

Multipoint optimization of a loudspeaker

impulse response

Master of Science Thesis

GUILLAUME PERRIN

Department of Civil and Environmental Engineering

Division of Applied Acoustics

Vibroacoustics Group

CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden 2012

Master’s Thesis 2012:137

MASTER’S THESIS 2012:137

Multipoint optimization of a loudspeaker impulse response

 Master of Science Thesis

GUILLAUME PERRIN

Department of Civil and Environmental Engineering

Division of Applied Acoustics

Vibroacoustics Group

CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden 2012

Multipoint optimization of loudspeaker impulse response

Master of Science Thesis

GUILLAUME PERRIN

© GUILLAUME PERRIN, 2012

Examensarbete / Institutionen för bygg- och miljöteknik,

Chalmers tekniska högskola 2012:137

Department of Civil and Environmental Engineering

Division of Applied Acoustics

Vibroacoustics Group

Chalmers University of Technology

SE-412 96 Göteborg

Sweden

Telephone: + 46 (0)31-772 1000

Cover:

Measurement setup for directivity measurements in the anechoic chamber.

Chalmers Reproservice / Department of Civil and Environmental Engineering

Göteborg, Sweden 2012

I

Multipoint optimization of loudspeaker impulse response

Master of Science Thesis

GUILLAUME PERRIN

Department of Civil and Environmental Engineering

Division of Applied Acoustics

Vibroacoustics Group

Chalmers University of Technology

ABSTRACT

It’s relatively simple to obtain a very good impulse response at a single control point

from a loudspeaker using an equalization filter. But in real life, an average impulse

response over a larger geometrical area using multiple control point can be more

interesting (e.g. for an audience). The purpose of this study is to investigate, analyse

and simulate a multichannel equalization filter for a home-made loudspeaker. This

filter must be able to optimize a loudspeaker impulse response over an area defined by

at least three points.

To answer this problem, we apply an adaptive filtering method since it offers a simple

and effective way to expand to multichannel filtering. It also allows us to implement

the Volterra theory through a second-order Volterra (SOV) filter to take nonlinearities

into account. After several tests and simulations the well-known normalized least

mean square (NLMS) algorithm was chosen and implemented using a finite impulse

response (FIR) filter and the filtered-x arrangement.

Simulations were conducted with Matlab using for beginning either small impulse

responses, or real impulse responses from database. At the end, we took impulse

responses from our own measurements of our loudspeaker made in an anechoic room.

While we achieved good results with the multichannel linear filtering, we couldn’t

make the SOV filter to work and it kept diverging. We couldn’t find the reason why

but some leads are mentioned for further investigations.

The principal conclusion is that multichannel filtering is all about trade-off. The mean

square error (MSE) performance is impacted by the size of the equalized area and the

number of points to optimize. Moreover, this study should serve as a starting point for

further projects that could lead to the integration in a product (e.g. loudspeaker and/or

amplifier).

Keywords: Impulse response, Volterra filter, inverse filtering, multichannel,

equalization, digital filter, adaptive algorithm, NLMS, FxLMS, MSE.

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:137 II

CHALMERS Civil and Environmental Engineering, Master’s Thesis 2012:137 III

Contents

ABSTRACT I

CONTENTS III

PREFACE V

ACKNOWLEDGEMENTS V

NOTATIONS AND ABBREVIATIONS VI

1 INTRODUCTION 1

1.1 Objective 2

1.2 Structure of the report 2

2 BACKGROUND AND THEORY 3

2.1 System analysis 3

2.1.1 Linear system 3

2.1.2 Nonlinear system 5

2.2 Characterization of loudspeakers 6

2.2.1 The dynamic loudspeaker 6

2.2.2 Our specific loudspeaker 7

2.2.3 Linear impulse response measurement 8

2.3 Digital filter 9

2.3.1 Finite impulse response (FIR) filter 10

2.3.2 Infinite impulse response (IIR) filter 10

2.4 Inverse filtering 11

2.4.1 Single channel adaptive inverse filtering 11

2.4.2 Multichannel adaptive inverse filtering 13

2.4.3 Algorithms for adaptive filtering 13

3 METHODS 17

3.1 Simulations 17

3.1.1 Matlab 17

3.1.2 Acoustic model 17

3.2 Measurements in laboratory 19

3.2.1 The anechoic chamber 19

3.2.2 The measurement setup 20

3.2.3 Calibrations 20

3.2.4 The measurements 22

4 RESULTS 23

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:137 IV

4.1 Simulations 23

4.1.1 Adaptive algorithms 23

4.1.2 Linear implementation 25

4.1.3 Nonlinear implementation 33

4.2 Loudspeaker characterization 36

4.2.1 Impulse and frequency responses 36

4.2.2 Directivity pattern 36

4.2.3 Harmonic distortions 37

4.3 Loudspeaker equalization 38

4.3.1 Optimal delays 38

4.3.2 Impulse and frequency responses 39

4.3.3 MSE performance 41

5 DISCUSSION 43

5.1 Choosing the algorithm 43

5.2 The multipoint approach 44

5.3 The Volterra implementation problem 44

6 CONCLUSION 45

7 FUTURE WORKS 46

REFERENCES 47

ANNEXES I

Matlab File structure I

Matlab models II

Matlab functions and scripts VII

CHALMERS Civil and Environmental Engineering, Master’s Thesis 2012:137 V

Preface

This study was conducted at the Applied Acoustics laboratory of Chalmers from

February to June 2012.

Acknowledgements

This Master Thesis represents my last work for Chalmers and signs the end of an

incredible exchange year in this beautiful country that is Sweden. I could say I had the

time of my life!

It was literally a blast to be able to take my first steps into the research environment at

the Applied Acoustics laboratory of Chalmers. I needed this experience for my own

sake, and I thank my supervisor, Pontus Thorsson, for giving me this opportunity.

And of course, what could I be without my family and my friends. No need to name

them, they know who they are and how I love them. Thanks for caring, thanks a

million billion zillion!

Göteborg, Sweden - June 2012

Guillaume Perrin

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:137 VI

Notations and abbreviations

(M)MSE (Minimum) Mean Square Error

(N)LTI (Non)Linear Time-Invariant

FIR Finite Impulse Response

FR Frequency Response

IIR Infinite Impulse Response

IR Impulse Response

LMS Least Mean Square

RLS Recursive Least Square

SOV Second-Order Volterra

TF Transfer Function

 Time variable

 Sample variable

 Complex variable

 Continuous-time signal (causal when)

 Discrete-time signal (causal when)

 Complex frequency spectrum of signal

We point out to the reader that we should in fact write for a discrete-time

signal. being the sampling time with

 and the sampling frequency. But to

simplify, we normalize using and thus can write .

CHALMERS Civil and Environmental Engineering, Master’s Thesis 2012:137 1

1 Introduction

In sound-reproduction system, we usually want to reproduce a sound with the most

fidelity to the original. We want to experience a song exactly as the composer made it.

Thus there is a real need in loudspeaker optimization
1
.

Equalization techniques have long been used to correct loudspeaker and room

responses. Traditionally it involves the optimization of the frequency spectrum with

graphic or parametric equalizers [1-3]. These techniques have obvious limitations (for

example with the frequency resolution). Furthermore, they do not attempt to optimize

the phase response, which is often disregarded whereas it contains important

information [4]. A more complete tool is to use the impulse response which, as we are

going to see, contains all the information we need.

But an impulse response represents only a linear system. In the real world, non-

linearity transformation occurs and deforms the signal [5]. Thus it must be taken into

account when filtering.

Common approach uses a linear single point equalization (i.e. using only one

microphone). While this method yields to good results [6], the optimized location is

fixed and quite small. If the listener is moving or if there is a group of person

scattered around, then the optimization is close to worthless since only one listener

will benefit from it. Moreover, equalization on one point can sometimes have bad

effect on other points and then the experience would be worse for the audience [7]. In

such cases, multipoint equalization would be better as it would enlarge the equalized

zone to a whole area. Figure 1 depicts that concept. The goal is to apply a multipoint

equalization process to produce a “roughly” good impulse response over a large area

for a specific home-made loudspeaker.

Figure 1 - Concept of the system.

Achieving a perfect inversion would be possible though by using MINT (multiple

input/output inverse theorem) as described in [8]. But it requires a number of

loudspeakers greater than the number of microphones and is thus not applicable for

our system.

1
 Equalization, inverse filtering or inversion have similar meaning and can be found indifferently

through this report.

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:137 2

Still, many works can be found in literature regarding multipoint linear equalization,

but dealing mainly with room acoustics [2, 3, 7, 9-11]. A multipoint frequency

domain approach is used in [7], but allows to compensate the magnitude spectrum

irregularities only. The same approach is used with a fuzzy c-mean clustering

algorithm in [2]. Analysing the transfer function of the system, a multipoint

equalization method by using common acoustical poles is proposed in [3] but only

permits to suppress the common peaks. Regarding time domain equalization, [9]

presents an common adaptive least square error method. [10, 11] use a more statistical

approach based on a linear minimum mean squared error criterion.

As for non-linear equalization, the vast majority of work that can be found concerns

fixed-point optimization with intensive use of Volterra Series [12-16] or a little of

time-delay feedforward neural network [17]. However, it is possible to implement

Volterra Filters to multi-point optimization using the adaptive least square error

method.

1.1 Objective

A multichannel inverse filtering of a loudspeaker impulse response is implemented

using an adaptive least square error method (see Figure 2). The goal is to obtain with

an impulse signal at the input the very same net impulse at the outputs to have the best

sound-reproduction chain.

Different adaptive filtering approaches and types are tested and analysed. The

nonlinearities are taken into account using the Volterra theory framework. Finally, the

filtering system was tested on a home-made loudspeaker characterized in an anechoic

room.

Figure 2 - Detailed concept of the system.

1.2 Structure of the report

Following the introduction, Chapter 2 presents the theoretical framework of this

study, the system analysis theory, loudspeaker characterization, and inverse digital

filtering including the multichannel approach. Chapter 3 gives the methodology used

to conduct this thesis with the description of the simulations and the measurements

processes and Chapter 4 presents the results. A discussion on them follows in Chapter

5, while Chapter 6 concludes the study by summing up our results. Chapter 7 offers

some leads to further investigations and developments.

CHALMERS Civil and Environmental Engineering, Master’s Thesis 2012:137 3

2 Background and theory

We present in this chapter the theories behind system analysis and what characterize a

loudspeaker, then we move on to digital filters and the adaptive approach.

2.1 System analysis

System analysis is used to characterize an electrical system, analogue or digital. A

system can be view as a black box with inputs and outputs, as in Figure 3.

Figure 3 - Representation of a system with n inputs and m outputs

All the systems of this study are said to be Time-invariant
2
 (TI) as the outputs do not

depend explicitly on time (only on the inputs).

 () () (1)

It is a common simplification in signal processing [18], although one can argue that it

is not true for loudspeakers with the aging of the mechanical components. But since

this is a slow process, we can say with a fairly confidence that this is a Time-invariant

system.

A system is characterized by how it responds to input signals. There is a lot of

different ways to represent it, there are two main categories: the linear and the

nonlinear approach.

2.1.1 Linear system

A system is linear when can be described as a linear operator satisfying the

properties of superposition, scaling and homogeneity summarize by equation (2).

 { } (2)

In other words, it is a system where the outputs are proportional to the inputs. From a

frequency point of view, it’s a system that cannot produce new frequency components

that are not at the input. It can only alter the amplitude and phase.

With the property defined in this chapter’s introduction, we obtain the well-known

and well-study Linear Time-invariant (LTI) system.

A LTI system can be completely characterized by a single function, its impulse

response (IR), noted (also called the kernel, and is assumed to be causal, i.e. to

satisfy).

2
 For a discrete (digital) system, the equivalent term is Shift-invariant system.

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:137 4

In other words, an IR is the reaction of the system to a short and strong excitation, the

impulse. From a mathematical point of view, it’s to feed the input with a Dirac delta

function (or a Kronecker delta function in discrete-time). It’s a function

that can be seen as infinitely high and infinitely thin at the origin with a total

area of one (a discrete-time example can be seen Figure 4a). Furthermore, the Fourier

Transform of this function gives one, i.e. an impulse in time has all possible excitation

frequency in equal portion.

So equivalently in the frequency domain it can be completely characterized by its

transfer function (TF), noted . The name frequency response can also be used,

although loudspeaker’s manufacturers usually think it only means magnitude over

frequency (what about the phase?).

We can switch from the IR to the TF (or inversely) using the direct (or inverse)

Laplace transform
3
.

 { } ∫

 (3)

The output of the system is the convolution of the input with the impulse response in

time domain, see equation (4). In the frequency domain, the output will be simply the

product between the input and the TF, see equation (5).

 ∫

 (4)

 (5)

An illustration of impulse responses can be found Figure 4 below.

Figure 4 - Illustration of 50-tap impulse responses: (a) perfect theoritical IR, i.e. a Kronecker delta

function; (b) simple IR with delay and ringing.

3
 The Fourier transform can also be used to obtain the transfer function . But it is more

commonly used with signals that are infinite in extent (like sinusoids). In the case of a discrete-time

(sampled) system, we would use the Z-transform to switch between domains.

CHALMERS Civil and Environmental Engineering, Master’s Thesis 2012:137 5

A LTI system is a powerful and simple tool to describe a lot of system, as usually

nonlinearities can be easily disregarded. But when those nonlinearities became a little

too prominent, using a linear filtering may increase them even more. So we have no

choice but to take them into accounts.

2.1.2 Nonlinear system

A system is said nonlinear when the output signals are not directly proportional to the

inputs, that is, there are no linear combinations that fully represent the system. We

have then a nonlinear time-invariant (NLTI) system.

Nonlinearities distortions can be seen in two forms [19]: (i) harmonic distortions

(HD), and (ii) intermodulation distortions (IMD). The first occurs when there is

presence of harmonics which are not present in the original signal (see Figure 5).

The second occurs when the input signal contains two or more frequency; the

intermodulation between all those frequencies will produce new ones that are the sum

and difference of the original frequencies (see Figure 6).

Figure 5 - Harmonic distortions of a single-

frequency input signal (shown in red)

Figure 6 – 2
nd

 Order IMD product of a dual-

frequency input signal (shown in red)

Recently, the Volterra series expansion has been applied successfully to the analysis

and identification of nonlinear systems [5, 15, 16, 20-23]. It’s a multi-dimensional

generalization of the impulse response function. There is no longer only one but an

infinity of IR for the system. It can be seen as a Taylor series with memory effect

[24].

Let be the p-th order Volterra operator. We define the output as equation (6). A

schematic of the Volterra system can be seen in Figure 7 below.

 ∑ ()

 (6)

And a Volterra Operator is defined as the p-dimensional convolution of the input

signal with the p-dimensional Volterra kernel .

 () ∫ ∫ () ()

 (7)

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:137 6

If we insert equation (7) into (6), we obtain:

 ∫

 ∫ ∫

 ∫ ∫ () ()

(8)

On the first line, we recognize a LTI system, it is the same equation as (4). This is the

first-order Volterra operator corresponding to the linear part. On the second line is

the second-order Volterra operator , responsible for the bilinear combination of the

input. We could go on and consider any higher orders ad infinitum but the complexity

increases rapidly with the order. A second-order Volterra (SOV) system is said to be a

good approximation for a loudspeaker [20].

