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ABSTRACT

Many computations running on high-performing systems do not make
use of the performance available. To solve this problem, software writ-
ten to achieve strong scaling is needed.

Copernicus is a system for execution of large-scale sampling tasks
in high-performance environments. It aims to achieve strong scaling,
regardless of underlying architecture. The system was originally de-
veloped to run large scale bio-molecular simulations. However, lack-
ing an intuitive way of describing computational projects, the devel-
opers felt a need for an user-friendly text-based input for Copernicus.

This master’s thesis describes a design and implementation of a
domain-specific language to meet the need of a suitable input de-
scription for Copernicus. The language design is simple yet man-
ages to capture the abstract model of how a computational project
is executed. The language is strongly typed and inspired by elements
from both functional programming and data-flow languages, making
Rheos a powerful descriptive domain-specific language.
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We have seen that computer programming is an art,
because it applies accumulated knowledge to the world,
because it requires skill and ingenuity, and especially
because it produces objects of beauty.

— Donald E. Knuth [12]
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DISTRIBUTED COMPUTING

Cloud Computing and Grid Computing
360-Degree Compared 9






INTRODUCTION

With the ever increasing need for storage and computational power,
governments, research institutes and industry are rushing to adopt
cloud computing, moving away from a model where computational
projects are executed on local computers.

The communities of researchers that need access to the computa-
tional power required to carry out non-trivial simulations and analy-
sis of data are often distributed geographically, as are the computing
resources they rely on.

Both high-performance computing and embedded systems are mov-
ing towards many-core systems, and in the next few years we can ex-
pect to see platforms with 100’s or more processor cores [13], maybe
even 1000’s or tens of 1000’s cores. The K Computer, built by Fu-
jitsu, contains more than 80,000 Nodes with eight cores each. Com-
putational clusters and clouds built out of many-core systems will
offer unprecedented quantities of computational resources. Scaling
software and managing these resources will offer a tremendous chal-

lenge [14].
1.1 BACKGROUND

To run computations effectively on modern supercomputers and com-
puter clusters the applications need strong scaling. In high-performance
computing, strong scaling is defined as how the time-to-solution varies
with the number of processor cores available for a fixed total problem

size. When this is a limitation for applications, the available resources

are not used to reach highest possible performance.

Many interesting real-world applications (all that are not embar-
rassingly parallel) require some inter-process communication for scal-
ing and are therefore limited both by the availability of this band-
width as well as the total amount of resources for high absolute per-
formance [18].

Molecular dynamics simulations are computations which have in-
herent parallelization limits due to the finite number of particles sim-
ulated, but there is a possibility to achieve strong scaling since many
of these computations are of statistical nature. Relying on sampling
of many individual simulations makes it possible to distribute the
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workload on supercomputers and compute clusters. Parallelization of
such simulations gives a significant performance boost when a high
number of cores are at disposal.

The high-level way of parallelization can generally be described by
a very simple workflow. The workflow contains a simulation and an
analysis stage with a feedback.

Simulation » Analysis

Figure 1: Parallelization workflow

The entire computation is initialized by generating a large number
of small simulations. Each simulation will send the result data to the
analysis stage. The analysis stage will analyze the data and create
some result of the computation so far. In this workflow the analysis
stage has a feedback to the simulation stage. This means the analysis
stage will generate new directed simulation depending on the current
result, i.e. what parts still needs more data. A computation like this is
highly parallel and modular which gives a possibility of using more
resources to speed up the entire computation.

An example of such a workflow would be a Markov state modeling.
Grouping molecular simulations together depending on characteris-
tics of the result would be the states in such a Markov state. The char-
acteristics can be any property of molecules, including the its shape.
A large number, in the order of thousands, of simulation states would
start from different states and gather data for the analysis stage. The
Markov state model gives a course-grained description of a simulated
system, resulting in a transition matrix between states, and their static
statistical weights. This can be used in an iterative way by identifying
under-sampled regions and adaptively sample those, resulting in a
feedback loop such as in Figure 1.

1.1.1  Cloud computing

Clouds are solutions to run computations on high-performing com-
puter systems. Foster et al. [9] defines cloud computing as:

A large-scale distributed computing paradigm that is driven by
economies of scale, in which a pool of abstracted, virtualized,
dynamically-scalable, managed computing power, storage, plat-
forms, and services are delivered on demand to external cus-
tomers over the Internet.

The resources are opaque to the user who use a pre-defined API to
run and use the system, an abstract layer that hides the underlying ar-
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chitecture. Running molecular dynamics simulations on a cloud com-
puting resource would need high parallelization, such as described
above, to achieve a performance boost.

There are a few challenges when using clouds. Defining an API for
users to discover, request and use resources provided by the cloud
can be difficult. An API needs to have a good way of using the com-
putational power to execute the users projects. The users should also
be able to use all different features available in the cloud and the API
needs to be simple enough so that any user can understand it without
having knowledge of the cloud system behind the APL

The cloud needs to coordinate executions on the available resources
when the computations are often highly parallel. Executions may
even need to support different software and hardware.

Monitoring progress and resources is a challenge since the users
are not in direct contact with the hardware which actually runs the
application. “Essentially monitoring in clouds requires a fine balance
of business application monitoring, enterprise server management,
virtual machine monitoring, and hardware maintenance, and will be
a significant challenge for cloud computing as it sees wider adoption
and deployments.” [9]

Provenance is basically a trace of the computations with all the nec-
essary information (data sources, intermediate states). This is very
important for researchers, in order to track the project and be able
to recreate the results. Without this the an experiment would not be
as useful to the researchers as it could be, for example to validate
their findings. Users can save alot of computation hours when hav-
ing access to provenance information. In some cases it is of great
use to be able to change something and start from an intermediate
state of a computation instead of starting from scratch. Provenance
is a relatively unexplored area within cloud computing and can be
challenging to provide for general applications.

One way of programming/using a cloud can be to use workflow
systems. The workflow can be represented as a graph of individual
executions of applications where the edges are dependencies and how
data are passed between the applications. Users can submit these
workflow schemes to the cloud using the API interface.

There is a cloud solution for running parallelized molecular simu-
lations and it is called Copernicus.

1.1.2  Copernicus

Copernicus is a software system that is made to distribute and par-
allelize large molecular dynamics simulations. The system integrates
elements from distributed computing, and applies them to more tra-
ditional high-performance compute clusters. By taking advantage of
the fast interconnects that may be available on these compute envi-
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ronments, individual simulations are parallelized as far as possible.
This approach enables Copernicus to use orders-of-magnitude more
cores than a traditional simulation run on a supercomputer, and it al-
lows for larger-scale simulations than would be possible with purely
distributed systems, while it reduces time-to-solution significantly.

The idea behind Copernicus is to exploit the inherent parallelism
of ensemble simulation and to make use of advanced sampling al-
gorithms, while keeping the performance advantages of massively
parallel simulations. Such computations are called projects in the sys-
tem.

A project is executed as a single job, but breaks it up into cou-
pled individual parallel simulations over all available computa-
tional resources, with the single simulation as the individual
work unit. While the software has been optimized for using mul-
tiple high-performance compute clusters, it works equally well
with cloud computing instances or even individual workstations

[18].

