a 
kind of microstrip gap waveguide. 

  
 In this paper we perform a parametric study 

of microstrip transmission lines in the presence of 
PMC cover. We look at what is the proper 
separation distance between the microstrip lines 
and the PMC that does not affect the original 
characteristic of the microstrip lines as ideal 
transmission line. We also study the effect of the 
PMC shielding on microstrip lines that violates the 
radiation condition as provided in [19]-[20].  
The study shows how the PMC shielding removes 
such radiation condition constraints. Also, we look 
at some discontinuities that cause radiation losses 
from the circuit and how the PMC shielding also 
suppress such radiation losses. After that we 
introduce a periodic structure that is designed to 
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and where n and m are integer numbers.  

For a homogeneous cavity there exist closed form 
expressions for the resonant frequencies, which for 
the TMz case is given as: 
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Table I shows the first resonance in a cavity with 
different dimensions and different dielectric 
materials, computed from the above formulas. For 
a homogenized cavity the base dimensions of the 
cavity determine the first resonant frequency when 
the cover is PEC, but the height determines the 
first resonance frequency when the cover is PMC. 
In both cases the height must be much smaller 
than the cavity base dimensions and smaller than a 
quarter of a wave length. It is in our interest to 
show results when the cavity is partially filled with 
dielectric substrate and the separation between the 
dielectric surface and the top is small. The results 
are shown in Table 1 for different separation 

distances ranging from 2t (i.e. h = 3 mm) to 4t (i.e. 
h = 5 mm). We see that the size of the cavity base 
and the dielectric loading determines the first 
resonance for the PEC case, and again the cavity 
height and the permittivity determine the first 
resonance for the PMC case. It can also be seen 
that the resonance frequency decrease when the 
permittivity increases and when the separation 
between the substrate and the lid increases.  The 
resonances for the PMC lid case are 3 to 5 times 
higher than those of the PEC case. 

II.  PMC Packaging Examples for 
Microstrip circuits 

First, we consider a simple 50 Ω microstrip line as 
a two port device, and we use waveguide  ports in 
CST in order to have perfect match to the 
microstrip line ports. We need this perfect match 
in order to get good accuracy in determining the 
reflection coefficient and associated transmission 
losses. The computational domain is bounded by 
the radiation box as suggested by the software 
developer. Thereafter, the PMC is added with 
different separations between the substrate surface 
and the PMC. Notice that the upper bound of the 
computational domain now is bounded by the 
PMC, and there is no need for any upper radiation 
boundary. However, the side walls of the 
computational domains are still bounded by what 
is suggested by the software developer. The 
computational domain is now limited between the 
ground plane and the PMC.  This reduces the 
computational domain a lot. To make simple 
design guide, the separation distance will be 
related to the physical substrate thickness and 
transmission line width, but we have to keep in 
mind that this distance must be smaller than the 
quarter of a wavelength of the upper frequency to  

Table: I  First resonance frequency in GHz of a cavity with PEC lid and PMC lid, with a substrate thickness t =1mm  

cavity base 
a x b (mm) 

ε1 h = 5 mm h = 4 mm h = 3 mm 
PEC lid PMC lid PEC lid PMC lid PEC lid PMC lid 

 
50 x 50 

1.0 4.243 15.588 4.243 19.224 4.243 25.357 
2.3 3.994 15.329 3.930 18.781 3.820 24.281 

10.2 3.832 14.274 3.724 16.525 3.538 18.982 
 

50 x 60 
1.0 3.905 15.588 3.905 19.224 3.905 25.357 
2.3 3.677 15.260 3.618 18.729 3.517 24.246 

10.2 3.528 14.224 3.429 16.497 3.258 18.970 
 

60 x 60 
1.0 3.536 15.588 3.536 19.224 3.536 25.357 
2.3 3.329 12.277 3.275 18.677 3.184 24.211 

10.2 3.195 14.182 3.106 16.469 2.951 18.956 
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