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Multipoint optimization of loudspeaker impulse response 

 

Master of Science Thesis 

GUILLAUME PERRIN 

Department of Civil and Environmental Engineering 

Division of Applied Acoustics 

Vibroacoustics Group 

Chalmers University of Technology 

 

ABSTRACT 

It’s relatively simple to obtain a very good impulse response at a single control point 

from a loudspeaker using an equalization filter. But in real life, an average impulse 

response over a larger geometrical area using multiple control point can be more 

interesting (e.g. for an audience). The purpose of this study is to investigate, analyse 

and simulate a multichannel equalization filter for a home-made loudspeaker. This 

filter must be able to optimize a loudspeaker impulse response over an area defined by 

at least three points.  

To answer this problem, we apply an adaptive filtering method since it offers a simple 

and effective way to expand to multichannel filtering. It also allows us to implement 

the Volterra theory through a second-order Volterra (SOV) filter to take nonlinearities 

into account. After several tests and simulations the well-known normalized least 

mean square (NLMS) algorithm was chosen and implemented using a finite impulse 

response (FIR) filter and the filtered-x arrangement.  

Simulations were conducted with Matlab using for beginning either small impulse 

responses, or real impulse responses from database. At the end, we took impulse 

responses from our own measurements of our loudspeaker made in an anechoic room. 

While we achieved good results with the multichannel linear filtering, we couldn’t 

make the SOV filter to work and it kept diverging. We couldn’t find the reason why 

but some leads are mentioned for further investigations. 

The principal conclusion is that multichannel filtering is all about trade-off. The mean 

square error (MSE) performance is impacted by the size of the equalized area and the 

number of points to optimize. Moreover, this study should serve as a starting point for 

further projects that could lead to the integration in a product (e.g. loudspeaker and/or 

amplifier). 

 

 

Keywords: Impulse response, Volterra filter, inverse filtering, multichannel, 

equalization, digital filter, adaptive algorithm, NLMS, FxLMS, MSE. 
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Notations and abbreviations 

 

 

(M)MSE (Minimum) Mean Square Error 

(N)LTI  (Non)Linear Time-Invariant 

FIR  Finite Impulse Response 

FR  Frequency Response 

IIR  Infinite Impulse Response 

IR  Impulse Response 

LMS  Least Mean Square 

RLS  Recursive Least Square 

SOV  Second-Order Volterra 

TF  Transfer Function 

 

 

 

   Time variable  

   Sample variable 

   Complex variable 

      Continuous-time signal (causal when     ) 

      Discrete-time signal (causal when     ) 

      Complex frequency spectrum of signal      

 

 

 

We point out to the reader that we should in fact write        for a discrete-time 

signal.    being the sampling time with    
 

  
 and    the sampling frequency. But to 

simplify, we normalize using         and thus can write     . 
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1  Introduction 

In sound-reproduction system, we usually want to reproduce a sound with the most 

fidelity to the original. We want to experience a song exactly as the composer made it. 

Thus there is a real need in loudspeaker optimization
1
.  

Equalization techniques have long been used to correct loudspeaker and room 

responses. Traditionally it involves the optimization of the frequency spectrum with 

graphic or parametric equalizers [1-3]. These techniques have obvious limitations (for 

example with the frequency resolution). Furthermore, they do not attempt to optimize 

the phase response, which is often disregarded whereas it contains important 

information [4]. A more complete tool is to use the impulse response which, as we are 

going to see, contains all the information we need. 

But an impulse response represents only a linear system. In the real world, non-

linearity transformation occurs and deforms the signal [5]. Thus it must be taken into 

account when filtering.  

Common approach uses a linear single point equalization (i.e. using only one 

microphone). While this method yields to good results [6], the optimized location is 

fixed and quite small. If the listener is moving or if there is a group of person 

scattered around, then the optimization is close to worthless since only one listener 

will benefit from it. Moreover, equalization on one point can sometimes have bad 

effect on other points and then the experience would be worse for the audience [7]. In 

such cases, multipoint equalization would be better as it would enlarge the equalized 

zone to a whole area. Figure 1 depicts that concept. The goal is to apply a multipoint 

equalization process to produce a “roughly” good impulse response over a large area 

for a specific home-made loudspeaker. 

 
Figure 1 - Concept of the system. 

Achieving a perfect inversion would be possible though by using MINT (multiple 

input/output inverse theorem) as described in [8]. But it requires a number of 

loudspeakers greater than the number of microphones and is thus not applicable for 

our system. 

                                                 
1
 Equalization, inverse filtering or inversion have similar meaning and can be found indifferently 

through this report. 
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Still, many works can be found in literature regarding multipoint linear equalization, 

but dealing mainly with room acoustics [2, 3, 7, 9-11]. A multipoint frequency 

domain approach is used in [7], but allows to compensate the magnitude spectrum 

irregularities only. The same approach is used with a fuzzy c-mean clustering 

algorithm in [2]. Analysing the transfer function of the system, a multipoint 

equalization method by using common acoustical poles is proposed in [3] but only 

permits to suppress the common peaks. Regarding time domain equalization, [9] 

presents an common adaptive least square error method. [10, 11] use a more statistical 

approach based on a linear minimum mean squared error criterion. 

As for non-linear equalization, the vast majority of work that can be found concerns 

fixed-point optimization with intensive use of Volterra Series [12-16] or a little of 

time-delay feedforward neural network [17]. However, it is possible to implement 

Volterra Filters to multi-point optimization using the adaptive least square error 

method.  

1.1 Objective 

A multichannel inverse filtering of a loudspeaker impulse response is implemented 

using an adaptive least square error method (see Figure 2). The goal is to obtain with 

an impulse signal at the input the very same net impulse at the outputs to have the best 

sound-reproduction chain. 

Different adaptive filtering approaches and types are tested and analysed. The 

nonlinearities are taken into account using the Volterra theory framework. Finally, the 

filtering system was tested on a home-made loudspeaker characterized in an anechoic 

room. 

 
Figure 2 - Detailed concept of the system. 

1.2 Structure of the report 

Following the introduction, Chapter 2 presents the theoretical framework of this 

study, the system analysis theory, loudspeaker characterization, and inverse digital 

filtering including the multichannel approach. Chapter 3 gives the methodology used 

to conduct this thesis with the description of the simulations and the measurements 

processes and Chapter 4 presents the results. A discussion on them follows in Chapter 

5, while Chapter 6 concludes the study by summing up our results. Chapter 7 offers 

some leads to further investigations and developments.  
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2 Background and theory 

We present in this chapter the theories behind system analysis and what characterize a 

loudspeaker, then we move on to digital filters and the adaptive approach. 

2.1 System analysis 

System analysis is used to characterize an electrical system, analogue or digital. A 

system can be view as a black box with   inputs and   outputs, as in Figure 3. 

 
Figure 3 - Representation of a system with n inputs and m outputs 

All the systems of this study are said to be Time-invariant
2
 (TI) as the outputs do not 

depend explicitly on time (only on the inputs).  

       (    )              (      )             (1) 

It is a common simplification in signal processing [18], although one can argue that it 

is not true for loudspeakers with the aging of the mechanical components. But since 

this is a slow process, we can say with a fairly confidence that this is a Time-invariant 

system. 

A system is characterized by how it responds to input signals. There is a lot of 

different ways to represent it, there are two main categories: the linear and the 

nonlinear approach. 

2.1.1 Linear system 

A system is linear when   can be described as a linear operator satisfying the 

properties of superposition, scaling and homogeneity summarize by equation (2). 

                 {              }           (2) 

In other words, it is a system where the outputs are proportional to the inputs. From a 

frequency point of view, it’s a system that cannot produce new frequency components 

that are not at the input. It can only alter the amplitude and phase. 

With the property defined in this chapter’s introduction, we obtain the well-known 

and well-study Linear Time-invariant (LTI) system.  

A LTI system can be completely characterized by a single function, its impulse 

response (IR), noted      (also called the kernel, and is assumed to be causal, i.e. to 

satisfy               ).  

                                                 
2
 For a discrete (digital) system, the equivalent term is Shift-invariant system.  
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In other words, an IR is the reaction of the system to a short and strong excitation, the 

impulse. From a mathematical point of view, it’s to feed the input with a Dirac delta 

function      (or a Kronecker delta function      in discrete-time). It’s a function 

that can be seen as infinitely high and infinitely thin at the origin     with a total 

area of one (a discrete-time example can be seen Figure 4a). Furthermore, the Fourier 

Transform of this function gives one, i.e. an impulse in time has all possible excitation 

frequency in equal portion. 

So equivalently in the frequency domain it can be completely characterized by its 

transfer function (TF), noted     . The name frequency response can also be used, 

although loudspeaker’s manufacturers usually think it only means magnitude over 

frequency (what about the phase?).  

We can switch from the IR to the TF (or inversely) using the direct (or inverse) 

Laplace transform
3
. 

       {    }   ∫           
  

  

 (3) 

The output of the system is the convolution of the input with the impulse response in 

time domain, see equation (4). In the frequency domain, the output will be simply the 

product between the input and the TF, see equation (5). 

                ∫                

  

  

 (4) 

                (5) 

An illustration of impulse responses can be found Figure 4 below. 

 
Figure 4 - Illustration of 50-tap impulse responses: (a) perfect theoritical IR, i.e. a Kronecker delta 

function; (b) simple IR with delay and ringing. 

                                                 
3
 The Fourier transform can also be used to obtain the transfer function      . But it is more 

commonly used with signals that are infinite in extent (like sinusoids). In the case of a discrete-time 

(sampled) system, we would use the Z-transform to switch between domains. 
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A LTI system is a powerful and simple tool to describe a lot of system, as usually 

nonlinearities can be easily disregarded. But when those nonlinearities became a little 

too prominent, using a linear filtering may increase them even more. So we have no 

choice but to take them into accounts. 

2.1.2 Nonlinear system 

A system is said nonlinear when the output signals are not directly proportional to the 

inputs, that is, there are no linear combinations that fully represent the system. We 

have then a nonlinear time-invariant (NLTI) system. 

Nonlinearities distortions can be seen in two forms [19]: (i) harmonic distortions 

(HD), and (ii) intermodulation distortions (IMD). The first occurs when  there  is  

presence  of  harmonics which are not  present  in  the  original  signal (see Figure 5).  

The  second occurs  when  the  input  signal  contains  two  or  more  frequency;  the  

intermodulation between all those frequencies will produce new ones that are the sum 

and difference of the original frequencies (see Figure 6). 

  
Figure 5 - Harmonic distortions of a single-

frequency input signal (shown in red) 

Figure 6 – 2
nd

 Order IMD product of a dual-

frequency input signal (shown in red) 

Recently, the Volterra series expansion has been applied successfully to the analysis 

and identification of nonlinear systems [5, 15, 16, 20-23]. It’s a multi-dimensional 

generalization of the impulse response function. There is no longer only one but an 

infinity of IR for the system. It can be seen as a Taylor series with memory effect 

[24]. 

Let    be the p-th order Volterra operator. We define the output as equation (6). A 

schematic of the Volterra system can be seen in Figure 7 below. 

       ∑  (    )

 

 (6) 

And a Volterra Operator is defined as the p-dimensional convolution of the input 

signal with the p-dimensional Volterra kernel   . 

  (    )   ∫  ∫   (       )         (    )        

  

  

  

  

 (7) 
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If we insert equation (7) into (6), we obtain: 

     ∫                 

  

  

 ∫ ∫                              

  

  

  

  

  

 ∫  ∫   (       )         (    )        

  

  

  

  

 

(8) 

On the first line, we recognize a LTI system, it is the same equation as (4). This is the 

first-order Volterra operator    corresponding to the linear part. On the second line is 

the second-order Volterra operator   , responsible for the bilinear combination of the 

input. We could go on and consider any higher orders ad infinitum but the complexity 

increases rapidly with the order. A second-order Volterra (SOV) system is said to be a 

good approximation for a loudspeaker [20]. 

 
Figure 7 - A general Volterra system 

Since we are going to work with discrete time, the sampled equivalent to equation (8) 

of a SOV system is given by: 

     ∑              
 

    

 ∑ ∑                        
 

    

 

    
 

(9) 

2.2 Characterization of loudspeakers 

Now we understand how to characterize a general system, let’s look into the system of 

this study. 

2.2.1 The dynamic loudspeaker 

Dynamic loudspeakers convert audio coming from an electrical signal to a mechanical 

vibration of the air in order to recreate the sound we want to hear. Figure 8 is a simple 

sketch of a dynamic loudspeaker, also called driver.  
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Figure 8 - Construction of a dynamic loudspeaker. Source [5]. 

First the electrical signal have to be amplified to a usable voltage by a Power 

Amplifier (PA - could be inside the loudspeaker). After that little pre-step, the signal 

is injected into a coil freely mounted on a magnet which generates a magnetic field. 

The signal variation in the coil will create a flux variation (resulting from the 

Faraday’s law) which will create a corresponding force, the so-called Lorentz force, 

on the coil. Since the coil can move freely, it will drive the membrane (or diaphragm) 

attached to it. It is the variations of the cone that creates the sound waves. 

Since it is hard for a single driver to reproduce the entire range of audible frequencies 

(usually defined as       –       ), many loudspeakers are often composed of 

several drivers [25]. The most common one, the so-called two-way system, has 

separate drivers for low and mid-high frequencies (respectively of big and small size). 

Ideal loudspeakers produce acoustic waves that are a linear transformation of the 

electrical input signal [25]. Thus it could be seen as a LTI system and its main 

characteristic would be its impulse response. While this assumption relies on obvious 

oversimplification of the electro-mechanical, such analysis techniques still provide 

useful insight into loudspeaker performance. 

Nonlinearities in loudspeakers are caused by various elements but the most dominants 

are ones related to the cone displacement and voice-coil excursion [26]: the force 

factor   , the electrical self-inductance and the mechanical stiffness of the suspension. 

Since the cone displacement is related to the input power or the frequency, we can say 

that nonlinear distortions are more important for low frequencies and/or large input 

power. 

It is worth to add that the audio signal’s travel doesn’t stop after the loudspeaker; it 

has to reach the receiver (listener’s ears or microphone) through the room. And once 

again the signal will be distorted, this time, by the presence of reflective wall that will 

cause echo and reverberation often undesirable. But hopefully, this room effect can be 

approximate to a linear system [27]. Therefore, room and loudspeaker equalization 

can be used with equal meaning as long as we restrict to the linear part. 

