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Identi�
ation of Wiener-Hammerstein Models:Two Algorithms Based on the Best Split of aLinear Model Applied to the SYSID'09Ben
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bVrije Universiteit Brussel, Fa
ulty of Engineering, Department of FundamentalEle
tri
ity and Instrumentation, Pleinlaan 2, 1050 Brussels, BelgiumAbstra
tThis paper des
ribes the identi�
ation of Wiener-Hammerstein models and two re-
ently suggested algorithms are applied to the SYSID'09 ben
hmark data. The mostdi�
ult step in the identi�
ation pro
ess of su
h blo
k-oriented models is to generategood initial values for the linear dynami
 blo
ks so that lo
al minima are avoided.Both of the 
onsidered algorithms obtain good initial estimates by using the BestLinear Approximation (BLA) whi
h 
an easily be estimated from data. Given theBLA, the two algorithms di�er in the way the dynami
s are separated into two linearparts. The �rst algorithm simply 
onsiders all possible splits of the dynami
s. Ea
hof the splits is used to initialize one Wiener-Hammerstein using least-squares and thebest performing model is sele
ted. In the se
ond algorithm, both linear blo
ks areinitialized with the entire BLA model using basis fun
tion expansions of the polesand zeros of the BLA. This gives over-parameterized linear blo
ks and their order isde
reased in a model redu
tion step. Both algorithms are explained and their prop-erties are dis
ussed. They both give good, 
omparable, models on the ben
hmarkdata.Key words: Wiener-Hammerstein systems, Hammerstein systems, Wiener systems,nonlinear system identi�
ation, initial estimates, best linear approximation
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1 Introdu
tionThis paper 
onsiders the identi�
ation of Wiener-Hammerstein models. Twore
ently suggested, similar, algorithms, [8℄ and [15,16℄ are applied to the datafrom the ben
hmark session at SYSID 2009, [13℄.General in system identi�
ation, the predi
tion error estimate gives an asymp-toti
 e�
ient estimator when the number of estimation data goes to in�nity,see, eg, [9,17℄. However, in most 
ases, ex
ept when the model 
an be ex-pressed as linear regression, the 
omputation of the estimate requires an iter-ative sear
h of the minimum of the 
ost fun
tion. The 
ost fun
tion 
an havemultiple minima and it is a main 
hallenge in system identi�
ation resear
hto invent algorithms whi
h 
an guarantee, or at least in
rease the 
han
esthat the estimate 
onverges to the global minimum. Hen
e, for ea
h typeof model stru
ture there is a need of good initialization algorithms and thetwo algorithms 
onsidered in this paper deliver initialization for the Wiener-Hammerstein model.The Wiener-Hammerstein model 
onsists of two linear dynami
 systems witha stati
 nonlinearity sandwi
hed in between, see Figure 1. Early results aboutthe identi�
ation of these models 
an be found in [2℄ and [4℄. More re
ent workis reported in [5℄ and [3℄. Few papers give hints how to obtain good initial es-timates. In [6℄, an iterative initialization pro
edure is proposed whi
h requiresspe
ially designed periodi
 ex
itation signals. This experimental requirementis loosened in [12℄. Other methods 
ir
umvent the need for initial values byperforming a large number of experiments [22℄, or by restri
ting the allowedmodel 
omplexity [1℄, [18℄, [19℄.
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HtLFig. 1. A Wiener-Hammerstein model stru
ture.The 
onsidered algorithms, [8℄ and [15,16℄, rely on the fa
t that the BLAmodel is a 
onsistent estimate of the 
on
atenation of the two linear blo
ks,see [11℄. This result assumes that the data indeed was generated by a Wiener-Hammerstein pro
ess and some additional assumption on the data and thesystem, for instan
e that the linear parts need to be stable. Hen
e, given theBLA, the remaining problem is to divide the dynami
s into two parts, and toestimate the nonlinearity.The �rst algorithm, [15,16℄, is a kind of brute-for
e method where the dy-nami
s are split in all possible ways, and for all possible splits a Wiener-2



