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Abstract

This paper describes the identification of Wiener-Hammerstein models and two re-
cently suggested algorithms are applied to the SYSID’09 benchmark data. The most
difficult step in the identification process of such block-oriented models is to generate
good initial values for the linear dynamic blocks so that local minima are avoided.
Both of the considered algorithms obtain good initial estimates by using the Best
Linear Approximation (BLA) which can easily be estimated from data. Given the
BLA, the two algorithms differ in the way the dynamics are separated into two linear
parts. The first algorithm simply considers all possible splits of the dynamics. Each
of the splits is used to initialize one Wiener-Hammerstein using least-squares and the
best performing model is selected. In the second algorithm, both linear blocks are
initialized with the entire BLA model using basis function expansions of the poles
and zeros of the BLA. This gives over-parameterized linear blocks and their order is
decreased in a model reduction step. Both algorithms are explained and their prop-
erties are discussed. They both give good, comparable, models on the benchmark
data.
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1 Introduction

This paper considers the identification of Wiener-Hammerstein models. Two
recently suggested, similar, algorithms, |8| and [15,16] are applied to the data
from the benchmark session at SYSID 2009, [13].

General in system identification, the prediction error estimate gives an asymp-
totic efficient estimator when the number of estimation data goes to infinity,
see, eg, |9,17]. However, in most cases, except when the model can be ex-
pressed as linear regression, the computation of the estimate requires an iter-
ative search of the minimum of the cost function. The cost function can have
multiple minima and it is a main challenge in system identification research
to invent algorithms which can guarantee, or at least increase the chances
that the estimate converges to the global minimum. Hence, for each type
of model structure there is a need of good initialization algorithms and the
two algorithms considered in this paper deliver initialization for the Wiener-
Hammerstein model.

The Wiener-Hammerstein model consists of two linear dynamic systems with
a static nonlinearity sandwiched in between, see Figure 1. Early results about
the identification of these models can be found in [2] and [4]. More recent work
is reported in [5] and [3|. Few papers give hints how to obtain good initial es-
timates. In [6], an iterative initialization procedure is proposed which requires
specially designed periodic excitation signals. This experimental requirement
is loosened in [12]|. Other methods circumvent the need for initial values by
performing a large number of experiments [22|, or by restricting the allowed
model complexity [1], [18], [19].

Fig. 1. A Wiener-Hammerstein model structure.

The considered algorithms, [8] and [15,16], rely on the fact that the BLA
model is a consistent estimate of the concatenation of the two linear blocks,
see [11]. This result assumes that the data indeed was generated by a Wiener-
Hammerstein process and some additional assumption on the data and the
system, for instance that the linear parts need to be stable. Hence, given the
BLA, the remaining problem is to divide the dynamics into two parts, and to
estimate the nonlinearity.

The first algorithm, [15,16], is a kind of brute-force method where the dy-
namics are split in all possible ways, and for all possible splits a Wiener-



Hammerstein model is estimated by fitting the (linear) parameters of the
nonlinear part using least-squares. The number of splits might be high, but
since least-squares is used in the initialization, fairly large number of splits
can be handled within a reasonable time. In [15,16] it is argued that problems
where the order of the BLA model is up to about 10 can be handled. Moreover,
this initialization procedure is asymptotic consistent in the number of data.

The second algorithm, [8], circumvent the problem with many splits of the
BLA by offering the whole BLA model to both blocks. The initialization is for-
mulated as a Total-Least-Squares problem (TLS) in between the linear blocks.
This is done by filtering the input signal through the basis functions of the
first linear block, based on the poles of the BLA, and filtering the output
through the basis functions describing the inverse of the BLA, based on the
zeros of the BLA. This approach does not have the drawback with exponen-
tial increasing computational time with respect to the model order, as the
first algorithm has. However, it has the drawback that the linear blocks will
have higher order than necessary, but model order reduction techniques can
be applied. Also, the solution is in general not consistent if there is noise on
the output.

In their general forms, none of the algorithms can handle the case where there
is pole-zero cancellation in the BLA models i.e., when the pole and the zero
come from different linear blocks.

The paper is organized as follows. A description of the problem setting and
the considered model structure is given in Section 2. This is followed by an
overview of the two algorithms in Section 3. Then, in Section 4 and 5 the
main steps of both algorithms are explained, respectively. In Section 6 the
result on the benchmark data is given and in Section 7 the paper is concluded.