To handle projects with many simulations as a single entity Coper-
nicus needs to able to

- match and distribute the individual simulations to the available com-
pututional resources,

- run simulations on a variety of remote platforms simultaneously: HPC
clusters, workstations, cloud computing instances, etcetera,

- parallelize tasks to the maximum extent possible on each resource, and
use adaptive coupling beyond this,

- allow flexibility in the types of projects tat can be run,
- perform real-time analysis of the running project,
- enable monitoring of running projects [18].

Copernicus network structure contains three components: clients,
servers and workers as seen in Figure 2.
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Server

Figure 2: A client will issue a project request to the server. Once the server
has received the project, it will divide it into jobs. Idle workers will
ask the server for jobs to execute. The workers connected to the
server may reside on different types of platforms; the first worker
can be run on a supercomputer, the second on a cloud computing
instance, while the third is run on a regular workstation.

The clients are user interfaces to interact with the system. Users
will send and start their computational project to a server using the
client. The server handles projects and controls the work distribution.
Jobs will be sent to available workers, depending on which worker
is best suited for the job. A worker will calculate the jobs assigned
to it and send the result back to the server. It will also announce to
servers when it is available. Multiple worker processes can be run on
the same system, e.g. supercomputers would run a great number of
workers to use all the available cores.

Servers are connected together in an open, but authenticated peer-
to-peer network to support deployment on almost arbitrary topolo-
gies. Any Copernicus server can both send and receive commands,
either from user clients, from workers, or from other servers. There is
no top-level server in the architecture [18].

7
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Figure 3: Servers are connected to each other in a peer-to-peer network. If a
link goes down, traffic between servers will be re-routed dynami-
cally.

Copernicus projects are described by building computational data-
flow networks. Data-flow networks are networks which describe how
streams of data is sent between different executions. A network is a
set of connections between black boxes, where a black box can either
be a function or another network. Both functions and networks have
external inputs and outputs which are used to connect the networks
between scopes. A function has a sub-network and a controller which
both can’t be accessed outside the function. The sub-network is a
normal network where the controller can add connections and black
boxes. A controller is in itself a black box in Copernicus. It has access
to the networks definition and has permission to add new black boxes
and connections. A real life example of a project is shown in Figure 4.

conf
result(confxtc,trredr)[]
idﬂl) Grompp Lrﬂ} Mdrun —_—
top[]
—

Figure 4: Copernicus project model

Both Grompp and Mdrun is a part of Gromacs which is a molecu-
lar dynamics package primarily designed for biomolecular system.
Grompp is a pre-processor for simulations, which include checks of
validity of the input. Mdrun is the main engine in Gromacs where the
actual simulation happens. In this project Grompp takes inputs and
generates topology files. The list conf[] is the configurations for each
simulation. Mdrun then takes the topology files as inputs and runs
the simulations. Even though this example does not have a feedback
to generate more simulations, the Copernicus system is still very use-
ful. When having access to limit computation hours on different sys-
tems, users could just split the list conf[] and split up the jobs, while
just repeating the same workflow with different inputs, and still get
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the same data. If this was not possible the user would need save the
state of the computation and send potentially very large amount of
data between the systems.

A problem with Copernicus has been the lack of an intuitive way of
feeding input to the system, and that is why this project was formed.

1.2 PROBLEM STATEMENT

The objective is to find and implement a solution for the need of
a new way of giving Copernicus information of the users projects.
The developers specifically stated that the wanted a domain-specific
language (DSL) for this solution, and that they later on want to add
a graphical solution using this DSL.

The DSL should allow users of Copernicus to define their compu-
tational projects. The projects should be able to be defined as pip-
ing computations in a data-flow network, which means that the DSL
needs to be able to describe data-flow networks in plain text.

The intended users are assumed to possess some knowledge of pro-
gramming, but are not necessarily adept programmers. The design of
the DSL should therefore be simple and intuitive. The DSL needs to
be easy to understand so it becomes an asset instead of an hindrance.

The DSL should be fully functional in Copernicus. The users needs
to be able to use all the features and properties available in Coperni-
cus.

Copernicus has function libraries which needs to be usable in the
language. This implies a certain amount of flexibility since there are
not a static amount of libraries, as new ones can be added. The DSL
should be able to cope with any new plug-ins.

The implementation should have an output of a form so that it can
easily be integrated in the Copernicus system. The implementation
also needs to be easy to install on any system, supercomputer or
other.

1.2.1 Delimitations

The most important part of the project is to have a working implemen-
tation. However, since a language that just replaces the current XML
descriptions of projects is quite limited, more effort was spent on
adding features making the DSL more powerful. There are features
which can be added to the DSL for describing even more advanced
projects with better syntax, e.g. simple arithmetic expressions.

There implementation should allow the user to compile the code
into XML, since Copernicus already has support for reading XML
files describing computational projects. This will most likely be re-
placed by building the projects directly from the abstract syntax trees,
rendering the XML generation redundant. This step would require
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much more understanding of how Copernicus work, which is not
within the time limit of this project.

This project has not considered a graphical solution at all, besides
that it was designed with an easy translation between graphical model
and code in mind. Graphical implementations of related work has
been used get inspiration for the DSL. A graphical interface would
be a good addition, and such a solution can be implemented as a
front-end to the domain-specific language later on.

The language we chose to write the implementation in is Python.
This choice was based on foremost an easy implementation and main-
tenance, since Copernicus is written in Python. It would have been
possible to use effective tools and another language, but instead tools
specifically for python were used.

1.3 RELATED WORK
1.3.1  MapReduce

MapReduce [8] is a programming model for distributed processing
and generating large data sets. The idea is to have a “map” step and
a “reduce” step. The map step means that a master node divides its
problem and distributes it to worker nodes. The worker nodes can
act as a master node to other worker nodes and distribute problems
to them. This makes a tree-like process of dealing with the problems.
The reduce step means that a master node collects the answers from
its workers and combines them into one answer.

1.3.2 Hadoop

Hadoop [10] is a software framework written in Java to support dis-
tributed applications. Hadoop was derived from MapReduce and
Google’s File System. It is designed to scale from a single server to
a cluster of computers to make use of clusters computational power.
This is a big difference from Copernicus peer-to-peer styled network-
ing. It handles failures at the application level.

To link Hadoop with applications, a C++ API and library is pro-
vided. Using an API like this defeats the purpose of having an easy
and intuitive way of describing computational projects, but for large
scale commercial implementation used by professional programmers,
as Hadoop seems to be aimed towards, this becomes a viable option.

1.4 REMAINING CHAPTERS

The chapters in the next part will cover the different parts of the
project in a fashion fairly close to the different stages the project went
through.
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The research conducted to gather domain knowledge is presented
in Chapter 2. In Chapter 3, the language, its features and various

design choices will be covered. The actual implementation details are
described in Chapter 4.
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CREATING A DOMAIN-SPECIFIC LANGAUGE






RESEARCH

This chapter presents some of the research that was done on Coper-
nicus, different programming paradigms suitable for the problem
domain, and existing programming languages belonging to those
paradigms.

2.1 PROGRAMMING PARADIGMS

Different problem domains call for different programming paradigms.
The execution model of Copernicus can be thought of as a flow net-
work, which makes some paradigms more interesting, and the domain-
specific language should be made to reflect that fact. The data-flow
programming model contrasts the classical control flow model imple-
mented in languages such as C.