Figure 7 - A general Volterra system

Since we are going to work with discrete time, the sampled equivalent to equation (8)

of a SOV system is given by:

 ∑

 ∑ ∑

(9)

2.2 Characterization of loudspeakers

Now we understand how to characterize a general system, let’s look into the system of

this study.

2.2.1 The dynamic loudspeaker

Dynamic loudspeakers convert audio coming from an electrical signal to a mechanical

vibration of the air in order to recreate the sound we want to hear. Figure 8 is a simple

sketch of a dynamic loudspeaker, also called driver.

CHALMERS Civil and Environmental Engineering, Master’s Thesis 2012:137 7

Figure 8 - Construction of a dynamic loudspeaker. Source [5].

First the electrical signal have to be amplified to a usable voltage by a Power

Amplifier (PA - could be inside the loudspeaker). After that little pre-step, the signal

is injected into a coil freely mounted on a magnet which generates a magnetic field.

The signal variation in the coil will create a flux variation (resulting from the

Faraday’s law) which will create a corresponding force, the so-called Lorentz force,

on the coil. Since the coil can move freely, it will drive the membrane (or diaphragm)

attached to it. It is the variations of the cone that creates the sound waves.

Since it is hard for a single driver to reproduce the entire range of audible frequencies

(usually defined as –), many loudspeakers are often composed of

several drivers [25]. The most common one, the so-called two-way system, has

separate drivers for low and mid-high frequencies (respectively of big and small size).

Ideal loudspeakers produce acoustic waves that are a linear transformation of the

electrical input signal [25]. Thus it could be seen as a LTI system and its main

characteristic would be its impulse response. While this assumption relies on obvious

oversimplification of the electro-mechanical, such analysis techniques still provide

useful insight into loudspeaker performance.

Nonlinearities in loudspeakers are caused by various elements but the most dominants

are ones related to the cone displacement and voice-coil excursion [26]: the force

factor , the electrical self-inductance and the mechanical stiffness of the suspension.

Since the cone displacement is related to the input power or the frequency, we can say

that nonlinear distortions are more important for low frequencies and/or large input

power.

It is worth to add that the audio signal’s travel doesn’t stop after the loudspeaker; it

has to reach the receiver (listener’s ears or microphone) through the room. And once

again the signal will be distorted, this time, by the presence of reflective wall that will

cause echo and reverberation often undesirable. But hopefully, this room effect can be

approximate to a linear system [27]. Therefore, room and loudspeaker equalization

can be used with equal meaning as long as we restrict to the linear part.

2.2.2 Our specific loudspeaker

The loudspeaker we want to equalize is a specific one, as you can see Figure 9. It is

composed of an empty steel tube with two drivers on each side. There is a plate

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:137 8

hermetically separating each driver’s enclosure. The whole tube is hermetically

sealed. Now the main features of this loudspeaker are the solid steel tear-shape

reflectors in front of the drivers. They are carved in order to scattered the sound wave

all around.

Figure 9 - Cutaway view of our loudspeaker

A thin support pipe holds the tube and the reflector together. Note that this

loudspeaker needs to be hanging on a wall, since there is no stand to go on the floor.

Furthermore, the loudspeaker will benefit from the wall’s reflection.

Figure 10 - Photo of one side of the loudspeaker (driver and reflector).

2.2.3 Linear impulse response measurement

We want to acquire the impulse response as accurately as possible. In traditional

impulse response measurement, periodic pulse and Maximal-Length Sequence (MLS)

are often used as excitation signals [28]. Periodic pulse testing is the simplest and

most intuitive method but usually results in a poor signal-to-noise ratio (SNR). MLS

improve this method, yet it is shown that it is too much prone to nonlinearities [28].

The sine sweeps used as excitation signals provide a good way to measure linear

impulse response [28]. In this technique, a log-swept
4
 sine stimulus is employed (the

frequency varies exponentially with time), see equation (10). The output presents,

after deconvolution, a clean separation of linear response and harmonic distortion.

 [(

)] (10)

4
 Linear-swept has also been tried but with mitigated results, especially at low frequencies [28].

CHALMERS Civil and Environmental Engineering, Master’s Thesis 2012:137 9

 (11)

With and respectively the lower and higher frequency limits, and the time

duration in seconds.

The energy of the signal as a function of is then given by:

 (12)

The energy drops while frequency increases (by 3dB/octave) as you can see Figure

11.

Figure 11 - Spectrum of the stimuli (sine sweep) signal.

Using an exponential sweep has thus two major advantages: (i) more energy is present

in the measurement signal at low frequencies (which is beneficial as it improves the

accuracy in that region); and (ii) nonlinearities result in anti-causal components in the

impulse response, which can be easily separated (by taking only the causal part).

2.3 Digital filter

Signal processing can be done with an analogue (continuous-time) or a digital

(discrete-time) filter. Many signals are analogue by nature (e.g. signal from a

microphone) and one can wonder why we don’t use analogue filter. Those filters use

electrical components like resistors, capacitors to achieve their goals. But there are

two major flaws associated with analogue filters: (i) the electrical component’s value

will drift with temperature and age; and (ii) the available functions are quite limited

for complex filtering (e.g. adaptive filtering impossible due to the lack of analogue

memory unit). Furthermore, modifying a digital filter is ridiculously easy compared to

an analogue one since they are programmable. Thus, the use of a Digital Signal

Processor (DSP) is attractive.

But digital filtering imposes some extra steps, since it deals with different type of

signals. The conversion between a continuous-time signal to a discrete-time

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:137 10

signal is done by an Analogue to Digital Converter (ADC). The opposite

equivalent is the Digital to Analogue Convert (DAC). See Figure 12 for an

illustration.

Figure 12 - (a) Analogue filter; (b) sampled data equivalent: digital filter.

Of course what we consider in this chapter 2.2 is filtering of LTI system (nonlinear

filters are based on the concept of linear filters, enhanced with -order combinations).

As we explained in Chapter 2.1.1, a linear filter is completely characterized by its

impulse response.

Let’s now focus on the digital signal processing part. There are two alternative ways

to do it: using recursive or non-recursive realisation.

2.3.1 Finite impulse response (FIR) filter

A finite impulse response (FIR) filter is the simplest form one can think of and pretty

straightforward. The impulse response is of finite duration and is equal to zero after

(and before, since it is causal). It is non-recursive as it depends only of the input.

The different values of the impulse response are called filter coefficients, or filter

weights. If the filter is of size , the filter order is of size .

 (13)

The output is calculated as the discrete-time convolution:

 ∑

 (14)

The major advantages of FIR filters are that they are unconditionally stable and can

offer a linear phase response [18]. They are also simpler to implement. However, they

usually require more delay and computation than their recursive counterparts.

2.3.2 Infinite impulse response (IIR) filter

For an IIR filter, the impulse response is non-zero after an infinite amount of time. To

achieve this, the use of output feedback is necessary. Thus, there are two different

coefficients type: the feedforward filter coefficient and the feedback filter

coefficient .

 (15)

 (16)

CHALMERS Civil and Environmental Engineering, Master’s Thesis 2012:137 11

And the output is calculated as (see the recursive part on the second line):

 ∑

 ∑

(17)

The major advantage of IIR filter is that thanks to the recursion they require fewer

coefficients and thus fewer computing resources [18]. However the recursion implies

that the filter can be easily unstable, so one has to be careful when dealing with IIR

filters.

2.4 Inverse filtering

Let be a generic system (e.g. an acoustic path, a transmission line, a loudspeaker …)

that we want to reduce the effect on our input signal . Then, a filter is placed in the

forward path and will perform an inverse filtering of in order to get . Figure

13 shows the schematic of this concept.

Figure 13 - Inverse filtering of a system.

There are several methods to calculate the impulse response of the filter. First of all, if

one know exactly the transfer function of , then we can simply take the inverse:

 . But this method has some flaws. The system is not always known, and

furthermore, the direct inverse is often unstable since most of loudspeaker and room

IR are non-minimum phase function
5
 [27].

Achieving a perfect inversion without knowing is possible though by using MINT

(multiple input/output inverse theorem) as described in [8]. But it requires a number

of inputs greater than the number of outputs and is thus not applicable for our system.

Another solution is to use the well-known method of adaptive filtering.

2.4.1 Single channel adaptive inverse filtering

An adaptive filter is a filter that can adjust its coefficients according to an

optimization algorithm driven by an error signal.

Let be an unknown system. There are basically two modes of operation of an

adaptive filter: (i) direct system modelling to get the same IR as the unknown system

and (ii) inverse system modelling to obtain the inverse IR. The second mode is the

one we are interested in and is illustrated in Figure 14.

5
 A non-minimum phase function of a stable and causal system has one or more zeros in the right side

of the Laplace Domain (or outside the unit circle in discrete-time). Therefore, the inverse of this

function would be causal but unstable.

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:137 12

Figure 14 – Schematic of the single channel adaptive inverse filtering.

The idea behind this is to minimize a cost function by appropriately selecting the

filter coefficients and updating the filter as new data arrives. This cost function is

always related to the error signal, as we try to minimize it. The adaptive algorithm has

always the form of equation (18), with the correction factor.

 (18)

Now the problem with this actual layout is that the filter is placed after the unknown

system. In our application, the unknown system is formed by the loudspeaker, the

room and the microphone. This means the effect of the filter will not be heard by a

listener. In order to do that, we would need to stop the filtering process, and copy the

filter coefficients to a new filter placed before the unknown system.

But there is a layout where the adaptive filter is placed before the system. This is the

so-called filtered-x (Fx) algorithm, illustrated in Figure 15.

Since we still need a signal processed by the system to inverse, an estimated model

 is used to feed the algorithm. The algorithm is robust to errors in the estimate of the

system [29, 30].

Figure 15 - Schematic of the single channel filtered-x adaptive inverse filtering.

The filtered-x layout has been widely used for active noise control system [29-32] but

also for more conventional channel equalization [9, 31].

CHALMERS Civil and Environmental Engineering, Master’s Thesis 2012:137 13

2.4.2 Multichannel adaptive inverse filtering

A common approach for adaptive multichannel filtering is to minimize the sum of the

square of the errors between the equalized responses [7, 9, 30]. Figure 16 presents it

with the filtered-x layout.

Figure 16 - Schematic of the multichannel filtered-x adaptive inverse filtering.

We have one input (i.e. loudspeaker) and output (i.e. microphones) of the unknown

system S, thus modelling delay, error signals and estimated signals.

The update equation will then be of the form [30]:

 ∑

 (19)

2.4.3 Algorithms for adaptive filtering

Adaptive algorithms have been extensively studied in the past few decades and have

been widely used in many fields [33]. The most popular adaptive algorithms are the

Recursive Least Square (RLS) algorithm and the stochastic gradient (SG) algorithms.

But before continuing, here are some definitions of symbols used:

 (20)

 (21)

 (22)

 (23)

Note that the equations referred to the conventional single channel adaptive inverse

filtering layout as we can see Figure 14. To apply the filtered-x layout, the

signal must be replaced by in the update equations and equation (22) must

be replaced by:

 (24)

To get the multichannel layout, we can treat each signal separately and use equation

(19) as the overall update equation.

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:137 14

2.4.3.1 Recursive Least Squares algorithm

The RLS algorithm uses a least squares (LS) estimate, that is to try to minimize the

sum of the squared errors, hence the cost function:

 ∑

 (25)

With the forgetting factor which gives exponentially less weight to older

samples error. is the filter order.

The update algorithm is then defined by equations (26) to (28).

 (26)

 (27)

 (28)

Where indicates matrix transposition.

The initial conditions are:

(29)

With a small positive number and the N-rank identity matrix.

The RLS algorithm is known to have a fast convergence but a high computational

load [18, 33, 34].

2.4.3.2 Stochastic gradient algorithms

The stochastic gradient algorithms use the steepest descent (or gradient descent)

method in order to find the Wiener optimum, i.e. to minimize the mean-square error

(MSE), hence the cost function [18]:

 { } (30)

With { } denoting the expectation.

This leads to the well-known least mean-squares (LMS) algorithm defined by:

 (31)

With a small positive constant called the step size (or sometime learning rate or

convergence factor). Its value is strongly dependent to the input signal (for instance a

white noise input signal could allow to use a higher step size value than a pop-rock

music signal). A small value ensures a result closer to the optimum, but slows down

the algorithm. The convergence of the algorithm depends of as well, as a too large

value will misses the optimum and completely diverge. So we have to be careful when

choosing the step size value.

CHALMERS Civil and Environmental Engineering, Master’s Thesis 2012:137 15

The stochastic gradient algorithms are known to have a lower computational load but

a slower convergence than the RLS one [18, 33-36].

Based on the LMS algorithm, several variants have been proposed [33-37] and differ

by their update equation.

2.4.3.2.1 The Normalized LMS (NLMS) algorithm

The main drawback of the LMS algorithm is that it is sensitive to the input signal

type, and therefore it can be really hard, if not impossible, to find one suitable for

every type. The NLMS algorithm solves that problem by normalizing the signal

power, hence the new update equation [36]:

‖ ‖
 (32)

With a small value to avoid division by 0.

The step size is now normalized: .

2.4.3.2.2 The Time-Varying LMS (TV-LMS) algorithm

The TV-LMS algorithm works in the same manner as the LMS algorithm, except for

the convergence factor, which became time-dependant: it starts from a large value and

decrease to a smaller value. This allows to have a fast convergence at the beginning,

and then to have a smaller and more precise convergence towards the end. The step

size is now expressed as [33]:

 (33)

Where , and are positive constants that will determine the magnitude and the

rate of decrease for the convergence factor, see Figure 17 for an example. The second

term starts from and converges to .

According to equation (9), has to be larger than 1. If , the learning rate is no

longer time-dependant and we fall back on the conventional LMS algorithm.

Note that can be normalized as well, like in equation (32):

‖ ‖
.

Figure 17 - Example of the evolution of the time-dependant step size value over time (, ,

 and).

The new update equation is then:

 (34)

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:137 16

2.4.3.2.3 The Normalized Least Mean p-Norm (NLMP) algorithm

The LMP algorithm is the -norm generalization of the LMS algorithm for -stable

signal
6
, hence the generalized cost function [37]:

 {| | } (35)

With a strictly positive constant, usually .

This cost function yield to a new generalized update equation:

| | ()

‖ ‖

 (36)

With the sign function, and a small value to avoid division by 0.

Note that if , the 2-norm NLMP algorithm is reduce to the usual NLMS

algorithm. On the other hand, if , we obtain the Normalized Least Mean

Absolute Deviation (NLMAD) algorithm with the update equation:

 ()

‖ ‖
 (37)

For our test we use (to have a value half-way from NLMAD to NLMS).

6
 -stable characterize the type of probability distribution of the signal. values close to indicate

impulsive nature and values close to indicate a more Gaussian type of behaviour. There is two

special values: the and cases correspond to the Cauchy and Gaussian distributions respectively

CHALMERS Civil and Environmental Engineering, Master’s Thesis 2012:137 17

3 Methods

This study has been conducted in two times: simulations with Matlab and then real

measurements in an anechoic room.