2.2.2 Our specific loudspeaker 

The loudspeaker we want to equalize is a specific one, as you can see Figure 9. It is 

composed of an empty steel tube with two drivers on each side. There is a plate 
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hermetically separating each driver’s enclosure. The whole tube is hermetically 

sealed. Now the main features of this loudspeaker are the solid steel tear-shape 

reflectors in front of the drivers. They are carved in order to scattered the sound wave 

all around. 

 
Figure 9 - Cutaway view of our loudspeaker 

A thin support pipe holds the tube and the reflector together. Note that this 

loudspeaker needs to be hanging on a wall, since there is no stand to go on the floor. 

Furthermore, the loudspeaker will benefit from the wall’s reflection.  

 
Figure 10 - Photo of one side of the loudspeaker (driver and reflector). 

2.2.3 Linear impulse response measurement  

We want to acquire the impulse response as accurately as possible. In traditional 

impulse response measurement, periodic pulse and Maximal-Length Sequence (MLS) 

are often used as excitation signals [28]. Periodic pulse testing is the simplest and 

most intuitive method but usually results in a poor signal-to-noise ratio (SNR). MLS 

improve this method, yet it is shown that it is too much prone to nonlinearities [28].  

The sine sweeps used as excitation signals provide a good way to measure linear 

impulse response [28]. In this technique, a log-swept
4
 sine stimulus is employed (the 

frequency varies exponentially with time), see equation (10). The output presents, 

after deconvolution, a clean separation of linear response and harmonic distortion. 

 
        [     ( 

 
   )] (10) 

                                                 
4
 Linear-swept has also been tried but with mitigated results, especially at low frequencies [28]. 
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 (11) 

With    and    respectively the lower and higher frequency limits, and   the time 

duration in seconds. 

The energy of the signal as a function of    is then given by: 

 
       

 

  
 

 

    
 (12) 

The energy drops while frequency increases (by 3dB/octave) as you can see Figure 

11. 

 
Figure 11 - Spectrum of the stimuli (sine sweep) signal. 

Using an exponential sweep has thus two major advantages: (i) more energy is present 

in the measurement signal at low frequencies (which is beneficial as it improves the 

accuracy in that region); and (ii) nonlinearities result in anti-causal components in the 

impulse response, which can be easily separated (by taking only the causal part).  

2.3 Digital filter  

Signal processing can be done with an analogue (continuous-time) or a digital 

(discrete-time) filter. Many signals are analogue by nature (e.g. signal from a 

microphone) and one can wonder why we don’t use analogue filter. Those filters use 

electrical components like resistors, capacitors to achieve their goals. But there are 

two major flaws associated with analogue filters: (i) the electrical component’s value 

will drift with temperature and age; and (ii) the available functions are quite limited 

for complex filtering (e.g. adaptive filtering impossible due to the lack of analogue 

memory unit). Furthermore, modifying a digital filter is ridiculously easy compared to 

an analogue one since they are programmable. Thus, the use of a Digital Signal 

Processor (DSP) is attractive.  

But digital filtering imposes some extra steps, since it deals with different type of 

signals. The conversion between a continuous-time signal      to a discrete-time 
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signal      is done by an Analogue to Digital Converter (ADC). The opposite 

equivalent is the Digital to Analogue Convert (DAC). See Figure 12 for an 

illustration.  

 
Figure 12 - (a) Analogue filter; (b) sampled data equivalent: digital filter.  

Of course what we consider in this chapter 2.2 is filtering of LTI system (nonlinear 

filters are based on the concept of linear filters, enhanced with  -order combinations). 

As we explained in Chapter 2.1.1, a linear filter is completely characterized by its 

impulse response. 

Let’s now focus on the digital signal processing part. There are two alternative ways 

to do it: using recursive or non-recursive realisation. 

2.3.1 Finite impulse response (FIR) filter 

A finite impulse response (FIR) filter is the simplest form one can think of and pretty 

straightforward. The impulse response is of finite duration   and is equal to zero after 

(and before, since it is causal). It is non-recursive as it depends only of the input. 

The different values    of the impulse response are called filter coefficients, or filter 

weights. If the filter is of size  , the filter order is of size    . 

                      (13) 

The output is calculated as the discrete-time convolution: 

                                      

  ∑         
   

   
 (14) 

The major advantages of FIR filters are that they are unconditionally stable and can 

offer a linear phase response [18]. They are also simpler to implement. However, they 

usually require more delay and computation than their recursive counterparts.  

2.3.2 Infinite impulse response (IIR) filter 

For an IIR filter, the impulse response is non-zero after an infinite amount of time. To 

achieve this, the use of output feedback is necessary. Thus, there are two different 

coefficients type: the    feedforward filter coefficient     and the    feedback filter 

coefficient   . 

                      (15) 

                      (16) 
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And the output is calculated as (see the recursive part on the second line): 

                                       

                                  

  ∑         
   

   
  ∑         

   

   
 

(17) 

The major advantage of IIR filter is that thanks to the recursion they require fewer 

coefficients and thus fewer computing resources [18]. However the recursion implies 

that the filter can be easily unstable, so one has to be careful when dealing with IIR 

filters. 

2.4 Inverse filtering 

Let   be a generic system (e.g. an acoustic path, a transmission line, a loudspeaker …) 

that we want to reduce the effect on our input signal  . Then, a filter   is placed in the 

forward path and will perform an inverse filtering of   in order to get       . Figure 

13 shows the schematic of this concept.  

 
Figure 13 - Inverse filtering of a system. 

There are several methods to calculate the impulse response of the filter. First of all, if 

one know exactly the transfer function of  , then we can simply take the inverse: 

       . But this method has some flaws. The system   is not always known, and 

furthermore, the direct inverse is often unstable since most of loudspeaker and room 

IR are non-minimum phase function
5
 [27]. 

Achieving a perfect inversion without knowing   is possible though by using MINT 

(multiple input/output inverse theorem) as described in [8]. But it requires a number 

of inputs greater than the number of outputs and is thus not applicable for our system. 

Another solution is to use the well-known method of adaptive filtering.  

2.4.1 Single channel adaptive inverse filtering 

An adaptive filter is a filter that can adjust its coefficients according to an 

optimization algorithm driven by an error signal.  

Let    be an unknown system. There are basically two modes of operation of an 

adaptive filter: (i) direct system modelling to get the same IR as the unknown system 

and (ii) inverse system modelling to obtain the inverse IR. The second mode is the 

one we are interested in and is illustrated in Figure 14. 

                                                 
5
 A non-minimum phase function of a stable and causal system has one or more zeros in the right side 

of the Laplace Domain (or outside the unit circle in discrete-time). Therefore, the inverse of this 

function would be causal but unstable. 
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Figure 14 – Schematic of the single channel adaptive inverse filtering. 

The idea behind this is to minimize a cost function   by appropriately selecting the 

filter coefficients    and updating the filter as new data arrives. This cost function is 

always related to the error signal, as we try to minimize it. The adaptive algorithm has 

always the form of equation (18), with    the correction factor. 

                         (18) 

Now the problem with this actual layout is that the filter is placed after the unknown 

system. In our application, the unknown system is formed by the loudspeaker, the 

room and the microphone. This means the effect of the filter will not be heard by a 

listener. In order to do that, we would need to stop the filtering process, and copy the 

filter coefficients to a new filter placed before the unknown system. 

But there is a layout where the adaptive filter is placed before the system. This is the 

so-called filtered-x (Fx) algorithm, illustrated in Figure 15. 

Since we still need a signal processed by the system   to inverse, an estimated model 

   is used to feed the algorithm. The algorithm is robust to errors in the estimate of the 

system [29, 30]. 

 
Figure 15 - Schematic of the single channel filtered-x adaptive inverse filtering. 

The filtered-x layout has been widely used for active noise control system [29-32] but 

also for more conventional channel equalization [9, 31]. 
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2.4.2 Multichannel adaptive inverse filtering 

A common approach for adaptive multichannel filtering is to minimize the sum of the 

square of the errors between the equalized responses [7, 9, 30]. Figure 16 presents it 

with the filtered-x layout. 

 
Figure 16 - Schematic of the multichannel filtered-x adaptive inverse filtering. 

We have one input (i.e. loudspeaker) and   output (i.e. microphones) of the unknown 

system S, thus   modelling delay,   error signals and   estimated signals. 

The update equation will then be of the form [30]: 

               ∑            
       

 

 (19) 

2.4.3 Algorithms for adaptive filtering 

Adaptive algorithms have been extensively studied in the past few decades and have 

been widely used in many fields [33]. The most popular adaptive algorithms are the 

Recursive Least Square (RLS) algorithm and the stochastic gradient (SG) algorithms. 

But before continuing, here are some definitions of symbols used: 

                                (20) 

                                (21) 

                  (22) 

                  (23) 

Note that the equations referred to the conventional single channel adaptive inverse 

filtering layout as we can see Figure 14. To apply the filtered-x layout, the 

signal      must be replaced by       in the update equations and equation (22) must 

be replaced by: 

                  (24) 

To get the multichannel layout, we can treat each signal separately and use equation 

(19) as the overall update equation. 
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2.4.3.1 Recursive Least Squares algorithm 

The RLS algorithm uses a least squares (LS) estimate, that is to try to minimize the 

sum of the squared errors, hence the cost function: 

 
   ∑           

 

   
 (25) 

With       the forgetting factor which gives exponentially less weight to older 

samples error.   is the filter order. 

The update algorithm is then defined by equations (26) to (28). 

      
             

                       
 (26) 

       
                             

 
 (27) 

                          (28) 

Where   indicates matrix transposition. 

The initial conditions are: 

      

      
 

 
    

(29) 

With   a small positive number and    the N-rank identity matrix.  

The RLS algorithm is known to have a fast convergence but a high computational 

load [18, 33, 34]. 

2.4.3.2 Stochastic gradient algorithms 

The stochastic gradient algorithms use the steepest descent (or gradient descent) 

method in order to find the Wiener optimum, i.e. to minimize the mean-square error 

(MSE), hence the cost function [18]: 

     {     } (30) 

With  { } denoting the expectation. 

This leads to the well-known least mean-squares (LMS) algorithm defined by: 

                            (31) 

With   a small positive constant called the step size (or sometime learning rate or 

convergence factor). Its value is strongly dependent to the input signal (for instance a 

white noise input signal could allow to use a higher step size value than a pop-rock 

music signal). A small value ensures a result closer to the optimum, but slows down 

the algorithm. The convergence of the algorithm depends of   as well, as a too large 

value will misses the optimum and completely diverge. So we have to be careful when 

choosing the step size value. 
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The stochastic gradient algorithms are known to have a lower computational load but 

a slower convergence than the RLS one [18, 33-36]. 

Based on the LMS algorithm, several variants have been proposed [33-37] and differ 

by their update equation. 

2.4.3.2.1 The Normalized LMS (NLMS) algorithm  

The main drawback of the LMS algorithm is that it is sensitive to the input signal 

type, and therefore it can be really hard, if not impossible, to find one suitable for 

every type. The NLMS algorithm solves that problem by normalizing the signal 

power, hence the new update equation [36]: 

 
                 

        

‖    ‖    
 (32) 

With   a small value to avoid division by 0.  

The step size is now normalized:      . 

2.4.3.2.2 The Time-Varying LMS (TV-LMS) algorithm 

The TV-LMS algorithm works in the same manner as the LMS algorithm, except for 

the convergence factor, which became time-dependant: it starts from a large value and 

decrease to a smaller value. This allows to have a fast convergence at the beginning, 

and then to have a smaller and more precise convergence towards the end. The step 

size is now expressed as [33]: 

         
  

 

      (33) 

Where  ,   and   are positive constants that will determine the magnitude and the 

rate of decrease for the convergence factor, see Figure 17 for an example. The second 

term starts from   and converges to  . 

According to equation (9),   has to be larger than 1. If    , the learning rate is no 

longer time-dependant and we fall back on the conventional LMS algorithm. 

Note that    can be normalized as well, like in equation (32):     
 

‖    ‖    
. 

 
Figure 17 - Example of the evolution of the time-dependant step size value over time (    ,      , 

      and      ). 

The new update equation is then: 

                           (34) 
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2.4.3.2.3 The Normalized Least Mean p-Norm (NLMP) algorithm  

The LMP algorithm is the  -norm generalization of the LMS algorithm for  -stable 

signal
6
, hence the generalized cost function [37]: 

     {|    | } (35) 

With   a strictly positive constant, usually      . 

This cost function yield to a new generalized update equation: 

 
                

|    |       (    ) 

‖    ‖ 
 

   
      (36) 

With        the sign function, and   a small value to avoid division by 0. 

Note that if    , the 2-norm NLMP algorithm is reduce to the usual NLMS 

algorithm. On the other hand, if    , we obtain the Normalized Least Mean 

Absolute Deviation (NLMAD) algorithm with the update equation: 

 
                

    (    ) 

‖    ‖    
      (37) 

For our test we use         (to have a value half-way from NLMAD to NLMS). 

                                                 
6
  -stable characterize the type of probability distribution of the signal.   values close to   indicate 

impulsive nature and   values close to   indicate a more Gaussian type of behaviour. There is two 

special values: the      and   cases correspond to the Cauchy and Gaussian distributions respectively 
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3 Methods 

This study has been conducted in two times: simulations with Matlab and then real 

measurements in an anechoic room. 

3.1 Simulations 

3.1.1 Matlab 

Matlab (for matrix laboratory) is a programming environment developed by 

MathWorks
7
 for algorithm development, data analysis, visualization, and numerical 

computation. Chalmers has unlimited site licence for this software. The simulations 

were performed using the        version of Matlab. 

We also used the Matlab Simulink tool. Simulink is an environment for multidomain 

(continuous or discrete-time) simulation and Model-Based Design for dynamic and 

embedded systems. It provides an interactive graphical environment and a 

customizable set of block libraries to design, simulate, implement, and test a variety 

of time-varying systems (e.g. communications, signal/image processing …). The 

version used for this study is    . 

Matlab scripts and Simulink models can be found in Annexes.  

3.1.2 Acoustic model 

At the beginning of the study, no loudspeaker model or measured impulse response 

were available for simulating our system so we needed to find some impulse 

responses. 