Applications written in e. g. C have inherent limitations when run
in parallel environments, because of the top-down sequential pro-
gramming approach. The data-flow model consists of nodes connected
to each-other to express the logical execution flow, and it can easily
be used to express parallelism.

2.1.1  Data-flow Programming

The origin of data-flow languages is related the ever increasing need
for parallelism in today’s applications. Data-flow programming is a
paradigm which has an execution model where a program is repre-
sented as directed graph. The data flows between operations along
the arcs. Directed arcs represent dependencies between instructions.
Arcs that flow toward a node are called inputs, while arcs flowing
away from a node are called outputs [11]. The model focuses on how
components of the program connects in contrast to the classical Von
Neuman model, which focuses on how they happen.

2.1.2  Flow-Based Programming

In flow-based programming (FBP), applications are defined as net-
works of “black box” processes. Data is exchanged across predefined

15
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connections via message passing. The black box processes can be
reconnected in different ways to form new applications while their
internals remain unchanged, thus making FBP a component-oriented
approach [15, 16].

2.1.3 Reactive Programming

Reactive programming is oriented around data flows and the prop-
agation of change. The key ideas are notions of behaviors and events,
where behaviors are reactive values that varies over time, while events
are time-ordered sequences of discrete-time event occurrences [19].
The underlying execution model will automatically propagate changes
through the data flow.

2.2 PROGRAMMING LANGUAGES

There are some existing implementations of FBP out there. However,
these implementations mainly consist of language extensions or li-
braries for general-purpose languages. Some of these language exten-
sions includes THREADS, JavaFBP, C#FBP and DrawFBP [15].
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This chapter describes the domain-specific language, as well as some
rationale behind the design and future work.

For a complete description of the grammar in Backus-Naur Form
(BNF), see Appendix A. The implementation details will be described
further in Chapter 4.

3.1 DESIGN

Designing the DSL was a process which continued through the entire
project. As there are no comparable packages and no text-based solu-
tion to similar problems, the DSL had no real starting base. The initial
inspiration came from the research on programming paradigm’s and
graphical implementations related to network based programming.

Inspiration from well known programming languages was included
for the DSL to be simple and intuitive to the common user. Both func-
tional and imperative languages were considered when developing
the design.

The most important steps in this process was a continuing discus-
sion with the developers of Copernicus. It was important to have a
DSL which they were satisfied with, but also to get input on what
design choices to make. The developers perspective was important
for the DSL to reflect realistic scenarios and to get a better collective
view of the different solutions. At each meeting the developers was
presented with a draft of the latest version of the DSL.

3.2 GENERAL STYLE & FEATURES

The DSL is a descriptive language which has four types of top-level
syntactic definitions: atoms, networks, imports and new types. Atoms
and networks are components which are connected to build project
networks in Copernicus. The four top-level definitions are described
more in detail in the following sections. All the top-level definitions
needs to be defined before used in the current version of the DSL.
Atoms and networks both have a set of external inputs and outputs.
An input/output does not need to have a connection since atoms/net-
works only evaluates once it has all non-optional inputs has received

17
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a new value. It is possible to add new atoms/networks and connec-
tions in the Copernicus system, but as there are currently no interac-
tive implementation of the DSL such actions cannot be done with this
version of the solution. An input/output can be assigned constant
values if they are of primitive types. These features are explained in
more detail in this chapter.

3.3 MODULES

Modules have no intrinsic function in the current implementation of
the language. A module is essentially a code file. Importing a file is
importing a module. This is how to import the file “path/to/file.cod”
from sub-directories of the current files path:

import path.to.file

All code from the imported module is simply added where the
import statement is located in the code. This way the code from the
imported file will be used as it would have been written in the current
file. This system is not designed or developed to have modules and
packages as wrappers for code, but rather to sort code in different
files.

Currently it is only possible to import files from sub-directories.
There are no way to import from other paths or any form of a stan-
dard library. The discussion of a more advanced and useful import
system revealed that the developers had some different suggestions
but had not decided how such a system should work with client
server setup in Copernicus.

3.4 TYPING

In the language, all connections between executables are typed. Their
types are set when inputs and outputs are defined. Atoms and even
networks have types according to their external inputs and outputs.
Types are matched, without regard to type hierarchy, but to what
set of primitive types can be inferred from them, and what dimension.
The type-checker does not type-check executables. Instead the sys-
tem relies on the correct definition when wrapping them in the lan-

guage.
3.4.1 Primitive types

The first primitive, integer, are represented by int. Integers cannot
be assigned floating point values, i.e.no type-casting, but has to be
assigned integers. Floating point types are represented by float, and
as integers floating points cannot be assigned anything other than
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floating point values. This means that 1.0 is not the same as 1 in the
language and will cause a type error if assigned to a connection with
the wrong type.

Strings are represented by string. A constant strings is written
between the two quotation symbols. The last primitive type is files,
which are described as file. Files are paths written like strings, but
are not checked by the language. Instead, they are maintained by
Copernicus.

3.4.2  Compound types

There are two compound types in the language. The first one are ar-
rays, which are ordered lists of a certain type. An integer array is writ-
ten like int[], where each pair of brackets represent one dimension.
It is possible to have any number of dimensions of arrays. Accessing
the fourth element of a variable x which is typed as the example in-
teger array, is written x[4]. The resulting type of accessing elements
is the same type with one less dimension. In the example that would
be an integer (int).

The second compound type is records. They are ordered sets of
elements which are assigned names. This make it possible to access
elements in a record by both its index and name. Accessing the fourth
variable e of a record x using its name would be written as x.e, and
to access x by its index would be written as x(4). The elements can
have any kind of type and does not have to have the same type as
the other elements in the record. A new type has to be defined to
represent a record.

3.4.3 New record types

Defining new types are the way records are described in the language.
A new type needs a name and which types of elements it contains.
Each element needs a type and a unique name in the record. New
types can only be defined outside networks and atoms.

The syntax for defining a new type begins with the keyword type.
Consider a record called setting containing a file called f and a
string called name. The following code represents this record setting.

type setting
( file : f
, float : name )

The file has in this case index zero and the file has index one. They
can be access with both name and index as described above.

19
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3.4.4 Atom & Network type

Atoms and networks are components used to build networks with.
They work like black boxes in data-flow networks. As components
are able to have any number of inputs and outputs their types are
a special case of a record. Such records contain three elements: in-
puts, outputs, meta parameters. The inputs and outputs are records
as well, in which every input and output parameter are elements. The
meta parameter is a record which should contain types and is more
explained in Section 3.4.6.

A component with an array of type setting called settings and
an integer called length as inputs and a file called output as outputs,
is described by the following syntax.

in ( setting[] settings
, int length )
out ( file output )

The full header syntax for networks and atoms is described in Sec-
tion 3.6 and Section 3.7.

Since both the type of in, out and the type of functions are records,
there are numerous ways of referring to an input parameter. Referring
to the a parameter length when a function of the same type as the
above has been instantiated as func may look like func.in.length or
func(0) (1) which both are the same thing.

3.4.5 The ‘network’ type

Besides the syntactic objects network, which have types described
in the previous section, there is a type network. The type network
is mainly used with controllers, as seen in Section 3.8.3. The type
network refers to a record containing a set of instantiated components
and a set of connections.

