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Abstract 
 
The present work is related to a research project denominated Transparent 
Neural Networks (Strannegård 2012); this project aims to propose a model 
capable of higher cognitive functions such as deductive and inductive reasoning 
by means of transparent, simple and interpretable structures and functionalities. 
This simplicity includes interactive building rules based on the manipulation of 
basic structures and elements. It considers characteristics of the developmental 
robotics and cognitive modeling.  
 
Taking all of these concepts and goals as a basis, the main objective of this 
thesis is to help in the development of that model by implementing a toolbox 
that allows the creation and evaluation of the networks leading to conclusions 
and meaningful feedback that fosters proposals for further development on the 
model. 
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Introduction 
 
The goals of the Transparent Neural Networks project, to which this thesis is 
directly connected, are related to achieving higher cognitive functions such as 
deductive and inductive reasoning, as well as automatic learning by means of 
transparent and interpretable structures. But all of these objectives are in turn 
related to problems that have been studied in different fields and which 
solutions imply applications of huge relevance. 
 
In order to contextualize the concepts associated to this model an introductory 
description is presented depicting some approaches that aim to cope with 
problems similar to the ones faced here. These approaches correspond to 
some ideas and models emerged throughout the development of the fields of 
cognitive modeling, problem solving and robotics, and that are of relevance for 
understanding the challenges and needs addressed by this research project. 
 

Background 
 
The challenge of creating systems capable of mimic reasoning and cognition 
has been addressed by many and from different perspectives and disciplines. 
There are some proposals broader than others, but the main goal has been 
mainly related to the ability of creating concepts and manipulating them in order 
to draw conclusions and deliver responses.  
 
Most of the approaches could be classified in relation to the way information is 
organized and processed; the general division usually is into emergentist, 
symbolic and statistical or probabilistic models. Among these there are certain 
conceptual differences that give advantages and disadvantages to each as will 
be shown. 
 
In the mentioned classification the division into Symbolic and Emergentist -also 
called non-Symbolic- approaches is broadly used in the field. They basically 
differ in the way they create, represent and manipulate concepts and 
knowledge. The symbolic perspective in turn proposes that cognitive systems 
use specific symbols as a representation of knowledge and find solution by 
carrying out processes on these representations. Complementarily, the 
emergentist perspective proposes that the knowledge is represented in a 
distributed manner into basic elements, and processing is carried on this 
distributed knowledge in a complex and meaningful way. (Troy D, 2003)  
 
Another way of classifying the models is by the top-down and bottom-up 
differentiation. Top-down perspectives assume that the basis of cognition lays 
on the symbolic abstractions and therefore only that is needed to achieve 
intelligent behavior, thus the relevance of whatever structure that is below the 
whole process can be neglected. On the other hand, bottom-up perspectives 
assume that intelligence and cognition emerge from the behavior of atomic 
components in a structure and the way they relate to each other. They argue 
that it is possible to achieve abstract associations from basic processes at the 



7 
 

bottom of a structure. (McClelland, Botvinick, Noelle, Plaut, Rogers, Seidenberg 
and Smith, 2010) 
 
However these classifications are generalizations, there are also models that 
combine the approaches in attempts to achieve better results but they do not fit 
completely in any on the groups above. To better understand the characteristics 
of each of the approaches they will be described below by giving some notions 
about their utility as well as advantages, disadvantages and discrepancies 
among them.  
 

Emergentist approaches 
 
The emergentist approaches state that any behavior appears as a consequence 
of basic changes happening at a very low level; cognition and abstract 
representations are therefore seen just as a consequence of processes carried 
out in underlying structures. The main examples of this perspective are the 
connectionist approaches; in these behavior emerge from the connections 
among simple processing units that acquire knowledge through experience by 
adjusting strengths between connections or either creating or removing them. 
(McClelland, Botvinick, Noelle, Plaut, Rogers, Seidenberg and Smith, 2010).   
 
The emergentist approaches propose alternatives most of the times inspired by 
nature, or at least by our understanding of it. The idea arises from the 
observation of how every structure around us emerges as patterns created by 
the interaction of smaller and simpler processes. Consequently, cognition also 
seems to be an emergent result of the interaction of simple and more 
understandable units.  
 
Based on that perspective, and considering that the brain is based on the 
interconnection of neurons, it is assumed that is possible to have an emergent 
behavior from the simulation of simple units that, at least in principal, might 
mimic the behavior of real neurons. 
 