3.1 Simulations

3.1.1 Matlab

Matlab (for matrix laboratory) is a programming environment developed by

MathWorks
7
 for algorithm development, data analysis, visualization, and numerical

computation. Chalmers has unlimited site licence for this software. The simulations

were performed using the version of Matlab.

We also used the Matlab Simulink tool. Simulink is an environment for multidomain

(continuous or discrete-time) simulation and Model-Based Design for dynamic and

embedded systems. It provides an interactive graphical environment and a

customizable set of block libraries to design, simulate, implement, and test a variety

of time-varying systems (e.g. communications, signal/image processing …). The

version used for this study is .

Matlab scripts and Simulink models can be found in Annexes.

3.1.2 Acoustic model

At the beginning of the study, no loudspeaker model or measured impulse response

were available for simulating our system so we needed to find some impulse

responses.

3.1.2.1 Simplified multichannel impulse responses

We employed in first place impulse responses used by Elliot and Nelson [9]. They

defined four simple impulse responses of 50 coefficients that we can use for our tests.

Figure 18 – Simplified impulse responses.

7
 https://www.mathworks.com/

https://www.mathworks.com/

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:137 18

3.1.2.2 Real multichannel impulse responses from MARDY

In order to have more realistic simulations, we needed realistic impulse responses.

That is why we used the Multichannel Acoustic Reverberation Database at York
8

(MARDY). This database contains real multichannel room and loudspeaker impulse

responses (see Figure 19).

Figure 19 - Diagram of the MARDY recording room dimensions and setup (Room height = 3 m). Both

loudspeaker and microphones were elevated to 1m above the floor. Source [38].

The original data contains over 60000 samples per IR but the interesting part is

mainly located at the 1000 first samples, as you can see in Figure 20.

Figure 20 - Real impulse responses from MARDY

We used only the four extreme points for our simulations. It allowed us to simulate

the multichannel equalization over an area of , as depicts in Figure 21.

Figure 21 - Points used from MARDY in our simulation.

8
 http://www.commsp.ee.ic.ac.uk/~sap/resources/mardy-multichannel-acoustic-reverberation-database-

at-york-database/

http://www.commsp.ee.ic.ac.uk/~sap/resources/mardy-multichannel-acoustic-reverberation-database-at-york-database/
http://www.commsp.ee.ic.ac.uk/~sap/resources/mardy-multichannel-acoustic-reverberation-database-at-york-database/

CHALMERS Civil and Environmental Engineering, Master’s Thesis 2012:137 19

3.1.2.3 Nonlinear acoustic model

For the nonlinear simulations, we used in the acoustic path a simple nonlinear system

defined by Singh and Chatterjee [39]:

 (38)

Thus we have a quadratic part and a recursive part decreasing with time.

This nonlinear system is then added to an existing linear system (like we defined

before).

3.2 Measurements in laboratory

The Chalmers Department of Applied Acoustics has an anechoic chamber where we

can conduct our measurement.

3.2.1 The anechoic chamber

Anechoic rooms are used to mimic free-field conditions, i.e. a condition where only

the direct sound field is present. In such rooms one can for example calibrate

microphones and measure the frequency response and directivity characteristics of

loudspeakers and microphones. The room can also be used to reproduce binaural

recordings or simulations via loudspeakers.

In order to have a high sound absorption in an anechoic chamber, the room’s

bounding surfaces (ceiling, walls and floor) are covered with mineral wool (we walk

on a net hanging at the middle of the room). The absorption material is wedge-shaped

to achieve an impedance matching, i.e. a slow transition between the specific sound

impedance of air and the impedance of the porous absorber. The absorption

coefficient and the length of the wedges define the frequency limitation of the room.

The anechoic chamber at the Department of Applied Acoustics has a volume of

 and a lower frequency limit of .

An anechoic chamber should also be well isolated to vibration and sound since

measurements often are made at low levels (e.g. distortion measurements on

loudspeakers). This requirement can be fulfilled by using a double shell construction.

For example, the anechoic room is built as a box, physically separated from the rest of

the building. Vibrations from the ground are eliminated by mounting the box on steel

coil springs. The anechoic measurement room at the Department of Applied Acoustics

weighs about 800 tons and has a resonance frequency of .

As one can guess from the explanation above, an anechoic room with reasonable

measurement conditions is extremely expensive.

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:137 20

3.2.2 The measurement setup

Measurements were conduct on Windows XP using HOLMImpulse, a freeware

program developed by Holm Acoustics
9
 for frequency and impulse response

measurement. The sine sweep technique was used (see chapter 2.2.3 for explanation).

Figure 22 - The measurement system

Harmonic distortion measurements using pure tone was conduct with the trial version

of the software DSSF3 by Ymec
10

.

 We used an external USB soundcard with 48 kHz sampling and an omnidirectional

electret condenser microphone (see Table 1 for specifications).

Table 1 - Microphone WM-063 specifications

Sensitivity

Frequency range

SNR

3.2.3 Calibrations

There is of course no good measure without a proper calibration of the instruments.

The first step is to is to calibrate the microphone. For this, we need to look at what is

given by the manufacturer. Only a typical frequency response is given in the

datasheet, as you can see Figure 23. It seems pretty flat all over the desired frequency

range, with only small ripples less than above 5 kHz. For our measure, we can

consider it good enough.

Figure 23- Typical frequency response curve of the microphone.

For the next step we calibrate the soundcard by measuring and adjusting the loopback,

i.e. measuring between the output and the input. As we define in Chapter 2.3, a digital

9
 http://www.holmacoustics.com

10
 http://www.ymec.com

http://www.holmacoustics.com/
http://www.ymec.com/

CHALMERS Civil and Environmental Engineering, Master’s Thesis 2012:137 21

system has converters to switch from continuous-time to discrete-time signal (and

vice-versa). Those converters (DAC and ADC) can modify the signal and therefore

need calibration.

As you can see Figure 24, not much calibration was necessary for our soundcard since

it is already pretty flat.

Figure 24 - Soundcard frequency and impulse response before and after calibration.

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:137 22

3.2.4 The measurements

First, the impulse response has been measured at various points around the

loudspeaker as you can see in Figure 25. The loudspeaker was installed on a wooden

square plank of for reflection purpose.

Figure 25 – Measurement points ABCD – IJKL – XY. Microphones are 1m above the loudspeaker.

Then we measured the directivity pattern of the loudspeaker on two positions (side

and front), see Figure 26. We used an automatic turntable to orient the loudspeaker.

Figure 26 - Positions for the directivity measurement.

CHALMERS Civil and Environmental Engineering, Master’s Thesis 2012:137 23

4 Results

The results of the various simulations and measurements are presented in this chapter

and will be discussed in the next one.

4.1 Simulations

The simulations were conduct in three steps: adaptive algorithms simulations, linear

simulations and nonlinear simulations.

4.1.1 Adaptive algorithms

The first simulations concern all the adaptive algorithms defined in Chapter 2.4.3:

LMS, NLMS, TV-LMS, NLMAD, NLMP and RLS. The goal is to find the most

suitable algorithm for our needs.

Figure 27 plots the convergence of the algorithms by looking at the evolution of the

mean squared error (MSE) over time. The MSE for each algorithm is calculated as

equation (39). It shows how quickly an algorithm can converge to a stable and low

value. We see that the RLS algorithm is the best in this category: fast convergence to

an extremely low value.

 ∑

 (39)

Figure 27 – Learning curves for various algorithms

(1000-tap MARDY impulse response, 300-tap filter length, 100-tap delay, and no noise).

The next simulations used the simplified impulse response of 50 coefficients in order

to accelerate the simulations for each point. We remind the reader that the signal-to-

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:137 24

noise ratio is defined as the ratio between a signal power and the noise power, see

equation (40).

 (40)

Figure 28 and Figure 29 show the MSE evolution for different SNR and different

filter length respectively. No algorithm really stands out; they all have the same

sensibility to noise and filter length.

Figure 28 – MSE performance for various signal-to-noise ratios

(50-tap impulse response, 50-tap filter length, and 25-tap delay).

Figure 29 - MSE performance for various filter length

 (50-tap impulse response, 25-tap delay, and no noise).

For the last one, Figure 30 shows the computation time of the algorithms for

increasing filter length. This is an important parameter for the choice of the algorithm.

And we clearly see that the RLS algorithm take a lot of increasing computation time

whereas the other ones stay quite low.

CHALMERS Civil and Environmental Engineering, Master’s Thesis 2012:137 25

Figure 30 – Elapsed time for various filter length

(50-tap impulse response, 25-tap delay, no noise).

4.1.2 Linear implementation

The filtered-x implementation of the NLMS algorithm was used for the linear

implementation, since it offers the best trade-off between convergence speed and

computation time. This choice is extensively detailed in Chapter 5.1.

4.1.2.1 Single channel

We started with the single channel equalization as described in Chapter 2.4.1.

4.1.2.1.1 Channel equalization

We looked at the channel equalization performance by simulating with an optimal

delay and no noise. Figure 31 shows the acoustic path impulse response and the

corresponding inverse filter we generate. Figure 32 shows the convolution between

them. The equalization is effectively quite good and we almost get a perfect IR.

Finally, Figure 33 gives their respective frequency spectrums. We see a big

improvements for the magnitude spectrum (except in the low frequencies, due to the

size of the filter).

Figure 31 – Left is 1000-tap MARDY impulse response (zoom on the first 300 samples) and right is

1000-tap filter impulse response (zoom on 300 to 700 samples).

(150-tap delay and no noise).

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:137 26

Figure 32 – Resulting impulse response acoustic path + filter (zoom on 400 to 600 samples)

(1000-tap MARDY impulse response, 1000-tap filter length, 150-tap delay, and no noise).

Figure 33 – Frequency spectrums (magnitude and phase) of the various blocs: acoustic path (or

Model), filter and model + filter (1000-tap MARDY impulse response, 1000-tap filter length, 150-tap

delay, and no noise).

4.1.2.1.2 Influences on the delayed path

Next, we focused on the parameters influencing the algorithm in the delayed path.

Figure 34 shows how the delay for affects the MSE convergence. We can

understand that there is a minimum delay which corresponds roughly at the first peak

position in the acoustic path impulse response (which is around 50 for this one). This

will be a little more detailed with the multichannel simulation.

Figure 34 – Minimum MSE for various delay in the forward path.

(1000-tap MARDY impulse response, 1000-tap filter length, and no noise).

CHALMERS Civil and Environmental Engineering, Master’s Thesis 2012:137 27

4.1.2.1.3 Influences on the estimated path

It could be interesting to know how good the estimated path has to be (S’ in Figure

15). We start by adding some white noise to see if the convergence is impacted, see

Figure 35. We notice that even with a SNR of -20 dB (i.e. the signal is ten times

weaker than the noise) the convergence is not really impacted. This means that we

don’t need to have a very precise model for the estimated path.

Figure 35 - MSE performance for various SNR in the estimated path.

(1000-tap MARDY impulse response, 1000-tap filter length, 150-tap delay, and no noise).

Then we add more delay to the path and see how the convergence goes, see Figure 36.

Here we observe that even for a small variation of the delay, the system is hugely

impacted and diverge completely. This means the delay is what matter the most for

the quality of the estimated path.

Figure 36 - MSE performance for various extra delay in the estimated path.

(1000-tap MARDY impulse response, 1000-tap filter length, 150-tap delay, and no noise).

4.1.2.1.4 Single channel equalization on multichannel path

It can be interesting to look at why multichannel equalization could be useful instead

of single channel. For that, we equalize a single point (number 1) and look at how

three other points in the room (2 to 4) are influenced by this filtering. Indeed, the first

channel is well equalized, but the other channels don’t benefit from it.

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:137 28

Figure 37 - Spectrums of acoustic path before and after single channel equalization for point 1 and 2.

(1000-tap MARDY impulse response, 1000-tap filter length, 150-tap delay, and no noise).

Figure 38 - Spectrums of acoustic path before and after single channel equalization for point 3 and 4.

(1000-tap MARDY impulse response, 1000-tap filter length, 150-tap delay, and no noise).

Figure 39 – Impulse responses of acoustic path before and after equalization for point 1 and 2.

(1000-tap MARDY impulse response, 1000-tap filter length, 150-tap delay, and no noise).

CHALMERS Civil and Environmental Engineering, Master’s Thesis 2012:137 29

Figure 40 - Impulse responses of acoustic path before and after equalization for point 3 and 4.

(1000-tap MARDY impulse response, 1000-tap filter length, 150-tap delay, and no noise).

4.1.2.2 Multichannel

We continue with the multichannel equalization as detailed in Chapter 2.4.2.

4.1.2.2.1 Find the optimal delay

The main problem when dealing with multichannel part is to choose the values for the

delayed path (i.e. from to , see in Figure 16). It turns out that the delay

value of each path is linked to the others, and a bad choice for only one will limit the

convergence. So before moving on well working simulation, we have to define the

optimal delays.

To find the relation between those paths is quite easy. One has to look at the index of

the first peak of each impulse responses. Then, taking one of those paths as the

reference, the subtraction on each indexes gives the relation between them: it’s the

optimal offset (or delta) for the delays. Table 2 and Table 3 give the values for both of

our IR type.

Table 2 – Peaks and Optimal deltas for the

delayed path (50-tap simple IR).

 First peak Optimal delta

Channel 1

(reference)
15 0

Channel 2 15 0

Channel 3 19 4

Channel 4 19 4

Table 3 - Peaks and Optimal deltas for the

delayed path (1000-tap MARDY IR).

 First peak Optimal delta

Channel 1

(reference)
57 0

Channel 2 61 4

Channel 3 338 281

Channel 4 339 282

To illustrate this idea, we use the 50-tap impulse responses with a 25-tap default delay

and we vary only one delay value at a time. The results are shown Figure 41.

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:137 30

Figure 41 - MMSE performance for single delay variation (only one delay varying at the same time)

with 25-tap default delay (50-tap simple impulse response, 50-tap filter length, and no noise).

We can easily see that the lowest MSE values are the ones 4 samples from 25, as

calculated in Table 2. Mind that the MSE are not that really low because the optimal

offset is not used. We also notice, as we said before, that the delay should be at least

higher than the first peak index.

Now if we use those optimal offsets with the MARDY impulse responses and

simulate a full delay variation, we get the Figure 42. The working range is then from

100 to 700, i.e. we have to let enough room for the filter impulse response before and

after otherwise it gets truncated.

Figure 42 - MMSE performance for full delay variation (all delay varying at the same time) with

optimal offset from Table 3 (1000-tap MARDY impulse response, 1000-tap filter length, and no noise).

CHALMERS Civil and Environmental Engineering, Master’s Thesis 2012:137 31

4.1.2.2.2 Channels equalization

The optimal offset defined, we can equalize the four channels. After simulation is

completed, we obtain the filter Figure 43. The effect of this filter on each channel can

be seen Figure 44 - Figure 45 (impulse responses) and Figure 46 - Figure 47

(frequency spectrum). We clearly see that all points benefit from the equalization.

Figure 43 - Filter impulse response and frequency spectrum

(1000-tap MARDY impulse response, 1000-tap filter length, optimal delays, and no noise).

Figure 44 - IR of acoustic path before and after multichannel equalization for point 1 and 2.

(1000-tap MARDY impulse response, 1000-tap filter length, optimal delays, and no noise).

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:137 32

Figure 45 - IR of acoustic path before and after multichannel equalization for point 3 and 4.

