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bVrije Universiteit Brussel, Faulty of Engineering, Department of FundamentalEletriity and Instrumentation, Pleinlaan 2, 1050 Brussels, BelgiumAbstratThis paper desribes the identi�ation of Wiener-Hammerstein models and two re-ently suggested algorithms are applied to the SYSID'09 benhmark data. The mostdi�ult step in the identi�ation proess of suh blok-oriented models is to generategood initial values for the linear dynami bloks so that loal minima are avoided.Both of the onsidered algorithms obtain good initial estimates by using the BestLinear Approximation (BLA) whih an easily be estimated from data. Given theBLA, the two algorithms di�er in the way the dynamis are separated into two linearparts. The �rst algorithm simply onsiders all possible splits of the dynamis. Eahof the splits is used to initialize one Wiener-Hammerstein using least-squares and thebest performing model is seleted. In the seond algorithm, both linear bloks areinitialized with the entire BLA model using basis funtion expansions of the polesand zeros of the BLA. This gives over-parameterized linear bloks and their order isdereased in a model redution step. Both algorithms are explained and their prop-erties are disussed. They both give good, omparable, models on the benhmarkdata.Key words: Wiener-Hammerstein systems, Hammerstein systems, Wiener systems,nonlinear system identi�ation, initial estimates, best linear approximation
Email addresses: Jonas.Sjoberg�halmers.se (J. Sjöberg),Lieve.Lauwers�vub.a.be (L. Lauwers), Johan.Shoukens�vub.a.be(J. Shoukens).Preprint submitted to Elsevier Siene 19 January 2012



1 IntrodutionThis paper onsiders the identi�ation of Wiener-Hammerstein models. Tworeently suggested, similar, algorithms, [8℄ and [15,16℄ are applied to the datafrom the benhmark session at SYSID 2009, [13℄.General in system identi�ation, the predition error estimate gives an asymp-toti e�ient estimator when the number of estimation data goes to in�nity,see, eg, [9,17℄. However, in most ases, exept when the model an be ex-pressed as linear regression, the omputation of the estimate requires an iter-ative searh of the minimum of the ost funtion. The ost funtion an havemultiple minima and it is a main hallenge in system identi�ation researhto invent algorithms whih an guarantee, or at least inrease the hanesthat the estimate onverges to the global minimum. Hene, for eah typeof model struture there is a need of good initialization algorithms and thetwo algorithms onsidered in this paper deliver initialization for the Wiener-Hammerstein model.The Wiener-Hammerstein model onsists of two linear dynami systems witha stati nonlinearity sandwihed in between, see Figure 1. Early results aboutthe identi�ation of these models an be found in [2℄ and [4℄. More reent workis reported in [5℄ and [3℄. Few papers give hints how to obtain good initial es-timates. In [6℄, an iterative initialization proedure is proposed whih requiresspeially designed periodi exitation signals. This experimental requirementis loosened in [12℄. Other methods irumvent the need for initial values byperforming a large number of experiments [22℄, or by restriting the allowedmodel omplexity [1℄, [18℄, [19℄.
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HtLFig. 1. A Wiener-Hammerstein model struture.The onsidered algorithms, [8℄ and [15,16℄, rely on the fat that the BLAmodel is a onsistent estimate of the onatenation of the two linear bloks,see [11℄. This result assumes that the data indeed was generated by a Wiener-Hammerstein proess and some additional assumption on the data and thesystem, for instane that the linear parts need to be stable. Hene, given theBLA, the remaining problem is to divide the dynamis into two parts, and toestimate the nonlinearity.The �rst algorithm, [15,16℄, is a kind of brute-fore method where the dy-namis are split in all possible ways, and for all possible splits a Wiener-2