2 Problem Formulation

The problem formulation is divided into three steps, the definition of the model
structure, the assumptions on the data, and the definition and computation
of the estimate.

2.1 Model structure

The concerned model structure is of the Wiener-Hammerstein type and is
described by



2(t) = f(8, 2(1)) (1)
§(t)=Ga(g™",7) x(t)

where G1(¢™1, @) and G5(g™!, ) are linear time invariant transfer functions in
the delay operator ¢~!, and parameterized with o and ~, respectively. §(t) is
the model output, the prediction of the system output y(¢), and z(¢) and x(t)
are model internal variables. The function f is a static nonlinearity parame-
terized with [.

All parameters of the model structure are stored in a common parameter
vector

0 =la, B, 7] (2)

The first linear part of the model can be described as
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The static nonlinearity is described as a basis function expansion
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where f; are basis functions, and 3 has been divided into 3!, which enters
linearly in f, and 32, which enters non-linearly in f. Often there are several
parameters entering nonlinearly for each basis function, i.e., each 37, contains
several parameters. With this general description of the static nonlinearity
most specific basis function expansions can be described with a specific choice
of the basis f;. If, for example, a polynomial model is chosen, then

f(B,2) =B+ Bz + Boz” + ... B2"
and in this case there are no parameters in 2.
To define a model in this model structure, not only the parameters need to

be determined but also the orders of the sub-models, and the type of basis
function expansion in f.



2.2 Data

For the estimation of the parameters in the model (1) a data set is assumed
to be available, {u(t),y(t)}i*, of N input u(t) and output y(¢) samples.

2.8 FEstimation

A standard prediction error approach is assumed to be used to define the
estimate 0y of the parameter vector 6 for the model (1) based on the data set
{u(t),y(t)}X,. It is based on minimizing the prediction error

5(t> 9) = y(t) - g(t’ 9)) (5)

i.e., the difference between the measured output y(¢) and the prediction ac-
cording to (1). This is done by using a criterion of fit

N

1
Vn(0) = N 252(t> 0) (6)
t=1
and then defining the estimate as
Oy = arg mein Vn(0). (7)

Other criteria than the sum of squared errors can be used and in, eg, [9] it is
explained how Vi () can be defined so that the Maximum Likelihood estimate
is obtained.

After defining estimate (7), it remains to compute it. This must be done using
a gradient based iterative algorithm since the model is not a linear regression
model. That is, given a start value 8, iterate

. . AV (6)
pi+h) — ) _ .= "N
R 70 (8)

until convergence. The matrix R; is to modify the search direction and the
step size in order to assure downhill steps. Depending on how R; is chosen, (8)
describes a wide class of well-known standard algorithms like Gauss-Newton
and Levenberg-Marquardt algorithms. Also the algorithm used in [23] can be
obtained by choosing R; to be the Gauss-Newton approximation with some
of the smallest eigenvalues truncated.

All three blocks of the model structure (1) contain a gain parameter, and two
of them are typically fixed in the iterative minimization, e.g., b} and b3.



Typically, Viy(0) can have many minima and the success of the minimization
depends on the initial estimate #(°). The considered algorithms deliver such
initial estimates and on the benchmark example it is shown that among many
local minima they find good ones.

3 The Algorithms

Here, the main steps of the considered algorithms are given, for more detailed
explanations, see [8] and [15,16].

3.1 Best Linear Approximation

Both algorithms start by estimating a linear model. Theory for linear system
identification is a fairly mature area, well covered in books like, e.g., [9,17],
focusing on time domain methods and [11], focusing on frequency domain
methods.

Only the plant model is of interest. One can, hence, constrain to evaluate
output error models. If Box-Jenkins models, or ARMAX models are used,
only the estimated plant model is retained. Also frequency domain methods
can be used to obtain the model. In that case a non-parametric noise weighting
can be used to improve the quality of the initial estimate. Hence, this step gives
a linear model described as

Bla) X ba
A(q) Z?io ajq?

GBLA(Qa 9) = (9)

where a9 = 1.
3.2 Initialization of the Model Structure

This is the step where the two algorithms differ. The two following sections
describe the initialization for each of the algorithms.

3.8 Fit All Parameters Using Prediction Error

The final step of both algorithms is to apply the iterative minimization (8)
to all parameters.