(1000-tap MARDY impulse response, 1000-tap filter length, optimal delays, and no noise).

Figure 46 – Frequency spectrum of acoustic path before and after multichannel equalization for point

1 and 2 (1000-tap MARDY impulse response, 1000-tap filter length, optimal delays, and no noise).

Figure 47 - Frequency spectrum of acoustic path before and after multichannel equalization for point 3

and 4 (1000-tap MARDY impulse response, 1000-tap filter length, optimal delays, and no noise).

CHALMERS Civil and Environmental Engineering, Master’s Thesis 2012:137 33

4.1.2.2.3 Influence of the number of channels

It is interesting to see how the number of channels influences the equalization process.

We simulate the progressive variation of the number of optimization point from one to

four.

First, only channel 1 is taken into accounts (from 0 to 1), then channel 2 is

progressively added (from 1 to 2), and it goes on until channel 4. Figure 48 plots the

results.

We remark that at the beginning, the first channel is well equalized and the others

benefit of it a little bit. Then adding the second channel decreases its error value but

increase the first one. The same happened when the third and fourth channels are

added. This is quite logical: we can’t equalize multiple channel as good as only one

channel. There will be a trade-off between all channels.

Figure 48 – MMSE performance for increasing number of optimized points

(1000-tap MARDY impulse response, 1000-tap filter length, optimal delays, and no noise).

4.1.3 Nonlinear implementation

The second-order Volterra (SOV) implementation of the NLMS algorithm was used

for the nonlinear implementation, as defined in Chapter 2.1.2.

With this nonlinear simulation we ran into a main problem: the simulation would

always diverge. No matter the parameters, the MSE would basically converge

normally then rise to huge values after a certain amount of time, as you can see in

Figure 49. Figure 50 and Figure 51 show the filter coefficients diverging.

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:137 34

Figure 49 - Learning curves of the SOV filter (50-tap simple impulse response, 50-tap linear filter

length, 325-tap SOV filter length, nonlinearities amplitude of 0.5, and no noise).

Figure 50 – Linear filter h evolution (50-tap simple impulse response, 50-tap linear filter length, 325-

tap SOV filter length, nonlinearities amplitude of 0.5, and no noise).

CHALMERS Civil and Environmental Engineering, Master’s Thesis 2012:137 35

Figure 51 – quadratic filter evolution (50-tap simple impulse response, 50-tap linear filter length, 325-

tap SOV filter length, nonlinearities amplitude of 0.5, and no noise).

Finally, Figure 52 shows the difference whether the Volterra filter is enabled or not.

The reason why we have this divergence will be discussed next chapter.

Figure 52 – Learning curves with (a) Volterra filter not enabled and (b) Volterra filter enabled

 (50-tap simple impulse response, 50-tap linear filter length, 325-tap SOV filter length, nonlinearities

amplitude of 1, and no noise).

(a) (b)

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:137 36

4.2 Loudspeaker characterization

Measurements in the laboratory were conducted as explained in Chapter 3.2.

4.2.1 Impulse and frequency responses

Impulse and frequency responses were measured in various positions. Figure 53

shows the two positions A and I (difference of 90° degrees between them).

We can see that the loudspeaker lacks of bass power. This is quite logical looking at

the size of the drivers. In any way, the frequency response is not very flat and could

be improved.

Figure 53 - Frequency and raw impulse responses for position A and I.

4.2.2 Directivity pattern

We created the directivity patterns using the position defined in Figure 26. We

obtained the sonograms Figure 54 and Figure 55.

Although the frequency response is not very flat, it is pretty constant over the

orientation, meaning that two people right-angled from the loudspeaker will have

approximately the same sound experience.

CHALMERS Civil and Environmental Engineering, Master’s Thesis 2012:137 37

Figure 54 - Directivity sonogram for position 1 (side).

Figure 55 - Directivity sonogram for position 2 (top).

4.2.3 Harmonic distortions

We characterized the amount of harmonic distortion for only one pure tune of 1 kHz.

It was more a small test for illustration purpose than a real characterization of the

nonlinearities. Figure 56 shows the frequency spectrum. We clearly see the tone at 1

kHz and some harmonics at 2 and 3 kHz. Figure 57 sums up the distortion for each

harmonics. The total is less than 1% at 1 kHz, which is quite good.

Figure 56 - Frequency response when stimulated with a 1 kHz pure tone.

(d
B

)
(d

B
)

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:137 38

Figure 57 - Harmonics distortions when stimulated with a 1 kHz pure tone.

4.3 Loudspeaker equalization

The next step was to test our algorithm on our specific loudspeaker detailed in

Chapter 2.2.2. The best way would have been to insert our filter after the soundcard

and install multiple microphones across the room in order to conduct new tests in real

time on the loudspeaker. However, due to the lack of time and easy solution we were

obliged to perform those tests offline, i.e. to simulate the system using measured

impulse responses. These simulations are not perfect, since it doesn’t take into

account the loudspeaker nonlinearities.

We selected the positions J, L, X and Y, forming a surface of 6.4 m² for equalization

(see Figure 25 for exact dimensions).

4.3.1 Optimal delays

The first simulation concerned the optimal offset for the delayed path. Table 4 sums

the value gathered.

Next step was to simulate the MSE evolution while varying the delays with optimal

offset, allowing us to obtain the working range. The results are plotted in Figure 58,

giving a working range between 200 and 500 samples.

Table 4 - Optimal delays for loudspeaker measured IR.

 First peak Optimal delta

Position J

(reference)
156 0

Position L 160 4

Position X 524 368

Position Y 528 372

CHALMERS Civil and Environmental Engineering, Master’s Thesis 2012:137 39

Figure 58 - MMSE performance for full delay variation (all delay varying at the same time) with

optimal offset from Table 4 (1000-tap measured impulse response, 1000-tap filter length, and no

noise).

4.3.2 Impulse and frequency responses

The optimal delays defined, we went on to equalize the four channels. Figure 59 and

Figure 60 plot the acoustic path impulse responses before and after the equalization

(zoomed for a better view) whereas Figure 61 and Figure 62 plot the resulting

frequency responses.

We can see that the IR are compacted and show less ringing around their main peak.

Looking at the FR, we notice that the magnitude become compacted around 0 dB and

shows less big transitions between levels.

Figure 59 – Impulse responses for acoustic paths before and after equalization for point 1 and 2 (1000-

tap measured impulse response, 1000-tap filter length, optimal delays, and no noise).

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:137 40

Figure 60 - Impulse responses for acoustic paths before and after equalization for point 3 and 4.

(1000-tap measured impulse response, 1000-tap filter length, optimal delays, and no noise).

Figure 61 - Frequency responses for acoustic path before and after equalization for point 1 and 2.

(1000-tap measured impulse response, 1000-tap filter length, optimal delays, and no noise).

CHALMERS Civil and Environmental Engineering, Master’s Thesis 2012:137 41

Figure 62 - Frequency responses for acoustic path before and after equalization for point 3 and 4.

(1000-tap measured impulse response, 1000-tap filter length, optimal delays, and no noise).

4.3.3 MSE performance

Figure 63 plots the MSE convergence. The algorithm is stable and converges pretty

quickly.

Figure 63 – Learning curves for the four channels

(1000-tap measured impulse response, 1000-tap filter length, optimal delays, and no noise).

Finally, Figure 64 shows how the number of optimized points affects the MSE value.

Once again, we see that the more point we add, the less we can achieve a good

equalization.

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:137 42

Figure 64 - MMSE performance for increasing number of optimized points. Channel 1 from 0 to 1,

channel 2 from 1 to 2, and so on (1000-tap measured impulse response, 1000-tap filter length, optimal

delays, and no noise).

CHALMERS Civil and Environmental Engineering, Master’s Thesis 2012:137 43

5 Discussion

5.1 Choosing the algorithm

The choice of an algorithm isn’t an easy task and relies on well-defined constraints.

We would want the best and fastest MSE performance with the lowest complexity.

This is however an idealistic point of view which can’t be realized in the real world,

hence the constraints we have to define. In our case, we want to equalize a

loudspeaker for multiple channels. The generated filter will be used as a static built-in

filter afterwards. Thus we can say that the convergence rate is not an important factor

since we can afford to wait a little bit more before stopping the filter update. On the

other hands, the most important factor would be the MSE performance since we

expect to have a good equalization on, neither one nor two, but at least three channels.

Regarding the complexity, the constraint is in between since we don’t mind waiting

more time for the convergence, but it still should be easy and low-cost to implement.

Now, looking at the simulation results in Chapter 4.1.1 (from page 23), we clearly see

the different behaviour between the RLS and Steepest Descent (SD) algorithm class.

The RLS algorithm completely outperforms every algorithm when looking at

convergence rate. Concerning the MSE performance, the difference after convergence

is not huge, except for the LMS algorithm which always requires a fine tuning of the

step size. Regarding the sensitivity to noise and filter length, all algorithms show a

similar comportment.

About the complexity, we can see with the elapsed time that the RLS algorithm has a

high computational load and increases rapidly and nonlinearly with the filter order.

This is normal since the RLS algorithm has a complexity of operations
11

 per

iterations whereas a stochastic gradient-based algorithm has one of . However, the

fast Kalman implementation of the RLS algorithm can reduce the complexity to

 [18]. Still, the RLS will always have higher computational complexity than SD

algorithms.

Applying our constraints to what we just said, we can rule out the RLS algorithm

since the useless extremely fast convergence comes at the cost of high complexity.

Now the question remains on which SD-based algorithm we should choose. They all

offer the same complexity since they’re based on the same method.

First we can easily rule out the LMS algorithm since we don’t want to manually tune

the step size. From here, we can rule out the NLMP and NLMAD algorithms since

they show slower convergence and slightly worse MSE performance. The choice is

then narrowed down to the NLMS and the TV-LMS algorithms which show similar

performance in every simulation.

The final choice will be the NLMS algorithm. It’s a well-known and well-study

algorithm and slightly simpler to implement than the TV-LMS. There is also less

parameter to tune.

11

 An operation represents one addition (or subtraction) and one multiplication. It’s the so-called

Multiply–accumulate (MAC) operation well-known on DSP system.

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:137 44

5.2 The multipoint approach

Multichannel inverse filtering using the sum of the square of the errors presents some

nice advantages. It is easy to understand, simple to realise and freely implementable

with every existing adaptive algorithm. It could also perfectly work with nonlinear

filtering like SOV filters.

However, one has to be careful when using this approach. It can offer mixed to bad

results if not handled and implemented correctly.

First of all, special care must be taken for the delayed paths. It all revolves around the

largest peak index of the acoustic path. For a single channel, the delay must be at least

higher than this index (see Figure 34 p. 26), and low enough to give enough place for

the whole impulse response (remember that low frequencies need a long IR tail). For a

multichannel system, every channel must satisfy this but are also in relation with each

other. This means that the delayed paths must keep the same time (or sample)

difference between them as the acoustic paths. This is mandatory to assure a

convergence of the algorithm (see Figure 42 p. 30 and Figure 58 p. 39).

Secondly, the nature (e.g. mainly the point’s position) and the number of channels

play an important role. The more channels we add, the lower the MSE performance is

(see Figure 48 p. 33 and Figure 64 p. 42). The same applies to point’s position. The

further they are from each other, i.e. the larger the area to equalize is, the lower the

MSE performance is. It can be seen when comparing the simulations with MARDY

data and our measured data (compare Figure 48 with Figure 64). The first one

achieves a better performance than the second one. It can be partly explained by the

size of the area to equalize: against . Hence, the MSE performance will

result in a trade-off between the number and the position of the points.

5.3 The Volterra implementation problem

The Second Order Volterra (SOV) filter has been implemented as thoroughly

explained in multiple papers [22, 23, 39-43]. In any cases, the learning curve diverges

after a certain time even with a small amount of nonlinearities (can be seen Figure 49

p. 34). There is no mention of this behaviour in any paper cited. Furthermore, we can

say that this behaviour is completely related to the SOV filter since divergence

happened only when it is enabled (see Figure 52 p. 35).

And yet, SOV implementation of the LMS algorithm isn’t a big change. The existing

part is entirely conserved for the linear filtering, and the quadratic combination of

the input is used to form the bilinear coefficients , as detailed in equation (9).

But without logical reasons the algorithm keeps diverging. We decided then to put the

nonlinearity approach aside in order to complete the study.

But we can think of some leads on the cause of the problem. The first and most

obvious reason would be a misunderstanding of the Volterra theory. It could also be a

bad implemented nonlinear path which leads to self-amplification between the linear

and the nonlinear coefficients. As can be seen Figure 50 and Figure 51 (p. 35), both

filters diverge.

CHALMERS Civil and Environmental Engineering, Master’s Thesis 2012:137 45

6 Conclusion

The goal of this thesis was to develop a system that can perform a multichannel

equalization of a loudspeaker using Matlab.

After a literature study on inverse filtering, we settled down to linear adaptive filtering

since it offers a well-known framework than can be easily expanded to nonlinear and

multichannel filtering. We selected a handful adaptive algorithm to test: the RLS,

LMS, NLMS, TV-LMS, NLMAD and NLMP. The choice went to the LMS algorithm

for its low computational complexity and good MSE performance.

Then we prepared the ground for multichannel by implementing the single channel

filtered-x method with the NLMS algorithm. This allowed us to easily expand it to the

multichannel theory. Simulation showed good and expected results with both simple

50-tap and MARDY 1000-tap IR.

Next we tried to implement the Volterra nonlinear model with a SOV filter. We sadly

ran into divergence problems beyond understanding which prevented us to continue.

This was a real disappointment at this time of the study.

We moved on anyway to linearly characterize our home-made loudspeaker in an

anechoic room. We measured its IR and FR from different positions. We then used

those IR to simulate our algorithm on the loudspeaker in Matlab. This yields to

“roughly” good results, partly due to the size of the equalized area. Still, the equalized

IR show less ringing and more compact, impulse-like responses, which is basically

what we wanted.

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:137 46

7 Future works

First of all it could be interesting to find why we have a divergence with our SOV

filter. Linear filtering works, but using nonlinear filtering can definitely improve the

MSE performance of the algorithm. Leads discussed in Chapter 5.3 can be used as a

starting point, but maybe it is better to start from scratch. The bilinear approach [39,

42, 43] to nonlinear filtering could also be considerate, properly tested and compared

with the SOV filter. After obtaining a working nonlinear filter, the multichannel

approach can be applied and simulated.

Another important work would be to actually try the algorithm on the loudspeaker, i.e.

by not using simulation but real-time filtering. This way, a proper validation of the

algorithm can be achieved with real measurements of the filtered impulse responses.

Note that this can be done with or without the nonlinear implementation. For example

the measurement system Figure 22 can become the one Figure 65.

Figure 65 - Measurement system with real-time filtering.

The real-time filtering system can be realized with another computer so the existing

scripts and models in Matlab can be used (with proper modification of the inputs and

outputs). A DSP can also be used, but will require a development step to port the

algorithm to the target architecture.

Furthermore, it could be interesting to perform these measurements in various real-life

environments like bedroom or classroom, to see if problems arise from reverberations.