Hammerstein model is estimated by �tting the (linear) parameters of thenonlinear part using least-squares. The number of splits might be high, butsine least-squares is used in the initialization, fairly large number of splitsan be handled within a reasonable time. In [15,16℄ it is argued that problemswhere the order of the BLA model is up to about 10 an be handled. Moreover,this initialization proedure is asymptoti onsistent in the number of data.The seond algorithm, [8℄, irumvent the problem with many splits of theBLA by o�ering the whole BLA model to both bloks. The initialization is for-mulated as a Total-Least-Squares problem (TLS) in between the linear bloks.This is done by �ltering the input signal through the basis funtions of the�rst linear blok, based on the poles of the BLA, and �ltering the outputthrough the basis funtions desribing the inverse of the BLA, based on thezeros of the BLA. This approah does not have the drawbak with exponen-tial inreasing omputational time with respet to the model order, as the�rst algorithm has. However, it has the drawbak that the linear bloks willhave higher order than neessary, but model order redution tehniques anbe applied. Also, the solution is in general not onsistent if there is noise onthe output.In their general forms, none of the algorithms an handle the ase where thereis pole-zero anellation in the BLA models i.e., when the pole and the zeroome from di�erent linear bloks.The paper is organized as follows. A desription of the problem setting andthe onsidered model struture is given in Setion 2. This is followed by anoverview of the two algorithms in Setion 3. Then, in Setion 4 and 5 themain steps of both algorithms are explained, respetively. In Setion 6 theresult on the benhmark data is given and in Setion 7 the paper is onluded.2 Problem FormulationThe problem formulation is divided into three steps, the de�nition of the modelstruture, the assumptions on the data, and the de�nition and omputationof the estimate.2.1 Model strutureThe onerned model struture is of the Wiener-Hammerstein type and isdesribed by 3



z(t) =G1(q
−1, α) u(t)

x(t) = f(β, z(t)) (1)
ŷ(t)=G2(q

−1, γ) x(t)where G1(q
−1, α) and G2(q

−1, γ) are linear time invariant transfer funtions inthe delay operator q−1, and parameterized with α and γ, respetively. ŷ(t) isthe model output, the predition of the system output y(t), and z(t) and x(t)are model internal variables. The funtion f is a stati nonlinearity parame-terized with β.All parameters of the model struture are stored in a ommon parametervetor
θ = [α, β, γ]. (2)The �rst linear part of the model an be desribed as

G1(q
−1, α) =

b10 + b11q
−1 + · · ·+ b1mb1

q−mb1

1 + a11q
−1 + · · ·+ a1ma1

q−ma1

(3)where α = [b10, . . . , b
1
mb1

, a11, . . . , a
1
ma1

] , and G2(q
−1, γ) is desribed similarlywith γ = [b20, . . . , b

2
mb2

, a21, . . . , a
2
ma2

].The stati nonlinearity is desribed as a basis funtion expansion
f(β, z)=

n
∑

k=1

β1
kfk(β

2
k , z) (4)

β= [β1, β2]T =

[β1
1 , . . . , β

1
n, β

2
1 , . . . , β

2
n]

Twhere fk are basis funtions, and β has been divided into β1, whih enterslinearly in f , and β2, whih enters non-linearly in f . Often there are severalparameters entering nonlinearly for eah basis funtion, i.e., eah β2
k , ontainsseveral parameters. With this general desription of the stati nonlinearitymost spei� basis funtion expansions an be desribed with a spei� hoieof the basis fk. If, for example, a polynomial model is hosen, then

f(β, z) = β1
0 + β1

1z + β1
2z

2 + . . . β1
nz

nand in this ase there are no parameters in β2.To de�ne a model in this model struture, not only the parameters need tobe determined but also the orders of the sub-models, and the type of basisfuntion expansion in f . 4



2.2 DataFor the estimation of the parameters in the model (1) a data set is assumedto be available, {u(t), y(t)}Nt=1 of N input u(t) and output y(t) samples.2.3 EstimationA standard predition error approah is assumed to be used to de�ne theestimate θ̂N of the parameter vetor θ for the model (1) based on the data set
{u(t), y(t)}Nt=1. It is based on minimizing the predition error