3.4.6  Meta types

Components can take types as inputs, called meta types, to be able to
define generic components in networks. The parameters are defined
with a variable name and a type group. There are currently three dif-
ferent type groups: func, list, and type. The group is a constraint
on the type parameter which accepts only certain types. The group
type means the parameter only accepts primitive types, list accepts
compound type (records and arrays), and func accepts record types
which at least have an element in and an element out. This way one
can define new types which can be used to describe types of compo-
nents.
The type parameters are defined and as the following example:
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< func f , list 1 , type t >

in ( f.in i
, Lx inputs
out ( t[] outputs )

i will be of a record type since in is a record. The symbol * removes
one dimension from the array 1. The output outputs will be a one
dimensional array where the type is given by the parameter t.

3.5 INSTANCE NAMES

Instance names refer to instantiated Components. They are instanti-
ated inside networks, where they can be connected to other instance
names or external inputs and outputs. How to instantiate an instance
name is described in Section 3.8.

Instance names contains letters, numbers, and underscores, but
they have to start with a lower case letter.

3.6 ATOMS

An atom is a wrapper for executable code, python scripts and func-
tions. In the language atoms are components just like networks and
the information of what to execute and how is hidden inside the
language for a more intuitive way of building project networks. Exe-
cutables should be wrapped and added to an appropriate library so
users do not have to concern themselves with external (outside the
language) project design.

An atom has a header and an option part. The header contains
the name of the atom, the type parameter definition, the type sig-
nature of the outputs and inputs, and what type of executable the
atom uses. Execution is implementation-specific. Currently, there are
three different types of executables in the current version: python,
python-extended, and external. python means that the atom calls
built-in functions of python, python-extended means the atom calls
python scripts, and external calls binary executables.

The following code is the header for an atom someatom which calls
a binary executable and has the type definition used in previous sec-
tions (note that in this case the type parameters are not used but are
there to give a full description of a header).

atom external someatom < func f , list 1 , type t >
in ( setting[] settings
, int length )
out ( file output )

The option part is a list of options and values. The options are the
information on what and how to execute for Copernicus. The values
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are relative to Copernicus and are not a part of the language, which
is why users should not have to write atoms themselves but import
and use pre-defined atoms.

The following code is the definition of an atom add which uses a
built-in python function to add two floating points together.

atom python add
in ( float a
, Tloat b )
out ( float o )
options ( fuction : builtin.float.add
, import : builtin.float )

3.7 NETWORKS

A network is a description of what to instantiate and how the compo-
nents and external input/outputs are connected inside the network.
Networks can be components the same way as atoms, which makes
them sub-networks when instantiated in other networks. Each net-
work has its own scope of type variables and instance names so the
external inputs/outputs is needed to make connections to an external
component.

The header of a network differs from atoms headers on two points.
The key word atom is replaced with network and a network does not
have an executable type. Writing a network somenet with the same
parameters and type signature as someatom looks like this:

network somenet < func f , list 1 , type t >
in ( setting[] settings
, int length )
out ( file output )

var = someatom (in.settings)
out.output <- var.out.o

The second part of a network is its network body which is a list
of statements separated by new lines. These statements are the de-
scription of the network, and they are explained in detail in the next
section.

38 NETWORK DESCRIPTION STATEMENTS

There are three types of statements: assignment, connections, and
a controller statement. With these statements a network can be de-
scribed inside a network body. It is not possible to build networks
outside a network definition.
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3.8.1 Assignment

Assignment statements are instantiations of components which are
assigned to instance names. An assignment needs an expression with
information of what component and with which meta types and in-
puts is going to be instantiated. All the type arguments needs to be
given when instantiated, but as it is not mandatory to connect some-
thing to an input the input arguments can be left empty. The argu-
ments are connected to their respective input in the order they are
defined in the component.

The type arguments are listed between the symbols < and >. They
have to be defined on instantiation and are type references as types
are referenced in Section 3.4.6 about meta types. The following ex-
ample is an instantiation of the network somenet without any input
arguments, hence the empty list (). The first type argument is the
type of the atom add which is a record, the second type argument is
the record of inputs for add, and the last type argument is the primi-
tive type float.

var = somenet < add , add.in , float> ()

The input arguments are listed between the symbols ( and ). An
input argument can be a reference to a primitive, record or an array.
The references are the same thing as accessing elements of compound
types as in Section 3.4.2. It is also possible to assign constant values
to inputs by.

The following code line instantiates an atom add and assigns it to
an instance name var. The first input of add is assigned the constant
value 1.1 and the second input is connected to the current networks
input called fp.

var = add ( 1.1 , in.fp )

As mentioned, it is not necessary to supply all the input with values
or connections so it is possible to remove , in.fp and the instantia-
tion would still work (where the first input would still be assigned
the constant value).

It is possible to instantiate a component as an input argument ex-
pression, where a specific output is connected to the respective input.
In the following example an atom mul is instantiated and its output
o is connected to the second input of the atom add. The atom mul is
instantiated with its arguments inside parentheses and .out.o refers
to the output which should be connected to the second input of add.

var = add ( 1.1, (mul ( 2.0 , in.fp )).out.o)
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3.8.2  Connection

Connection statements are another way to describe how inputs and
outputs are connected. The left-hand side is the destination and the
right-hand side is the source. It is not possible to refer to an output of
the external network component or an input of an instantiated com-
ponent in the right-hand side. Similarly, it is not possible to make a
connection where the destination is an input of the external compo-
nent. The inputs and outputs are references like the arguments in an
assignment statement. The following code line connects the the out-
put variable o of the instantiated instance name var to the external
output o of the network.

out.o <- var.out.o
It is also possible to assign constant values to connections.

out.o <- 4.3

3.8.3 Controllers

When a component is set to be a controller, it is given permission to
instantiate components and add connections within the current net-
work. An example of when this could be useful is mapping a function
(atom) over an array. The controller would build an instantiation of
the function for each element in the input array and connect it the the
appropriate element in an output array. For users to create their own
controllers, they would need to know the internals of Copernicus and
wrap an executable in an atom.

The following code instantiates somecontroller and supplies an
array of type setting, and then sets the input var.in.net as the input
network to the controller and the output var.out.net as the output
network of the controller.

var = somecontroller (in.settings)
controller(var.in.net,var.out.net)

The output network is basically the new network setup, which
means the instantiated somecontroller var can add components and
connections.

3.9 DOCUMENTATION & COMMENTS

It is possible to add documentation strings to components and their
inputs and outputs. The documentation string starts and ends with
"', and the documentation will be sent to The Copernicus system.
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atom python add ""'Add two floating point numbers: g=a+b’'’’
in ( float a
, float b )
out ( float o "rratbh’ !

)
options ( fuction : builtin.float.add
, import : builtin.float )

The language has both line and comments block. A line comment
start with the symbol # and anything after it will be skipped by the
parser. Comments block starts with /# and ends with #/. Anything
within the comment block will be skipped by the parser.

# This is a comment line

/#
This is a comment block

This is still in the comment block
/#

3.10 FUTURE WORK
3.10.1  Modules

The current import system in Copernicus is to leave the import mech-
anism to the server side. This may be discussed if it is optimal, and
the developers of Copernicus had some ideas of how it could may be
changed or improved. Even though changing these mechanics does
not change the semantics for importing, it may affect the user of the
DSL.