Last but not least, the ultimate stage would be to realize this filter as built-in either in

the loudspeaker or in a pre-amplifier. The later would be easier since power source

would be directly available. This extensive work would require hardware study (e.g.

what system to use? what architecture? etc…), programming study (e.g. which

language to use? etc…), mechanical study (e.g. what are the maximum dimensions?

etc…) and electrical study (e.g. how much power is available? what are the input and

output impedances? should a matching circuit be used? etc…). And of course a cost

study will drive the choices all along the project.

CHALMERS Civil and Environmental Engineering, Master’s Thesis 2012:137 47

References

[1] O. Kirkeby and P. A. Nelson, "Digital filter design for inversion problems in

sound reproduction," Journal of the Audio Engineering Society, vol. 47, pp.

583-595, Jul-Aug 1999.

[2] A. Carini, S. Cecchi, F. Piazza, I. Omiciuolo, and G. L. Sicuranza, "Multiple

Position Room Response Equalization in Frequency Domain," Ieee

Transactions on Audio Speech and Language Processing, vol. 20, pp. 122-

135, Jan 2012.

[3] Y. Haneda, S. Makino, and Y. Kaneda, "Multiple-point equalization of room

transfer functions by using common acoustical poles," Ieee Transactions on

Speech and Audio Processing, vol. 5, pp. 325-333, Jul 1997.

[4] S. G. Norcross, G. A. Soulodre, and M. C. Lavoie, "Subjective investigations

of inverse filtering," Journal of the Audio Engineering Society, vol. 52, pp.

1003-1028, Oct 2004.

[5] S. Brown, "Linear and Nonlinear Loudspeaker Characterization," Worcester

Polytechnic Institute 2006.

[6] W. C. Zhang, A. W. H. Khong, and P. A. Naylor, "ADAPTIVE INVERSE

FILTERING OF ROOM ACOUSTICS," in 42nd Asilomar Conference on

Signals, Systems and Computers, Pacific Grove, CA, 2008, pp. 788-792.

[7] S. Cecchi, L. Palestini, P. Peretti, F. Piazza, and A. Carini, "Multipoint

Equalization of Digital Car Audio Systems," 2009 Proceedings of 6th

International Symposium on Image and Signal Processing and Analysis (Ispa

2009), pp. 656-661, 2009.

[8] M. Miyoshi and Y. Kaneda, "INVERSE FILTERING OF ROOM

ACOUSTICS," Ieee Transactions on Acoustics Speech and Signal Processing,

vol. 36, pp. 145-152, Feb 1988.

[9] S. J. Elliott and P. A. Nelson, "Multiple-Point Equalization in a Room using

Adaptive Digital-Filters," Journal of the Audio Engineering Society, vol. 37,

pp. 899-907, Nov 1989.

[10] F. Lingvall and L. J. Brannmark, "Multiple-point statistical room correction

for audio reproduction: Minimum mean squared error correction filtering,"

Journal of the Acoustical Society of America, vol. 125, pp. 2121-2128, Apr

2009.

[11] L. J. Brannmark and A. Ahlen, "Spatially Robust Audio Compensation Based

on SIMO Feedforward Control," Ieee Transactions on Signal Processing, vol.

57, pp. 1689-1702, May 2009.

[12] E. U. Angelo Farina, Alberto Bellini, Gianfranco Cibelli, Carlo Morandi,

"Inverse numerical filters for linearisation of loudspeaker’s response,"

University of Parma, 2000.

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:137 48

[13] F. X. Y. Gao, W. M. Snelgrove, and Ieee, "ADAPTIVE LINEARIZATION

OF A LOUDSPEAKER," Icassp 91, Vols 1-5, pp. 3589-3592, 1991.

[14] T. Ishikawa, K. Nakashima, Y. Kajikawa, and Y. Nomura, "A consideration

on elimination of nonlinear distortion of the loudspeaker system by using

digital Volterra filter," Electronics and Communications in Japan Part Iii-

Fundamental Electronic Science, vol. 83, pp. 110-118, 2000.

[15] H. F. Niklas Agevik, Henrik Grunell, Daniel Hasselqvist, Patrick Jakiel and

Henrik Lundin, "On Loudspeaker Linearization Using Pre-Distortion," KTH

Royal Institute of Technology, Signals, Sensors and Systems, 2004.

[16] Y. Nomura, Y. Kajikawa, and Ieee, "Linearization of loudspeaker systems

using mint and volterra filters," in 30th IEEE International Conference on

Acoustics, Speech, and Signal Processing, Philadelphia, PA, 2005, pp. 457-

460.

[17] P. R. Chang, C. G. Lin, and B. F. Yeh, "INVERSE FILTERING OF A

LOUDSPEAKER AND ROOM ACOUSTICS USING TIME-DELAY

NEURAL NETWORKS," Journal of the Acoustical Society of America, vol.

95, pp. 3400-3408, Jun 1994.

[18] P. G. B. Mulgrew, J. Thompson, Digital Signal Processing : Concepts and

Applications, Second ed.: Palgrave Macmillan, 2003.

[19] W. J. Rugh, Nonlinear System Theory - The Volterra/Wiener Approach, 2002

Web ed.: The Johns Hopkins University Press, 1981.

[20] A. J. M. Kaizer, "Modeling of the nonlinear response of an electrodynamic

loudspeaker by a Volterra series expansion," Journal of the Audio Engineering

Society, vol. 35, pp. 421-433, Jun 1987.

[21] K. N. Tomokazu Ishikawa, Yoshinobu Kajikawa, and Yasuo Nomura, "A

Consideration on Elimination of Nonlinear Distortion of the Loudspeaker

System by Using Digital Volterra Filter," Electronics and Communications in

Japan, vol. 83, 2000.

[22] Y. Kajikawa and Y. Nomura, "Design of nonlinear inverse systems by means

of adaptive Volterra filters," Electronics and Communications in Japan Part

Iii-Fundamental Electronic Science, vol. 80, pp. 36-45, Aug 1997.

[23] S. L. Chang, T. Ogunfunmi, and Ieee, "LMS/LMF and RLS Volterra system

identification based on nonlinear Wiener model," Iscas '98 - Proceedings of

the 1998 International Symposium on Circuits and Systems, Vols 1-6, pp.

D206-D209, 1998.

[24] L. Carassale and A. Kareem, "Modeling Nonlinear Systems by Volterra

Series," Journal of Engineering Mechanics-Asce, vol. 136, pp. 801-818, Jun

2010.

[25] M. Kleiner, Audio Technology and Acoustics, 2nd ed. Chalmers University of

Technology: Division of Applied Acoustics, 2008.

CHALMERS Civil and Environmental Engineering, Master’s Thesis 2012:137 49

[26] N. Quaegebeur and A. Chaigne, "Mechanical resonances and geometrical

nonlinearities in electrodynamic loudspeakers," Journal of the Audio

Engineering Society, vol. 56, pp. 462-472, Jun 2008.

[27] S. T. Neely and J. B. Allen, "Invertibility of a room impulse-response,"

Journal of the Acoustical Society of America, vol. 66, pp. 165-169, 1979.

[28] Q. Meng, D. Sen, S. Wang, and L. Hayes, "IMPULSE RESPONSE

MEASUREMENT WITH SINE SWEEPS AND AMPLITUDE

MODULATION SCHEMES," Icspcs: 2nd International Conference on Signal

Processing and Communication Systems, Proceedings, pp. 617-621, 2008.

[29] L. Hakansson, "The Filtered-x LMS Algorithm," University of

Karlskrona/Ronneby, 2004.

[30] S. J. Elliott, I. M. Stothers, and P. A. Nelson, "A MULTIPLE ERROR LMS

ALGORITHM AND ITS APPLICATION TO THE ACTIVE CONTROL OF

SOUND AND VIBRATION," Ieee Transactions on Acoustics Speech and

Signal Processing, vol. 35, pp. 1423-1434, Oct 1987.

[31] E. Bjarnason, "ANALYSIS OF THE FILTERED-X LMS ALGORITHM,"

Ieee Transactions on Speech and Audio Processing, vol. 3, pp. 504-514, Nov

1995.

[32] I. T. Ardekani and W. H. Abdulla, "Filtered weight FxLMS adaptation

algorithm: Analysis, design and implementation," International Journal of

Adaptive Control and Signal Processing, vol. 25, pp. 1023-1037, Nov 2011.

[33] Y.-S. Lau, Z. M. Hussian, and R. Harris, "Performance of Adaptive Filtering

Algorithms: A Comparative Study," School of Electrical and Computer

Engineering, RMIT University, Melbourne, Australia., 2003.

[34] L. Ferdouse, N. Akhter, T. H. Nipa, and F. T. Jaigirdar, "Simulation and

Performance Analysis of Adaptive Filtering Algorithms in Noise

Cancellation," IJCSI International Journal of Computer Science, vol. 8, pp.

185-192, 2011.

[35] O. Arikan, M. Belge, A. E. Cetin, E. Erzin, and Ieee, "ADAPTIVE

FILTERING APPROACHES FOR NON-GAUSSIAN STABLE

PROCESSES," 1995 International Conference on Acoustics, Speech, and

Signal Processing - Conference Proceedings, Vols 1-5, pp. 1400-1403, 1995.

[36] A. B. Sankar, D.Kumar, and K.Seethalakshmi, "Performance Study of Various

Adaptive Filter Algorithms for Noise Cancellation in Respiratory Signals "

Signal Processing : An International Journal (SPIJ), vol. 4, pp. 267-278,

2010.

[37] J. Kivinen, M. K. Warmuth, and B. Hassibi, "The p-norm generalization of the

LMS algorithm for adaptive filtering," Ieee Transactions on Signal

Processing, vol. 54, pp. 1782-1793, May 2006.

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:137 50

[38] J. Y. C. Wen, N. D. Gaubitch, E. A. P. Habets, T. Myatt, and P. A. Naylor,

"Evaluation of speech dereverberation algorithms using the MARDY

database," in Proc. Intl. Workshop Acoust. Echo Noise Control (IWAENC),

Paris, France, 2006.

[39] T. S. D. Singh and A. Chatterjee, "A comparative study of adaptation

algorithms for nonlinear system identification based on second order Volterra

and bilinear polynomial filters," Measurement, vol. 44, pp. 1915-1923, Dec

2011.

[40] L. Z. Tan and J. Jiang, "Filtered-X second-order Volterra adaptive

algorithms," Electronics Letters, vol. 33, pp. 671-672, Apr 1997.

[41] Y. Takahama, Y. Kajikawa, and Y. Nomura, "A formulation of the

convergence property for the second-order adaptive Volterra filter using

NLMS algorithm," Electronics and Communications in Japan Part Iii-

Fundamental Electronic Science, vol. 85, pp. 40-50, 2002.

[42] S. M. Kuo and H. T. Wu, "Nonlinear adaptive bilinear filters for active noise

control systems," Ieee Transactions on Circuits and Systems I-Regular

Papers, vol. 52, pp. 617-624, Mar 2005.

[43] V. J. Mathews, "Adaptive polynomial filter," IEEE Signal Processing

Magazine, vol. 8, pp. 10 - 26 June 1991.

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:137 I

Annexes

Please note that the whole project (files, Matlab scripts and models, pictures …) will

be available to download at http://guillaume.perrin74.free.fr/ChalmersMT2012 for at

least one year.

Matlab File structure

The Matlab related files are stored using this directory structure:

 \global: contains general functions and files (IR …) used by all Matlab script.

 \libraries: contains libraries Simulink models (acoustic path, algorithms …)

 \lib_Linear: linear library models.

 \lib_NonLinear: nonlinear library models.

 \LinearImplementation: contains all scripts and Simulink models for the

linear implementation.

 \AdaptiveAlgTest: contains scripts and models for the adaptive

algorithms tests.

 \Results: simulation results.

 \SingleChannel: scripts and models for the single channel simulations.

 \Results: simulation results.

 \MultiChannel: scripts and models for the multichannel simulations.

 \Results: simulation results.

 \VolterraImplementation: contains all scripts and Simulink models for the

nonlinear implementation using Volterra series.

 \Measurements: contains all scripts for measurements processing (directivity

pattern …).

http://guillaume.perrin74.free.fr/ChalmersMT2012

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:137 II

Matlab models

LibLinear

LinNonLinear

LibGlobal

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:137 III

AdaptiveAlg_FIR_SC_IRTest

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:137 IV

FxLMS_SC_IRTest

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:137 V

FxLMS_SC_IRTest_multichannel

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:137 VI

FxLMS_MC_IRTest

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:137 VII

VLMS_SCNL_IRTest

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:137 VIII

Matlab script

Function: AdaptFilters (used in bloc Adaptive Algorithms)

function [w, a_param_out] = AdaptFilters(y, a_param_in,

algorithm_index, L, e)

%#codegen

persistent weights;

persistent fifo;

persistent absolute_n ;

persistent rls_P ;

persistent mu_0 ;

N = length(y);

% Small value

lambda = 1E-30 ;

if (length(a_param_in) >= 1)

 mu = a_param_in(1);

end

if isempty(weights)

 % Filter coefficients:

 weights = zeros(N,1);

 % FIFO Shift Register:

 fifo = zeros(N,1);

 % RLS recursion matrix

 delta = sqrt(mean(y.^2));

 rls_P = 0.1*eye(N) / delta ;

 % Absolute value of n

 absolute_n = 1 ;

 mu_0 = 0 ;

end

if (L ~= 0)

for n = 1:N

 % Update the FIFO shift register:

 fifo(2:L) = fifo(1:L-1);

 fifo(1) = y(n);

 if (algorithm_index == 1)

 %% LMS ALGORITHM

 if (mu == 0)

 mu_max = 1/((lambda + mean(y.^2))*L) ;

 mu = 0.1*mu_max;

 end

 weights(1:L) = weights(1:L) + mu * e(n) * fifo(1:L) ;

 elseif (algorithm_index == 2)

 %% NLMS ALGORITHM

 if (mu == 0)

 mu = 0.1;

 end

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:137 IX

 if (n == 1)

 mu = mu / (lambda + norm(y).^2);

 end

 weights(1:L) = weights(1:L) + mu * e(n) * fifo(1:L) ;

 elseif (algorithm_index == 3)

 %% TV-LMS ALGORITHM

 C = 20 ;

 a = 0.01 ;

 b = 0.7 ;

 if(mu_0 == 0)

 if(mu == 0)

% mu_0 = 0.5E-6;

 mu_0 = 0.1 / (lambda + norm(y).^2);

 else

 mu_0 = mu ;

 end

 end

 mu = mu_0 * C^(1/(1+a*absolute_n^b));

 weights(1:L) = weights(1:L) + mu * e(n) * fifo(1:L) ;

 elseif (algorithm_index == 4)

 %% NLMAD ALGORITHM

 if (mu == 0)

 mu = 0.001;

 end

 if (n == 1)

 mu = mu / (lambda + norm(y,1));

 end

 weights(1:L) = weights(1:L) + mu * sign(e(n)) * fifo(1:L) ;

 elseif (algorithm_index == 5)

 %% NLMP ALGORITHM

 if (length(a_param_in) >= 2)

 p = a_param_in(2);

 assert(p<=2 && p>=1);

 else

 p = 1.5 ;

 end

 if (mu == 0)

 mu = 0.01;

 end

 if (n == 1)

 mu = mu / (lambda + norm(y,p).^p);

 end

 weights(1:L) = weights(1:L) + mu * sign(e(n)) * abs(e(n)).^(p-1)