Hammerstein model is estimated by �tting the (linear) parameters of thenonlinear part using least-squares. The number of splits might be high, butsin
e least-squares is used in the initialization, fairly large number of splits
an be handled within a reasonable time. In [15,16℄ it is argued that problemswhere the order of the BLA model is up to about 10 
an be handled. Moreover,this initialization pro
edure is asymptoti
 
onsistent in the number of data.The se
ond algorithm, [8℄, 
ir
umvent the problem with many splits of theBLA by o�ering the whole BLA model to both blo
ks. The initialization is for-mulated as a Total-Least-Squares problem (TLS) in between the linear blo
ks.This is done by �ltering the input signal through the basis fun
tions of the�rst linear blo
k, based on the poles of the BLA, and �ltering the outputthrough the basis fun
tions des
ribing the inverse of the BLA, based on thezeros of the BLA. This approa
h does not have the drawba
k with exponen-tial in
reasing 
omputational time with respe
t to the model order, as the�rst algorithm has. However, it has the drawba
k that the linear blo
ks willhave higher order than ne
essary, but model order redu
tion te
hniques 
anbe applied. Also, the solution is in general not 
onsistent if there is noise onthe output.In their general forms, none of the algorithms 
an handle the 
ase where thereis pole-zero 
an
ellation in the BLA models i.e., when the pole and the zero
ome from di�erent linear blo
ks.The paper is organized as follows. A des
ription of the problem setting andthe 
onsidered model stru
ture is given in Se
tion 2. This is followed by anoverview of the two algorithms in Se
tion 3. Then, in Se
tion 4 and 5 themain steps of both algorithms are explained, respe
tively. In Se
tion 6 theresult on the ben
hmark data is given and in Se
tion 7 the paper is 
on
luded.2 Problem FormulationThe problem formulation is divided into three steps, the de�nition of the modelstru
ture, the assumptions on the data, and the de�nition and 
omputationof the estimate.2.1 Model stru
tureThe 
on
erned model stru
ture is of the Wiener-Hammerstein type and isdes
ribed by 3



z(t) =G1(q
−1, α) u(t)

x(t) = f(β, z(t)) (1)
ŷ(t)=G2(q

−1, γ) x(t)where G1(q
−1, α) and G2(q

−1, γ) are linear time invariant transfer fun
tions inthe delay operator q−1, and parameterized with α and γ, respe
tively. ŷ(t) isthe model output, the predi
tion of the system output y(t), and z(t) and x(t)are model internal variables. The fun
tion f is a stati
 nonlinearity parame-terized with β.All parameters of the model stru
ture are stored in a 
ommon parameterve
tor
θ = [α, β, γ]. (2)The �rst linear part of the model 
an be des
ribed as

G1(q
−1, α) =

b10 + b11q
−1 + · · ·+ b1mb1

q−mb1

1 + a11q
−1 + · · ·+ a1ma1

q−ma1

(3)where α = [b10, . . . , b
1
mb1

, a11, . . . , a
1
ma1

] , and G2(q
−1, γ) is des
ribed similarlywith γ = [b20, . . . , b

2
mb2

, a21, . . . , a
2
ma2

].The stati
 nonlinearity is des
ribed as a basis fun
tion expansion
f(β, z)=

n
∑

k=1

β1
kfk(β

2
k , z) (4)

β= [β1, β2]T =

[β1
1 , . . . , β

1
n, β

2
1 , . . . , β

2
n]

Twhere fk are basis fun
tions, and β has been divided into β1, whi
h enterslinearly in f , and β2, whi
h enters non-linearly in f . Often there are severalparameters entering nonlinearly for ea
h basis fun
tion, i.e., ea
h β2
k , 
ontainsseveral parameters. With this general des
ription of the stati
 nonlinearitymost spe
i�
 basis fun
tion expansions 
an be des
ribed with a spe
i�
 
hoi
eof the basis fk. If, for example, a polynomial model is 
hosen, then

f(β, z) = β1
0 + β1

1z + β1
2z

2 + . . . β1
nz

nand in this 
ase there are no parameters in β2.To de�ne a model in this model stru
ture, not only the parameters need tobe determined but also the orders of the sub-models, and the type of basisfun
tion expansion in f . 4