Importing of standard libraries needs to be well-defined before the
client/server issues in Copernicus can be addressed. This may be an
easy problem but it is still vital for continuing the implementation.
Once this is done the developers needs to decide where the code
should be parsed and type checked. The client can do all this work
and send it to the server but as the rest of the client is very light and
does not do much work, other than communicate with the server, a
preferred solution is to have the server do all the work. The client can
still add imports and build one code file for the server or send all the
used code files. As there are a difference between importing from the
standard library and importing user written project specific files, it
needs to be decided how the client and server will work together to
build the project. If the server should do most of the work it needs to
have all the libraries.
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Assuming the server would get all user written files, building projects,
and doing all the work, a question is what the client should be able to
do. Users may for example be able to type check their projects before
sending them to a server, as it would make development easier. If so,
the client needs to have access to all the libraries the server does.

There were a suggestion for a repository containing all libraries,
where code can be added and fetched when not available locally.
Users could easily add their own implementations. Such a repository
needs to handle executables as well, since servers needs be able to
supply them to the workers.

3.10.2 Transpose

There is a need for a transpose function for types. The transpose func-
tion would transform a record of any number of arrays to an array
of records. It would also work the other way around. An example of
when transpose could be used would be when defining a map com-
ponent. One would want to send in a lists for each argument of the
component in question, and transpose the argument lists to a list of
records. This way each one of the records represents the inputs for a
single instance of the component. Consider the following two types:

type a ( int[] : aob
, float[] : al )

type b ( int : bo
, float : bl )

The code transpose(a) would be the type b[ ], and the code transpose(b[])
would be the type a. The transpose would work much like a zip for
types which can take any kind of record or array of record.
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4.1 TOOLS

This section will describe the tools that were used to implement the
Rheos language. It will serve not only as documentation for the lan-
guage, but also as a reference for someone who might want to create
their own language using the the same tools.

4.1.1  Python

The implementation language used for building Rheos was python.
However, python was not the first language considered. Other lan-
guages considered were C, C++, C#, F#, Haskell and Java. However, C#
and F# was never really an option, since both implementation, com-
pilation and execution of code were tied to Unix environments. The
reason behind the consideration of the other languages was that they
are all supported by the BNF Converter (BNFC) [6]. BNFC is a com-
piler construction for generating a compiler front-end from a Labeled
BNF grammar. Given this grammar, the tool produces (1) an abstract
syntax implementation; (2) a case skeleton for the abstract syntax in
the same language; (3) a lexer generator file; (4) a parser generator
file; (5) a pretty-printer module; (6) a ITEX file containing a specifica-
tion of the language [6]. While a compiler generator certainly would
have made the implementation a lot easier, the Copernicus system is
written in python, and python does not exist as a target for the BNF
Converter.

Copernicus is designed to run on Unix machines with as few de-
pendencies as possible, which makes Java an unsuitable candidate,
since it cannot be assumed that every candidate node has a Java run-
time environment.

Doing the implementation in the C language could have been a pos-
sible solution, since it integrates well with python. Most Unix system
does indeed ship with gcc or the GNU Compiler Collection. However,
some older Unix distributions will not have gcc pre-installed, and oth-
ers like recent versions of Solaris and OpenSolaris will have gcc under
a different location.
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Haskell was ruled out due to the simple fact that it is not as main-
stream as the other languages. While Haskell is a very powerful lan-
guage for writing compilers, maintenance of the code base might
prove difficult for inexperienced users.

Virtually every Unix system ships with a python interpreter, and it
is natural to write python extensions to a system already written in
Python. Python is easy to learn and the code is easy to extend and
maintain. In spite of python not being a classical meta-programming
language, it became the implementation language of choice.

4.1.2 PLY (Python Lex-Yacc)

PLY is an implementation of lex and yacc parsing tools, written
purely in python, by Beazley [4]. It was originally developed for an
introductory class on compilers back in 2001. It provides most of the
standard lex/yacc features including support for empty productions,
precedence rules, error recovery, and support for ambiguous gram-
mars. It uses LR-parsing, which is a reasonable parsing scheme for
larger grammars, but slightly restricts the type of grammars that can
be written [1]. PLY is straight-forward to use, and one its many ad-
vantages is the very extensive error checking, which certainly makes
life easier.

PYTHON LEX The first step to implement the language is to write a
tokenizer. This is done with the Lex module of PLY. Language tokens
are recognized using regular expressions, and the steps are straight-
forward.

The names of all the token types are declared as a list of strings
named tokens.

Listing 1: The token list

class RheoslLexer(object):

tokens = [
# Literals: identifier, type, integer constant, float
# constant, string constant
"IDENT’, '"ICONST’, 'FCONST’, ’'SCONST’, 'DOCSTRING',

# Assignments: = :
"EQUALS’, 'COLON’,

# Connection: <-
"CONNECTION',

# Delimiters: () { Y [ 1, .
"LPAREN’, 'RPAREN’,
"LBRACE’, 'RBRACE’,
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"LBRACKET’, 'RBRACKET’,
"COMMA’, 'PERIOD’,

# Other:
"CR’, 'OPTIONAL’', 'OPTIONS'’
1

Tokens that require no special processing are declared using module-
level variables prefixed by t_, where the name following t_ has to ex-
actly match some string in the tokens list. Each such variable contains
a regular expression string that matches the respective token (Python
raw strings are usually used since they are the most convenient way
to write regular expression strings).

Listing 2: Token variables

class RheosLexer(object):

t_EQUALS = r'=’
t_COLON =r':’
t_CONNECTION = r’<-’
t_LPAREN = r\(’
t_RPAREN =r’\)’
t_LBRACKET = r’\[’
t_RBRACKET = r’\]’
t_LBRACE = r'\{’
t_RBRACE = r'\}’
t_COMMA =r,’
t_PERIOD = r'\.’
t_OPTIONAL = r’\?’

When tokens do require special processing, a token rule can be
specified as a function. For example, this rule matches numbers and
converts the string into a Python integer.

Listing 3: Token functions

def t_ICONST(self, t):
r’\d+’
t.value = int(t.value)
return t

In some cases, we may want to build tokens from more complex
regular expressions. For example:

Listing 4: Complex regular expressions

class RheosLexer(object):

lowercase =r'l[a-z]’
identchar =r'[_A-Za-z0-9-]"
ident =r'(" + lowercase + r’(’ + identchar + r’)x)’
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def t_IDENT(self, t):

# we want the doc-string to be the identifier above

This is not possible to specify using a normal doc-string. The pro-
grammer would have to write the full RE, defeating the purpose of
re-usable code. However, there is a way around this by using the

@TOKEN decorator.

Listing 5: Token decoratior

from ply.lex import TOKEN

class CodspeechLexer(object):

lowercase = r'[a-z]’

identchar =r'[_A-Za-z0-9-]"

ident =r'(" + lowercase + r’'(’ + identchar + r’)x)’
@TOKEN(ident)

def t_IDENT(self, t):

t.type = self.keyword_map.get(t.value,"IDENT")

return t

The observant reader might notice something special going on in
the function t_IDENT. The processed string is checked against a key-
word map to decide whether the token type should actually be IDENT
or something else. The keyword map is defined as a dictionary, and
the values are appended to the token list.