ε(t, θ) = y(t)− ŷ(t, θ), (5)i.e., the di�erene between the measured output y(t) and the predition a-ording to (1). This is done by using a riterion of �t
VN(θ) =

1

N

N
∑

t=1

ε2(t, θ) (6)and then de�ning the estimate as
θ̂N = argmin

θ
VN(θ). (7)Other riteria than the sum of squared errors an be used and in, eg, [9℄ it isexplained how VN(θ) an be de�ned so that the Maximum Likelihood estimateis obtained.After de�ning estimate (7), it remains to ompute it. This must be done usinga gradient based iterative algorithm sine the model is not a linear regressionmodel. That is, given a start value θ(0), iterate

θ(i+1) = θ(i) − Ri

dVN(θ)

dθ
(8)until onvergene. The matrix Ri is to modify the searh diretion and thestep size in order to assure downhill steps. Depending on how Ri is hosen, (8)desribes a wide lass of well-known standard algorithms like Gauss-Newtonand Levenberg-Marquardt algorithms. Also the algorithm used in [23℄ an beobtained by hoosing Ri to be the Gauss-Newton approximation with someof the smallest eigenvalues trunated.All three bloks of the model struture (1) ontain a gain parameter, and twoof them are typially �xed in the iterative minimization, e.g., b10 and b20.5



Typially, VN(θ) an have many minima and the suess of the minimizationdepends on the initial estimate θ(0). The onsidered algorithms deliver suhinitial estimates and on the benhmark example it is shown that among manyloal minima they �nd good ones.3 The AlgorithmsHere, the main steps of the onsidered algorithms are given, for more detailedexplanations, see [8℄ and [15,16℄.3.1 Best Linear ApproximationBoth algorithms start by estimating a linear model. Theory for linear systemidenti�ation is a fairly mature area, well overed in books like, e.g., [9,17℄,fousing on time domain methods and [11℄, fousing on frequeny domainmethods.Only the plant model is of interest. One an, hene, onstrain to evaluateoutput error models. If Box-Jenkins models, or ARMAX models are used,only the estimated plant model is retained. Also frequeny domain methodsan be used to obtain the model. In that ase a non-parametri noise weightingan be used to improve the quality of the initial estimate. Hene, this step givesa linear model desribed as
ĜBLA(q, θ) =

B(q)

A(q)
=

∑nb

i=0 biq
−i

∑na

j=0 ajq
−j

(9)where a0 = 1.3.2 Initialization of the Model StrutureThis is the step where the two algorithms di�er. The two following setionsdesribe the initialization for eah of the algorithms.3.3 Fit All Parameters Using Predition ErrorThe �nal step of both algorithms is to apply the iterative minimization (8)to all parameters. 6



4 Initialization: Algorithm 1The algorithm onsists of the following steps.1. Split ĜBLA model into all possible Ĝ1(q
−1) and Ĝ2(q

−1) so that ĜBLA(q
−1) =

Ĝ1(q
−1)Ĝ2(q

−1).Poles and zeros of the linear model need to be alulated. These are thendivided in all possible ways into two sub-models Ĝ1 and Ĝ2.2. For all partitions of the linear model, {Ĝ1, Ĝ2}, use u(t) and Ĝ1 to deidevalues for β2 and then LS to �t the linear parameters, β1, in the nonlinearityas initialization.The position parameters β2 for the basis funtions are deided using the dis-tribution of the input to the nonlinearity {z(t) = Ĝ1(q
−1)u(t)}Nt=1.Minimizing (6) with respet to the parameters β1 in (4) is straightforward by�rst writing (1), ŷ(t, θ),

ŷ(t, θ) =
n
∑

k=1

β1
kĜ2(q

−1, γ)fk(β
2
k , z(t)) = β1Tϕ(t) (10)where

ϕT (t) =

[Ĝ2(q
−1, γ)f0(β

2
0 , z(t)), . . . , Ĝ2(q

−1, γ)fn(β
2
n, z(t))]. (11)Sine (10) is a linear regression, the LS estimate is given by