2.2 DataFor the estimation of the parameters in the model (1) a data set is assumedto be available, {u(t), y(t)}Nt=1 of N input u(t) and output y(t) samples.2.3 EstimationA standard predi
tion error approa
h is assumed to be used to de�ne theestimate θ̂N of the parameter ve
tor θ for the model (1) based on the data set
{u(t), y(t)}Nt=1. It is based on minimizing the predi
tion error

ε(t, θ) = y(t)− ŷ(t, θ), (5)i.e., the di�eren
e between the measured output y(t) and the predi
tion a
-
ording to (1). This is done by using a 
riterion of �t
VN(θ) =

1

N

N
∑

t=1

ε2(t, θ) (6)and then de�ning the estimate as
θ̂N = argmin

θ
VN(θ). (7)Other 
riteria than the sum of squared errors 
an be used and in, eg, [9℄ it isexplained how VN(θ) 
an be de�ned so that the Maximum Likelihood estimateis obtained.After de�ning estimate (7), it remains to 
ompute it. This must be done usinga gradient based iterative algorithm sin
e the model is not a linear regressionmodel. That is, given a start value θ(0), iterate

θ(i+1) = θ(i) − Ri

dVN(θ)

dθ
(8)until 
onvergen
e. The matrix Ri is to modify the sear
h dire
tion and thestep size in order to assure downhill steps. Depending on how Ri is 
hosen, (8)des
ribes a wide 
lass of well-known standard algorithms like Gauss-Newtonand Levenberg-Marquardt algorithms. Also the algorithm used in [23℄ 
an beobtained by 
hoosing Ri to be the Gauss-Newton approximation with someof the smallest eigenvalues trun
ated.All three blo
ks of the model stru
ture (1) 
ontain a gain parameter, and twoof them are typi
ally �xed in the iterative minimization, e.g., b10 and b20.5



Typi
ally, VN(θ) 
an have many minima and the su

ess of the minimizationdepends on the initial estimate θ(0). The 
onsidered algorithms deliver su
hinitial estimates and on the ben
hmark example it is shown that among manylo
al minima they �nd good ones.3 The AlgorithmsHere, the main steps of the 
onsidered algorithms are given, for more detailedexplanations, see [8℄ and [15,16℄.3.1 Best Linear ApproximationBoth algorithms start by estimating a linear model. Theory for linear systemidenti�
ation is a fairly mature area, well 
overed in books like, e.g., [9,17℄,fo
using on time domain methods and [11℄, fo
using on frequen
y domainmethods.Only the plant model is of interest. One 
an, hen
e, 
onstrain to evaluateoutput error models. If Box-Jenkins models, or ARMAX models are used,only the estimated plant model is retained. Also frequen
y domain methods
an be used to obtain the model. In that 
ase a non-parametri
 noise weighting
an be used to improve the quality of the initial estimate. Hen
e, this step givesa linear model des
ribed as
ĜBLA(q, θ) =

B(q)

A(q)
=

∑nb

i=0 biq
−i

∑na

j=0 ajq
−j

(9)where a0 = 1.3.2 Initialization of the Model Stru
tureThis is the step where the two algorithms di�er. The two following se
tionsdes
ribe the initialization for ea
h of the algorithms.3.3 Fit All Parameters Using Predi
tion ErrorThe �nal step of both algorithms is to apply the iterative minimization (8)to all parameters. 6



4 Initialization: Algorithm 1The algorithm 
onsists of the following steps.1. Split ĜBLA model into all possible Ĝ1(q
−1) and Ĝ2(q