3.1.2.1 Simplified multichannel impulse responses 

We employed in first place impulse responses used by Elliot and Nelson [9]. They 

defined four simple impulse responses of 50 coefficients that we can use for our tests. 

 
Figure 18 – Simplified impulse responses. 

                                                 
7
 https://www.mathworks.com/  

https://www.mathworks.com/
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3.1.2.2 Real multichannel impulse responses from MARDY 

In order to have more realistic simulations, we needed realistic impulse responses. 

That is why we used the Multichannel Acoustic Reverberation Database at York
8
 

(MARDY). This database contains real multichannel room and loudspeaker impulse 

responses (see Figure 19).  

 
Figure 19 - Diagram of the MARDY recording room dimensions and setup (Room height = 3 m). Both 

loudspeaker and microphones were elevated to 1m above the floor. Source [38]. 

The original data contains over 60000 samples per IR but the interesting part is 

mainly located at the 1000 first samples, as you can see in Figure 20.  

 
Figure 20 - Real impulse responses from MARDY 

We used only the four extreme points for our simulations. It allowed us to simulate 

the multichannel equalization over an area of          , as depicts in Figure 21. 

 

Figure 21 - Points used from MARDY in our simulation. 

                                                 
8
 http://www.commsp.ee.ic.ac.uk/~sap/resources/mardy-multichannel-acoustic-reverberation-database-

at-york-database/  

http://www.commsp.ee.ic.ac.uk/~sap/resources/mardy-multichannel-acoustic-reverberation-database-at-york-database/
http://www.commsp.ee.ic.ac.uk/~sap/resources/mardy-multichannel-acoustic-reverberation-database-at-york-database/
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3.1.2.3 Nonlinear acoustic model 

For the nonlinear simulations, we used in the acoustic path a simple nonlinear system 

defined by Singh and Chatterjee [39]: 

 
            

      

          
 (38) 

Thus we have a quadratic part       and a recursive part decreasing with time. 

This nonlinear system is then added to an existing linear system (like we defined 

before). 

3.2 Measurements in laboratory 

The Chalmers Department of Applied Acoustics has an anechoic chamber where we 

can conduct our measurement. 

3.2.1 The anechoic chamber 

Anechoic rooms are used to mimic free-field conditions, i.e. a condition where only 

the direct sound field is present. In such rooms one can for example calibrate 

microphones and measure the frequency response and directivity characteristics of 

loudspeakers and microphones. The room can also be used to reproduce binaural 

recordings or simulations via loudspeakers. 

In order to have a high sound absorption in an anechoic chamber, the room’s 

bounding surfaces (ceiling, walls and floor) are covered with mineral wool (we walk 

on a net hanging at the middle of the room). The absorption material is wedge-shaped 

to achieve an impedance matching, i.e. a slow transition between the specific sound 

impedance of air and the impedance of the porous absorber. The absorption 

coefficient and the length of the wedges define the frequency limitation of the room. 

The anechoic chamber at the Department of Applied Acoustics has a volume of 

           and a lower frequency limit of         . 

An anechoic chamber should also be well isolated to vibration and sound since 

measurements often are made at low levels (e.g. distortion measurements on 

loudspeakers). This requirement can be fulfilled by using a double shell construction. 

For example, the anechoic room is built as a box, physically separated from the rest of 

the building. Vibrations from the ground are eliminated by mounting the box on steel 

coil springs. The anechoic measurement room at the Department of Applied Acoustics 

weighs about 800 tons and has a resonance frequency of         .  

As one can guess from the explanation above, an anechoic room with reasonable 

measurement conditions is extremely expensive. 
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3.2.2 The measurement setup  

Measurements were conduct on Windows XP using HOLMImpulse, a freeware 

program developed by Holm Acoustics
9
 for frequency and impulse response 

measurement. The sine sweep technique was used (see chapter 2.2.3 for explanation).  

 
Figure 22 - The measurement system 

Harmonic distortion measurements using pure tone was conduct with the trial version 

of the software DSSF3 by Ymec
10

. 

 We used an external USB soundcard with 48 kHz sampling and an omnidirectional 

electret condenser microphone (see Table 1 for specifications). 

Table 1 - Microphone WM-063 specifications 

Sensitivity         

Frequency range              

SNR        

3.2.3 Calibrations 

There is of course no good measure without a proper calibration of the instruments.  

The first step is to is to calibrate the microphone. For this, we need to look at what is 

given by the manufacturer. Only a typical frequency response is given in the 

datasheet, as you can see Figure 23. It seems pretty flat all over the desired frequency 

range, with only small ripples less than        above 5 kHz. For our measure, we can 

consider it good enough. 

 
Figure 23- Typical frequency response curve of the microphone. 

For the next step we calibrate the soundcard by measuring and adjusting the loopback, 

i.e. measuring between the output and the input. As we define in Chapter 2.3, a digital 

                                                 
9
 http://www.holmacoustics.com  

10
 http://www.ymec.com  

http://www.holmacoustics.com/
http://www.ymec.com/
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system has converters to switch from continuous-time to discrete-time signal (and 

vice-versa). Those converters (DAC and ADC) can modify the signal and therefore 

need calibration. 

As you can see Figure 24, not much calibration was necessary for our soundcard since 

it is already pretty flat. 

 
Figure 24 - Soundcard frequency and impulse response before and after calibration. 

  



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:137 22 

3.2.4 The measurements 

First, the impulse response has been measured at various points around the 

loudspeaker as you can see in Figure 25. The loudspeaker was installed on a wooden 

square plank of         for reflection purpose. 

 
Figure 25 – Measurement points ABCD – IJKL – XY. Microphones are 1m above the loudspeaker. 

Then we measured the directivity pattern of the loudspeaker on two positions (side 

and front), see Figure 26. We used an automatic turntable to orient the loudspeaker.  

 
Figure 26 - Positions for the directivity measurement. 
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4 Results 

The results of the various simulations and measurements are presented in this chapter 

and will be discussed in the next one. 

4.1 Simulations 

The simulations were conduct in three steps: adaptive algorithms simulations, linear 

simulations and nonlinear simulations. 

4.1.1 Adaptive algorithms 

The first simulations concern all the adaptive algorithms defined in Chapter 2.4.3: 

LMS, NLMS, TV-LMS, NLMAD, NLMP and RLS. The goal is to find the most 

suitable algorithm for our needs. 

Figure 27 plots the convergence of the algorithms by looking at the evolution of the 

mean squared error (MSE) over time. The MSE for each algorithm is calculated as 

equation (39). It shows how quickly an algorithm can converge to a stable and low 

value. We see that the RLS algorithm is the best in this category: fast convergence to 

an extremely low value. 

 
     

 

 
 ∑      

 

   
 (39) 

 
Figure 27 – Learning curves for various algorithms  

(1000-tap MARDY impulse response, 300-tap filter length, 100-tap delay, and no noise).  

The next simulations used the simplified impulse response of 50 coefficients in order 

to accelerate the simulations for each point. We remind the reader that the signal-to-
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noise ratio is defined as the ratio between a signal power and the noise power, see 

equation (40). 

 
     

       

      
 (40) 

Figure 28 and Figure 29 show the MSE evolution for different SNR and different 

filter length respectively. No algorithm really stands out; they all have the same 

sensibility to noise and filter length. 

 
Figure 28 – MSE performance for various signal-to-noise ratios  

(50-tap impulse response, 50-tap filter length, and 25-tap delay). 

 
Figure 29 - MSE performance for various filter length 

 (50-tap impulse response, 25-tap delay, and no noise). 

For the last one, Figure 30 shows the computation time of the algorithms for 

increasing filter length. This is an important parameter for the choice of the algorithm. 

And we clearly see that the RLS algorithm take a lot of increasing computation time 

whereas the other ones stay quite low. 
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Figure 30 – Elapsed time for various filter length  

(50-tap impulse response, 25-tap delay, no noise). 

4.1.2 Linear implementation 

The filtered-x implementation of the NLMS algorithm was used for the linear 

implementation, since it offers the best trade-off between convergence speed and 

computation time. This choice is extensively detailed in Chapter 5.1. 

4.1.2.1 Single channel 

We started with the single channel equalization as described in Chapter 2.4.1. 

4.1.2.1.1 Channel equalization 

We looked at the channel equalization performance by simulating with an optimal 

delay and no noise. Figure 31 shows the acoustic path impulse response and the 

corresponding inverse filter we generate. Figure 32 shows the convolution between 

them. The equalization is effectively quite good and we almost get a perfect IR. 

Finally, Figure 33 gives their respective frequency spectrums. We see a big 

improvements for the magnitude spectrum (except in the low frequencies, due to the 

size of the filter).  

 
Figure 31 – Left is 1000-tap MARDY impulse response (zoom on the first 300 samples) and right is 

1000-tap filter impulse response (zoom on 300 to 700 samples). 

(150-tap delay and no noise). 
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Figure 32 – Resulting impulse response acoustic path + filter (zoom on 400 to 600 samples) 

(1000-tap MARDY impulse response, 1000-tap filter length, 150-tap delay, and no noise). 

 
Figure 33 – Frequency spectrums (magnitude and phase) of the various blocs: acoustic path (or 

Model), filter and model + filter (1000-tap MARDY impulse response, 1000-tap filter length, 150-tap 

delay, and no noise). 

4.1.2.1.2 Influences on the delayed path 

Next, we focused on the parameters influencing the algorithm in the delayed path. 

Figure 34 shows how the delay for      affects the MSE convergence. We can 

understand that there is a minimum delay which corresponds roughly at the first peak 

position in the acoustic path impulse response (which is around 50 for this one). This 

will be a little more detailed with the multichannel simulation. 

 
Figure 34 – Minimum MSE for various delay in the forward path.  

(1000-tap MARDY impulse response, 1000-tap filter length, and no noise). 
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4.1.2.1.3 Influences on the estimated path 

It could be interesting to know how good the estimated path has to be (S’ in Figure 

15). We start by adding some white noise to see if the convergence is impacted, see 

Figure 35. We notice that even with a SNR of -20 dB (i.e. the signal is ten times 

weaker than the noise) the convergence is not really impacted. This means that we 

don’t need to have a very precise model for the estimated path. 

 
Figure 35 - MSE performance for various SNR in the estimated path.  

(1000-tap MARDY impulse response, 1000-tap filter length, 150-tap delay, and no noise). 

Then we add more delay to the path and see how the convergence goes, see Figure 36. 

Here we observe that even for a small variation of the delay, the system is hugely 

impacted and diverge completely. This means the delay is what matter the most for 

the quality of the estimated path. 

 
Figure 36 - MSE performance for various extra delay in the estimated path.  

(1000-tap MARDY impulse response, 1000-tap filter length, 150-tap delay, and no noise). 

4.1.2.1.4 Single channel equalization on multichannel path 

It can be interesting to look at why multichannel equalization could be useful instead 

of single channel. For that, we equalize a single point (number 1) and look at how 

three other points in the room (2 to 4) are influenced by this filtering. Indeed, the first 

channel is well equalized, but the other channels don’t benefit from it.  
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Figure 37 - Spectrums of acoustic path before and after single channel equalization for point 1 and 2.  

(1000-tap MARDY impulse response, 1000-tap filter length, 150-tap delay, and no noise). 

 
Figure 38 - Spectrums of acoustic path before and after single channel equalization for point 3 and 4.  

(1000-tap MARDY impulse response, 1000-tap filter length, 150-tap delay, and no noise). 

 
Figure 39 – Impulse responses of acoustic path before and after equalization for point 1 and 2.  

(1000-tap MARDY impulse response, 1000-tap filter length, 150-tap delay, and no noise). 
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Figure 40 - Impulse responses of acoustic path before and after equalization for point 3 and 4.  

(1000-tap MARDY impulse response, 1000-tap filter length, 150-tap delay, and no noise). 

4.1.2.2 Multichannel 

We continue with the multichannel equalization as detailed in Chapter 2.4.2. 

4.1.2.2.1 Find the optimal delay 

The main problem when dealing with multichannel part is to choose the values for the 

delayed path (i.e. from      to     , see in Figure 16). It turns out that the delay 

value of each path is linked to the others, and a bad choice for only one will limit the 

convergence. So before moving on well working simulation, we have to define the 

optimal delays. 

To find the relation between those paths is quite easy. One has to look at the index of 

the first peak of each impulse responses. Then, taking one of those paths as the 

reference, the subtraction on each indexes gives the relation between them: it’s the 

optimal offset (or delta) for the delays. Table 2 and Table 3 give the values for both of 

our IR type. 

Table 2 – Peaks and Optimal deltas for the 

delayed path (50-tap simple IR). 

 First peak Optimal delta 

Channel 1 

(reference) 
15 0 

Channel 2 15 0 

Channel 3 19 4 

Channel 4 19 4 
 

Table 3 - Peaks and Optimal deltas for the 

delayed path (1000-tap MARDY IR). 

 First peak Optimal delta 

Channel 1 

(reference) 
57 0 

Channel 2 61 4 

Channel 3 338 281 

Channel 4 339 282 
 

To illustrate this idea, we use the 50-tap impulse responses with a 25-tap default delay 

and we vary only one delay value at a time. The results are shown Figure 41. 
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Figure 41 - MMSE performance for single delay variation (only one delay varying at the same time) 

with 25-tap default delay (50-tap simple impulse response, 50-tap filter length, and no noise). 

We can easily see that the lowest MSE values are the ones 4 samples from 25, as 

calculated in Table 2. Mind that the MSE are not that really low because the optimal 

offset is not used. We also notice, as we said before, that the delay should be at least 

higher than the first peak index. 

Now if we use those optimal offsets with the MARDY impulse responses and 

simulate a full delay variation, we get the Figure 42. The working range is then from 

100 to 700, i.e. we have to let enough room for the filter impulse response before and 

after otherwise it gets truncated.  

 
Figure 42 - MMSE performance for full delay variation (all delay varying at the same time) with 

optimal offset from Table 3 (1000-tap MARDY impulse response, 1000-tap filter length, and no noise). 
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4.1.2.2.2 Channels equalization 

The optimal offset defined, we can equalize the four channels. After simulation is 

completed, we obtain the filter Figure 43. The effect of this filter on each channel can 

be seen Figure 44 - Figure 45 (impulse responses) and Figure 46 - Figure 47 

(frequency spectrum). We clearly see that all points benefit from the equalization. 