4 Initialization: Algorithm 1

The algorithm consists of the following steps.

1. Split CA?BQA model into all possible Gy (¢~1) and Gy (g ™) so that Gpra(¢™') =
Gi(qg")Galg™).

Poles and zeros of the linear model need to be palculatgd. These are then
divided in all possible ways into two sub-models GG; and Gs.

2. For all partitions of the linear model, {Gl, ég}, use u(t) and G to decide
values for 32 and then LS to fit the linear parameters, 8!, in the nonlinearity
as initialization.

The position parameters 32 for the basis functions are decided using the dis-
tribution of the input to the nonlinearity {z(t) = G1(q~")u(t)}Y,.

Minimizing (6) with respect to the parameters ' in (4) is straightforward by
first writing (1), y(¢,0),

0) =3 Ao (AR 20) = 8l (10)

(Galg™ ) fo(B3, 2(1) - Gala™ ) fa(Br, (1)) (11)

Since (10) is a linear regression, the LS estimate is given by

_ (% ;ww(w) ¥ 2 Ou) (12

3. Order the initialized models with respect to their initial fit and select the
best one.

This means that Vi (0), (6) is calculated for all initializations and the models
are ranked using this measure.

5 Initialization: Algorithm 2

Now, instead of considering all possible splits of the poles and zeros of Gy 4
into the two linear blocks, as in Algorithm 1, all poles and zeros will initially



be “offered” to both linear blocks, and then it will be estimated which ones
are needed.

5.1 Constructing the basis functions from Gpra

Estimates of the internal signals z and = can be expressed as
2(t) = Grul(t) (13)

z(t) =Gy y(1).

Further, assuming that the static nonlinearity can be written as a concatena-
tion of two static nonlinear functions f; and f5 such that

fl@) = fy ' (fi(2)). (14)
Then, neglecting the influence of disturbances one obtains
fi(Gru(t) = f2(G3 y(1)) (15)

and this algorithm is based on the fact that (15) can be approximately solved
as a linear-in-the-parameters TLS problem. G5 is inverted in the second sub-
system, since this system is approached from the output y. The aim is to write
G and @2_1 as a linear combination of basis functions containing the poles
and the zeros of Ggy 4, respectively.

From the partial fraction expansion of Gpp4(z,6) and G5} ,(2,6), the follow-
ing basis functions for G4 and G5! are deduced, respectively,

Gy Wiy, = {# q-ﬂ} (16)

. . 1 »
Gyl {H ), = {1_716_17 q ]} (17)

with p; the poles and 7, the zeros of the BLA, (9), and i = 0,...,n,, k =
0,...,np, and j = 0, ..., max(n,, np). For convenience, the symbols W; and H;
for the basis functions are numbered with a single index up to r» and s which
definitions follows from the definition of the basis functions. It is important
to note that in both sets of basis functions extra delay terms are included up
to the maximum order which was used to estimate Ggr4 parametrically. It
can easily be shown that generally it is not sufficient to take only the basis
functions deduced from the partial fraction expansion.

Note that for simplicity we restrict ourselves to simple poles/zeros, in order
to obtain a real-valued estimate for G; and G5'. The basis functions with
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Fig. 2. Model structure leading to a problem linear-in-the-parameters: each subsys-
tem consists of basis functions and a multiple input, single output static nonlinearity.

complex conjugate poles/zeros are merged together, resulting in a second order
fraction.

To summarize, G, and G’; ! are written as a linear combination of first and
(possibly) second order fractions and pure delay terms,

él = zzlélL(l)VVz

. . (18)
Gy' = T, 050) H,
with W; and H; representing the basis functions as described in (16) and (17),
respectively. The goal is now to find the proper coefficients 0% of these basis
functions.

5.2 Solving a problem linear-in-the-parameters

We now consider the model structure in Figure 2 to model the relation in
(15). By making a proper choice for the nonlinearities g; and g, this model
structure leads to a problem that is linear-in-the-parameters (9%, 0¥*) which
can easily be solved.