−1) so that ĜBLA(q
−1) =

Ĝ1(q
−1)Ĝ2(q

−1).Poles and zeros of the linear model need to be 
al
ulated. These are thendivided in all possible ways into two sub-models Ĝ1 and Ĝ2.2. For all partitions of the linear model, {Ĝ1, Ĝ2}, use u(t) and Ĝ1 to de
idevalues for β2 and then LS to �t the linear parameters, β1, in the nonlinearityas initialization.The position parameters β2 for the basis fun
tions are de
ided using the dis-tribution of the input to the nonlinearity {z(t) = Ĝ1(q
−1)u(t)}Nt=1.Minimizing (6) with respe
t to the parameters β1 in (4) is straightforward by�rst writing (1), ŷ(t, θ),

ŷ(t, θ) =
n
∑

k=1

β1
kĜ2(q

−1, γ)fk(β
2
k , z(t)) = β1Tϕ(t) (10)where

ϕT (t) =

[Ĝ2(q
−1, γ)f0(β

2
0 , z(t)), . . . , Ĝ2(q

−1, γ)fn(β
2
n, z(t))]. (11)Sin
e (10) is a linear regression, the LS estimate is given by

β̂1 =

(

1

N

N
∑

t=1

ϕ(t)ϕT (t)

)

−1
1

N

N
∑

t=1

ϕT (t)y(t). (12)3. Order the initialized models with respe
t to their initial �t and sele
t thebest one.This means that VN(θ), (6) is 
al
ulated for all initializations and the modelsare ranked using this measure.5 Initialization: Algorithm 2Now, instead of 
onsidering all possible splits of the poles and zeros of GBLAinto the two linear blo
ks, as in Algorithm 1, all poles and zeros will initially7



be �o�ered� to both linear blo
ks, and then it will be estimated whi
h onesare needed.5.1 Constru
ting the basis fun
tions from GBLAEstimates of the internal signals z and x 
an be expressed as
z(t) = G1 u(t) (13)
x(t) = G−1

2 y(t).Further, assuming that the stati
 nonlinearity 
an be written as a 
on
atena-tion of two stati
 nonlinear fun
tions f1 and f2 su
h that
f(x) = f−1

2 (f1(x)). (14)Then, negle
ting the in�uen
e of disturban
es one obtains
f1(G1 u(t)) = f2(G

−1
2 y(t)) (15)and this algorithm is based on the fa
t that (15) 
an be approximately solvedas a linear-in-the-parameters TLS problem. G2 is inverted in the se
ond sub-system, sin
e this system is approa
hed from the output y. The aim is to write

Ĝ1 and Ĝ−1
2 as a linear 
ombination of basis fun
tions 
ontaining the polesand the zeros of GBLA, respe
tively.From the partial fra
tion expansion of ĜBLA(z, θ) and Ĝ−1

BLA(z, θ), the follow-ing basis fun
tions for Ĝ1 and Ĝ−1
2 are dedu
ed, respe
tively,

Ĝ1 : {Wi}
r
i=1 =

{

1

1− ρiq−1
, q−j

} (16)
Ĝ−1

2 : {Hi}
s
i=1 =

{

1

1− ηkq−1
, q−j

} (17)with ρi the poles and ηk the zeros of the BLA, (9), and i = 0, ..., na, k =
0, ..., nb, and j = 0, ...,max(na, nb). For 
onvenien
e, the symbols Wi and Hifor the basis fun
tions are numbered with a single index up to r and s whi
hde�nitions follows from the de�nition of the basis fun
tions. It is importantto note that in both sets of basis fun
tions extra delay terms are in
luded upto the maximum order whi
h was used to estimate GBLA parametri
ally. It
an easily be shown that generally it is not su�
ient to take only the basisfun
tions dedu
ed from the partial fra
tion expansion.Note that for simpli
ity we restri
t ourselves to simple poles/zeros, in orderto obtain a real-valued estimate for G1 and G−1

2 . The basis fun
tions with8
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ũ  ,

 
1

L
 ,

 
1

 L
 ! "