 

 
Figure 43 - Filter impulse response and frequency spectrum 

(1000-tap MARDY impulse response, 1000-tap filter length, optimal delays, and no noise). 

 

 

 
Figure 44 - IR of acoustic path before and after multichannel equalization for point 1 and 2. 

(1000-tap MARDY impulse response, 1000-tap filter length, optimal delays, and no noise). 
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Figure 45 - IR of acoustic path before and after multichannel equalization for point 3 and 4. 

(1000-tap MARDY impulse response, 1000-tap filter length, optimal delays, and no noise). 

 
Figure 46 – Frequency spectrum of acoustic path before and after multichannel equalization for point 

1 and 2 (1000-tap MARDY impulse response, 1000-tap filter length, optimal delays, and no noise). 

 
Figure 47 - Frequency spectrum of acoustic path before and after multichannel equalization for point 3 

and 4 (1000-tap MARDY impulse response, 1000-tap filter length, optimal delays, and no noise). 
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4.1.2.2.3 Influence of the number of channels 

It is interesting to see how the number of channels influences the equalization process. 

We simulate the progressive variation of the number of optimization point from one to 

four. 

First, only channel 1 is taken into accounts (from 0 to 1), then channel 2 is 

progressively added (from 1 to 2), and it goes on until channel 4. Figure 48 plots the 

results. 

We remark that at the beginning, the first channel is well equalized and the others 

benefit of it a little bit. Then adding the second channel decreases its error value but 

increase the first one. The same happened when the third and fourth channels are 

added. This is quite logical: we can’t equalize multiple channel as good as only one 

channel. There will be a trade-off between all channels.  

 
Figure 48 – MMSE performance for increasing number of optimized points 

(1000-tap MARDY impulse response, 1000-tap filter length, optimal delays, and no noise). 

4.1.3 Nonlinear implementation 

The second-order Volterra (SOV) implementation of the NLMS algorithm was used 

for the nonlinear implementation, as defined in Chapter 2.1.2. 

With this nonlinear simulation we ran into a main problem: the simulation would 

always diverge. No matter the parameters, the MSE would basically converge 

normally then rise to huge values after a certain amount of time, as you can see in 

Figure 49. Figure 50 and Figure 51 show the filter coefficients diverging. 
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Figure 49 - Learning curves of the SOV filter (50-tap simple impulse response, 50-tap linear filter 

length, 325-tap SOV filter length, nonlinearities amplitude of 0.5, and no noise). 

 
Figure 50 – Linear filter h evolution (50-tap simple impulse response, 50-tap linear filter length, 325-

tap SOV filter length, nonlinearities amplitude of 0.5, and no noise). 
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Figure 51 – quadratic filter evolution (50-tap simple impulse response, 50-tap linear filter length, 325-

tap SOV filter length, nonlinearities amplitude of 0.5, and no noise). 

 

Finally, Figure 52 shows the difference whether the Volterra filter is enabled or not. 

The reason why we have this divergence will be discussed next chapter. 

 
Figure 52 – Learning curves with (a) Volterra filter not enabled and (b) Volterra filter enabled 

 (50-tap simple impulse response, 50-tap linear filter length, 325-tap SOV filter length, nonlinearities 

amplitude of 1, and no noise). 

 

  

(a) (b) 
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4.2 Loudspeaker characterization 

Measurements in the laboratory were conducted as explained in Chapter 3.2.  

4.2.1 Impulse and frequency responses 

Impulse and frequency responses were measured in various positions. Figure 53 

shows the two positions A and I (difference of 90° degrees between them). 

We can see that the loudspeaker lacks of bass power. This is quite logical looking at 

the size of the drivers. In any way, the frequency response is not very flat and could 

be improved. 

 
Figure 53 - Frequency and raw impulse responses for position A and I. 

4.2.2 Directivity pattern 

We created the directivity patterns using the position defined in Figure 26. We 

obtained the sonograms Figure 54 and Figure 55. 

Although the frequency response is not very flat, it is pretty constant over the 

orientation, meaning that two people right-angled from the loudspeaker will have 

approximately the same sound experience.  
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Figure 54 - Directivity sonogram for position 1 (side). 

 
Figure 55 - Directivity sonogram for position 2 (top). 

4.2.3 Harmonic distortions 

We characterized the amount of harmonic distortion for only one pure tune of 1 kHz. 

It was more a small test for illustration purpose than a real characterization of the 

nonlinearities. Figure 56 shows the frequency spectrum. We clearly see the tone at 1 

kHz and some harmonics at 2 and 3 kHz. Figure 57 sums up the distortion for each 

harmonics. The total is less than 1% at 1 kHz, which is quite good. 

 
Figure 56 - Frequency response when stimulated with a 1 kHz pure tone. 

(d
B

) 
(d

B
) 
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Figure 57 - Harmonics distortions when stimulated with a 1 kHz pure tone. 

4.3 Loudspeaker equalization 

The next step was to test our algorithm on our specific loudspeaker detailed in 

Chapter 2.2.2. The best way would have been to insert our filter after the soundcard 

and install multiple microphones across the room in order to conduct new tests in real 

time on the loudspeaker. However, due to the lack of time and easy solution we were 

obliged to perform those tests offline, i.e. to simulate the system using measured 

impulse responses. These simulations are not perfect, since it doesn’t take into 

account the loudspeaker nonlinearities. 

We selected the positions J, L, X and Y, forming a surface of 6.4 m² for equalization 

(see Figure 25 for exact dimensions). 

4.3.1 Optimal delays 

The first simulation concerned the optimal offset for the delayed path. Table 4 sums 

the value gathered. 

Next step was to simulate the MSE evolution while varying the delays with optimal 

offset, allowing us to obtain the working range. The results are plotted in Figure 58, 

giving a working range between 200 and 500 samples. 

 

Table 4 - Optimal delays for loudspeaker measured IR. 

 First peak Optimal delta 

Position J 

(reference) 
156 0 

Position L 160 4 

Position X 524 368 

Position Y 528 372 
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Figure 58 - MMSE performance for full delay variation (all delay varying at the same time) with 

optimal offset from Table 4 (1000-tap measured impulse response, 1000-tap filter length, and no 

noise). 

4.3.2 Impulse and frequency responses 

The optimal delays defined, we went on to equalize the four channels. Figure 59 and 

Figure 60 plot the acoustic path impulse responses before and after the equalization 

(zoomed for a better view) whereas Figure 61 and Figure 62 plot the resulting 

frequency responses. 

We can see that the IR are compacted and show less ringing around their main peak. 

Looking at the FR, we notice that the magnitude become compacted around 0 dB and 

shows less big transitions between levels. 

 
Figure 59 – Impulse responses for acoustic paths before and after equalization for point 1 and 2 (1000-

tap measured impulse response, 1000-tap filter length, optimal delays, and no noise). 
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Figure 60 - Impulse responses for acoustic paths before and after equalization for point 3 and 4.  

(1000-tap measured impulse response, 1000-tap filter length, optimal delays, and no noise). 

 

 

 
Figure 61 - Frequency responses for acoustic path before and after equalization for point 1 and 2.  

(1000-tap measured impulse response, 1000-tap filter length, optimal delays, and no noise). 
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Figure 62 - Frequency responses for acoustic path before and after equalization for point 3 and 4.  

(1000-tap measured impulse response, 1000-tap filter length, optimal delays, and no noise). 

4.3.3 MSE performance 

Figure 63 plots the MSE convergence. The algorithm is stable and converges pretty 

quickly.  

 
Figure 63 – Learning curves for the four channels  

(1000-tap measured impulse response, 1000-tap filter length, optimal delays, and no noise). 

Finally, Figure 64 shows how the number of optimized points affects the MSE value. 

Once again, we see that the more point we add, the less we can achieve a good 

equalization. 
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Figure 64 - MMSE performance for increasing number of optimized points. Channel 1 from 0 to 1, 

channel 2 from 1 to 2, and so on (1000-tap measured impulse response, 1000-tap filter length, optimal 

delays, and no noise). 
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5 Discussion 

5.1 Choosing the algorithm 

The choice of an algorithm isn’t an easy task and relies on well-defined constraints. 

We would want the best and fastest MSE performance with the lowest complexity. 

This is however an idealistic point of view which can’t be realized in the real world, 

hence the constraints we have to define. In our case, we want to equalize a 

loudspeaker for multiple channels. The generated filter will be used as a static built-in 

filter afterwards. Thus we can say that the convergence rate is not an important factor 

since we can afford to wait a little bit more before stopping the filter update. On the 

other hands, the most important factor would be the MSE performance since we 

expect to have a good equalization on, neither one nor two, but at least three channels. 

Regarding the complexity, the constraint is in between since we don’t mind waiting 

more time for the convergence, but it still should be easy and low-cost to implement. 

Now, looking at the simulation results in Chapter 4.1.1 (from page 23), we clearly see 

the different behaviour between the RLS and Steepest Descent (SD) algorithm class. 

The RLS algorithm completely outperforms every algorithm when looking at 

convergence rate. Concerning the MSE performance, the difference after convergence 

is not huge, except for the LMS algorithm which always requires a fine tuning of the 

step size. Regarding the sensitivity to noise and filter length, all algorithms show a 

similar comportment.  

About the complexity, we can see with the elapsed time that the RLS algorithm has a 

high computational load and increases rapidly and nonlinearly with the filter order. 

This is normal since the RLS algorithm has a complexity of      operations
11

 per 

iterations whereas a stochastic gradient-based algorithm has one of   . However, the 

fast Kalman implementation of the RLS algorithm can reduce the complexity to 

     [18]. Still, the RLS will always have higher computational complexity than SD 

algorithms.  

Applying our constraints to what we just said, we can rule out the RLS algorithm 

since the useless extremely fast convergence comes at the cost of high complexity.  

Now the question remains on which SD-based algorithm we should choose. They all 

offer the same complexity since they’re based on the same method.  

First we can easily rule out the LMS algorithm since we don’t want to manually tune 

the step size. From here, we can rule out the NLMP and NLMAD algorithms since 

they show slower convergence and slightly worse MSE performance. The choice is 

then narrowed down to the NLMS and the TV-LMS algorithms which show similar 

performance in every simulation. 

The final choice will be the NLMS algorithm. It’s a well-known and well-study 

algorithm and slightly simpler to implement than the TV-LMS. There is also less 

parameter to tune.  

                                                 
11

 An operation represents one addition (or subtraction) and one multiplication. It’s the so-called 

Multiply–accumulate (MAC) operation well-known on DSP system. 
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5.2 The multipoint approach 

Multichannel inverse filtering using the sum of the square of the errors presents some 

nice advantages. It is easy to understand, simple to realise and freely implementable 

with every existing adaptive algorithm. It could also perfectly work with nonlinear 

filtering like SOV filters. 

However, one has to be careful when using this approach. It can offer mixed to bad 

results if not handled and implemented correctly. 

First of all, special care must be taken for the delayed paths. It all revolves around the 

largest peak index of the acoustic path. For a single channel, the delay must be at least 

higher than this index (see Figure 34 p. 26), and low enough to give enough place for 

the whole impulse response (remember that low frequencies need a long IR tail). For a 

multichannel system, every channel must satisfy this but are also in relation with each 

other. This means that the delayed paths must keep the same time (or sample) 

difference between them as the acoustic paths. This is mandatory to assure a 

convergence of the algorithm (see Figure 42 p. 30 and Figure 58 p. 39). 

Secondly, the nature (e.g. mainly the point’s position) and the number of channels 

play an important role. The more channels we add, the lower the MSE performance is 

(see Figure 48 p. 33 and Figure 64 p. 42). The same applies to point’s position. The 

further they are from each other, i.e. the larger the area to equalize is, the lower the 

MSE performance is. It can be seen when comparing the simulations with MARDY 

data and our measured data (compare Figure 48 with Figure 64). The first one 

achieves a better performance than the second one. It can be partly explained by the 

size of the area to equalize:        against       . Hence, the MSE performance will 

result in a trade-off between the number and the position of the points. 

5.3 The Volterra implementation problem 

The Second Order Volterra (SOV) filter has been implemented as thoroughly 

explained in multiple papers [22, 23, 39-43]. In any cases, the learning curve diverges 

after a certain time even with a small amount of nonlinearities (can be seen Figure 49 

p. 34). There is no mention of this behaviour in any paper cited. Furthermore, we can 

say that this behaviour is completely related to the SOV filter since divergence 

happened only when it is enabled (see Figure 52 p. 35). 

And yet, SOV implementation of the LMS algorithm isn’t a big change. The existing 

part is entirely conserved for the linear filtering, and the quadratic combination      of 

the input   is used to form the bilinear coefficients      , as detailed in equation (9). 

But without logical reasons the algorithm keeps diverging. We decided then to put the 

nonlinearity approach aside in order to complete the study.  

But we can think of some leads on the cause of the problem. The first and most 

obvious reason would be a misunderstanding of the Volterra theory. It could also be a 

bad implemented nonlinear path which leads to self-amplification between the linear 

and the nonlinear coefficients. As can be seen Figure 50 and Figure 51 (p. 35), both 

filters diverge. 
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6 Conclusion 

The goal of this thesis was to develop a system that can perform a multichannel 

equalization of a loudspeaker using Matlab.  

After a literature study on inverse filtering, we settled down to linear adaptive filtering 

since it offers a well-known framework than can be easily expanded to nonlinear and 

multichannel filtering. We selected a handful adaptive algorithm to test: the RLS, 

LMS, NLMS, TV-LMS, NLMAD and NLMP. The choice went to the LMS algorithm 

for its low computational complexity and good MSE performance. 

Then we prepared the ground for multichannel by implementing the single channel 

filtered-x method with the NLMS algorithm. This allowed us to easily expand it to the 

multichannel theory. Simulation showed good and expected results with both simple 

50-tap and MARDY 1000-tap IR.  

Next we tried to implement the Volterra nonlinear model with a SOV filter. We sadly 

ran into divergence problems beyond understanding which prevented us to continue. 

This was a real disappointment at this time of the study.   