β̂1 =

(

1

N

N
∑

t=1

ϕ(t)ϕT (t)

)

−1
1

N

N
∑

t=1

ϕT (t)y(t). (12)3. Order the initialized models with respet to their initial �t and selet thebest one.This means that VN(θ), (6) is alulated for all initializations and the modelsare ranked using this measure.5 Initialization: Algorithm 2Now, instead of onsidering all possible splits of the poles and zeros of GBLAinto the two linear bloks, as in Algorithm 1, all poles and zeros will initially7



be �o�ered� to both linear bloks, and then it will be estimated whih onesare needed.5.1 Construting the basis funtions from GBLAEstimates of the internal signals z and x an be expressed as
z(t) = G1 u(t) (13)
x(t) = G−1

2 y(t).Further, assuming that the stati nonlinearity an be written as a onatena-tion of two stati nonlinear funtions f1 and f2 suh that
f(x) = f−1

2 (f1(x)). (14)Then, negleting the in�uene of disturbanes one obtains
f1(G1 u(t)) = f2(G

−1
2 y(t)) (15)and this algorithm is based on the fat that (15) an be approximately solvedas a linear-in-the-parameters TLS problem. G2 is inverted in the seond sub-system, sine this system is approahed from the output y. The aim is to write

Ĝ1 and Ĝ−1
2 as a linear ombination of basis funtions ontaining the polesand the zeros of GBLA, respetively.From the partial fration expansion of ĜBLA(z, θ) and Ĝ−1

BLA(z, θ), the follow-ing basis funtions for Ĝ1 and Ĝ−1
2 are dedued, respetively,

Ĝ1 : {Wi}
r
i=1 =

{

1

1− ρiq−1
, q−j

} (16)
Ĝ−1

2 : {Hi}
s
i=1 =

{

1

1− ηkq−1
, q−j

} (17)with ρi the poles and ηk the zeros of the BLA, (9), and i = 0, ..., na, k =
0, ..., nb, and j = 0, ...,max(na, nb). For onveniene, the symbols Wi and Hifor the basis funtions are numbered with a single index up to r and s whihde�nitions follows from the de�nition of the basis funtions. It is importantto note that in both sets of basis funtions extra delay terms are inluded upto the maximum order whih was used to estimate GBLA parametrially. Itan easily be shown that generally it is not su�ient to take only the basisfuntions dedued from the partial fration expansion.Note that for simpliity we restrit ourselves to simple poles/zeros, in orderto obtain a real-valued estimate for G1 and G−1

2 . The basis funtions with8
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Fig. 2. Model struture leading to a problem linear-in-the-parameters: eah subsys-tem onsists of basis funtions and a multiple input, single output stati nonlinearity.omplex onjugate poles/zeros are merged together, resulting in a seond orderfration.To summarize, Ĝ1 and Ĝ−1
2 are written as a linear ombination of �rst and(possibly) seond order frations and pure delay terms,










Ĝ1 =
∑r

i=1 θ̂
L
1 (i)Wi

Ĝ−1
2 =

∑s
i=1 θ̂

L
2 (i)Hi

(18)with Wi and Hi representing the basis funtions as desribed in (16) and (17),respetively. The goal is now to �nd the proper oe�ients θL of these basisfuntions.5.2 Solving a problem linear-in-the-parametersWe now onsider the model struture in Figure 2 to model the relation in(15). By making a proper hoie for the nonlinearities g1 and g2, this modelstruture leads to a problem that is linear-in-the-parameters (θL, θNL) whihan easily be solved.To obtain expressions for z1 and z2, the nonlinearities g1 and g2 in Figure 2are approximated by a multi-variable polynomial onsisting of a linear and anonlinear part:
g1(ũ, θ