To obtain expressions for z; and 2y, the nonlinearities g, and g, in Figure 2
are approximated by a multi-variable polynomial consisting of a linear and a
nonlinear part:

g1(1, 07, 02'7) ~ PH(@)0y + P (w)or™
92(3, 05, 65") ~ PE(g)03 + P ()65

with @ = [ty, ..., u,] and § = [91, ..., Us], the output of the first and second set
of basis functions, respectively. The column vectors 87 and N (with i = 1,2)

(19)



are the unknown parameters, corresponding to the linear and nonlinear part
of the multi-variable polynomial, respectively. The row vector PN%(.) consists
of all the distinct nonlinear monomials up to a certain degree d > 1 which is
chosen by the user.

Using the following definitions

and

P =[PHE) PYME)]  E=1,7 (21)

the equality requirement z; = z3 can be formulated as a TLS problem [20)],

0
P —PB)| | =P8=0 (22)
02
with P = [P; — Pj] and 6 = [§, ; 6,]. The unknown parameters 6 are

estimated by performing a Singular Value Decomposition (SVD) [7] of the
total regressor matrix P. The parameter estimate ¢ is then given by the right
singular vector corresponding to the smallest singular value of P.

5.3 Orthogonality in the regressor matriz P

In practice, the nonlinear terms in (19) will also contribute to the linear blocks
Gy and G5t in (18) via their contribution to the best linear approximation.
Indeed, a part of the linear system information is captured by the coefficients
ONL of the nonlinear regressors. In order to concentrate the linear behavior
in the coefficients corresponding to the linear regressors, the nonlinear regres-
sors in the matrices P)X (@) and P)NL(g) are made orthogonal to the linear
regressors in PL (@) and PL(j), respectively. This issue is tackled numerically
using a thin QR decomposition [7], prior to the SVD, on the regressor matrix
corresponding to the left and the right subsystem separately (i.e., P; and Py,
respectively).

10



5.4 Composing the initial estimates

The estimated parameters 6L are the coefficients of the linear basis functions
W; and H;. Consequently, G1 and G5 can be composed parametrically to the
form (1) by calculating the linear combination of the basis functions in (18).
We can also calculate a non-parametric estimate of the system’s intermediate
signals (up to a scale factor),

N>
I
<

P"(@)0}

A (23)
PE(3)63

=
Il

Between Z and z, the same nonlinear relation exists as between the true inter-
nal signals z and x (again, up to a scale factor). To obtain also a parametric
initial estimate for the static nonlinearity f(.), any basis function expansion
of the form (4) can be fit to the {2, 2} data.

6 Experimental Results

The presented identification procedures are now applied to input/output mea-
surements obtained from the benchmark data and evaluation follows the spec-
ifications in [13].

6.1 Description of the System

The device under test is an electric nonlinear circuit with a Wiener-Hammerstein
structure (see Figure 3), designed by Gerd Vandersteen [21|. The system is
composed of a static nonlinear block, sandwiched between two linear dynamic
blocks. The first linear dynamic system is a third order Chebyshev low-pass
filter with a 0.5 dB ripple and a pass-band up to 4.4 kHz. The static nonlinear-
ity is realized by two resistors and a diode. The second linear dynamic system
is a third order inverse Chebyshev low-pass filter with a -40 dB stop-band,
starting at 5 kHz. This filter is designed to have a zero in the frequency band
of interest.

6.2 Description of the Data

The system was excited with a filtered Gaussian excitation signal with a cut-
off frequency of 10 kHz. This noise sequence consisted of N = 188000 samples

11



Fig. 3. Experimental Wiener-Hammerstein system.

Amplitude [V]
o

0 1 2 3
Time [s]

Fig. 4. Gaussian noise excitation signal containing an estimating set (light grey) , a
validation set (dark grey) and a benchmark test set (black).

as shown in Figure 4. The input and output signal were measured with a
sample frequency of 51.2 kHz. The output signal had an RMS value of 242.3
mV.

We discarded the first 5000 data samples of the input since they only consist
of quantization noise; no excitation was present here. The remaining part is
split into two data sets: the estimation data (N = 5001, ...,100000) and the
test data (N = 100001, ...,188000) which is used to benchmark the quality
of the identified Wiener-Hammerstein models.

6.3 Best Linear Model

Best linear model, obtained by standard system identification algorithms, is
a 6th order model. It gives an RMSE of 56.2 mV on the raw test data, and
an RMSE of 43.7 mV if the DC-offset is first removed from the test data. The
poles and zeros of the model are depicted in Figure 5. Two pairs of zeros lay
close to the unit circle and potentially they can both explain the transmission
zero. The placement of the poles shows the low pass character of the model.