We moved on anyway to linearly characterize our home-made loudspeaker in an 

anechoic room. We measured its IR and FR from different positions. We then used 

those IR to simulate our algorithm on the loudspeaker in Matlab. This yields to 

“roughly” good results, partly due to the size of the equalized area. Still, the equalized 

IR show less ringing and more compact, impulse-like responses, which is basically 

what we wanted. 
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7 Future works 

First of all it could be interesting to find why we have a divergence with our SOV 

filter. Linear filtering works, but using nonlinear filtering can definitely improve the 

MSE performance of the algorithm. Leads discussed in Chapter 5.3 can be used as a 

starting point, but maybe it is better to start from scratch. The bilinear approach [39, 

42, 43] to nonlinear filtering could also be considerate, properly tested and compared 

with the SOV filter. After obtaining a working nonlinear filter, the multichannel 

approach can be applied and simulated.  

 

Another important work would be to actually try the algorithm on the loudspeaker, i.e. 

by not using simulation but real-time filtering. This way, a proper validation of the 

algorithm can be achieved with real measurements of the filtered impulse responses. 

Note that this can be done with or without the nonlinear implementation. For example 

the measurement system Figure 22 can become the one Figure 65. 

 
Figure 65 - Measurement system with real-time filtering. 

The real-time filtering system can be realized with another computer so the existing 

scripts and models in Matlab can be used (with proper modification of the inputs and 

outputs). A DSP can also be used, but will require a development step to port the 

algorithm to the target architecture. 

Furthermore, it could be interesting to perform these measurements in various real-life 

environments like bedroom or classroom, to see if problems arise from reverberations. 

 

Last but not least, the ultimate stage would be to realize this filter as built-in either in 

the loudspeaker or in a pre-amplifier. The later would be easier since power source 

would be directly available. This extensive work would require hardware study (e.g. 

what system to use? what architecture? etc…), programming study (e.g. which 

language to use? etc…), mechanical study (e.g. what are the maximum dimensions? 

etc…) and electrical study (e.g. how much power is available? what are the input and 

output impedances? should a matching circuit be used? etc…). And of course a cost 

study will drive the choices all along the project. 
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Annexes  

Please note that the whole project (files, Matlab scripts and models, pictures …) will 

be available to download at http://guillaume.perrin74.free.fr/ChalmersMT2012 for at 

least one year. 

Matlab File structure 

The Matlab related files are stored using this directory structure: 

 \global: contains general functions and files (IR …) used by all Matlab script. 

 \libraries: contains libraries Simulink models (acoustic path, algorithms …) 

 \lib_Linear: linear library models. 

 \lib_NonLinear: nonlinear library models. 

 \LinearImplementation: contains all scripts and Simulink models for the 

linear implementation. 

 \AdaptiveAlgTest: contains scripts and models for the adaptive 

algorithms tests. 

 \Results: simulation results. 

 \SingleChannel: scripts and models for the single channel simulations. 

 \Results: simulation results. 

 \MultiChannel: scripts and models for the multichannel simulations. 

 \Results: simulation results. 

 \VolterraImplementation: contains all scripts and Simulink models for the 

nonlinear implementation using Volterra series. 

 \Measurements: contains all scripts for measurements processing (directivity 

pattern …). 

  

http://guillaume.perrin74.free.fr/ChalmersMT2012
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Matlab models 

LibLinear 

 

LinNonLinear 

 

LibGlobal 
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AdaptiveAlg_FIR_SC_IRTest 
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FxLMS_SC_IRTest 
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FxLMS_SC_IRTest_multichannel 
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FxLMS_MC_IRTest 
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VLMS_SCNL_IRTest 
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Matlab script 

Function: AdaptFilters (used in bloc Adaptive Algorithms) 

function [w, a_param_out] = AdaptFilters(y, a_param_in, 

algorithm_index, L, e) 

%#codegen 
 

persistent weights; 

persistent fifo; 

persistent absolute_n ; 
 

persistent rls_P ; 

persistent mu_0 ; 
 

N = length(y); 
 

% Small value 

lambda = 1E-30 ; 
 

if (length(a_param_in) >= 1) 

    mu = a_param_in(1); 

end 
 

 

if isempty(weights) 

    % Filter coefficients:        

    weights = zeros(N,1); 

    % FIFO Shift Register: 

    fifo = zeros(N,1); 

    % RLS recursion matrix 

    delta = sqrt(mean(y.^2)); 

    rls_P = 0.1*eye(N) / delta ; 

    % Absolute value of n 

    absolute_n = 1 ; 

    mu_0 = 0 ; 

end 
 

if (L ~= 0) 
 

for n = 1:N 

    % Update the FIFO shift register: 

    fifo(2:L) = fifo(1:L-1); 

    fifo(1) = y(n); 
     

    if (algorithm_index == 1) 

        %% LMS ALGORITHM 
         

        if (mu == 0) 

            mu_max = 1/((lambda + mean(y.^2))*L) ; 

            mu = 0.1*mu_max; 

        end 
         

        weights(1:L) = weights(1:L) + mu * e(n) * fifo(1:L) ; 
         

    elseif (algorithm_index == 2) 

        %% NLMS ALGORITHM 
         

        if (mu == 0) 

            mu = 0.1; 

        end 
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        if (n == 1) 

            mu = mu / (lambda + norm(y).^2); 

        end 
         

        weights(1:L) = weights(1:L) + mu * e(n) * fifo(1:L) ; 
         

    elseif (algorithm_index == 3) 

        %% TV-LMS ALGORITHM 

        C = 20 ; 

        a = 0.01 ;  

        b = 0.7 ; 
         

        if(mu_0 == 0) 

            if(mu == 0) 

%                 mu_0 = 0.5E-6; 

                mu_0 = 0.1 / (lambda + norm(y).^2); 

            else 

                mu_0 = mu ; 

            end 

        end 
         

        mu = mu_0 * C^(1/(1+a*absolute_n^b)); 

        weights(1:L) = weights(1:L) + mu * e(n) * fifo(1:L) ; 
         

    elseif (algorithm_index == 4) 

        %% NLMAD ALGORITHM 
         

        if (mu == 0) 

            mu = 0.001; 

        end 
         

        if (n == 1) 

            mu = mu / (lambda + norm(y,1)); 

        end 
         

        weights(1:L) = weights(1:L) + mu * sign(e(n)) * fifo(1:L) ; 
         

         

    elseif (algorithm_index == 5) 

        %% NLMP ALGORITHM 
         

        if (length(a_param_in) >= 2) 

            p = a_param_in(2); 

            assert(p<=2 && p>=1); 

        else 

            p = 1.5 ; 

        end 
         

        if (mu == 0) 

            mu = 0.01; 

        end 
         

        if (n == 1) 

            mu = mu / (lambda + norm(y,p).^p); 

        end 
         

        weights(1:L) = weights(1:L) + mu * sign(e(n)) * abs(e(n)).^(p-1) 

* fifo(1:L) ; 
         

    elseif (algorithm_index == 6) 

        %% RLS ALGORITHM 
         

        if (mu == 0) 

            mu = 1; 

        end 
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        phi = fifo(1:L)' * rls_P(1:L,1:L) ; 

        k = phi'/(mu + phi * fifo(1:L) ); 
         

        weights(1:L) = weights(1:L) + k * e(n) ; 
         

        rls_P(1:L,1:L) = (rls_P(1:L,1:L) - k * phi) / mu ; 
         

    end 
     

    absolute_n = absolute_n + 1 ; 

end 

end 
 

a_param_out = mu ; 
 

% Output the filter weights: 

w = weights; 
 

end 

Function: NLMS_filter (used in bloc FxLMS algorithm) 

function [h, mu] = NLMS_filter(y, e, L, mu_in) %#codegen 

% Generate the NLMS filter 

%   Input  

%       y (float array) : source signal 

%       e (float array) : error signal 

%       L (int) : filter length (in samples) 

%       mu (float) : convergence coefficient (set to 0 for default 

value) 

%   Output 

%       h (float array) : filter coefficients 

%       mu (float) : calculated convergence coefficient 

% 
 

persistent weights; 

persistent fifo; 
 

N = length(y); 
 

% Small value 

lambda = 1E-30 ; 
 

if isempty(weights) 

    % Filter coefficients:        

    weights = zeros(N,1); 

    % FIFO Shift Register: 

    fifo = zeros(N,1); 

end 
 

% Convergence coefficient  

if (mu_in == 0) 

    mu = 0.1 / (lambda + norm(y).^2); 

else 

    mu = mu_in / (lambda + norm(y).^2); 

end 
 

for n = 1:N 

    % Update the FIFO shift register 

    fifo(2:L) = fifo(1:L-1); 

    fifo(1) = y(n); 

    % Update filter coefficients 
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    weights(1:L) = weights(1:L) + mu * e(n) * fifo(1:L) ; 

end 
 

% Output the filter weights 

h = weights; 
 

end 

Function: FxLMS_MC_filter (used in bloc FxLMS multichannel 

algorithm) 

function [h, mu] = FxLMS_MC_filter(y, e, L, mu_in) %#codegen 

% Generate the LMS filter 

%   Input  

%       x_hat (4 float array) : approximate source signal (from model 

forward 

%       path)  

%       e (4 float array) : error signal 

%       L (int) : filter length (in samples) 

%       mu (float) : convergence coefficient (set to 0 for automatic 

%                       detection) 

%   Output 

%       float array 

% 
 

persistent weights; 

persistent fifo; 
 

N = length(y); 
 

% Small value 

lambda = 1E-30 ; 
 

% Number of signal 

K = size(y,2); 
 

if isempty(weights) 

    % Filter coefficients:        

    weights = zeros(N,1); 

    % FIFO Shift Register: 

    fifo = zeros(N,K); 

end 
 

% Convergence coefficient  

if (mu_in == 0) 

    mu = 0.1 / (lambda + mean(norm(y)).^2); 

else 

    mu = mu_in / (lambda + mean(norm(y)).^2); 

end 
 

% if (mu_in == 0) 

%     mean_x_hat = 0 ; 

%     for k = 1:K 

%         mean_x_hat = mean_x_hat+mean(x_hat(:,k).^2); 

%     end 

%     mu_max = 2/(mean_x_hat*L) ; 

%     mu = 0.05*mu_max; 

% else 

%     mu = mu_in; 

% end 
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for n = 1:L 

    % Sum over the channel 

    for k=1:K 

        % Update the FIFO shift registers 

        fifo(2:L,k) = fifo(1:L-1,k); 

        fifo(1,k) = y(n,k); 

        % Update weights values 

        weights(1:L) = weights(1:L) + mu * e(n,k) * fifo(1:L,k); 

    end 

end 
 

% Output the filter weights: 

h = weights; 
 

end 

Function: VLMS_filter (used in bloc VLMS algorithm) 

function [ d_hat, h, h_quad, e, elaspedTime, mu_out ] = VLMS_filter( d, 

x, L, EnableSOV, ratioSOV) 

% Generate the LMS filter 

%   Input  

%       d (float array) : source signal (delayed) 

%       x (float array) : modified signal from plant 

%       L (int) : filter length (in samples) 

%       mu (float) : convergence coefficient (set to 0 for automatic 

%                       detection) 

%   Output 

%       float array 

% 

coder.varsize('weights_all'); 

coder.varsize('fifo_all'); 
         

persistent weights; 

persistent weights_quad; 

persistent fifo; 

% persistent fifo_quad; 
 

elaspedTime = 0 ; 
 

% Start time measurement 

coder.extrinsic('tic','toc'); 

tic; 
 

coder.inline('never'); 
 

% Non linear size 

if (ratioSOV < 1)  

    ratioSOV = 1 ; 

end 

Lq = round(L / ratioSOV) ; 
 

if isempty(weights) 

    % Filter coefficients:        

    weights = zeros(L,1); 

    % Filter quadratic coefficients:        

    weights_quad = zeros(Lq*(Lq+1)/2,1); 

    % FIFO Shift Register: 

    fifo = zeros(L,1); 

end 
 

% Pre-allocate output and error signals: 
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d_hat = coder.nullcopy(zeros(L,1)); 

e = coder.nullcopy(zeros(L,1)); 

fifo_quad = coder.nullcopy(zeros(Lq*(Lq+1)/2,1)); 
 

mu_out = coder.nullcopy(zeros(2,L)); 
 

 

for n = 1 : L  

    %## Update the Linear Fifo 

    fifo(2:L) = fifo(1:L-1); 

    fifo(1) = x(n); 
 

    % Approximation for plant signal 

%     d_hat(n) = weights' * fifo; 

    d_hat(n) = fifo' * weights; 
 

    if (EnableSOV == 1)  

        %##Quadratic combinaison Fifo 

        fifo_quad = buildSOV_Vector(fifo(1:Lq)); 

        % Add quadratic plant approximation 

%         d_hat(n) = d_hat(n) + weights_quad' * fifo_quad; 

        d_hat(n) = d_hat(n) + fifo_quad' * weights_quad; 

    end 
 

    % Calculate the error 

    e(n) = d(n) - d_hat(n) ; 
 

    % Calculate mu 

    mu_out(1,n) = 0.01 / (norm(fifo).^2+1E-30) ; 
     

    % Update the linear filter 

     weights = weights + mu_out(1,n) * e(n) * fifo; 
 

    if (EnableSOV == 1) 

        % Calculate mu 

        mu_out(2,n) = 0.01 / (norm(fifo_quad).^2+1E-30) ; 

        % Update the filter 

        weights_quad = weights_quad + mu_out(2,n) * e(n) * fifo_quad ; 
         

    end 
     

end  
 

% Output the filter weights: 

h = weights; 

h_quad = weights_quad ; 
 

% End time measurement 

elaspedTime = toc; 
 

end 
 

Function: buildSOV_Vector (used in the function above) 

function [ x_quad ] = buildSOV_Vector( x ) 

% Build the Second Order Volterra Vector (quadratic  

% combination of the input). 