This whole idea is the foundation for many connectionist approaches and 
specially the artificial neural networks. These lasts attempt to mimic the 
behavior of real neural nets by interconnecting units that share information 
through weighted signals and activation functions.  
 
The artificial neural networks have been seen in different ways as a feasible 
model of cognition and many claim that they not only model the cognition, but 
also simulate the actual underlying processes (Sharkey, 2009). Nevertheless, 
many arguments against connectionism and artificial neural networks strongly 
highlight that, in comparison to real neural networks, the models are 
oversimplified: after all, the real biological process is not yet completely 
understood and it could happened that certain assumptions may lack 
foundations.  
 
For instance, some other proposals on connectionism claim that the 
connections in a network should not rely on weights. This is the case of the 
HTM model proposed by Numenta. They argue that though in real neural 
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networks synapses might present a phenomenon similar to the one represented 
by the weights, their values tend to be random or volatile, therefore it cannot be 
safely assumed that calculations in the brain actually rely on those weights 
(Numenta Inc., 2011). 
 
Nevertheless the artificial neural networks have been subject of research for 
many years; some have perceived them as model of cognition and others, 
maybe more successfully, as an optimization tool.  
 
In the case of simulating cognition a good performance has been found based 
on fitting the network’s response to some psychology experiments (Sharkey, 
2009). However, this kind of experiments are limited to a specific task, and even 
when the data is fit, it cannot be said that the networks mimics the process itself 
or even more risky that it is comparable to actual reasoning; in fact, it is really 
hard to interpret the actual behavior in the network that leads to the result, but it 
is known that at the end it performs nothing but an error minimization task.  
 
Moreover, traditional neural networks are dynamic systems that can accomplish 
very good performance on optimization and data fitting. This is why most of the 
development on this field has been done aiming to solve particular problems 
hard for traditional mathematical optimization methods; actually most of the 
variations of the artificial neural networks have emerged to fit particular 
optimization problems. But when it comes to the ability of modeling cognition or 
actual reasoning based on them it is not so clear that these structures possess 
it.  
 
Nevertheless artificial neural networks are not the only connectionist model; 
some other models have been proposed based on connectionist ideas, 
specially aiming to create the ability of learning concepts and use them for 
inference. An example of a connectionist model is the Shrutí architecture (The 
International Computer Science Institute, 2012). 
 
Shrutí is an architecture that focuses mainly on drawing inferences which its 
authors proclaim to be performed “effortlessly, spontaneously, and with 
remarkable efficiency”. The project attempts to show how a connectionist model 
can be capable of encoding semantics, systematic mapping and knowledge 
about entities, and also be available to perform reflexive inferences in a fast and 
efficient manner. This is done by creating structures that represent schemas by 
focal cells clusters and generating inferences by the propagation of rhythmic 
activity over those clusters. Thus, all information processing is based on 
temporal synchrony throughout a structured neural representation. This fact is 
claimed to demonstrate how such a connectionist structure is sufficient to 
achieve rational processing in the brain. This model is related to different 
projects related to decision making, problem solving, and planning and 
language acquisition (The International Computer Science Institute, 2012). 
 
In general connectionist models are capable of simplifying and generalizing 
data from complex inputs to more reduced spaces in the way of inductive 
learning. Also, some connectionist models have been merged with other 
approaches to achieve better capabilities as will be described further below. 
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Probabilistic approaches 
 
Probabilistic models can be classified mainly as top-down approaches that 
relate concepts and perform selections depending on probabilities learnt 
through experience. The most basic and classic yet relevant example of this are 
the Bayesian Networks. 
 
Probabilistic models are defended as being capable of yielding great flexibility 
for exploring the representations and inductive biases that underlie human 
cognition (Griffiths, Chater, Kemp, Perfors and Tenenbaum, 2010). That 
assertion is based on the assumption that whatever behavior a system displays, 
its causes can be easily described by means of probabilities.  
 
This flexibility at the time of exploring inductive behaviors is a characteristic that 
represents an advantage when it comes to fully understand the system and 
what it represents. In fact, this idea has been used against Bottom-Up and 
some connectionist models by arguing that, even when both kind of models 
could successfully address similar problems, the way emergentist models solve 
them is not necessarily as understandable or transparent to the user as a 
probabilistic model could be (Griffiths, Chater, Kemp, Perfors and Tenenbaum, 
2010). However, reality is that mathematics behind probabilistic inferences can 
easily go beyond unaided intuition, and even simple rules can become 
intractable as models are scaled up to fit real world problems (McClelland, 
Botvinick, Noelle, Plaut, Rogers, Seidenberg and Smith, 2010). That may 
contradict the claim of probabilistic approaches being capable to draw more 
understandable descriptions of reasoning and cognition.  
 