# $
# $
# $
% &

Hs

…

H
1

ỹ
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Fig. 2. Model stru
ture leading to a problem linear-in-the-parameters: ea
h subsys-tem 
onsists of basis fun
tions and a multiple input, single output stati
 nonlinearity.
omplex 
onjugate poles/zeros are merged together, resulting in a se
ond orderfra
tion.To summarize, Ĝ1 and Ĝ−1
2 are written as a linear 
ombination of �rst and(possibly) se
ond order fra
tions and pure delay terms,










Ĝ1 =
∑r

i=1 θ̂
L
1 (i)Wi

Ĝ−1
2 =

∑s
i=1 θ̂

L
2 (i)Hi

(18)with Wi and Hi representing the basis fun
tions as des
ribed in (16) and (17),respe
tively. The goal is now to �nd the proper 
oe�
ients θL of these basisfun
tions.5.2 Solving a problem linear-in-the-parametersWe now 
onsider the model stru
ture in Figure 2 to model the relation in(15). By making a proper 
hoi
e for the nonlinearities g1 and g2, this modelstru
ture leads to a problem that is linear-in-the-parameters (θL, θNL) whi
h
an easily be solved.To obtain expressions for z1 and z2, the nonlinearities g1 and g2 in Figure 2are approximated by a multi-variable polynomial 
onsisting of a linear and anonlinear part:
g1(ũ, θ

L
1 , θ

NL
1 ) ≈ PL(ũ)θL1 + PNL

d (ũ)θNL
1

g2(ỹ, θ
L
2 , θ

NL
2 ) ≈ PL(ỹ)θL2 + PNL

d (ỹ)θNL
2

(19)with ũ = [ũ1, ..., ũr] and ỹ = [ỹ1, ..., ỹs], the output of the �rst and se
ond setof basis fun
tions, respe
tively. The 
olumn ve
tors θLi and θNL
i (with i = 1, 2)9



are the unknown parameters, 
orresponding to the linear and nonlinear partof the multi-variable polynomial, respe
tively. The row ve
tor PNL
d (.) 
onsistsof all the distin
t nonlinear monomials up to a 
ertain degree d > 1 whi
h is
hosen by the user.Using the following de�nitions

θi =







θLi

θNL
i






i = 1, 2 (20)and

Px̃ =
[

PL(x̃) PNL
d (x̃)

]

x̃ = ũ, ỹ (21)the equality requirement z1 = z2 
an be formulated as a TLS problem [20℄,
[Pũ − Pỹ]







θ1

θ2






= Pθ = 0 (22)with P = [Pũ − Pỹ] and θ = [ θ1 ; θ2 ]. The unknown parameters θ areestimated by performing a Singular Value De
omposition (SVD) [7℄ of thetotal regressor matrix P . The parameter estimate θ̂ is then given by the rightsingular ve
tor 
orresponding to the smallest singular value of P .

5.3 Orthogonality in the regressor matrix PIn pra
ti
e, the nonlinear terms in (19) will also 
ontribute to the linear blo
ks
Ĝ1 and Ĝ−1

2 in (18) via their 
ontribution to the best linear approximation.Indeed, a part of the linear system information is 
aptured by the 
oe�
ients
θNL
i of the nonlinear regressors. In order to 
on
entrate the linear behaviorin the 
oe�
ients 
orresponding to the linear regressors, the nonlinear regres-sors in the matri
es PNL

d (ũ) and PNL
d (ỹ) are made orthogonal to the linearregressors in PL(ũ) and PL(ỹ), respe
tively. This issue is ta
kled numeri
allyusing a thin QR de
omposition [7℄, prior to the SVD, on the regressor matrix
orresponding to the left and the right subsystem separately (i.e., Pũ and Pỹ,respe
tively). 10



5.4 Composing the initial estimatesThe estimated parameters θ̂L are the 
oe�
ients of the linear basis fun
tions
Wi and Hi. Consequently, Ĝ1 and Ĝ2 
an be 
omposed parametri
ally to theform (1) by 
al
ulating the linear 
ombination of the basis fun
tions in (18).We 
an also 
al
ulate a non-parametri
 estimate of the system's intermediatesignals (up to a s
ale fa
tor),