% 

%   Input  

%       x (vector) : linear source signal 

%   Output 

%       x_quad (vector) : quadratic combination 
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% 
 

% Input size 

N = length(x); 
 

% Build quadratic combination matrix 

x_matrix = x * x.'; 
 

% fyllo = [1:N+1:N^2]'; 

% x_matrix(fyllo)=abs(diag(x_matrix)); 
 

% Preallocating output 

x_quad = zeros(N*(N+1)/2,1) ; 

% Iterative loop to create the volterra vector 

index=1; 

for i=1:N 

    x_quad(index:index+N-i) = x_matrix(i,i:N).'; 

    index = index + N - i + 1; 

end 
 

end 
 

Script: AdaptiveAlg_FIR_SC_main_script 

% 

%   MAIN SIMULATION SCRIPT 

%       ADAPTIVE ALGORITHM 

%       LINEAR SINGLE CHANNEL 

%       FIR 

% 

%% Initialize 

clear all 

close all 

%clc 
 

MDL_Init_Script 

mdl = 'AdaptiveAlg_FIR_SC_IRTest'; 
 

disp('****** Parameters settings'); 
 

%===================================% 

%====== Simulation Parameters ======% 

%===================================% 
 

% Simulation Algorithm Selection :  

%     0 = All algorithm comparison 

%     1 = LMS 

%     2 = NLMS 

%     3 = TV-LMS 

%     4 = NLMAD 

%     5 = NLMP 

%     6 = RLS 

sim_algo = 0; 
 

% Simulation type 

%     0 = No variation - (just simulate convergence with default 

values) 

%     1 = delay 

%     2 = noise 

%     3 = filter length 

%     4 = Input signal source 
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%     5 = convergence factor 

sim_type = 0; 
 

% Ignore RLS Algorithm (useful for testing, RLS can take time) 

%     0 = Don't ignore RLS 

%     1 = ignore RLS 

sim_algo_no_RLS = 0; 
 

% Number of simulation points 

sim_N_points = 9 ; 
 

% Number of frame 

sim_N_frame = 2000 ; 
 

% Frame size 

%   [2x1] vector (see AccPath_IR) 

sim_frame_size = [50 ; 1000] ; 
 

% Acoustic path Impulse Response 

%     1 = Simple (FIR - 50 coeff) 

%     2 = Real (FIR - 1000 coeff) 

sim_AccPath_IR = 1 ; 
 

%====== Default Parameters ======% 
 

% Default Noise amplitude in Acoustic Path 

default_AP_noise = 0; 

% Default Delay 

%   [2x1] vector (see AccPath_IR) 

default_delay = [25 ; 100]; 

% Default filter length 

%   [2x1] vector (see AccPath_IR) 

default_Filterlength = [50 ; 300];  
 

%====== Variation Parameters ======% 
 

% Delay Simulation Parameters 

sim_delay = ... 
    

round(linspace(0,default_Filterlength(sim_AccPath_IR),sim_N_points)); 

% Noise Simulation Parameters 

sim_noise_amplitude = linspace(0.01,2,sim_N_points); 

% Filter length Simulation Parameters 

if (sim_AccPath_IR == 1) 

    sim_filter_length = round(linspace(20,100,sim_N_points)); 

else%if (AccPath_IR == 2) 

    sim_filter_length = round(linspace(100,1000,sim_N_points)); 

end 

% Convergence factor Simulation Parameters 

sim_conv_factor(1,:) = ... 

                linspace(nthroot(1E-6,4),nthroot(1E-

4,4),sim_N_points).^4; 

sim_conv_factor(2,:) = ... 
                

linspace(nthroot(0.001,4),nthroot(0.7,4),sim_N_points).^4; 

sim_conv_factor(3,:) = ... 

                linspace(nthroot(1E-6,4),nthroot(1E-

4,4),sim_N_points).^4; 

sim_conv_factor(4,:) = ... 

                linspace(nthroot(1E-4,4),nthroot(1E-

2,4),sim_N_points).^4; 

sim_conv_factor(5,:) = ... 
                

linspace(nthroot(0.001,4),nthroot(0.1,4),sim_N_points).^4; 
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% sim_conv_factor(6,:) = linspace(1,0.9999,sim_N_points); 
 

%% Algo names 
 

sim_algo_name(1,:) = 'LMS   '; 

sim_algo_name(2,:) = 'NLMS  '; 

sim_algo_name(3,:) = 'TV-LMS'; 

sim_algo_name(4,:) = 'NLMAD '; 

sim_algo_name(5,:) = 'NLMP  '; 

sim_algo_name(6,:) = 'RLS   '; 
 

%% Simulink Model init 
 

disp('****** Initialization'); 
 

MDL_Init_Script; 
 

load_system(mdl); 
 

FrameSize = sim_frame_size(sim_AccPath_IR); 
 

if (sim_algo_no_RLS == 0 && sim_type == 0) || (sim_AccPath_IR == 2) 

    set_param(mdl,'SimulationMode','rapid') 

else 

    set_param(mdl,'SimulationMode','normal') 

end 

set_param(mdl, 'StopTime', num2str(sim_N_frame*FrameSize)); 

set_param([mdl '/AcousNoiseGain'],'Gain',num2str(default_AP_noise)); 

set_param([mdl 

'/Delta'],'Value',num2str(default_delay(sim_AccPath_IR))); 

set_param([mdl '/AdaptiveParameter'],'Value', '0'); 

set_param([mdl '/AlgorithmSelection'],'Value', '1'); 
 

if (sim_AccPath_IR == 2) 

    load('c_linear_1000_m1-4.mat'); 

    c = c1(1:FrameSize); 

end 
 

% Normalized energy 

 c = c / abs(sum(c)); 
  

 % Calculate SNR and SNR_db 

 if (default_AP_noise ~= 0) 

    SNR = (1/default_AP_noise)^2 ; 

    SNR_dB = 10*log10(SNR) ; 

 end 
  

% Blank simulation 

set_param([mdl '/FilterSizeValue'],'Value','0'); 

sim(mdl); 

set_param([mdl '/FilterSizeValue'],'Value', ... 
                            

num2str(default_Filterlength(sim_AccPath_IR))); 
 

%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%% Simulations Time ! %%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 

e_mse = zeros(sim_N_points,1) ; 

index = 1 ; 
 

%% All algorithm simulation type 

% 

if (sim_algo == 0) 
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% 
 

 

if sim_type == 0 %% No variation : Convergence simulation 
     

    disp('****** Starting convergence simulation (all algorithm)'); 
 

    res_mse = zeros(sim_N_frame+1,6) ; 

    res_mse_sm = zeros(sim_N_frame+1,6) ; 

    res_time = zeros(1,6) ; 

    res_mean_stable_mse = zeros(1,6) ; 
     

    for i = 1:6 

        disp(['Algorithm ' num2str(i)]); 

        % Set algorithm selection 

        set_param([mdl '/AlgorithmSelection'],'Value', num2str(i)); 
         

        if (i == 6 && sim_algo_no_RLS == 1) 

            disp('ignored'); 

        else 

            if (i == 6 && sim_AccPath_IR == 2) 

                set_param(mdl,'SimulationMode','rapid') 

            end 
 

            % Start time measure 

            tic; 
 

            % Launch simulation 

            sim(mdl); 
 

            % Stop time measure 

            toc; 

            res_time(1,i) = toc ; 
 

            % Save mean value (stable part) 

            res_mean_stable_mse(1,i) = ... 

                               mean(mse_val(round(length(mse_val)/3):end)); 
 

            % Save MSE  

            res_mse(:,i) = mse_val; 

            % Save MSE Smooth 

            res_mse_sm(:,i) = mse_val_smooth; 

        end 

    end 
     

     

    figure; 

    semilogy(res_mse_sm); 

    grid on; 

    title('Convergence of algorithm') 

    xlabel('Samples'); 

    ylabel('MSE'); 

    xlim([0 size(res_mse_sm,1)]); 

    ylim([0 1]); 

    legend(sim_algo_name,'Location','NorthEastOutside'); 

    set(gca,'Xcolor',[0.3 0.3 0.3]); 

    set(gca,'Ycolor',[0.3 0.3 0.3]); 
     

    % Copy axes to change color back to black 

    Caxes = copyobj(gca,gcf);  

    set(Caxes, 'color', 'none', 'xcolor', 'k', 'xgrid', 'off',...  

                'ycolor','k', 'ygrid','off'); 

    delete(Caxes); 

    % use delete(Caxes) if you want to get rid of the copy object  
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    % Can be useful for redraw purpose 
     

 

elseif sim_type == 1 %% DELAY SIMULATION 

    disp('****** Starting delay simulation (all algorithm)'); 
 

elseif sim_type == 2 %% NOISE SIMULATION 
     

    disp('****** Starting noise simulation (all algorithm)'); 
     

    res_mse_sm = zeros(sim_N_frame+1,6,sim_N_points) ; 

    res_mean_stable_mse = zeros(1,6,sim_N_points) ; 

    res_SNR = zeros(1,sim_N_points) ; 

    res_SNR_dB = zeros(1,sim_N_points) ; 
     

    for w = sim_noise_amplitude 
         

         % Calculate SNR and SNR_db 

         if (w ~= 0) 

            res_SNR(1,index) = (1/w)^2 ; 

            res_SNR_dB(1,index) = 10*log10(res_SNR(1,index)) ; 

         else 

            res_SNR(1,index) = inf ; 

            res_SNR_dB(1,index) = inf ; 

         end 
         

        disp(['*** SNR = ' num2str(res_SNR_dB(1,index)) ' dB']); 

        % Set delay parameter to the model 

        set_param([mdl '/AcousNoiseGain'],'Gain',num2str(w)); 
 

        for i = 1:6 

            disp(['Algorithm ' num2str(i)]); 

            % Set algorithm selection 

            set_param([mdl '/AlgorithmSelection'],'Value', num2str(i)); 
             

            if (i == 6 && sim_AccPath_IR == 2) 

                set_param(mdl,'SimulationMode','rapid') 

            else 

                set_param(mdl,'SimulationMode','normal') 

            end 
 

            % Launch simulation 

            sim(mdl); 
 

            % Save mean value (stable part) 

            res_mean_stable_mse(1,i,index) = ... 

                            mean(mse_val(round(length(mse_val)/3):end)); 
 

            % Save MSE Smooth 

            res_mse_sm(:,i,index) = mse_val_smooth; 
 

        end 
         

        index = index + 1 ; 

    end 
 

    for n = 1:2:sim_N_points 

        figure; 

        semilogy(res_mse_sm(:,:,n)); 

        grid on; 

        title(['Convergence of algorithm with SNR = ' ... 

                num2str(res_SNR_dB(1,n)) ' dB']) 

        xlabel('Samples'); 

        ylabel('MSE'); 

        xlim([0 size(res_mse_sm(:,:,n),1)]); 
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        ylim([0 1]); 

        legend(sim_algo_name,'Location','NorthEastOutside'); 

        set(gca,'Xcolor',[0.3 0.3 0.3]); 

        set(gca,'Ycolor',[0.3 0.3 0.3]); 

    end 
     

    res_mean_stable_mse = reshape(res_mean_stable_mse,6,sim_N_points); 
     

    figure; 

    plot(res_SNR_dB,res_mean_stable_mse'); 

    grid on; 

    title('Mean MSE for the stable part') 

    xlabel('SNR (dB)'); 

    ylabel('MSE'); 

    legend(sim_algo_name,'Location','NorthEastOutside'); 
     

elseif sim_type == 3 %% FILTER length SIMULATION 
     

    disp('****** Starting filter length simulation (all algorithm)'); 
         

    res_mean_stable_mse = zeros(1,6,sim_N_points) ; 

    res_time = zeros(1,6,sim_N_points) ; 
     

    % Update StopTime to the max to avoid rebuilding at each iteration 
    

set_param(mdl,'StopTime',num2str(sim_N_frame*max(sim_filter_length)))

; 
     

 

    for j = sim_filter_length 
         

        % Set new FrameSize value only if larger than default one 

        if (j > default_Filterlength(sim_AccPath_IR)) 

            FrameSize = j; 

            % Blank simulation (to not impact time measurements) 

            set_param([mdl '/AlgorithmSelection'],'Value', '1'); 

            set_param([mdl '/FilterSizeValue'],'Value','0'); 

            set_param(mdl,'SimulationMode','normal') 

            sim(mdl); 

        end 
 

        set_param([mdl '/Delta'],'Value',num2str(round(j/2))); 

        set_param([mdl '/FilterSizeValue'],'Value',num2str(j)); 
         

        disp(['*** Filterlength = ' num2str(j)]); 
         

        for i = 1:6 

            disp(['Algorithm ' num2str(i)]); 

            % Set algorithm selection 

            set_param([mdl '/AlgorithmSelection'],'Value', num2str(i)); 
             

            if (i == 6 && sim_AccPath_IR == 2) 

                set_param(mdl,'SimulationMode','rapid') 

            end 
 

            % Start time measure 

            tic; 
 

            % Launch simulation 

            sim(mdl); 
 

            % Stop time measure 

            toc; 

            res_time(1,i,index) = toc ; 
 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:137 XX 

            % Save mean value (stable part) 

            res_mean_stable_mse(1,i,index) = ... 

                               mean(mse_val(round(length(mse_val)/3):end)); 

            if (res_mean_stable_mse(1,i,index) > 1) 

                res_mean_stable_mse(1,i,index) = NaN ; 

            end 

        end 
         

        index = index + 1 ; 

    end 
     

    res_mean_stable_mse = reshape(res_mean_stable_mse,6,sim_N_points); 

    res_time = reshape(res_time,6,sim_N_points); 
 

    figure; 

    semilogy(sim_filter_length,res_mean_stable_mse'); 

    grid on; 

    title('Mean MSE for the stable part') 

    xlabel('Filter length'); 

    ylabel('MSE'); 

    legend(sim_algo_name,'Location','NorthEastOutside'); 

    figure; 

    plot(sim_filter_length,res_time'); 

    grid on; 

    title('Elapsed time for algorithm') 

    xlabel('Filter length'); 

    ylabel('Elapsed time'); 

    legend(sim_algo_name,'Location','NorthEastOutside'); 
     

end 
 

%% Unique algorithm simulation type 

% 

elseif (sim_algo > 0) 
 

 

if sim_type == 5 %% Convergence factor variation 

    disp('**** Starting convergence factor simulation (unique 

algorithm)'); 
 

    % Set algorithm selection 

    set_param([mdl '/AlgorithmSelection'],'Value', num2str(sim_algo)); 
     

    res_mse = zeros(sim_N_frame+1,sim_N_points) ; 

    res_mse_sm = zeros(sim_N_frame+1,sim_N_points) ; 

    res_mse_val = zeros(2,sim_N_points) ; 
     

    index = 1 ; 

    for mu = sim_conv_factor(sim_algo,:) 
         

        disp(['*** mu = ' mu]); 
         

        set_param([mdl '/AdaptiveParameter'],'Value', num2str(mu)); 
     

        % Launch simulation 

        sim(mdl); 
         

        % Save MSE values 

        res_mse_val(1,index) = mean(mse_val); 

        res_mse_val(2,index) = min(mse_val); 
         

        % Test for divergence 

        if (res_mse_val(1,index) < 2) 

            % Save MSE  
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            res_mse(:,index) = mse_val; 

            % Save MSE Smooth 

            res_mse_sm(:,index) = mse_val_smooth; 

        end 
         

        index = index + 1 ; 

    end 
 

    % Delete empty column  

    for i = index-1:-1:1 

        if (res_mse_val(1,i) > 2)  

            res_mse(:,i) = []; 

            res_mse_sm(:,i) = []; 

        end 

    end 
     

    figure; 

    semilogy(res_mse_sm); 

    grid on; 

    title(['Convergence of algorithm ', sim_algo_name(sim_algo,:),... 