* fifo(1:L) ;

 elseif (algorithm_index == 6)

 %% RLS ALGORITHM

 if (mu == 0)

 mu = 1;

 end

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:137 X

 phi = fifo(1:L)' * rls_P(1:L,1:L) ;

 k = phi'/(mu + phi * fifo(1:L));

 weights(1:L) = weights(1:L) + k * e(n) ;

 rls_P(1:L,1:L) = (rls_P(1:L,1:L) - k * phi) / mu ;

 end

 absolute_n = absolute_n + 1 ;

end

end

a_param_out = mu ;

% Output the filter weights:

w = weights;

end

Function: NLMS_filter (used in bloc FxLMS algorithm)

function [h, mu] = NLMS_filter(y, e, L, mu_in) %#codegen

% Generate the NLMS filter

% Input

% y (float array) : source signal

% e (float array) : error signal

% L (int) : filter length (in samples)

% mu (float) : convergence coefficient (set to 0 for default

value)

% Output

% h (float array) : filter coefficients

% mu (float) : calculated convergence coefficient

%

persistent weights;

persistent fifo;

N = length(y);

% Small value

lambda = 1E-30 ;

if isempty(weights)

 % Filter coefficients:

 weights = zeros(N,1);

 % FIFO Shift Register:

 fifo = zeros(N,1);

end

% Convergence coefficient

if (mu_in == 0)

 mu = 0.1 / (lambda + norm(y).^2);

else

 mu = mu_in / (lambda + norm(y).^2);

end

for n = 1:N

 % Update the FIFO shift register

 fifo(2:L) = fifo(1:L-1);

 fifo(1) = y(n);

 % Update filter coefficients

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:137 XI

 weights(1:L) = weights(1:L) + mu * e(n) * fifo(1:L) ;

end

% Output the filter weights

h = weights;

end

Function: FxLMS_MC_filter (used in bloc FxLMS multichannel

algorithm)

function [h, mu] = FxLMS_MC_filter(y, e, L, mu_in) %#codegen

% Generate the LMS filter

% Input

% x_hat (4 float array) : approximate source signal (from model

forward

% path)

% e (4 float array) : error signal

% L (int) : filter length (in samples)

% mu (float) : convergence coefficient (set to 0 for automatic

% detection)

% Output

% float array

%

persistent weights;

persistent fifo;

N = length(y);

% Small value

lambda = 1E-30 ;

% Number of signal

K = size(y,2);

if isempty(weights)

 % Filter coefficients:

 weights = zeros(N,1);

 % FIFO Shift Register:

 fifo = zeros(N,K);

end

% Convergence coefficient

if (mu_in == 0)

 mu = 0.1 / (lambda + mean(norm(y)).^2);

else

 mu = mu_in / (lambda + mean(norm(y)).^2);

end

% if (mu_in == 0)

% mean_x_hat = 0 ;

% for k = 1:K

% mean_x_hat = mean_x_hat+mean(x_hat(:,k).^2);

% end

% mu_max = 2/(mean_x_hat*L) ;

% mu = 0.05*mu_max;

% else

% mu = mu_in;

% end

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:137 XII

for n = 1:L

 % Sum over the channel

 for k=1:K

 % Update the FIFO shift registers

 fifo(2:L,k) = fifo(1:L-1,k);

 fifo(1,k) = y(n,k);

 % Update weights values

 weights(1:L) = weights(1:L) + mu * e(n,k) * fifo(1:L,k);

 end

end

% Output the filter weights:

h = weights;

end

Function: VLMS_filter (used in bloc VLMS algorithm)

function [d_hat, h, h_quad, e, elaspedTime, mu_out] = VLMS_filter(d,

x, L, EnableSOV, ratioSOV)

% Generate the LMS filter

% Input

% d (float array) : source signal (delayed)

% x (float array) : modified signal from plant

% L (int) : filter length (in samples)

% mu (float) : convergence coefficient (set to 0 for automatic

% detection)

% Output

% float array

%

coder.varsize('weights_all');

coder.varsize('fifo_all');

persistent weights;

persistent weights_quad;

persistent fifo;

% persistent fifo_quad;

elaspedTime = 0 ;

% Start time measurement

coder.extrinsic('tic','toc');

tic;

coder.inline('never');

% Non linear size

if (ratioSOV < 1)

 ratioSOV = 1 ;

end

Lq = round(L / ratioSOV) ;

if isempty(weights)

 % Filter coefficients:

 weights = zeros(L,1);

 % Filter quadratic coefficients:

 weights_quad = zeros(Lq*(Lq+1)/2,1);

 % FIFO Shift Register:

 fifo = zeros(L,1);

end

% Pre-allocate output and error signals:

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:137 XIII

d_hat = coder.nullcopy(zeros(L,1));

e = coder.nullcopy(zeros(L,1));

fifo_quad = coder.nullcopy(zeros(Lq*(Lq+1)/2,1));

mu_out = coder.nullcopy(zeros(2,L));

for n = 1 : L

 %## Update the Linear Fifo

 fifo(2:L) = fifo(1:L-1);

 fifo(1) = x(n);

 % Approximation for plant signal

% d_hat(n) = weights' * fifo;

 d_hat(n) = fifo' * weights;

 if (EnableSOV == 1)

 %##Quadratic combinaison Fifo

 fifo_quad = buildSOV_Vector(fifo(1:Lq));

 % Add quadratic plant approximation

% d_hat(n) = d_hat(n) + weights_quad' * fifo_quad;

 d_hat(n) = d_hat(n) + fifo_quad' * weights_quad;

 end

 % Calculate the error

 e(n) = d(n) - d_hat(n) ;

 % Calculate mu

 mu_out(1,n) = 0.01 / (norm(fifo).^2+1E-30) ;

 % Update the linear filter

 weights = weights + mu_out(1,n) * e(n) * fifo;

 if (EnableSOV == 1)

 % Calculate mu

 mu_out(2,n) = 0.01 / (norm(fifo_quad).^2+1E-30) ;

 % Update the filter

 weights_quad = weights_quad + mu_out(2,n) * e(n) * fifo_quad ;

 end

end

% Output the filter weights:

h = weights;

h_quad = weights_quad ;

% End time measurement

elaspedTime = toc;

end

Function: buildSOV_Vector (used in the function above)

function [x_quad] = buildSOV_Vector(x)

% Build the Second Order Volterra Vector (quadratic

% combination of the input).

%

% Input

% x (vector) : linear source signal

% Output

% x_quad (vector) : quadratic combination

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:137 XIV

%

% Input size

N = length(x);

% Build quadratic combination matrix

x_matrix = x * x.';

% fyllo = [1:N+1:N^2]';

% x_matrix(fyllo)=abs(diag(x_matrix));

% Preallocating output

x_quad = zeros(N*(N+1)/2,1) ;

% Iterative loop to create the volterra vector

index=1;

for i=1:N

 x_quad(index:index+N-i) = x_matrix(i,i:N).';

 index = index + N - i + 1;

end

end

Script: AdaptiveAlg_FIR_SC_main_script

%

% MAIN SIMULATION SCRIPT

% ADAPTIVE ALGORITHM

% LINEAR SINGLE CHANNEL

% FIR

%

%% Initialize

clear all

close all

%clc

MDL_Init_Script

mdl = 'AdaptiveAlg_FIR_SC_IRTest';

disp('****** Parameters settings');

%===================================%

%====== Simulation Parameters ======%

%===================================%

% Simulation Algorithm Selection :

% 0 = All algorithm comparison

% 1 = LMS

% 2 = NLMS

% 3 = TV-LMS

% 4 = NLMAD

% 5 = NLMP

% 6 = RLS

sim_algo = 0;

% Simulation type

% 0 = No variation - (just simulate convergence with default

values)

% 1 = delay

% 2 = noise

% 3 = filter length

% 4 = Input signal source

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:137 XV

% 5 = convergence factor

sim_type = 0;

% Ignore RLS Algorithm (useful for testing, RLS can take time)

% 0 = Don't ignore RLS

% 1 = ignore RLS

sim_algo_no_RLS = 0;

% Number of simulation points

sim_N_points = 9 ;

% Number of frame

sim_N_frame = 2000 ;

% Frame size

% [2x1] vector (see AccPath_IR)

sim_frame_size = [50 ; 1000] ;

% Acoustic path Impulse Response

% 1 = Simple (FIR - 50 coeff)

% 2 = Real (FIR - 1000 coeff)

sim_AccPath_IR = 1 ;

%====== Default Parameters ======%

% Default Noise amplitude in Acoustic Path

default_AP_noise = 0;

% Default Delay

% [2x1] vector (see AccPath_IR)

default_delay = [25 ; 100];

% Default filter length

% [2x1] vector (see AccPath_IR)

default_Filterlength = [50 ; 300];

%====== Variation Parameters ======%

% Delay Simulation Parameters

sim_delay = ...

round(linspace(0,default_Filterlength(sim_AccPath_IR),sim_N_points));

% Noise Simulation Parameters

sim_noise_amplitude = linspace(0.01,2,sim_N_points);

% Filter length Simulation Parameters

if (sim_AccPath_IR == 1)

 sim_filter_length = round(linspace(20,100,sim_N_points));

else%if (AccPath_IR == 2)

 sim_filter_length = round(linspace(100,1000,sim_N_points));

end

% Convergence factor Simulation Parameters

sim_conv_factor(1,:) = ...

 linspace(nthroot(1E-6,4),nthroot(1E-

4,4),sim_N_points).^4;

sim_conv_factor(2,:) = ...

linspace(nthroot(0.001,4),nthroot(0.7,4),sim_N_points).^4;

sim_conv_factor(3,:) = ...

 linspace(nthroot(1E-6,4),nthroot(1E-

4,4),sim_N_points).^4;

sim_conv_factor(4,:) = ...

 linspace(nthroot(1E-4,4),nthroot(1E-

2,4),sim_N_points).^4;

sim_conv_factor(5,:) = ...

linspace(nthroot(0.001,4),nthroot(0.1,4),sim_N_points).^4;

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:137 XVI

% sim_conv_factor(6,:) = linspace(1,0.9999,sim_N_points);

%% Algo names

sim_algo_name(1,:) = 'LMS ';

sim_algo_name(2,:) = 'NLMS ';

sim_algo_name(3,:) = 'TV-LMS';

sim_algo_name(4,:) = 'NLMAD ';

sim_algo_name(5,:) = 'NLMP ';

sim_algo_name(6,:) = 'RLS ';

%% Simulink Model init

disp('****** Initialization');

MDL_Init_Script;

load_system(mdl);

FrameSize = sim_frame_size(sim_AccPath_IR);

if (sim_algo_no_RLS == 0 && sim_type == 0) || (sim_AccPath_IR == 2)

 set_param(mdl,'SimulationMode','rapid')

else

 set_param(mdl,'SimulationMode','normal')

end

set_param(mdl, 'StopTime', num2str(sim_N_frame*FrameSize));

set_param([mdl '/AcousNoiseGain'],'Gain',num2str(default_AP_noise));

set_param([mdl

'/Delta'],'Value',num2str(default_delay(sim_AccPath_IR)));

set_param([mdl '/AdaptiveParameter'],'Value', '0');

set_param([mdl '/AlgorithmSelection'],'Value', '1');

if (sim_AccPath_IR == 2)

 load('c_linear_1000_m1-4.mat');

 c = c1(1:FrameSize);

end

% Normalized energy

 c = c / abs(sum(c));

 % Calculate SNR and SNR_db

 if (default_AP_noise ~= 0)

 SNR = (1/default_AP_noise)^2 ;

 SNR_dB = 10*log10(SNR) ;

 end

% Blank simulation

set_param([mdl '/FilterSizeValue'],'Value','0');

sim(mdl);

set_param([mdl '/FilterSizeValue'],'Value', ...

num2str(default_Filterlength(sim_AccPath_IR)));

%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% Simulations Time ! %%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

e_mse = zeros(sim_N_points,1) ;

index = 1 ;

%% All algorithm simulation type

%

if (sim_algo == 0)

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:137 XVII

%

if sim_type == 0 %% No variation : Convergence simulation

 disp('****** Starting convergence simulation (all algorithm)');

 res_mse = zeros(sim_N_frame+1,6) ;

 res_mse_sm = zeros(sim_N_frame+1,6) ;

 res_time = zeros(1,6) ;

 res_mean_stable_mse = zeros(1,6) ;

 for i = 1:6

 disp(['Algorithm ' num2str(i)]);

 % Set algorithm selection

 set_param([mdl '/AlgorithmSelection'],'Value', num2str(i));

 if (i == 6 && sim_algo_no_RLS == 1)

 disp('ignored');

 else

 if (i == 6 && sim_AccPath_IR == 2)

 set_param(mdl,'SimulationMode','rapid')

 end

 % Start time measure

 tic;

 % Launch simulation

 sim(mdl);

 % Stop time measure

 toc;

 res_time(1,i) = toc ;

 % Save mean value (stable part)

 res_mean_stable_mse(1,i) = ...

 mean(mse_val(round(length(mse_val)/3):end));

 % Save MSE

 res_mse(:,i) = mse_val;

 % Save MSE Smooth

 res_mse_sm(:,i) = mse_val_smooth;

 end

 end

 figure;

 semilogy(res_mse_sm);

 grid on;

 title('Convergence of algorithm')

 xlabel('Samples');

 ylabel('MSE');

 xlim([0 size(res_mse_sm,1)]);

 ylim([0 1]);

 legend(sim_algo_name,'Location','NorthEastOutside');

 set(gca,'Xcolor',[0.3 0.3 0.3]);

 set(gca,'Ycolor',[0.3 0.3 0.3]);

 % Copy axes to change color back to black

 Caxes = copyobj(gca,gcf);

 set(Caxes, 'color', 'none', 'xcolor', 'k', 'xgrid', 'off',...