ẑ = PL(ũ)θ̂L1

x̂ = PL(ỹ)θ̂L2 .
(23)Between ẑ and x̂, the same nonlinear relation exists as between the true inter-nal signals z and x (again, up to a s
ale fa
tor). To obtain also a parametri
initial estimate for the stati
 nonlinearity f(.), any basis fun
tion expansionof the form (4) 
an be �t to the {ẑ, x̂} data.6 Experimental ResultsThe presented identi�
ation pro
edures are now applied to input/output mea-surements obtained from the ben
hmark data and evaluation follows the spe
-i�
ations in [13℄.6.1 Des
ription of the SystemThe devi
e under test is an ele
tri
 nonlinear 
ir
uit with aWiener-Hammersteinstru
ture (see Figure 3), designed by Gerd Vandersteen [21℄. The system is
omposed of a stati
 nonlinear blo
k, sandwi
hed between two linear dynami
blo
ks. The �rst linear dynami
 system is a third order Chebyshev low-pass�lter with a 0.5 dB ripple and a pass-band up to 4.4 kHz. The stati
 nonlinear-ity is realized by two resistors and a diode. The se
ond linear dynami
 systemis a third order inverse Chebyshev low-pass �lter with a -40 dB stop-band,starting at 5 kHz. This �lter is designed to have a zero in the frequen
y bandof interest.6.2 Des
ription of the DataThe system was ex
ited with a �ltered Gaussian ex
itation signal with a 
ut-o� frequen
y of 10 kHz. This noise sequen
e 
onsisted of N = 188000 samples11
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Fig. 4. Gaussian noise ex
itation signal 
ontaining an estimating set (light grey) , avalidation set (dark grey) and a ben
hmark test set (bla
k).as shown in Figure 4. The input and output signal were measured with asample frequen
y of 51.2 kHz. The output signal had an RMS value of 242.3mV.We dis
arded the �rst 5000 data samples of the input sin
e they only 
onsistof quantization noise; no ex
itation was present here. The remaining part issplit into two data sets: the estimation data (N = 5001, . . . , 100000) and thetest data (N = 100001, . . . , 188000) whi
h is used to ben
hmark the qualityof the identi�ed Wiener-Hammerstein models.
6.3 Best Linear ModelBest linear model, obtained by standard system identi�
ation algorithms, isa 6th order model. It gives an RMSE of 56.2 mV on the raw test data, andan RMSE of 43.7 mV if the DC-o�set is �rst removed from the test data. Thepoles and zeros of the model are depi
ted in Figure 5. Two pairs of zeros lay
lose to the unit 
ir
le and potentially they 
an both explain the transmissionzero. The pla
ement of the poles shows the low pass 
hara
ter of the model.12
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Fig. 5. Poles and zeros of the initial 6th order linear model. One zero, at 3.5, isoutside the plot.6.4 Algorithm 1The linear model is now split into to two sub-models in all possible ways withthe 
onstraint that the order of ea
h linear sub-model should be at least one,and it should be proper. This gives 42 pairs of linear sub-models. For ea
h pairof sub-models a �rst order spline with eight knots is initialized between thelinear subsystems. This gives a lo
al linear nonlinearity with nine segments.The knot position, 
orresponding to the parameters β2 in (4), are 
hosen sothat equally many data points are pla
ed in ea
h segment. The linear splineparameters, β1 in (4), are then �tted using least squares for all of the models.The resulting �t of the 42 initialized models is depi
ted in Figure 6 with dotsmarks. The best initialized model obtained RMSE 6.4 mV, more than 6 timesbetter than the linear model.
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Fig. 6. RMSE 
omputed on test data for all 42 initialized models sorted a

ordingto the �t after initialization. The points indi
ates the RMSE (in Volts) after ini-tialization and the squares indi
ates the value after that all parameters have been�tted. 13