L
1 , θ

NL
1 ) ≈ PL(ũ)θL1 + PNL

d (ũ)θNL
1

g2(ỹ, θ
L
2 , θ

NL
2 ) ≈ PL(ỹ)θL2 + PNL

d (ỹ)θNL
2

(19)with ũ = [ũ1, ..., ũr] and ỹ = [ỹ1, ..., ỹs], the output of the �rst and seond setof basis funtions, respetively. The olumn vetors θLi and θNL
i (with i = 1, 2)9



are the unknown parameters, orresponding to the linear and nonlinear partof the multi-variable polynomial, respetively. The row vetor PNL
d (.) onsistsof all the distint nonlinear monomials up to a ertain degree d > 1 whih ishosen by the user.Using the following de�nitions

θi =







θLi

θNL
i






i = 1, 2 (20)and

Px̃ =
[

PL(x̃) PNL
d (x̃)

]

x̃ = ũ, ỹ (21)the equality requirement z1 = z2 an be formulated as a TLS problem [20℄,
[Pũ − Pỹ]







θ1

θ2






= Pθ = 0 (22)with P = [Pũ − Pỹ] and θ = [ θ1 ; θ2 ]. The unknown parameters θ areestimated by performing a Singular Value Deomposition (SVD) [7℄ of thetotal regressor matrix P . The parameter estimate θ̂ is then given by the rightsingular vetor orresponding to the smallest singular value of P .

5.3 Orthogonality in the regressor matrix PIn pratie, the nonlinear terms in (19) will also ontribute to the linear bloks
Ĝ1 and Ĝ−1

2 in (18) via their ontribution to the best linear approximation.Indeed, a part of the linear system information is aptured by the oe�ients
θNL
i of the nonlinear regressors. In order to onentrate the linear behaviorin the oe�ients orresponding to the linear regressors, the nonlinear regres-sors in the matries PNL

d (ũ) and PNL
d (ỹ) are made orthogonal to the linearregressors in PL(ũ) and PL(ỹ), respetively. This issue is takled numeriallyusing a thin QR deomposition [7℄, prior to the SVD, on the regressor matrixorresponding to the left and the right subsystem separately (i.e., Pũ and Pỹ,respetively). 10



5.4 Composing the initial estimatesThe estimated parameters θ̂L are the oe�ients of the linear basis funtions
Wi and Hi. Consequently, Ĝ1 and Ĝ2 an be omposed parametrially to theform (1) by alulating the linear ombination of the basis funtions in (18).We an also alulate a non-parametri estimate of the system's intermediatesignals (up to a sale fator),