 'ycolor','k', 'ygrid','off');

 delete(Caxes);

 % use delete(Caxes) if you want to get rid of the copy object

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:137 XVIII

 % Can be useful for redraw purpose

elseif sim_type == 1 %% DELAY SIMULATION

 disp('****** Starting delay simulation (all algorithm)');

elseif sim_type == 2 %% NOISE SIMULATION

 disp('****** Starting noise simulation (all algorithm)');

 res_mse_sm = zeros(sim_N_frame+1,6,sim_N_points) ;

 res_mean_stable_mse = zeros(1,6,sim_N_points) ;

 res_SNR = zeros(1,sim_N_points) ;

 res_SNR_dB = zeros(1,sim_N_points) ;

 for w = sim_noise_amplitude

 % Calculate SNR and SNR_db

 if (w ~= 0)

 res_SNR(1,index) = (1/w)^2 ;

 res_SNR_dB(1,index) = 10*log10(res_SNR(1,index)) ;

 else

 res_SNR(1,index) = inf ;

 res_SNR_dB(1,index) = inf ;

 end

 disp(['*** SNR = ' num2str(res_SNR_dB(1,index)) ' dB']);

 % Set delay parameter to the model

 set_param([mdl '/AcousNoiseGain'],'Gain',num2str(w));

 for i = 1:6

 disp(['Algorithm ' num2str(i)]);

 % Set algorithm selection

 set_param([mdl '/AlgorithmSelection'],'Value', num2str(i));

 if (i == 6 && sim_AccPath_IR == 2)

 set_param(mdl,'SimulationMode','rapid')

 else

 set_param(mdl,'SimulationMode','normal')

 end

 % Launch simulation

 sim(mdl);

 % Save mean value (stable part)

 res_mean_stable_mse(1,i,index) = ...

 mean(mse_val(round(length(mse_val)/3):end));

 % Save MSE Smooth

 res_mse_sm(:,i,index) = mse_val_smooth;

 end

 index = index + 1 ;

 end

 for n = 1:2:sim_N_points

 figure;

 semilogy(res_mse_sm(:,:,n));

 grid on;

 title(['Convergence of algorithm with SNR = ' ...

 num2str(res_SNR_dB(1,n)) ' dB'])

 xlabel('Samples');

 ylabel('MSE');

 xlim([0 size(res_mse_sm(:,:,n),1)]);

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:137 XIX

 ylim([0 1]);

 legend(sim_algo_name,'Location','NorthEastOutside');

 set(gca,'Xcolor',[0.3 0.3 0.3]);

 set(gca,'Ycolor',[0.3 0.3 0.3]);

 end

 res_mean_stable_mse = reshape(res_mean_stable_mse,6,sim_N_points);

 figure;

 plot(res_SNR_dB,res_mean_stable_mse');

 grid on;

 title('Mean MSE for the stable part')

 xlabel('SNR (dB)');

 ylabel('MSE');

 legend(sim_algo_name,'Location','NorthEastOutside');

elseif sim_type == 3 %% FILTER length SIMULATION

 disp('****** Starting filter length simulation (all algorithm)');

 res_mean_stable_mse = zeros(1,6,sim_N_points) ;

 res_time = zeros(1,6,sim_N_points) ;

 % Update StopTime to the max to avoid rebuilding at each iteration

set_param(mdl,'StopTime',num2str(sim_N_frame*max(sim_filter_length)))

;

 for j = sim_filter_length

 % Set new FrameSize value only if larger than default one

 if (j > default_Filterlength(sim_AccPath_IR))

 FrameSize = j;

 % Blank simulation (to not impact time measurements)

 set_param([mdl '/AlgorithmSelection'],'Value', '1');

 set_param([mdl '/FilterSizeValue'],'Value','0');

 set_param(mdl,'SimulationMode','normal')

 sim(mdl);

 end

 set_param([mdl '/Delta'],'Value',num2str(round(j/2)));

 set_param([mdl '/FilterSizeValue'],'Value',num2str(j));

 disp(['*** Filterlength = ' num2str(j)]);

 for i = 1:6

 disp(['Algorithm ' num2str(i)]);

 % Set algorithm selection

 set_param([mdl '/AlgorithmSelection'],'Value', num2str(i));

 if (i == 6 && sim_AccPath_IR == 2)

 set_param(mdl,'SimulationMode','rapid')

 end

 % Start time measure

 tic;

 % Launch simulation

 sim(mdl);

 % Stop time measure

 toc;

 res_time(1,i,index) = toc ;

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:137 XX

 % Save mean value (stable part)

 res_mean_stable_mse(1,i,index) = ...

 mean(mse_val(round(length(mse_val)/3):end));

 if (res_mean_stable_mse(1,i,index) > 1)

 res_mean_stable_mse(1,i,index) = NaN ;

 end

 end

 index = index + 1 ;

 end

 res_mean_stable_mse = reshape(res_mean_stable_mse,6,sim_N_points);

 res_time = reshape(res_time,6,sim_N_points);

 figure;

 semilogy(sim_filter_length,res_mean_stable_mse');

 grid on;

 title('Mean MSE for the stable part')

 xlabel('Filter length');

 ylabel('MSE');

 legend(sim_algo_name,'Location','NorthEastOutside');

 figure;

 plot(sim_filter_length,res_time');

 grid on;

 title('Elapsed time for algorithm')

 xlabel('Filter length');

 ylabel('Elapsed time');

 legend(sim_algo_name,'Location','NorthEastOutside');

end

%% Unique algorithm simulation type

%

elseif (sim_algo > 0)

if sim_type == 5 %% Convergence factor variation

 disp('**** Starting convergence factor simulation (unique

algorithm)');

 % Set algorithm selection

 set_param([mdl '/AlgorithmSelection'],'Value', num2str(sim_algo));

 res_mse = zeros(sim_N_frame+1,sim_N_points) ;

 res_mse_sm = zeros(sim_N_frame+1,sim_N_points) ;

 res_mse_val = zeros(2,sim_N_points) ;

 index = 1 ;

 for mu = sim_conv_factor(sim_algo,:)

 disp(['*** mu = ' mu]);

 set_param([mdl '/AdaptiveParameter'],'Value', num2str(mu));

 % Launch simulation

 sim(mdl);

 % Save MSE values

 res_mse_val(1,index) = mean(mse_val);

 res_mse_val(2,index) = min(mse_val);

 % Test for divergence

 if (res_mse_val(1,index) < 2)

 % Save MSE

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:137 XXI

 res_mse(:,index) = mse_val;

 % Save MSE Smooth

 res_mse_sm(:,index) = mse_val_smooth;

 end

 index = index + 1 ;

 end

 % Delete empty column

 for i = index-1:-1:1

 if (res_mse_val(1,i) > 2)

 res_mse(:,i) = [];

 res_mse_sm(:,i) = [];

 end

 end

 figure;

 semilogy(res_mse_sm);

 grid on;

 title(['Convergence of algorithm ', sim_algo_name(sim_algo,:),...

 ' (', num2str(sim_algo), ')'])

 xlabel('Samples');

 ylabel('MSE');

 xlim([0 size(res_mse_sm,1)]);

 ylim([0 1]);

 legendCell = cellstr(num2str(...

 sim_conv_factor(sim_algo,1:size(res_mse,2))','mu = %-

.2e'));

 legend(legendCell,'Location','NorthEastOutside');

 set(gca,'Xcolor',[0.3 0.3 0.3]);

 set(gca,'Ycolor',[0.3 0.3 0.3]);

 % Copy axes to change color to black

 Caxes = copyobj(gca,gcf);

 set(Caxes, 'color', 'none', 'xcolor', 'k', 'xgrid', 'off',...

 'ycolor','k', 'ygrid','off');

 delete(Caxes);

 % use delete(Caxes) if you want to get rid of the copy object

 % Can be useful for redraw purpose

end

end

disp('****** END OF SCRIPT');

Script: main_script_LSC

%

% MAIN SIMULATION SCRIPT

% LMS IMPLEMENTATION

% LINEAR SINGLE CHANNEL

% FIR

%

%% Initialize

clear all

close all

%clc

tic

MDL_Init_Script

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:137 XXII

mdl = 'FxLMS_SC_IRTest';

disp('****** Parameters settings');

%====== Simulation Parameters ======%

% Simulation type

% 0 = Unique IR Response

% 1 = delay

% 2 = noise

% 3 = filter length

% 4 = estimated delay

% 5 = estimated noise

sim_type = 2;

% Number of simulation points

sim_N_points = 25 ;

% Number of frame

sim_N_frame = 2000 ;

% Frame size

% [2x1] vector (see AccPath_IR)

sim_frame_size = [50 ; 1000] ;

% Acoustic path Impulse Response

% 1 = Simple (FIR - 50 coeff)

% 2 = Real (FIR - 1000 coeff)

sim_AccPath_IR = 2 ;

%====== Default Parameters ======%

% Noise amplitude

default_AP_noise = 0;

default_estAP_noise = 0;

% Default Delay

% [2x1] vector (see AccPath_IR)

default_delay = [25 ; 150];

% Default estimated Delay

% [2x1] vector (see AccPath_IR)

default_est_delay = [0 ; 0];

% Default filter length

% [2x1] vector (see AccPath_IR)

default_Filterlength = [50 ; 300];

%====== Delay Simulation Parameters ======%

sim_delay = ...

round(linspace(0,default_Filterlength(sim_AccPath_IR),sim_N_points));

%====== Noise Simulation Parameters ======%

sim_noise_amplitude = linspace(0.01,2,sim_N_points);

%====== Estimated Delay Simulation Parameters ======%

sim_est_delay = round(...

[linspace(0,default_Filterlength(sim_AccPath_IR)/10,sim_N_points/2),.

..

 linspace(default_Filterlength(sim_AccPath_IR)/10+10, ...

 default_Filterlength(sim_AccPath_IR),sim_N_points/2)]);

%====== Estimated Noise Simulation Parameters ======%

sim_est_noise_amplitude = linspace(0.01,100,sim_N_points);

%====== Filter length Simulation Parameters ======%

% Filter length Simulation Parameters

if (sim_AccPath_IR == 1)

 sim_filter_length = round(linspace(20,100,sim_N_points));

else%if (AccPath_IR == 2)

 sim_filter_length = round(linspace(100,1000,sim_N_points));

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:137 XXIII

end

%% Simulink Model init

disp('****** Initialization');

load_system(mdl);

FrameSize = sim_frame_size(sim_AccPath_IR);

set_param(mdl, 'StopTime', num2str(sim_N_frame*FrameSize));

set_param([mdl '/AcousNoiseGain'],'Gain',...

 num2str(default_AP_noise));

set_param([mdl '/EstNoiseGain'],'Gain',...

 num2str(default_estAP_noise));

set_param([mdl

'/Delta'],'Value',num2str(default_delay(sim_AccPath_IR)));

set_param([mdl '/EstDelta'],'Value',...

 num2str(default_est_delay(sim_AccPath_IR)));

set_param([mdl '/FilterSizeValue'],'Value', ...

num2str(default_Filterlength(sim_AccPath_IR)));

if (sim_AccPath_IR == 2)

 load('c_linear_1000_m1-4.mat');

 c = c1(1:FrameSize);

end

% Normalized energy

 c = c / abs(sum(c));

 % Calculate SNR and SNR_db

 if (default_AP_noise ~= 0)

 SNR = (1/default_AP_noise)^2 ;

 SNR_dB = 10*log10(SNR) ;

 end

 if (default_estAP_noise ~= 0)

 SNR_est = (1/default_estAP_noise)^2 ;

 SNR_est_dB = 10*log10(SNR_est) ;

 end

%% Simulations

e_mse = zeros(sim_N_points,1) ;

index = 1 ;

if sim_type == 0 %% UNIQUE IR SIMULATION

 disp('****** Starting unique IR simulation');

 % Launch simulation

 sim(mdl);

 % Calculate MSE

 e_mse = mean(mse_val(500:end))

 e_mmse = min(mse_val)

 % Plot IR and FR

 stem_MF_IR(c,h(sim_N_frame,:))

 plot_MF_spectrum(c,h(sim_N_frame,:))

 % Plot IR evolution

 figure;

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:137 XXIV

 plot_gradient(h,round(logspace(0.1,2,10)))

 grid on;

 title('Filter Impulse Response evolution')

 xlabel('Samples');

 ylabel('h');

elseif sim_type == 1 || sim_type == 4 %% DELAY SIMULATION

 disp('****** Starting delay simulation');

 delta_values = 0 ;

 bloc_name = 'Delta' ;

 if sim_type == 1

 delta_values = sim_delay ;

 elseif sim_type == 4

 delta_values = sim_est_delay ;

 bloc_name = 'EstDelta' ;

 end

 e_mmse = zeros(sim_N_points,1) ;

 for delta = delta_values

 disp(['*** Delay = ' num2str(delta)]);

 % Set delay parameter to the model

 set_param([mdl '/' bloc_name],'Value',num2str(delta));

 % Launch simulation

 sim(mdl);

 % Calculate MSE

 e_mmse(index) = min(mse_val) ;

 e_mse(index) = mean(mse_val(round(length(mse_val)/3):end));

 index = index + 1 ;

 end

 figure;

 semilogy(sim_delay,e_mmse);

 grid on;

 title('Minimum MSE versus delay')

 xlabel('Delay (samples)');

 ylabel('Minimum MSE');

 figure;

 semilogy(sim_est_delay,e_mse);

 grid on;

 title('MSE (stable part) versus delay')

 xlabel('Delay (samples)');

 ylabel('MSE');

elseif sim_type == 2 || sim_type == 5 %% NOISE SIMULATION

 disp('****** Starting noise simulation');

 res_mse_sm = zeros(sim_N_frame+1,sim_N_points) ;

 res_mean_stable_mse = zeros(1,sim_N_points) ;

 res_SNR = zeros(1,sim_N_points) ;

 res_SNR_dB = zeros(1,sim_N_points) ;

 noise_values = 0 ;

 bloc_name = 'AcousNoiseGain' ;

 if sim_type == 2

 noise_values = sim_noise_amplitude ;

 elseif sim_type == 5

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:137 XXV

 noise_values = sim_est_noise_amplitude ;

 bloc_name = 'EstNoiseGain' ;

 end

 for w = noise_values

 % Calculate SNR and SNR_db

 if (w ~= 0)

 res_SNR(1,index) = (1/w)^2 ;

 res_SNR_dB(1,index) = 10*log10(res_SNR(1,index)) ;

 else

 res_SNR(1,index) = inf ;

 res_SNR_dB(1,index) = inf ;

 end

 disp(['*** SNR = ' num2str(res_SNR_dB(1,index)) ' dB']);

 % Set delay parameter to the model

 set_param([mdl '/' bloc_name],'Gain',num2str(w));

 % Launch simulation

 sim(mdl);

 % Save mean value (stable part)

 res_mean_stable_mse(1,index) = ...

 mean(mse_val(round(length(mse_val)/3):end));

 % Save MSE Smooth

 res_mse_sm(:,index) = mse_val;

 % Calculate MSE

 e_mse(index) = min(mse_val) ;

 index = index + 1 ;

 end

% plot(sim_noise_amplitude,e_mse);

% grid on;

% title('Minimum MSE versus noise')

% xlabel('Noise amplitude');

% ylabel('Minimum MSE');

 figure;

 plot(res_SNR_dB,res_mean_stable_mse);

 grid on;

 title('Mean MSE for the stable part')

 xlabel('SNR (dB)');

 ylabel('MSE');

elseif sim_type == 3 %% FILTER length SIMULATION

 disp('****** Starting filter length simulation');

 % Update StopTime to the max to avoid rebuilding at each iteration

 set_param(mdl, 'StopTime', ...

num2str(sim_N_frame*max(sim_filter_length)*2));

 for i = sim_filter_length

 disp(['*** Filterlength = ' num2str(i)]);

 % Set new delay parameter to the model

 set_param([mdl '/Delta'],'Value',num2str(round(i/2)));

 % Set FilterSize parameter

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:137 XXVI

 set_param([mdl '/FilterSizeValue'],'Value', num2str(i));

 % Launch simulation

 sim(mdl);

 % Calculate MSE

 e_mse(index) = min(mse_val) ;

 index = index + 1 ;

 end

 plot(sim_filter_length,e_mse);

 grid on;

 title('Minimum MSE versus filter length')

 xlabel('Filter length (samples)');

 ylabel('Minimum MSE');

end

toc

disp('****** END OF SCRIPT');

Script: main_script_LSC_multichannel

%

% MAIN SIMULATION SCRIPT

% LMS IMPLEMENTATION

% LINEAR SINGLE CHANNEL (with multichannel test)