Normally the best initialized model is sele
ted and only for that one, all pa-rameters are �tted simultaneously. Here, for illustrative reasons the generalpredi
tion error minimization is applied to all the parameters in the mod-els, ie, the equations in Se
tion 2.3 are applied to all 42 models. In (8) aLevenberg-Marquardt algorithm is used, and the implementation is des
ribedin [14℄. Figure 6 shows the �t, RMSE, after training with large squares. Forea
h of the 42 partitions of the BLA model, the �t after initialization, andafter �tting all parameters are shown. The best initialized model also givesthe best �t after minimizing with respe
t to all parameters, with RMSE 0.31mV. It 
an also be seen in the �gure that the �nal �t is very di�erent forsome models with similar �t at the initializations. This happens when thelinear blo
ks 
ontain the wrong number of poles and zeros sin
e this 
annotbe 
ompensated for by adapting all parameters.Consider now the quality of the initialized linear blo
ks. Figure 7 shows thisfor the best initialized model, and it is also shown how these 
hange afterthat all parameters have been �tted. The poles in the �rst linear part have
hanged, but the ones in the se
ond part seem to have been quite a

uratefrom the beginning. Also, only one zero pair remains 
lose to the unit 
ir
le,responsible for the transmission zero.
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Fig. 7. Upper two plots: Partitioning of the poles (x) and the zeros (o) of the linearmodel whi
h gave the best initialization. Lower two plots: Positions of the poles andzeros after that all parameters have been �tted.Are there any lo
al minima? Yes, this 
an be seen by looking at a 
lose up ofFigure 6 for the 15 best models of the original 42 models. It is shown shown inFigure 8. Apparently, all of these 15 models represent di�erent lo
al minima14



although they all have impressive good �t on the data. Hen
e, there are plentyof lo
al minima.
x x x x

x x x x x

x x x x

x

x

2 4 6 8 10 12 14

0.0002

0.0004

0.0006

0.0008

0.0010

Fig. 8. RMSE of the 15 best models.In
luding more �exibility in the nonlinear blo
k improved the �t slightly butwithout any remarkable 
hange. The RMSE de
reased from 31 for 8-knotsto 27 for the 24 knot-nonlinearity on the test data. In Figure 9 the 24 knot-nonlinearity is shown together with the distribution of the input data to thenonlinearity. In that plot it is also illustrated how the input data to the non-linearity is distributed.

Fig. 9. Estimated nonlinearity, �nal model with 24 knots together with the distri-bution of input data to the nonlinearity.The best 8-knot model 
ontains 30 parameters, 17 of them for the nonlinearspline. The 24 knot-nonlinearity 
ontains 62 parameters, of them 49 in thenonlinearity.6.5 Algorithm 2The algorithm starts from the linear model des
ribed in Se
tion 6.3. The stati
nonlinearities g1 and g2 are approximated by a multi-variable polynomial ofdegree 3 (d = 3 in (19)). For the parametrisation of the stati
 nonlinearity, a15