12



Fig. 5. Poles and zeros of the initial 6th order linear model. One zero, at 3.5, is
outside the plot.

6.4 Algorithm 1

The linear model is now split into to two sub-models in all possible ways with
the constraint that the order of each linear sub-model should be at least one,
and it should be proper. This gives 42 pairs of linear sub-models. For each pair
of sub-models a first order spline with eight knots is initialized between the
linear subsystems. This gives a local linear nonlinearity with nine segments.
The knot position, corresponding to the parameters 32 in (4), are chosen so
that equally many data points are placed in each segment. The linear spline
parameters, 3! in (4), are then fitted using least squares for all of the models.
The resulting fit of the 42 initialized models is depicted in Figure 6 with dots
marks. The best initialized model obtained RMSE 6.4 mV, more than 6 times
better than the linear model.

0.020} Coand u .

0010+ o ] EE = " m

[ ]
0.005

0.002 -

u
0.001 -

Fig. 6. RMSE computed on test data for all 42 initialized models sorted according
to the fit after initialization. The points indicates the RMSE (in Volts) after ini-
tialization and the squares indicates the value after that all parameters have been
fitted.
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Normally the best initialized model is selected and only for that one, all pa-
rameters are fitted simultaneously. Here, for illustrative reasons the general
prediction error minimization is applied to all the parameters in the mod-
els, ie, the equations in Section 2.3 are applied to all 42 models. In (8) a
Levenberg-Marquardt algorithm is used, and the implementation is described
in [14]. Figure 6 shows the fit, RMSE, after training with large squares. For
each of the 42 partitions of the BLA model, the fit after initialization, and
after fitting all parameters are shown. The best initialized model also gives
the best fit after minimizing with respect to all parameters, with RMSE 0.31
mV. It can also be seen in the figure that the final fit is very different for
some models with similar fit at the initializations. This happens when the
linear blocks contain the wrong number of poles and zeros since this cannot
be compensated for by adapting all parameters.

Consider now the quality of the initialized linear blocks. Figure 7 shows this
for the best initialized model, and it is also shown how these change after
that all parameters have been fitted. The poles in the first linear part have
changed, but the ones in the second part seem to have been quite accurate
from the beginning. Also, only one zero pair remains close to the unit circle,
responsible for the transmission zero.

Initialization

05+ X

First linear part
' After traini

Fig. 7. Upper two plots: Partitioning of the poles (x) and the zeros (o) of the linear
model which gave the best initialization. Lower two plots: Positions of the poles and
zeros after that all parameters have been fitted.

Are there any local minima? Yes, this can be seen by looking at a close up of
Figure 6 for the 15 best models of the original 42 models. It is shown shown in
Figure 8. Apparently, all of these 15 models represent different local minima

14



although they all have impressive good fit on the data. Hence, there are plenty
of local minima.

0.0010 -
0.0008 -
0.0006 -
0.0004 |y x x XX XXX
0.0002 ©

X
X X X X

2 4 6 8 1012 14

Fig. 8. RMSE of the 15 best models.

Including more flexibility in the nonlinear block improved the fit slightly but
without any remarkable change. The RMSE decreased from 31 for 8-knots
to 27 for the 24 knot-nonlinearity on the test data. In Figure 9 the 24 knot-
nonlinearity is shown together with the distribution of the input data to the
nonlinearity. In that plot it is also illustrated how the input data to the non-
linearity is distributed.

Fig. 9. Estimated nonlinearity, final model with 24 knots together with the distri-
bution of input data to the nonlinearity.

The best 8-knot model contains 30 parameters, 17 of them for the nonlinear
spline. The 24 knot-nonlinearity contains 62 parameters, of them 49 in the
nonlinearity.

6.5 Algorithm 2

The algorithm starts from the linear model described in Section 6.3. The static
nonlinearities g; and g, are approximated by a multi-variable polynomial of
degree 3 (d = 3 in (19)). For the parametrisation of the static nonlinearity, a

15



median method [12] was used. In this method, the 2, & data is divided into 20
vertical slices such that each slice consists of an equal amount of data samples.
Per slice, the median value of the data is calculated (in the Z direction). Next,
a spline is fit through the calculated median values in order to parameterize
the static nonlinearity.