% FIR

%

%% Initialize

clear all

close all

tic

MDL_Init_Script

mdl = 'FxLMS_SC_IRTest_multichannel';

disp('****** Parameters settings');

%====== Simulation Parameters ======%

% Number of frame

sim_N_frame = 5000 ;

% Frame size

% [2x1] vector (see AccPath_IR)

sim_frame_size = [50 ; 1000] ;

% Acoustic path Impulse Response

% 1 = Simple (FIR - 50 coeff)

% 2 = Real (FIR - 1000 coeff)

sim_AccPath_IR = 2 ;

%====== Default Parameters ======%

% Noise amplitude

default_AP_noise = 0;

default_estAP_noise = 0;

% Default Delay

% [2x1] vector (see AccPath_IR)

default_delay = [25 ; 150];

% Default filter length

% [2x1] vector (see AccPath_IR)

default_Filterlength = [50 ; 1000];

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:137 XXVII

%% Simulink Model init

disp('****** Initialization');

load_system(mdl);

FrameSize = sim_frame_size(sim_AccPath_IR);

set_param(mdl, 'StopTime', num2str(sim_N_frame*FrameSize));

set_param([mdl '/AcousNoiseGain'],'Gain',...

 num2str(default_AP_noise));

set_param([mdl '/EstNoiseGain'],'Gain',...

 num2str(default_estAP_noise));

set_param([mdl

'/Delta'],'Value',num2str(default_delay(sim_AccPath_IR)));

set_param([mdl '/FilterSizeValue'],'Value', ...

num2str(default_Filterlength(sim_AccPath_IR)));

if (sim_AccPath_IR == 2)

 load('c_linear_1000_m1-4.mat');

 c1 = c1(1:FrameSize);

 c2 = c2(1:FrameSize);

 c3 = c3(1:FrameSize);

 c4 = c4(1:FrameSize);

end

%% Simulations

disp('****** Starting multichannel simulation');

% Launch simulation

sim(mdl);

% Calculate MSE

e_mse = mean(mse_val)

c = [c1 c2 c3 c4] ;

plots_C_spectrum(c,h(sim_N_frame,:)');

stems_C_IR(c,h(sim_N_frame,:)');

toc

disp('****** END OF SCRIPT');

Script: main_script_LMC

%

% MAIN SIMULATION SCRIPT

% LMS IMPLEMENTATION

% LINEAR MULTI CHANNEL

% FIR

%

%% Initialize

clear all

close all

% clc

tic

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:137 XXVIII

MDL_Init_Script

mdl = 'FxLMS_MC_IRTest';

disp('****** Parameters settings');

%====== Simulation Parameters ======%

% Simulation type

% 0 = 'Unique IR Response'

% 1 = 'Unique delay variation'

% 2 = 'Double delay variation'

% 3 = 'Full delay variation'

% 4 = 'Number of optimized points variation'

sim_type = 0;

% Number of simulation points

sim_N_points = 25 ;

% Number of frame

sim_N_frame = 10000 ;

% Frame size

% [3x1] vector (see AccPath_IR)

sim_frame_size = [50 ; 1000 ; 1000] ;

% Number of acoustic path

sim_K = 4 ;

% Acoustic path Impulse Response

% 1 = Simple (FIR - 50 coeff)

% 2 = Real (FIR - 1000 coeff)

% 3 = Measured (FIR - 1000 coeff)

sim_AccPath_IR = 3 ;

%====== Default Parameters ======%

% Mu value

% [3x1] vector (see AccPath_IR)

default_mu_value = [0 0 0.01];

% Error Gain

default_error_gain = [1 1 1 1];

% Estimate source Gain

default_est_source_gain = default_error_gain;

% Noise amplitude

default_AP_noise = 0;

default_estAP_noise = 0;

% Delay

default_delay = [300 304 668 672];

% Size of the filter

% [3x1] vector (see AccPath_IR)

default_FilterLenght = [50 ; 1000 ; 1000];

% Delay

default_Unique_delay_var = [25 25 25 25];

% Delay

default_Double_delay_var = default_delay;

% Delay (optimal offset)

% [3x4] vector (see AccPath_IR)

default_Full_delay_var = [0 0 4 4 ; 0 4 281 282 ; 0 4 368 372];

%====== Delay Simulation Parameters ======%

sim_delay =

round(linspace(0,default_FilterLenght(sim_AccPath_IR),sim_N_points));

%====== Point Simulation Parameters ======%

sim_point_amplitude = linspace(0,1,(sim_N_points/sim_K));

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:137 XXIX

sim_point_amplitude =

sim_point_amplitude(2:length(sim_point_amplitude));

%% Simulink Model init

disp('****** Initialization');

load_system(mdl);

FrameSize = sim_frame_size(sim_AccPath_IR);

if (sim_AccPath_IR > 1)

 set_param(mdl,'SimulationMode','rapid')

else

 set_param(mdl,'SimulationMode','normal')

end

set_param(mdl, 'StopTime', num2str(sim_N_frame*FrameSize));

set_param([mdl '/AcousNoiseGain'],'Gain',num2str(default_AP_noise));

set_param([mdl '/FilterSizeValue'],'Value', ...

num2str(default_FilterLenght(sim_AccPath_IR)));

set_param([mdl

'/MuValue'],'Value',num2str(default_mu_value(sim_AccPath_IR)));

for k = 1:sim_K

 set_param([mdl '/EstNoiseGain'

num2str(k)],'Gain',num2str(default_estAP_noise));

 set_param([mdl '/Delta'

num2str(k)],'Value',num2str(default_delay(k)));

 set_param([mdl '/ErrorGain'

num2str(k)],'Gain',num2str(default_error_gain(k)));

 set_param([mdl '/EstSourceGain'

num2str(k)],'Gain',num2str(default_est_source_gain(k)));

end

if (sim_AccPath_IR == 2)

 load('c_linear_1000_m1-4.mat');

 c1 = c1(1:FrameSize);

 c2 = c2(1:FrameSize);

 c3 = c3(1:FrameSize);

 c4 = c4(1:FrameSize);

elseif (sim_AccPath_IR == 3)

 load('c_linear_meas_1000_m1-4.mat');

 c1 = c1(1:FrameSize);

 c2 = c2(1:FrameSize);

 c3 = c3(1:FrameSize);

 c4 = c4(1:FrameSize);

end

% Normalize

c1 = c1 / abs(sum(c1)) ;

c2 = c2 / abs(sum(c2)) ;

c3 = c3 / abs(sum(c3)) ;

c4 = c4 / abs(sum(c4)) ;

%% Simulations

e_mse = zeros(sim_N_points,1) ;

index = 1 ;

if sim_type == 0 %% UNIQUE IR SIMULATION

 disp('****** Starting unique IR simulation');

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:137 XXX

 % Launch simulation

 sim(mdl);

 % Calculate MSE

 e_mse = min(mse_val)

 % Plot results

 c = [c1 c2 c3 c4] ;

 plots_C_spectrum(c,h(sim_N_frame,:)');

 stems_C_IR(c,h(sim_N_frame,:)');

elseif sim_type == 1 %% UNIQUE DELAY SIMULATION

 disp('****** Starting unique delay simulation');

 e_mse = zeros(sim_N_points,sim_K,sim_K);

 for k = 1:sim_K

 disp(['*** Channel = ' num2str(k)]);

 % Default parameters

 index = 1 ;

 for kk = 1:sim_K

 set_param([mdl '/Delta'

num2str(kk)],'Value',num2str(default_Unique_delay_var(kk)));

 end

 % Delay variation

 for delta = sim_delay

 disp(['Delay = ' num2str(delta)]);

 % Set delay parameter to the model

 set_param([mdl '/Delta' num2str(k)],'Value',num2str(delta));

 % Launch simulation

 sim(mdl);

 % Calculate MSE

 for kk = 1:sim_K

 e_mse(index,kk,k) = min(mse_val(:,kk)) ;

 end

 % Update index

 index = index + 1 ;

 end

 end

 figure

 for k=1:sim_K/2

 subplot(2,sim_K/2,k);

 plot(sim_delay,e_mse(:,:,k));

 grid on;

 title(['Minimum MSE versus delay ' num2str(k)])

 xlabel('Delay (samples)');

 ylabel('Minimum MSE');

 subplot(2,sim_K/2,k+(sim_K/2));

 plot(sim_delay,e_mse(:,:,k+(sim_K/2)));

 grid on;

 title(['Minimum MSE versus delay ' num2str(k+(sim_K/2))])

 xlabel('Delay (samples)');

 ylabel('Minimum MSE');

 end

elseif sim_type == 2 %% DOUBLE DELAY SIMULATION

 disp('****** Starting double delay simulation');

 e_mse = zeros(sim_N_points,sim_K,sim_K);

 for k = 1:sim_K

 disp(['*** Channel = ' num2str(k)]);

 % Default parameters

 index = 1 ;

 for kk = 1:sim_K

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:137 XXXI

 set_param([mdl '/Delta'

num2str(kk)],'Value',num2str(default_Double_delay_var(kk)));

 end

 % Delay variation

 for delta = sim_delay

 disp(['Delay = ' num2str(delta)]);

 % Set delay parameter to the model

 set_param([mdl '/Delta' num2str(k)],'Value',num2str(delta));

 if (k ~= 4)

 set_param([mdl '/Delta'

num2str(k+1)],'Value',num2str(delta));

 else

 set_param([mdl '/Delta'

num2str(1)],'Value',num2str(delta));

 end

 % Launch simulation

 sim(mdl);

 % Calculate MSE

 for kk = 1:sim_K

 e_mse(index,kk,k) = min(mse_val(:,kk)) ;

 end

 % Update index

 index = index + 1 ;

 end

 end

 figure

 for k=1:sim_K/2

 subplot(2,sim_K/2,k);

 plot(sim_delay,e_mse(:,:,k));

 grid on;

 title(['Minimum MSE versus delay ' num2str(k) '/'

num2str(k+1)])

 xlabel('Delay (samples)');

 ylabel('Minimum MSE');

 subplot(2,sim_K/2,k+(sim_K/2));

 plot(sim_delay,e_mse(:,:,k+(sim_K/2)));

 grid on;

 if (k+(sim_K/2) ~= 4)

 title(['Minimum MSE versus delay ' num2str(k+(sim_K/2)) '/'

num2str(k+(sim_K/2)+1)])

 else

 title(['Minimum MSE versus delay 4/1'])

 end

 xlabel('Delay (samples)');

 ylabel('Minimum MSE');

 end

elseif sim_type == 3 %% FULL DELAY SIMULATION

 disp('****** Starting full delay simulation');

 e_mse = zeros(sim_N_points,sim_K);

 % Delay variation

 for delta = sim_delay

 disp(['Delay = ' num2str(delta)]);

 % Set delay parameters to the model

 for k = 1:sim_K

 set_param([mdl '/Delta' num2str(k)],'Value', ...

 num2str(delta +

default_Full_delay_var(sim_AccPath_IR,k)));

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:137 XXXII

 end

 % Launch simulation

 sim(mdl);

 % Calculate MSE

 for k = 1:sim_K

 e_mse(index,:) = min(mse_val) ;

 end

 % Update index

 index = index + 1 ;

 end

 d = sim_delay ;

 d_new =

linspace(0,default_FilterLenght(sim_AccPath_IR),5*sim_N_points);

 e_mse_int = zeros(length(d_new),sim_K);

 for k = 1:sim_K

 e_mse_int(:,k) = interp1(d,e_mse(:,k),d_new,'spline');

 end

 figure;

 plot(d_new,e_mse_int,d,e_mse,'xk');

 grid on;

 title(['Minimum MSE versus full delay (with optimal offset)'])

 xlabel('Delay (samples)');

 ylabel('Minimum MSE');

elseif sim_type == 4 %% Point optimization

 disp('****** Starting point optimization simulation');

 e_mse = zeros(length(sim_point_amplitude)*sim_K+1,sim_K);

 % Everything at zero

 for k = 1:sim_K

 set_param([mdl '/ErrorGain' num2str(k)],'Gain',num2str(0));

 end

 % Launch simulation

 sim(mdl);

 % Calculate MSE

 e_mse(1,:) = min(mse_val) ;

 index = 2;

 % Point variation

 for k = 1:sim_K

 disp(['*** Channel = ' num2str(k)]);

 for value = sim_point_amplitude

 disp(['****** Point amplitude = ' num2str(value)]);

 % Set delay parameter to the model

 set_param([mdl '/ErrorGain'

num2str(k)],'Gain',num2str(value));

 % Launch simulation

 sim(mdl);

 % Calculate MSE

 e_mse(index,:) = min(mse_val) ;

 index = index+1;

 end

 end

 x = linspace(0,4,length(sim_point_amplitude)*sim_K+1) ;

 x_new = linspace(0,4,5*(length(sim_point_amplitude)*sim_K+1));

 e_mse_int = zeros(length(x_new),sim_K);

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:137 XXXIII

 for k = 1:sim_K

 e_mse_int(:,k) = interp1(x,e_mse(:,k),x_new,'spline');

 end

 figure

 plot(x_new,e_mse_int);

 grid on;

 title('Minimum MSE versus number of optimized points')

 xlabel('Number of optimized points');

 ylabel('Minimum MSE');

end

toc

disp('****** END OF SCRIPT');

Script: delay_estimator_script

%

% MAIN SIMULATION SCRIPT

% Delay Estimator

% FIR

%

%% Initialize

clear all

close all

% clc

addpath('../global');

disp('****** Parameters settings');

%====== Simulation Parameters ======%

% Frame size

% [2x1] vector (see AccPath_IR)

sim_frame_size = [50 ; 1000 ; 1000] ;

% Acoustic path Impulse Response

% 1 = Simple (FIR - 50 coeff)

% 2 = Real (FIR - 1000 coeff)

% 3 = Measured (FIR - 1000 coeff)

sim_AccPath_IR = 3;

%% Simulink Model init

disp('****** Initialization');

FrameSize = sim_frame_size(sim_AccPath_IR);

if (sim_AccPath_IR == 1)

 load('c_linear_50_m1.mat');

 load('c_linear_50_m2.mat');

 load('c_linear_50_m3.mat');

 load('c_linear_50_m4.mat');

elseif (sim_AccPath_IR == 2)

 load('c_linear_1000_m1-4.mat');

 c1 = c1(1:FrameSize);

 c2 = c2(1:FrameSize);

 c3 = c3(1:FrameSize);

 c4 = c4(1:FrameSize);

elseif (sim_AccPath_IR == 3)

 load('c_linear_meas_1000_m1-4.mat');

 c1 = c1(1:FrameSize);

 c2 = c2(1:FrameSize);

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:137 XXXIV

 c3 = c3(1:FrameSize);

 c4 = c4(1:FrameSize);

end

%% Simulations

disp('****** Start simulation');

index = zeros(4,1);

index(1) = find(c1 == max(c1));

index(2) = find(c2 == max(c2));

index(3) = find(c3 == max(c3));

index(4) = find(c4 == max(c4));

optimal_delta = [0 ; ...

 abs(index(1)-index(2)) ; ...

 abs(index(1)-index(3)) ; ...

 abs(index(1)-index(4))];

disp(' Max peaks at index = ');

disp(index);

disp(' Optimal Delta (with channel 1 as reference) = ');

disp(optimal_delta);