median method [12℄ was used. In this method, the ẑ, x̂ data is divided into 20verti
al sli
es su
h that ea
h sli
e 
onsists of an equal amount of data samples.Per sli
e, the median value of the data is 
al
ulated (in the ẑ dire
tion). Next,a spline is �t through the 
al
ulated median values in order to parameterizethe stati
 nonlinearity.To redu
e the number of regressors in the initialization method, the assump-tion was made that in ea
h linear dynami
 blo
k at least one pole/zero ispresent. As a 
onsequen
e, in the sets of basis fun
tions delay terms q−j arein
luded only up to j = max(nb, na) − 1 instead of j = max(nb, na). Thisde
reases the number of linear regressors by two (and hen
e the number ofnonlinear regressors), without 
ompromising on the �exibility of the model.6.6 Redu
tion of linear regressorsIn order to redu
e the number of model parameters, linear basis fun
tions 
anbe removed from (18). Unfortunately, it is unknown in advan
e whi
h poles,zeros or delay terms should remain in the model. To ta
kle this problem, as
an is performed to verify the e�e
t of removing a basis fun
tion (and allrelated nonlinear regressors). During the �rst s
an run, ea
h basis fun
tion isalternately removed, and the best performing model (in RMS sense) is thensele
ted. A se
ond s
an run is then performed to �nd the following regressorthat should be omitted, and so on. After ea
h s
an run, a linear regressor ispermanently deleted, resulting in an initialized WH model. All these modelsare then ranked with respe
t to their RMSE.The RMSE of the obtained initialized WH models as a fun
tion of the numberof dis
arded linear regressors is shown in Figure 10 using the 6th order linearmodel as a starting point in the initialization. It 
an be seen that up to 12linear regressors 
an be dis
arded without a�e
ting the RMSE of the modeltoo mu
h.6.7 Nonlinear OptimizationNext, a sele
tion of the initialized models given in Figure 10 are optimized,in the quest for the best nonlinear model.Up to now, the stati
 nonlinearity was parameterized using the median method,followed by a spline �t. In the nonlinear optimization, another parameteriza-tion for the stati
 nonlinearity is 
onsidered: a pie
e-wise linear approximationrealized by so-
alled hinge fun
tions [23℄ of various knots (4 to 8). Furthermore,the order of the numerator and denominator of the linear dynami
 blo
ks is16
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Fig. 10. RMSE of the initialized models as a fun
tion of the number of deleted linearregressors, using the 6th order linear model.always set equal, in order to give the model enough �exibility. For instan
e,if the initialization method yields a 2/4 blo
k (i.e., nb = 2 and na = 4), thena 4/4 blo
k (with zero 
oe�
ients where ne
essary) will be given as an inputto the optimization algorithm. In pra
ti
e, it turned out that this �exibilityyielded mu
h better results at the 
ost of higher model orders for the linearblo
ks.Given the di�erent options des
ribed above, a number of 
andidate nonlinearmodels are obtained.The best nonlinear model was obtained when deleting 8 linear regressors andusing hinge fun
tions with 8 knots for the parameterization of the stati
 non-linearity. This model has a validation RMSE of 0.30mV and 
ontains 64modelparameters. The simulation error (light grey) of this model is shown in Figure11, together with the modeled output signal (bla
k).Figure 12 shows the spe
tra of the modeled output signal (bla
k), the linearsimulation error (dark grey), and the nonlinear simulation error (light grey).In the pass-band of the DUT, the nonlinear model error is more than 20 dBlower than the linear model error.6.8 Dis
ussionThe best obtained nonlinear models resulting from the two initializationalgorithms have an RMSE around 0.30 mV on the test data. Although this isan impressive improvement 
ompared to the linear model, this is still about
30% above the noise level, estimated to about RMS 0.19 mV on the �rst partof the data where the input signal is 
onstant.17
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k); linear model error (darkgrey); and nonlinear model error (light grey). All good models gave a result likethis.The performan
e of these models 
an be 
ompared to the best results atSYSID'09. In [10℄ a best �t eRMSt = 0.42mV was obtained with a polynomialstate spa
e model 
ontaining 797 parameters. The same stru
ture as usedin this paper was also used in [23℄ and they obtained an RMSE 0.49 mV.However, they did not have any initialization algorithm for the parameters sotheir solution is probably a lo
al minimum. They also study how the solution
onverges to di�erent minima depending on the randomly 
hosen initialization.18



7 Con
lusionsTwo re
ently suggested initialization algorithms for Wiener-Hammersteinmodels have been applied to the ben
hmark problem from SYSID 2009. Theyboth start with a linear model and then divide the dynami
s into two linearblo
ks in di�erent ways. Given good initializations of the linear blo
ks, it isstraight-forward to obtain an initial estimate of the stati
 nonlinear blo
k.The result of the two algorithms have been 
ompared and they both givegood modelling results. It has been shown that there are many lo
al minima
orresponding to good models. However, one of them is better than the other,and both algorithms �nd that minimum. Still, of 
ourse, there is no guaranteethat the global minimum has been found.A
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