Listing 6: Keyword map

class RheoslLexer(object):

keyword_map = {
# Import
"import’

# Type
"type’

# Atom keywords
"atom’

#'options’
"python’
"python-extended’
'external’

# Network
"network’

"IMPORT’,

"TYPE',

"ATOM",
"OPTIONS’,
"ATOMTYPE',
"ATOMTYPE',
"ATOMTYPE',

"NETWORK",
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"controller’ : "CONTROLLER',
# Header
'in’ : "IN',
"out’ : 'ouT’,
"default’ : 'DEFAULT’,
# Types
"file’ . 'FILE’,
"float’ : "FLOAT’,
"int’ ¢ "INT',
"string’ : '"STRING’,
}
tokens = [

] + list(set(keyword_map.values()))

Since our keyword map contains multiple keys mapping to the same
value and the token list can not contain any duplicates, the list of
values is converted to a set before it is converted back into a list.

PYTHON YACC The yacc.py module is used to parse the language
syntax. The grammar of a programming language is often specified
in Backus-Naur Form (BNF). For example, some simple grammar rules
for parsing types could look like this:

(type) == ‘float’
| “int’

| ‘string’

| (type) (dim)

(dim) =LY
| (dim) ‘[1

Figure 5: An example grammar for type identifiers

The identifiers type and dim refer to grammar rules comprised of a col-
lection of terminals and non-terminals. The symbols float, int, string
and [] are known as the terminals and correspond to raw input tokens.
The non-terminals, such as dim, refer to other rules.

The semantic behavior of a language is often specified using syntax
directed translation. Each symbol in a given grammar rule has a set
of attributes associated with them along with an action. The action
describes what to do whenever a particular grammar rule is recog-
nized.

Yacc uses a parsing technique called lookahead-LR (LALR) parsing,
which is based on the LR(0) sets of items, but has fewer states than
typical parsers based on the LR(1) items [1]. It is a bottom up scheme
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that tries to match a sequence of lexical objects against the right-hand-
side of various grammar rules. Whenever a matching right-hand-side
is found, the appropriate action code is triggered and the grammar
symbols are replaced by the grammar symbol on the left-hand-side.
Implementing a parser in Python Yacc is fairly straight-forward.
The list of tokens from the lexer module is imported and a series of
functions describing the grammar productions are defined. From the
grammar in Figure 5 the corresponding Python code becomes:

Listing 7: Parser example
def p_type(self, p):

type : FILE
| FLOAT

| INT

| STRING

| IDENT

| type dim

if len(p) == 2:

p[0] = csast.Type(p[1l])
else:

pl1].type += p[2]

pl0] = p[1]

def p_dim(self, p):

dim : LBRACKET RBRACKET
| LBRACKET RBRACKET dim

if len(p) == 3:
ple] = '[1’
else:
plel = "[1" + pl3]

Each function has a doc string that contains the appropriate context-
free grammar specification. This idea was actually borrowed from
the SPARK toolkit [2]. A function takes an argument, p, that contains
a sequence, starting at index 1, of values matching the symbols in
the corresponding rule. The value p[0] is mapped to the left-hand-
side rule, while the values in p[1..] are mapped to the grammar
symbols on the right-hand-side. The statements in the function body
implements the semantic actions of the rule. In this case, we use the
parser to to build an abstract syntax tree. This is described in more
detail in Section 4.2.1.

ALTERNATIVE SPECIFICATION OF LEXER AND PARSER As seen
in the above examples, both the lexer and parser are defined from
instances of their own classes. The easiest way, however, is to specify
them directly in their own modules. The PLY documentation explains
this quite well, complete with examples [4].
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4.2 IMPLEMENTATION DETAILS

This section will describe the various implementation steps taken dur-
ing the construction of Rheos.

4.2.1  Abstract Syntax Tree

The idea behind an abstract syntax tree (AST) is to represent the ab-
stract syntactic structure of the source code in tree form. Each node
in the tree represents some structure occurring in the source. The
AST provides a good structure for later compiler stages since it omits
details having to do with the source language, and only contains in-
formation about the essential structure of the program.

The AST is implemented using node classes for important language
constructs. All these node classes extends an abstract base class. Since
Python is dynamically typed, the concept of interfaces does not really
exist. Interfaces, commonly referred to as “protocols”, are implicit.
Determining these interfaces is based on implementation introspec-
tion. The implementation of the abstract base is given in Listing 8
below [5].

Listing 8: An abstract base class for AST nodes

class Node(object):
""" Abstract base class for AST nodes.
def children(self):
""" A sequence of all children that are Nodes

pass

def show(
self,
buf=sys.stdout,
offset=0,
attrnames=False,
nodenames=False,
showcoord=False,
_my_node_name=None) :
lead = ' ' * offset
if nodenames and _my_node_name is not None:

buf.write(
lead + self.__class__.__name__+

’ ’

<’ + _my_node_name

+ >0 ")
else:

buf.write(lead + self.__class__.__name__+ ": ')

if self.attr_names:
if attrnames:
nvlist = [(n, getattr(self,n)) for n in self.
attr_names]
attrstr = ', ’".join(
else:

, ’
%S5=%S

% nv for nv in nvlist)
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vlist = [getattr(self, n) for n in self.attr_names]

attrstr = ', '.join('%s’ % v for v in vlist)
buf.write(attrstr)

if showcoord:
buf.write(’ (at %s)’' % self.coord)
buf.write(’\n")

for (child_name, child) in self.children():
child.show(

buf,
offset=o0ffset + 2,
attrnames=attrnames,
nodenames=nodenames,
showcoord=showcoord,
_my_node_name=child_name)

This base class also contains a pretty printing function, show(), that
prints the entire tree below a the node from which it was invoked
from.

An AST node can be specified in the following way:

Listing 9: Example of an AST node

class Header(Node):
def __init__(self, ident, doc, inputs, outputs, coord=None):
self.ident = ident
self.doc = doc
self.inputs = inputs
self.outputs = outputs
self.coord = coord

def children(self):

nodelist = []

if self.ident is not None:
nodelist.append(("ident", self.ident))

if self.doc is not None:
nodelist.append(("doc", self.doc))

for i, child in enumerate(self.inputs or []):
nodelist.append(("inputs[%d]" % i, child))

for i, child in enumerate(self.outputs or []):
nodelist.append(("outputs[%d]" % i, child))

return tuple(nodelist)

attr_names = ()

Python also does not support multiple dispatch at the language
definition or syntactic level, nor does it support method overloading.
However, the visitor pattern can be implemented using method intro-
spection. Another base class for visiting nodes is defined:

Listing 10: The NodeVisitor class

class NodeVisitor(object):
def visit(self, node):
""" Visit a node.
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method = ’'visit ' + node.__class__.__name__
visitor = getattr(self, method, self.generic_visit)
return visitor(node)

def generic_visit(self, node):
" Called if no explicit visitor function exists for a
node. Implements preorder visiting of the node.

for c_name, c in node.children():
self.visit(c)

Listing 11: An example use of the NodeVisitor

class ConstantVisitor(NodeVisitor):
def __init__(self):
self.values = []

def visit_Constant(self, node):
self.values.append(node.value)

cv = ConstantVisitor()
cv.visit(node)

4.2.2  Type-checker

Rheos has a quite interesting type system, which makes type-checking
a non-trivial task. The type-checker class will take the resulting AST
from the parser and use the visitor pattern to traverse the tree, taking
appropriate actions at every node while building an environment.