ẑ = PL(ũ)θ̂L1

x̂ = PL(ỹ)θ̂L2 .
(23)Between ẑ and x̂, the same nonlinear relation exists as between the true inter-nal signals z and x (again, up to a sale fator). To obtain also a parametriinitial estimate for the stati nonlinearity f(.), any basis funtion expansionof the form (4) an be �t to the {ẑ, x̂} data.6 Experimental ResultsThe presented identi�ation proedures are now applied to input/output mea-surements obtained from the benhmark data and evaluation follows the spe-i�ations in [13℄.6.1 Desription of the SystemThe devie under test is an eletri nonlinear iruit with aWiener-Hammersteinstruture (see Figure 3), designed by Gerd Vandersteen [21℄. The system isomposed of a stati nonlinear blok, sandwihed between two linear dynamibloks. The �rst linear dynami system is a third order Chebyshev low-pass�lter with a 0.5 dB ripple and a pass-band up to 4.4 kHz. The stati nonlinear-ity is realized by two resistors and a diode. The seond linear dynami systemis a third order inverse Chebyshev low-pass �lter with a -40 dB stop-band,starting at 5 kHz. This �lter is designed to have a zero in the frequeny bandof interest.6.2 Desription of the DataThe system was exited with a �ltered Gaussian exitation signal with a ut-o� frequeny of 10 kHz. This noise sequene onsisted of N = 188000 samples11
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Fig. 4. Gaussian noise exitation signal ontaining an estimating set (light grey) , avalidation set (dark grey) and a benhmark test set (blak).as shown in Figure 4. The input and output signal were measured with asample frequeny of 51.2 kHz. The output signal had an RMS value of 242.3mV.We disarded the �rst 5000 data samples of the input sine they only onsistof quantization noise; no exitation was present here. The remaining part issplit into two data sets: the estimation data (N = 5001, . . . , 100000) and thetest data (N = 100001, . . . , 188000) whih is used to benhmark the qualityof the identi�ed Wiener-Hammerstein models.
6.3 Best Linear ModelBest linear model, obtained by standard system identi�ation algorithms, isa 6th order model. It gives an RMSE of 56.2 mV on the raw test data, andan RMSE of 43.7 mV if the DC-o�set is �rst removed from the test data. Thepoles and zeros of the model are depited in Figure 5. Two pairs of zeros laylose to the unit irle and potentially they an both explain the transmissionzero. The plaement of the poles shows the low pass harater of the model.12
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Fig. 5. Poles and zeros of the initial 6th order linear model. One zero, at 3.5, isoutside the plot.6.4 Algorithm 1The linear model is now split into to two sub-models in all possible ways withthe onstraint that the order of eah linear sub-model should be at least one,and it should be proper. This gives 42 pairs of linear sub-models. For eah pairof sub-models a �rst order spline with eight knots is initialized between thelinear subsystems. This gives a loal linear nonlinearity with nine segments.The knot position, orresponding to the parameters β2 in (4), are hosen sothat equally many data points are plaed in eah segment. The linear splineparameters, β1 in (4), are then �tted using least squares for all of the models.The resulting �t of the 42 initialized models is depited in Figure 6 with dotsmarks. The best initialized model obtained RMSE 6.4 mV, more than 6 timesbetter than the linear model.
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Normally the best initialized model is seleted and only for that one, all pa-rameters are �tted simultaneously. Here, for illustrative reasons the generalpredition error minimization is applied to all the parameters in the mod-els, ie, the equations in Setion 2.3 are applied to all 42 models. In (8) aLevenberg-Marquardt algorithm is used, and the implementation is desribedin [14℄. Figure 6 shows the �t, RMSE, after training with large squares. Foreah of the 42 partitions of the BLA model, the �t after initialization, andafter �tting all parameters are shown. The best initialized model also givesthe best �t after minimizing with respet to all parameters, with RMSE 0.31mV. It an also be seen in the �gure that the �nal �t is very di�erent forsome models with similar �t at the initializations. This happens when thelinear bloks ontain the wrong number of poles and zeros sine this annotbe ompensated for by adapting all parameters.Consider now the quality of the initialized linear bloks. Figure 7 shows thisfor the best initialized model, and it is also shown how these hange afterthat all parameters have been �tted. The poles in the �rst linear part havehanged, but the ones in the seond part seem to have been quite auratefrom the beginning. Also, only one zero pair remains lose to the unit irle,responsible for the transmission zero.
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Fig. 7. Upper two plots: Partitioning of the poles (x) and the zeros (o) of the linearmodel whih gave the best initialization. Lower two plots: Positions of the poles andzeros after that all parameters have been �tted.Are there any loal minima? Yes, this an be seen by looking at a lose up ofFigure 6 for the 15 best models of the original 42 models. It is shown shown inFigure 8. Apparently, all of these 15 models represent di�erent loal minima14



although they all have impressive good �t on the data. Hene, there are plentyof loal minima.
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Fig. 8. RMSE of the 15 best models.Inluding more �exibility in the nonlinear blok improved the �t slightly butwithout any remarkable hange. The RMSE dereased from 31 for 8-knotsto 27 for the 24 knot-nonlinearity on the test data. In Figure 9 the 24 knot-nonlinearity is shown together with the distribution of the input data to thenonlinearity. In that plot it is also illustrated how the input data to the non-linearity is distributed.