           ' (', num2str(sim_algo), ')']) 

    xlabel('Samples'); 

    ylabel('MSE'); 

    xlim([0 size(res_mse_sm,1)]); 

    ylim([0 1]); 

    legendCell = cellstr(num2str( ... 

            sim_conv_factor(sim_algo,1:size(res_mse,2))','mu = %-

.2e')); 

    legend(legendCell,'Location','NorthEastOutside'); 

    set(gca,'Xcolor',[0.3 0.3 0.3]); 

    set(gca,'Ycolor',[0.3 0.3 0.3]); 
     

    % Copy axes to change color to black 

    Caxes = copyobj(gca,gcf); 

    set(Caxes, 'color', 'none', 'xcolor', 'k', 'xgrid', 'off',... 

               'ycolor','k', 'ygrid','off'); 

    delete(Caxes); 

    % use delete(Caxes) if you want to get rid of the copy object  

    % Can be useful for redraw purpose 
     

end 
 

end 
 

disp('****** END OF SCRIPT'); 

Script: main_script_LSC 

% 

%   MAIN SIMULATION SCRIPT 

%       LMS IMPLEMENTATION 

%       LINEAR SINGLE CHANNEL 

%       FIR 

% 

%% Initialize 

clear all 

close all 

%clc 
 

tic 
 

MDL_Init_Script 
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mdl = 'FxLMS_SC_IRTest'; 
 

disp('****** Parameters settings'); 

%====== Simulation Parameters ======% 

% Simulation type 

%   0 = Unique IR Response 

%   1 = delay 

%   2 = noise 

%   3 = filter length 

%   4 = estimated delay 

%   5 = estimated noise 

sim_type = 2; 
 

% Number of simulation points 

sim_N_points = 25 ; 
 

% Number of frame 

sim_N_frame = 2000 ; 
 

% Frame size 

%   [2x1] vector (see AccPath_IR) 

sim_frame_size = [50 ; 1000] ; 
 

% Acoustic path Impulse Response 

%     1 = Simple (FIR - 50 coeff) 

%     2 = Real (FIR - 1000 coeff) 

sim_AccPath_IR = 2 ; 
 

%====== Default Parameters ======% 

% Noise amplitude 

default_AP_noise = 0; 

default_estAP_noise = 0; 

% Default Delay 

%   [2x1] vector (see AccPath_IR) 

default_delay = [25 ; 150]; 

% Default estimated Delay 

%   [2x1] vector (see AccPath_IR) 

default_est_delay = [0 ; 0]; 

% Default filter length 

%   [2x1] vector (see AccPath_IR) 

default_Filterlength = [50 ; 300];  
 

%====== Delay Simulation Parameters         ======% 

sim_delay = ... 
    

round(linspace(0,default_Filterlength(sim_AccPath_IR),sim_N_points)); 

%====== Noise Simulation Parameters         ======% 

sim_noise_amplitude = linspace(0.01,2,sim_N_points); 

%====== Estimated Delay Simulation Parameters         ======% 

sim_est_delay = round( ... 
    

[linspace(0,default_Filterlength(sim_AccPath_IR)/10,sim_N_points/2),.

.. 

     linspace(default_Filterlength(sim_AccPath_IR)/10+10, ... 

              default_Filterlength(sim_AccPath_IR),sim_N_points/2)  ]); 

%====== Estimated Noise Simulation Parameters         ======% 

sim_est_noise_amplitude = linspace(0.01,100,sim_N_points); 

%====== Filter length Simulation Parameters ======% 

% Filter length Simulation Parameters 

if (sim_AccPath_IR == 1) 

    sim_filter_length = round(linspace(20,100,sim_N_points)); 

else%if (AccPath_IR == 2) 

    sim_filter_length = round(linspace(100,1000,sim_N_points)); 
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end 
 

%% Simulink Model init 

disp('****** Initialization'); 
 

load_system(mdl); 
 

FrameSize = sim_frame_size(sim_AccPath_IR); 
 

set_param(mdl, 'StopTime', num2str(sim_N_frame*FrameSize)); 
 

set_param([mdl '/AcousNoiseGain'],'Gain',... 

                               num2str(default_AP_noise)); 
                            

set_param([mdl '/EstNoiseGain'],'Gain',... 

                               num2str(default_estAP_noise)); 
                            

set_param([mdl 

'/Delta'],'Value',num2str(default_delay(sim_AccPath_IR))); 
 

set_param([mdl '/EstDelta'],'Value',... 

                               num2str(default_est_delay(sim_AccPath_IR))); 
 

set_param([mdl '/FilterSizeValue'],'Value', ... 
                            

num2str(default_Filterlength(sim_AccPath_IR))); 
                         

if (sim_AccPath_IR == 2) 

    load('c_linear_1000_m1-4.mat'); 

    c = c1(1:FrameSize); 

end 
 

% Normalized energy 

 c = c / abs(sum(c)); 
 

 % Calculate SNR and SNR_db 

 if (default_AP_noise ~= 0) 

    SNR = (1/default_AP_noise)^2 ; 

    SNR_dB = 10*log10(SNR) ; 

 end 

 if (default_estAP_noise ~= 0) 

    SNR_est = (1/default_estAP_noise)^2 ; 

    SNR_est_dB = 10*log10(SNR_est) ; 

 end 

%% Simulations 
 

e_mse = zeros(sim_N_points,1) ; 

index = 1 ; 
 

if sim_type == 0 %% UNIQUE IR SIMULATION 

    disp('****** Starting unique IR simulation'); 
 

    % Launch simulation 

    sim(mdl); 
 

    % Calculate MSE  

    e_mse = mean(mse_val(500:end)) 

    e_mmse = min(mse_val) 
 

    % Plot IR and FR 

    stem_MF_IR(c,h(sim_N_frame,:)) 

    plot_MF_spectrum(c,h(sim_N_frame,:)) 
     

    % Plot IR evolution 

    figure; 
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    plot_gradient(h,round(logspace(0.1,2,10))) 

    grid on; 

    title('Filter Impulse Response evolution') 

    xlabel('Samples'); 

    ylabel('h'); 
     

elseif sim_type == 1 || sim_type == 4 %% DELAY SIMULATION 

    disp('****** Starting delay simulation'); 
 

    delta_values = 0 ; 

    bloc_name = 'Delta' ; 

    if sim_type == 1  

        delta_values = sim_delay ; 

    elseif sim_type == 4 

        delta_values = sim_est_delay ; 

        bloc_name = 'EstDelta' ; 

    end 
     

    e_mmse = zeros(sim_N_points,1) ; 
     

    for delta = delta_values 
         

        disp(['*** Delay = ' num2str(delta)]); 
 

        % Set delay parameter to the model 

        set_param([mdl '/' bloc_name],'Value',num2str(delta)); 
 

        % Launch simulation 

        sim(mdl); 
 

        % Calculate MSE  

        e_mmse(index) = min(mse_val) ; 

        e_mse(index) = mean(mse_val(round(length(mse_val)/3):end)); 

        index = index + 1 ; 

    end 
 

 

    figure; 

    semilogy(sim_delay,e_mmse); 

    grid on; 

    title('Minimum MSE versus delay') 

    xlabel('Delay (samples)'); 

    ylabel('Minimum MSE'); 
 

    figure; 

    semilogy(sim_est_delay,e_mse); 

    grid on; 

    title('MSE (stable part) versus delay') 

    xlabel('Delay (samples)'); 

    ylabel('MSE'); 
 

elseif sim_type == 2 || sim_type == 5 %% NOISE SIMULATION 

    disp('****** Starting noise simulation'); 
     

    res_mse_sm = zeros(sim_N_frame+1,sim_N_points) ; 

    res_mean_stable_mse = zeros(1,sim_N_points) ; 

    res_SNR = zeros(1,sim_N_points) ; 

    res_SNR_dB = zeros(1,sim_N_points) ; 
     

    noise_values = 0 ; 

    bloc_name = 'AcousNoiseGain' ; 

    if sim_type == 2  

        noise_values = sim_noise_amplitude ; 

    elseif sim_type == 5 
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        noise_values = sim_est_noise_amplitude ; 

        bloc_name = 'EstNoiseGain' ; 

    end 
     

    for w = noise_values 
         

         % Calculate SNR and SNR_db 

         if (w ~= 0) 

            res_SNR(1,index) = (1/w)^2 ; 

            res_SNR_dB(1,index) = 10*log10(res_SNR(1,index)) ; 

         else 

            res_SNR(1,index) = inf ; 

            res_SNR_dB(1,index) = inf ; 

         end 
          

        disp(['*** SNR = ' num2str(res_SNR_dB(1,index)) ' dB']); 
 

        % Set delay parameter to the model 

        set_param([mdl '/' bloc_name],'Gain',num2str(w)); 
 

        % Launch simulation 

        sim(mdl); 
 

        % Save mean value (stable part) 

        res_mean_stable_mse(1,index) = ... 

                        mean(mse_val(round(length(mse_val)/3):end)); 
 

        % Save MSE Smooth 

        res_mse_sm(:,index) = mse_val; 
             

        % Calculate MSE  

        e_mse(index) = min(mse_val) ; 

        index = index + 1 ; 

    end 
 

%     plot(sim_noise_amplitude,e_mse); 

%     grid on; 

%     title('Minimum MSE versus noise') 

%     xlabel('Noise amplitude'); 

%     ylabel('Minimum MSE'); 
         

    figure; 

    plot(res_SNR_dB,res_mean_stable_mse); 

    grid on; 

    title('Mean MSE for the stable part') 

    xlabel('SNR (dB)'); 

    ylabel('MSE'); 
     

elseif sim_type == 3 %% FILTER length SIMULATION 
     

    disp('****** Starting filter length simulation'); 
         

    % Update StopTime to the max to avoid rebuilding at each iteration 

    set_param(mdl, 'StopTime', ... 
                            

num2str(sim_N_frame*max(sim_filter_length)*2)); 
     

    for i = sim_filter_length 
 

        disp(['*** Filterlength = ' num2str(i)]); 
 

        % Set new delay parameter to the model 

        set_param([mdl '/Delta'],'Value',num2str(round(i/2))); 
         

        % Set FilterSize parameter 
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        set_param([mdl '/FilterSizeValue'],'Value', num2str(i)); 
         

        % Launch simulation 

        sim(mdl); 
 

        % Calculate MSE  

        e_mse(index) = min(mse_val) ; 

        index = index + 1 ; 

    end 
 

    plot(sim_filter_length,e_mse); 

    grid on; 

    title('Minimum MSE versus filter length') 

    xlabel('Filter length (samples)'); 

    ylabel('Minimum MSE'); 
 

end 
 

toc 

disp('****** END OF SCRIPT'); 

Script: main_script_LSC_multichannel 

% 

%   MAIN SIMULATION SCRIPT 

%       LMS IMPLEMENTATION 

%       LINEAR SINGLE CHANNEL (with multichannel test) 

%       FIR 

% 

%% Initialize 

clear all 

close all 
 

tic 
 

MDL_Init_Script 

mdl = 'FxLMS_SC_IRTest_multichannel'; 
 

disp('****** Parameters settings'); 

%====== Simulation Parameters ======% 

% Number of frame 

sim_N_frame = 5000 ; 
 

% Frame size 

%   [2x1] vector (see AccPath_IR) 

sim_frame_size = [50 ; 1000] ; 
 

% Acoustic path Impulse Response 

%     1 = Simple (FIR - 50 coeff) 

%     2 = Real (FIR - 1000 coeff) 

sim_AccPath_IR = 2 ; 
 

%====== Default Parameters ======% 

% Noise amplitude 

default_AP_noise = 0; 

default_estAP_noise = 0; 

% Default Delay 

%   [2x1] vector (see AccPath_IR) 

default_delay = [25 ; 150]; 

% Default filter length 

%   [2x1] vector (see AccPath_IR) 

default_Filterlength = [50 ; 1000];  
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%% Simulink Model init 

disp('****** Initialization'); 
 

load_system(mdl); 
 

FrameSize = sim_frame_size(sim_AccPath_IR); 
 

set_param(mdl, 'StopTime', num2str(sim_N_frame*FrameSize)); 
 

set_param([mdl '/AcousNoiseGain'],'Gain',... 

                               num2str(default_AP_noise)); 
                            

set_param([mdl '/EstNoiseGain'],'Gain',... 