TYPE-CHECKER  When type-checking Rheos, most of the steps are
straight-forward, but there are some cases where it becomes very
complicated. Primitive types and literals already contain their type
information from the parser stage. Type-checking of new types is a
question of checking their elements and adding the definition to the
environment, in order to make them recognizable to the rest of the
program.

Parametrized components typically can not be gradually instanti-
ated, but this is only partially true for Rheos, since components can
be instantiated without any inputs and have them connected after-
wards. On the other hand, components that require meta-arguments
must have all of them supplied at instantiation.

Resolving meta types can only be done when a component requir-
ing meta-type arguments is instantiated. A copy of the referred com-
ponent is placed in the local context and given a new name. The meta
arguments are type-checked to make sure they are of the same meta
type as the required arguments. If they are of the wrong type, or the
number of arguments given does not match the number of arguments
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required, the type-checker raises an exception. If all these checks are
passed, the type-checker continues with retrieving the type of the ar-
gument, and makes a variable substitution on the types of the instanti-
ated component. When this is done, type-checking of the substituted
type expression is resumed as if it were in the middle of checking an
ordinary type expression.

ENVIRONMENT The current environment is implemented to mimic
the structure of the actual Rheos code. Components, new types and
instantiated components are all stored in a record of {key : value}-pairs.
The keys are the names of the entry, while the value is a representa-
tion of their types. Types are generalized to a couple of different ob-
jects; Component, Newtype, Generictype and Type. These objects are
instantiated and added to the environment by the type-checker in a
way that makes it possible to reference their elements using ordinary
object operations, kind of like how it is done in the Rheos language.
For example, to fetch the type t of input-parameter a from compo-
nent comp, stored in the environment, one would write something
like:

Listing 12: Look-up of types in the environment

# fetch the type of comp.in.a
t0 = env[’'comp’].inp.a

# fetch the type of an element from a new type
# type setting (

# int[] a ,
# float b
# )

tl = env[’setting’].a

4.2.3 XML generation

There is an implemented XML generator for an earlier version of
Rheos. Due to signifacant changes of the language description, other
aspects were prioritized and XML generation was left for the devel-
opers of Copernicus to update. The new language description that
emerged was in fact so different from the original, that Copernicus
needed updates to incorporate those changes.

The XML generator is implemented using the same visitor pattern
as the type-checker. Visiting the different nodes in the abstract syntax
tree produces corresponding XML code, and traversing the while tree
will yield an entire definition, complete with indentations.
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4.2.4 Emacs mode

The Emacs mode provides nothing more than syntax highlighting.
The mode was created mainly to provide a more appealing look to
the example code developed during design and testing of the Rheos.
The syntax highlighting adds some understanding of what the code
actually represents, which made it easier to add and change specific
parts of the DSL.

4.3 FUTURE WORK
4.3.1 Lexer and Parser

As described in Section 3.10.2, there is a need for a transpose primi-
tive. This would have to be specified as a special keyword in the lexer
and also be addressed separately in the parser.

4.3.2  Type-checker

What remains to be done and future work implementation-wise has
a lot to do with the type-checker. Since it was decided to add poly-
morphic stage in the project, the type-checker had to be completely
parametrized typing to allow for generic components at a very late
re-written. This change proved to be very time-consuming.

The environment was re-written at the same time to make it more
powerful and intuitive to work with. Before the current implementa-
tion, the environment consisted of a lot of different records and lists,
and did not perform well on look-ups.
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RESULTS






CONCLUSIONS

5.1 THE PROBLEM AT HAND

As the main objective was to find a solution to Copernicus problem
of describing its projects, Rheos is an answer to this projects main
goal. It is possible to describe computational project for Copernicus
and Rheos supports all current aspects of the Copernicus system.

As required Rheos is a text-based way of describing project net-
works in the form of a descriptive domain-specific language. Rheos
supports arbitrary plug-ins, since you can describe how and what
Copernicus should execute. As long as Copernicus as access to that
executable any kind of plug-in is possible to use in Rheos.

Rheos is simple because of its limited capabilities. The point of the
DSL is to describe the project and not to execute or evaluate any code,
but it is still a powerful tool for the users.

5.2 RHEOS VERSUS XML

To demonstrate the simplicity and descriptive difference of Rheos
compared to XML, the following Rheos code and the XML code in
Appendix B both describes the project in Figure 4.

import gromacs

type mdrun_output '’’Set of mdrun outputs’''’
( file : conf

, file : xtc

, file : trr

, file : edr )

network project_network ’'’’Project network’'’
in ( file[] conf ""'The simulation parameters
, file[] mdp
, file[] top )
out ( mdrun_output[] results )
{ ¢ = mdrun(grompp(conf, mdp, top).out.tpr)
out.results <- c.out.results }

rr
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CONCLUSIONS

5.3 STATE OF THE IMPLEMENTATION

While the Rheos never got to a state where it could be integrated with
Copernicus, and still has some implementation steps that needs to be
addressed, the project as a whole got very far. Over the course of the
last months, Rheos has evolved from just being a replacement for the
XML-description of Copernicus’ input to a much more powerful lan-
guage. Much time was spent on design and re-design of the language.
New features was continuously added to the language which made it
hard to for the project to reach the point where Rheos was integrated
with Copernicus. It is important to have a powerful tool so that Rheos
is useful to the users, and that is why adding features was prioritized.
The integration with Copernicus was left to its developers.

5.4 WHAT RHEOS BECAME
5.4.1 A New Approach

Rheos is a completely new solution for input to systems like Coper-
nicus. The language is designed specifically for Copernicus and its
users. The idea is for users to fast and easily understand and use
Rheos as a minor step when running computations on a Coperni-
cus system. This is not the purpose for other distributed processing
systems. The need for a solution like Rheos has probably not been en-
countered before Copernicus was developed, because of reasons like
this.

The intention behind software like Hadoop, is to supply a platform
on which developers can create new applications without having to
worry about coordination of resources, since it is taken care of by the
framework. This is not the desired approach for Rheos and Coperni-
cus.

5.4.2 Programing style

Using Rheos for describing computational projects is a sort of metapro-
gramming. Rheos describes and manipulates how a Copernicus sys-

tem should evaluate a project. It is not the intention for users to think

of it this way, but to just to supply a problem and get an answer.

Rheos meet this intention since the users describes workflows and

send them to a Copernicus system.

Rheos has a flow-based nature, which is necessary to correctly de-
scribe projects in Copernicus. There are also some functional aspects
to the language, which makes describing projects easier and provides
a good overview of networks as the code will be dense. The user
can choose to describe its project as both a workflow and with some
functional ways of initializing components in the network.



5.4 WHAT RHEOS BECAME

5.4.3 Powerful Description Language

The DSL is stronger than just a set of macros. With Rheos it is possible
to express generic parallel algorithms, which would be too advanced,
or even impossible, with ordinary macros for just adding components
and connections. Pre-defined code would be easier for users to under-
stand and use with the definition and the type-system available. As
the code describes networks it should be easier to understand what
the network actually look like.