Fig. 9. Estimated nonlinearity, �nal model with 24 knots together with the distri-bution of input data to the nonlinearity.The best 8-knot model ontains 30 parameters, 17 of them for the nonlinearspline. The 24 knot-nonlinearity ontains 62 parameters, of them 49 in thenonlinearity.6.5 Algorithm 2The algorithm starts from the linear model desribed in Setion 6.3. The statinonlinearities g1 and g2 are approximated by a multi-variable polynomial ofdegree 3 (d = 3 in (19)). For the parametrisation of the stati nonlinearity, a15



median method [12℄ was used. In this method, the ẑ, x̂ data is divided into 20vertial slies suh that eah slie onsists of an equal amount of data samples.Per slie, the median value of the data is alulated (in the ẑ diretion). Next,a spline is �t through the alulated median values in order to parameterizethe stati nonlinearity.To redue the number of regressors in the initialization method, the assump-tion was made that in eah linear dynami blok at least one pole/zero ispresent. As a onsequene, in the sets of basis funtions delay terms q−j areinluded only up to j = max(nb, na) − 1 instead of j = max(nb, na). Thisdereases the number of linear regressors by two (and hene the number ofnonlinear regressors), without ompromising on the �exibility of the model.6.6 Redution of linear regressorsIn order to redue the number of model parameters, linear basis funtions anbe removed from (18). Unfortunately, it is unknown in advane whih poles,zeros or delay terms should remain in the model. To takle this problem, asan is performed to verify the e�et of removing a basis funtion (and allrelated nonlinear regressors). During the �rst san run, eah basis funtion isalternately removed, and the best performing model (in RMS sense) is thenseleted. A seond san run is then performed to �nd the following regressorthat should be omitted, and so on. After eah san run, a linear regressor ispermanently deleted, resulting in an initialized WH model. All these modelsare then ranked with respet to their RMSE.The RMSE of the obtained initialized WH models as a funtion of the numberof disarded linear regressors is shown in Figure 10 using the 6th order linearmodel as a starting point in the initialization. It an be seen that up to 12linear regressors an be disarded without a�eting the RMSE of the modeltoo muh.6.7 Nonlinear OptimizationNext, a seletion of the initialized models given in Figure 10 are optimized,in the quest for the best nonlinear model.Up to now, the stati nonlinearity was parameterized using the median method,followed by a spline �t. In the nonlinear optimization, another parameteriza-tion for the stati nonlinearity is onsidered: a piee-wise linear approximationrealized by so-alled hinge funtions [23℄ of various knots (4 to 8). Furthermore,the order of the numerator and denominator of the linear dynami bloks is16
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Fig. 10. RMSE of the initialized models as a funtion of the number of deleted linearregressors, using the 6th order linear model.always set equal, in order to give the model enough �exibility. For instane,if the initialization method yields a 2/4 blok (i.e., nb = 2 and na = 4), thena 4/4 blok (with zero oe�ients where neessary) will be given as an inputto the optimization algorithm. In pratie, it turned out that this �exibilityyielded muh better results at the ost of higher model orders for the linearbloks.Given the di�erent options desribed above, a number of andidate nonlinearmodels are obtained.The best nonlinear model was obtained when deleting 8 linear regressors andusing hinge funtions with 8 knots for the parameterization of the stati non-linearity. This model has a validation RMSE of 0.30mV and ontains 64modelparameters. The simulation error (light grey) of this model is shown in Figure11, together with the modeled output signal (blak).Figure 12 shows the spetra of the modeled output signal (blak), the linearsimulation error (dark grey), and the nonlinear simulation error (light grey).In the pass-band of the DUT, the nonlinear model error is more than 20 dBlower than the linear model error.6.8 DisussionThe best obtained nonlinear models resulting from the two initializationalgorithms have an RMSE around 0.30 mV on the test data. Although this isan impressive improvement ompared to the linear model, this is still about
30% above the noise level, estimated to about RMS 0.19 mV on the �rst partof the data where the input signal is onstant.17
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