                               num2str(default_estAP_noise)); 
                            

set_param([mdl 

'/Delta'],'Value',num2str(default_delay(sim_AccPath_IR))); 
 

set_param([mdl '/FilterSizeValue'],'Value', ... 
                            

num2str(default_Filterlength(sim_AccPath_IR))); 
                         

if (sim_AccPath_IR == 2) 

    load('c_linear_1000_m1-4.mat'); 

    c1 = c1(1:FrameSize); 

    c2 = c2(1:FrameSize); 

    c3 = c3(1:FrameSize); 

    c4 = c4(1:FrameSize); 

end 
 

 

%% Simulations 

disp('****** Starting multichannel simulation'); 
 

% Launch simulation 

sim(mdl); 
 

% Calculate MSE  

e_mse = mean(mse_val)  
 

c = [c1 c2 c3 c4] ; 

plots_C_spectrum(c,h(sim_N_frame,:)'); 

stems_C_IR(c,h(sim_N_frame,:)'); 
     

toc 

disp('****** END OF SCRIPT'); 

Script: main_script_LMC 

% 

%   MAIN SIMULATION SCRIPT 

%       LMS IMPLEMENTATION 

%       LINEAR MULTI CHANNEL 

%       FIR 

% 

%% Initialize 

clear all 

close all 

% clc 
 

tic 
 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:137 XXVIII 

MDL_Init_Script 
 

mdl = 'FxLMS_MC_IRTest'; 
 

disp('****** Parameters settings'); 

%====== Simulation Parameters ======% 

% Simulation type 

%   0 = 'Unique IR Response' 

%   1 = 'Unique delay variation' 

%   2 = 'Double delay variation' 

%   3 = 'Full delay variation' 

%   4 = 'Number of optimized points variation' 

sim_type = 0; 
 

% Number of simulation points 

sim_N_points = 25 ; 
 

% Number of frame 

sim_N_frame = 10000 ; 
 

% Frame size 

%   [3x1] vector (see AccPath_IR) 

sim_frame_size = [50 ; 1000 ; 1000] ; 
 

% Number of acoustic path 

sim_K = 4 ; 
 

% Acoustic path Impulse Response 

%     1 = Simple (FIR - 50 coeff) 

%     2 = Real (FIR - 1000 coeff) 

%     3 = Measured (FIR - 1000 coeff) 

sim_AccPath_IR = 3 ; 
 

%====== Default Parameters ======% 

% Mu value 

%   [3x1] vector (see AccPath_IR) 

default_mu_value = [0 0 0.01]; 

% Error Gain 

default_error_gain = [1 1 1 1]; 

% Estimate source Gain 

default_est_source_gain = default_error_gain; 

% Noise amplitude 

default_AP_noise = 0; 

default_estAP_noise = 0; 

% Delay 

default_delay = [300 304 668 672]; 

% Size of the filter 

%   [3x1] vector (see AccPath_IR) 

default_FilterLenght = [50 ; 1000 ; 1000];  
 

% Delay 

default_Unique_delay_var = [25 25 25 25]; 

% Delay 

default_Double_delay_var = default_delay; 

% Delay (optimal offset) 

%   [3x4] vector (see AccPath_IR) 

default_Full_delay_var = [0 0 4 4 ; 0 4 281 282 ; 0 4 368 372]; 
 

%====== Delay Simulation Parameters         ======% 

sim_delay = 

round(linspace(0,default_FilterLenght(sim_AccPath_IR),sim_N_points)); 

%====== Point Simulation Parameters         ======% 

sim_point_amplitude = linspace(0,1,(sim_N_points/sim_K)); 
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sim_point_amplitude = 

sim_point_amplitude(2:length(sim_point_amplitude)); 
 

%% Simulink Model init 

disp('****** Initialization'); 
 

load_system(mdl); 
 

FrameSize = sim_frame_size(sim_AccPath_IR); 
 

if (sim_AccPath_IR > 1) 

    set_param(mdl,'SimulationMode','rapid') 

else 

    set_param(mdl,'SimulationMode','normal') 

end 
 

set_param(mdl, 'StopTime', num2str(sim_N_frame*FrameSize)); 

set_param([mdl '/AcousNoiseGain'],'Gain',num2str(default_AP_noise)); 

set_param([mdl '/FilterSizeValue'],'Value', ... 
                            

num2str(default_FilterLenght(sim_AccPath_IR))); 
                         

set_param([mdl 

'/MuValue'],'Value',num2str(default_mu_value(sim_AccPath_IR))); 
 

for k = 1:sim_K 

    set_param([mdl '/EstNoiseGain' 

num2str(k)],'Gain',num2str(default_estAP_noise)); 

    set_param([mdl '/Delta' 

num2str(k)],'Value',num2str(default_delay(k))); 

    set_param([mdl '/ErrorGain' 

num2str(k)],'Gain',num2str(default_error_gain(k))); 

    set_param([mdl '/EstSourceGain' 

num2str(k)],'Gain',num2str(default_est_source_gain(k))); 

end 
 

if (sim_AccPath_IR == 2) 

    load('c_linear_1000_m1-4.mat'); 

    c1 = c1(1:FrameSize); 

    c2 = c2(1:FrameSize); 

    c3 = c3(1:FrameSize); 

    c4 = c4(1:FrameSize); 

elseif (sim_AccPath_IR == 3) 

    load('c_linear_meas_1000_m1-4.mat'); 

    c1 = c1(1:FrameSize); 

    c2 = c2(1:FrameSize); 

    c3 = c3(1:FrameSize); 

    c4 = c4(1:FrameSize); 

end 
 

% Normalize 

c1 = c1 / abs(sum(c1)) ; 

c2 = c2 / abs(sum(c2)) ; 

c3 = c3 / abs(sum(c3)) ; 

c4 = c4 / abs(sum(c4)) ; 
 

%% Simulations 
     

e_mse = zeros(sim_N_points,1) ; 

index = 1 ; 
 

if sim_type == 0 %% UNIQUE IR SIMULATION 

    disp('****** Starting unique IR simulation'); 
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    % Launch simulation 

    sim(mdl); 
 

    % Calculate MSE  

    e_mse = min(mse_val)  
     

    % Plot results 

    c = [c1 c2 c3 c4] ; 

    plots_C_spectrum(c,h(sim_N_frame,:)'); 

    stems_C_IR(c,h(sim_N_frame,:)'); 
     

elseif sim_type == 1 %% UNIQUE DELAY SIMULATION 

    disp('****** Starting unique delay simulation'); 
 

    e_mse = zeros(sim_N_points,sim_K,sim_K); 

    for k = 1:sim_K 

        disp(['*** Channel = ' num2str(k)]); 

        % Default parameters 

        index = 1 ; 

        for kk = 1:sim_K 

            set_param([mdl '/Delta' 

num2str(kk)],'Value',num2str(default_Unique_delay_var(kk))); 

        end 

        % Delay variation 

        for delta = sim_delay 

            disp(['Delay = ' num2str(delta)]); 

            % Set delay parameter to the model 

            set_param([mdl '/Delta' num2str(k)],'Value',num2str(delta)); 

            % Launch simulation 

            sim(mdl); 

            % Calculate MSE  

            for kk = 1:sim_K 

                e_mse(index,kk,k) = min(mse_val(:,kk)) ; 

            end 

            % Update index 

            index = index + 1 ; 

        end 

    end 
     

    figure 

    for k=1:sim_K/2 

        subplot(2,sim_K/2,k); 

        plot(sim_delay,e_mse(:,:,k)); 

        grid on; 

        title(['Minimum MSE versus delay ' num2str(k)]) 

        xlabel('Delay (samples)'); 

        ylabel('Minimum MSE'); 

        subplot(2,sim_K/2,k+(sim_K/2)); 

        plot(sim_delay,e_mse(:,:,k+(sim_K/2))); 

        grid on; 

        title(['Minimum MSE versus delay ' num2str(k+(sim_K/2))]) 

        xlabel('Delay (samples)'); 

        ylabel('Minimum MSE'); 

    end 

elseif sim_type == 2 %% DOUBLE DELAY SIMULATION 

    disp('****** Starting double delay simulation'); 
 

    e_mse = zeros(sim_N_points,sim_K,sim_K); 

    for k = 1:sim_K 

        disp(['*** Channel = ' num2str(k)]); 

        % Default parameters 

        index = 1 ; 

        for kk = 1:sim_K 
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            set_param([mdl '/Delta' 

num2str(kk)],'Value',num2str(default_Double_delay_var(kk))); 

        end 

        % Delay variation 

        for delta = sim_delay 

            disp(['Delay = ' num2str(delta)]); 

            % Set delay parameter to the model 

            set_param([mdl '/Delta' num2str(k)],'Value',num2str(delta)); 

            if (k ~= 4) 

                set_param([mdl '/Delta' 

num2str(k+1)],'Value',num2str(delta)); 

            else 

                set_param([mdl '/Delta' 

num2str(1)],'Value',num2str(delta)); 

            end 

            % Launch simulation 

            sim(mdl); 

            % Calculate MSE  

            for kk = 1:sim_K 

                e_mse(index,kk,k) = min(mse_val(:,kk)) ; 

            end 

            % Update index 

            index = index + 1 ; 

        end 

    end 
     

    figure 

    for k=1:sim_K/2 

        subplot(2,sim_K/2,k); 

        plot(sim_delay,e_mse(:,:,k)); 

        grid on; 

        title(['Minimum MSE versus delay ' num2str(k) '/' 

num2str(k+1)]) 

        xlabel('Delay (samples)'); 

        ylabel('Minimum MSE'); 

        subplot(2,sim_K/2,k+(sim_K/2)); 

        plot(sim_delay,e_mse(:,:,k+(sim_K/2))); 

        grid on; 

        if (k+(sim_K/2) ~= 4) 

            title(['Minimum MSE versus delay ' num2str(k+(sim_K/2)) '/' 

num2str(k+(sim_K/2)+1)]) 

        else 

            title(['Minimum MSE versus delay 4/1']) 

        end 

        xlabel('Delay (samples)'); 

        ylabel('Minimum MSE'); 

    end 
     

elseif sim_type == 3 %% FULL DELAY SIMULATION 

    disp('****** Starting full delay simulation'); 
 

    e_mse = zeros(sim_N_points,sim_K); 
 

    % Delay variation 

    for delta = sim_delay 

        disp(['Delay = ' num2str(delta)]); 
         

        % Set delay parameters to the model 

        for k = 1:sim_K 

            set_param([mdl '/Delta' num2str(k)],'Value', ... 

                num2str(delta + 

default_Full_delay_var(sim_AccPath_IR,k))); 
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        end 
         

        % Launch simulation 

        sim(mdl); 
         

        % Calculate MSE  

        for k = 1:sim_K 

            e_mse(index,:) = min(mse_val) ; 

        end 
         

        % Update index 

        index = index + 1 ; 

    end 
     

    d = sim_delay ; 

    d_new = 

linspace(0,default_FilterLenght(sim_AccPath_IR),5*sim_N_points); 

    e_mse_int = zeros(length(d_new),sim_K); 

    for k = 1:sim_K 

        e_mse_int(:,k) = interp1(d,e_mse(:,k),d_new,'spline'); 

    end 
     

    figure; 

    plot(d_new,e_mse_int,d,e_mse,'xk'); 

    grid on; 

    title(['Minimum MSE versus full delay (with optimal offset)']) 

    xlabel('Delay (samples)'); 

    ylabel('Minimum MSE'); 
     

elseif sim_type == 4 %% Point optimization 

    disp('****** Starting point optimization simulation'); 
 

    e_mse = zeros(length(sim_point_amplitude)*sim_K+1,sim_K); 
 

    % Everything at zero 

    for k = 1:sim_K 

        set_param([mdl '/ErrorGain' num2str(k)],'Gain',num2str(0)); 

    end 
     

    % Launch simulation 

    sim(mdl); 

    % Calculate MSE 

    e_mse(1,:) = min(mse_val) ; 
     

    index = 2; 

    % Point variation 

    for k = 1:sim_K 

        disp(['*** Channel = ' num2str(k)]); 

        for value = sim_point_amplitude 

            disp(['****** Point amplitude = ' num2str(value)]); 

            % Set delay parameter to the model 

            set_param([mdl '/ErrorGain' 

num2str(k)],'Gain',num2str(value)); 

            % Launch simulation 

            sim(mdl); 

            % Calculate MSE 

            e_mse(index,:) = min(mse_val) ; 

            index = index+1; 

        end 

    end 

    x = linspace(0,4,length(sim_point_amplitude)*sim_K+1) ; 

    x_new = linspace(0,4,5*(length(sim_point_amplitude)*sim_K+1)); 

    e_mse_int = zeros(length(x_new),sim_K); 
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    for k = 1:sim_K 

        e_mse_int(:,k) = interp1(x,e_mse(:,k),x_new,'spline'); 

    end 
     

     

    figure 

    plot(x_new,e_mse_int); 

    grid on; 

    title('Minimum MSE versus number of optimized points') 

    xlabel('Number of optimized points'); 

    ylabel('Minimum MSE'); 

end 
 

toc 

disp('****** END OF SCRIPT'); 

Script: delay_estimator_script 

% 

%   MAIN SIMULATION SCRIPT 

%       Delay Estimator 

%       FIR 

% 

%% Initialize 

clear all 

close all 

% clc 
 

addpath('../global'); 
 

disp('****** Parameters settings'); 

%====== Simulation Parameters ======% 

% Frame size 

%   [2x1] vector (see AccPath_IR) 

sim_frame_size = [50 ; 1000 ; 1000] ; 
 

% Acoustic path Impulse Response 

%     1 = Simple (FIR - 50 coeff) 

%     2 = Real (FIR - 1000 coeff) 

%     3 = Measured (FIR - 1000 coeff) 

sim_AccPath_IR = 3; 
 

%% Simulink Model init 

disp('****** Initialization'); 
 

FrameSize = sim_frame_size(sim_AccPath_IR); 
 

if (sim_AccPath_IR == 1) 

    load('c_linear_50_m1.mat'); 

    load('c_linear_50_m2.mat'); 

    load('c_linear_50_m3.mat'); 

    load('c_linear_50_m4.mat'); 

elseif (sim_AccPath_IR == 2) 

    load('c_linear_1000_m1-4.mat'); 

    c1 = c1(1:FrameSize); 

    c2 = c2(1:FrameSize); 

    c3 = c3(1:FrameSize); 

    c4 = c4(1:FrameSize); 

elseif (sim_AccPath_IR == 3) 

    load('c_linear_meas_1000_m1-4.mat'); 

    c1 = c1(1:FrameSize); 

    c2 = c2(1:FrameSize); 
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    c3 = c3(1:FrameSize); 

    c4 = c4(1:FrameSize); 

end 
 

%% Simulations 

disp('****** Start simulation'); 
 

index = zeros(4,1); 
 

index(1) = find(c1 == max(c1)); 

index(2) = find(c2 == max(c2)); 

index(3) = find(c3 == max(c3)); 

index(4) = find(c4 == max(c4)); 
 

optimal_delta = [   0 ; ... 

                    abs(index(1)-index(2)) ; ... 

                    abs(index(1)-index(3)) ; ... 

                    abs(index(1)-index(4)) ]; 
 

                 

disp(' Max peaks at index = '); 

disp(index); 
 

disp(' Optimal Delta (with channel 1 as reference) = '); 

disp(optimal_delta); 
 

 

 

 

 

 