The strong type-system makes Rheos a much safer way of build-
ing networks compared to the old input system where computations
would fail on runtime when Copernicus actually would build the
project networks. The polymorphism makes the type-system power-
ful for a description language. It makes using pre-defined code much
easier for users, where they can for example map functions with any
kind of inputs.

With Rheos, Copernicus can now be used by non-developer users
and they can still use it as a powerful tool. This is very important since
many of the intended users are included in this category, and was
the inspiration for the entire project. It is still possible to use Rheos
in a complicated way, which developers do. Since Rheos supports
arbitrary executables, developers can easily add new modules to the
language. In the end Rheos has met the needs of Copernicus and
made it easy for users to describe complex or big computations in a
simple way.
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A GRAMMAR OF RHEOS

This part describes the complete grammar of Rheos in BNF.

GRAMMAR PRODUCTIONS
(entrypoint) == (opt_cr) (program)
| (empty)
(program) = (top_def_list) (opt_cr)

(top_def _list) u= (top_def)
| (top_def_list) (cr) (top_def)

(top_def) == (import_Stmt)
| (newtype_decl)
| (atom_decl)
| (network_decl)

IMPORT STATEMENT

(import_stmt) == import (package_path)

(package_path) (package_identifier)

| (package_path) . (package_identifier)

(package_identifier) ::= (ident)

NEWTYPE
(newtype_decl) = type (ident) (docstring) (cr) (Iparen) (type_decl_list)
(rparen)
(type_decl_list) u= (type_decl)
| (type_decl_list) (comma_sep) (type_decl)
(type_decl) w= (type) : (ident)
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A GRAMMAR OF RHEOS

ATOM DECLARATION

(atom_declaration) := atom (atomtype) (header) (optionblock)

(atomtype) = python
| python-extended
| external
(optionblock) = option (opt_cr) (Iparen) (atom_option_list) (rparen)

(atom_option_list) == (atom_option)
| (atom_option_list) (comma_sep) (atom_option)

(atom_option) = (option_ident) : (option_ident)

(option_ident) u= (ident)
| (option_ident) . (ident)

NETWORK DECLARATION

(network_decl) network (header) (network_block)
(network_block) == (statement_block)

ATOM AND NETWORK HEADERS

(header) == (ident) (metaparams) (docstring) (cr) (inputs) (outputs)
(metaparams) u= < (metaparam_list) >

| (empty)
(metapara_list) = (metaparam)

| (metaparam_list) (comma_sep) (metaparam)

(metaparam) = type (ident)
| func (ident)
| list (ident)

(inputs) == in (Iparen) (input_list) (rparen) (cr)
| in (no_params) (cr)

(outputs) = out (Iparen) (output_list) (rparen) (cr)
| out (no_params) (cr)

(input_list) w= (input)
| (input_list) (comma_sep) (input)

(output_list) == (output)
| (output_list) (comma_sep) (output)



A GRAMMAR OF RHEOS

(no_params) ( (opt_cr))

(input) = (type) (ident) (docstring)

| ? (type) (ident) (docstring)

| (type) (ident) default (constant) (docstring)
(output) u= (type) (ident) (docstring)

| (type) (ident) default (constant) (docstring)
STATEMENTS
(stmt_block) = (opt_cr) (lbrace) (stmt_list) (rbrace)

| (opt_cr) (stmt_block_empty)
(stmt_block_empty) = { (opt_cr) }

(stmt_list) = (stmt)
| (stmt_list) (cr) (stmt)

(stmt) = (controller_stmt)
| (connection_stmt)
| (assignment_stmt)

(controller_stmt) == controller ( (ident) )
(connection_stmt) = (param_ref) <- (expr)
(assignment_stmt) = (ident) = (component_stmt)
(component_stmt) = (ident) (component_args)

| (ident) (metaargs) (component_args)

(metaargs) < (type_list) >

{type)
| (type_list) (comma_sep) (type)

(type_list)

(component_args) == (lparen) (expr_list) (rparen)
| (Iparen) (rparen)

EXPRESSIONS

(expr) = (constant)
| (expr_ref)

(expr_list) u= (expr)

| (expr_list) (comma_sep) (expr)
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A GRAMMAR OF RHEOS

(constant)

(fconst)

(iconst)
(sconst)
(ident)

(expr_ref)

(expr_ref _list)

(recordindex)

(arrayindex)

(expr_ref_1)

(expr_ref_2)

(fconst)
(iconst)
(scomst)

= floating point constant

integer constant

string constant

identifier

(expr_ref_list)

(expr_ref_1)

(expr_ref_list) (recordindex)
(expr_ref_list) (arrayindex)
(expr_ref_list) . (expr_ref_1)

( integer constant )

[ integer constant ]

(expr_ref_2)

(Iparen) (component_stmt) (rparen)
in

out
(ident)

TYPES AND DOCSTRINGS

(type)

(metatype)

(docstring)

file
float
int
string
(metatype)

(type) [ ]

(expr_ref_2)
(metatype) (recordindex)
(metatype) *
(metatype) . (expr_ref_2)

= an optional docstring



A GRAMMAR OF RHEOS

SPECIAL PRODUCTIONS

(cr) = a non-empty sequence of new lines
(opt_cr) = a sequence of new lines that may be empty
(Ibrace) = { (opt_cr)

(rbrace) = (opt_cr) }

(Iparen) = ( (opt_cr)

(rparen) = (opt_cr) )

(empty) = empty production

(comma_sep) (opt_cr) , (opt_cr)
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EXAMPLE CODE

This is the XML code describing the project network from Figure 4.

<?xml version="1.0"?>
<cpc>
<import name="gromacs" />

<type id="conf_array" base="array" member-type="file">
<desc>An array of conf files</desc>
</type>

<type id="mdp_array" base="array" member-type="file">
<desc>An array of conf files</desc>
</type>

<type id="top_array" base="array" member-type="file">
<desc>An array of conf files</desc>
</type>

<type id="mdrun_output" base="record">
<desc>Set of mdrun outputs</desc>

<field type="file" id="conf" />

<field type="file" id="xtc" />

<field type="file" id="trr" />

<field type="file" id="edr" />
</type>

<type id="mdrun_output_array" base="array" member-type="file">
<desc>An array of conf files</desc>
</type>

<function id="project_network" type="network">
<desc>Project network</desc>
<inputs>
<field type="conf_array" id="conf">
<desc>The simulation parameters</desc>
</field>
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EXAMPLE CODE

<field type="mdp_array" id="mdp" />
<field type="top_array" id="top" />
</inputs>
<outputs>
<field type="mdrun_output_array" id="results" />
</outputs>
<network>
<instance id="grompp" function="gromacs::grompp"/>
<instance id="mdrun" function="gromacs::mdrun"/>

<connection src="self:ext_in.conf"
dest="grompp:in.conf" />

<connection src="self:ext_in.mdp"
dest="grompp:in.mdp" />

<connection src="self:ext_in.top"
dest="grompp:in.top" />

<connection src="grompp:out.tpr"
dest="mdrun:in.tpr" />

<connection src="mdrun:out.results"
dest="self:ext_in.results" />
</network>

</function>

</cpc>
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