To reduce the number of regressors in the initialization method, the assump-
tion was made that in each linear dynamic block at least one pole/zero is
present. As a consequence, in the sets of basis functions delay terms ¢~/ are
included only up to j = max(ny,n,) — 1 instead of j = max(ny,n,). This
decreases the number of linear regressors by two (and hence the number of
nonlinear regressors), without compromising on the flexibility of the model.

6.6 Reduction of linear regressors

In order to reduce the number of model parameters, linear basis functions can
be removed from (18). Unfortunately, it is unknown in advance which poles,
zeros or delay terms should remain in the model. To tackle this problem, a
scan is performed to verify the effect of removing a basis function (and all
related nonlinear regressors). During the first scan run, each basis function is
alternately removed, and the best performing model (in RMS sense) is then
selected. A second scan run is then performed to find the following regressor
that should be omitted, and so on. After each scan run, a linear regressor is
permanently deleted, resulting in an initialized WH model. All these models
are then ranked with respect to their RMSE.

The RMSE of the obtained initialized WH models as a function of the number
of discarded linear regressors is shown in Figure 10 using the 6th order linear
model as a starting point in the initialization. It can be seen that up to 12
linear regressors can be discarded without affecting the RMSE of the model
too much.

6.7 Nonlinear Optimization

Next, a selection of the initialized models given in Figure 10 are optimized,
in the quest for the best nonlinear model.

Up to now, the static nonlinearity was parameterized using the median method,
followed by a spline fit. In the nonlinear optimization, another parameteriza-
tion for the static nonlinearity is considered: a piece-wise linear approximation
realized by so-called hinge functions [23] of various knots (4 to 8). Furthermore,
the order of the numerator and denominator of the linear dynamic blocks is

16
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Fig. 10. RMSE of the initialized models as a function of the number of deleted linear
regressors, using the 6th order linear model.

always set equal, in order to give the model enough flexibility. For instance,
if the initialization method yields a 2/4 block (i.e., n, = 2 and n, = 4), then
a 4/4 block (with zero coefficients where necessary) will be given as an input
to the optimization algorithm. In practice, it turned out that this flexibility
yielded much better results at the cost of higher model orders for the linear
blocks.

Given the different options described above, a number of candidate nonlinear
models are obtained.

The best nonlinear model was obtained when deleting 8 linear regressors and
using hinge functions with 8 knots for the parameterization of the static non-
linearity. This model has a validation RMSE of 0.30 mV and contains 64 model
parameters. The simulation error (light grey) of this model is shown in Figure
11, together with the modeled output signal (black).

Figure 12 shows the spectra of the modeled output signal (black), the linear
simulation error (dark grey), and the nonlinear simulation error (light grey).
In the pass-band of the DUT, the nonlinear model error is more than 20 dB
lower than the linear model error.

6.8 Discussion

The best obtained nonlinear models resulting from the two initialization
algorithms have an RMSE around 0.30 mV on the test data. Although this is
an impressive improvement compared to the linear model, this is still about
30% above the noise level, estimated to about RMS 0.19 mV on the first part
of the data where the input signal is constant.
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Fig. 11. Benchmark validation result: modeled output (black) and model error of
the best linear model (dark grey) and model error of the best nonlinear model (light
grey). All good models gave a result like this.
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Fig. 12. DFT spectra of the modeled output signal (black); linear model error (dark
grey); and nonlinear model error (light grey). All good models gave a result like
this.

The performance of these models can be compared to the best results at
SYSID’09. In [10] a best fit egprsr = 0.42mV was obtained with a polynomial
state space model containing 797 parameters. The same structure as used
in this paper was also used in [23] and they obtained an RMSE 0.49 mV.
However, they did not have any initialization algorithm for the parameters so
their solution is probably a local minimum. They also study how the solution
converges to different minima depending on the randomly chosen initialization.
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7 Conclusions

Two recently suggested initialization algorithms for Wiener-Hammerstein
models have been applied to the benchmark problem from SYSID 2009. They
both start with a linear model and then divide the dynamics into two linear
blocks in different ways. Given good initializations of the linear blocks, it is
straight-forward to obtain an initial estimate of the static nonlinear block.

The result of the two algorithms have been compared and they both give
good modelling results. It has been shown that there are many local minima
corresponding to good models. However, one of them is better than the other,
and both algorithms find that minimum. Still, of course, there is no guarantee
that the global minimum has been found.
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