Nonetheless, this leads to a more general topic than the one concerned to this 
document but that still affects the fundamentals of the Transparent Neural 
Networks model to be introduced. This is the more general question on how 
intuitive the fundamentals of cognition or reasoning could really be. As 
mentioned by (Chater, Tenenbaum and Yuille, 2006) people struggle not only 
with probability but with all the branches of mathematics, and this does not 
changes the fact that, for example, as hard to understand as it could be, Fourier 
analysis is fundamental in audition and vision in biological systems. 
 
Therefore, it may be sound to state that analyzing the complexity behind the 
model or its easiness of interpretation may not be the best choice to compare 
performance. But regardless of which could be the best measure, it is also 
undoubtedly relevant to identify biases in the measures that may be favoring 
particular interpretations of reasoning or cognition when proposing or evaluating 
a model. 
 
As the field has been broadly focused on architectures and structures such as 
those in connectionists or rules based models, the performance measurement 
has to do with their characteristics and the ideas behind them, such as logic and 
heuristics (Griffiths, Chater, Kemp, Perfors and Tenenbaum, 2010). This kind of 
biasing in the analysis may of course affect models that are based on different 
perspectives such as the probabilistic models. However, regardless of the 
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models that it could benefit or affect, this kind of biasing may lead to extremely 
dangerous assumptions; an example of this is treating logic almost as an 
equivalent to the reasoning itself. Biasing the conception of reasoning in that 
way is indeed such a strong assertion that may cause a tremendously narrow 
view on the problem. 
 
In any case, the problem on biasing the analysis, and therefore the assessment 
of performance of a model may come from any perspective. In a certain way 
probability, or mathematical models in general, can be seen as a description of 
thought (Chater, Tenenbaum and Yuille, 2006), and that assertion might be 
useful for many problems, however one should bear in mind the it will only be a 
description and not thought itself either its equivalent. 
 
To conclude, aside of the assertion on reasoning or intelligence, it can be said 
that probabilistic models have the abilities to infer and generalize, and that allow 
solving problems and creating some useful behavior that may be of interest for 
particular applications such as those found in data mining and machine 
learning. 
 

Symbolic approaches 
 
The symbolic approaches assume that cognition can be modeled by 
manipulating symbols and relations among them by means of structures and 
rules; in this group can be included approaches such as the logic and rule 
based systems. These models are mainly used as representation systems and 
are capable of inferences and deductive learning. However, they are criticized 
for lacking the ability of inductive reasoning as they normally are based on 
structures or concepts designed by the programmer but not learnt through 
experience. 
 
From the very beginning of formal computation and the first ideas on AI, 
symbols and specially logic was considered as a basic mechanism by which 
minds work. The idea is that symbolic representations stands at the very core of 
how intelligence work, and therefore the focus is set on what symbolic 
knowledge an agent would need in order to behave intelligently 
(Bringsjord,2008). Then this perspective focuses not on how the knowledge 
arises but on how it should be used. 
 
The symbolic approaches envision cognition as some sort of computer 
programs and describe aspects of cognition and their emerging results as a set 
of basic computational processes, claiming that this idea could produce, for 
example, predictions with performance comparable to humans (Lewis, 1999).  
 
A foundation of this approach is the so called “physical symbol system 
hypothesis” proposed by Newell and Simon. Its idea is to use basic symbols as 
representational entities, combine them to form expressions and manipulate 
those expressions to create even new ones. Their claim stated that "A physical 
symbol system has the necessary and sufficient means for general intelligent 
action", and is an idea that has been the foundation of massive efforts in 
research in AI (Sun, 2001). 
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Many symbolic representations aim to capture and organize knowledge in the 
form of structures or architectures. The idea for the structures is to organize 
knowledge by creating relational groups of symbolic entities that may in turn 
contain or be contained by other groups. A well-known of these representations 
are the semantic networks; these networks mainly used for language 
representation and processing, are formed by labeled nodes representing 
concepts related in turn by labeled links (Sun, 2001). 
 
An example of a symbolic architecture is the SOAR project (University of 
Michigan, 2012). It is a production rule system where problem solving is 
basically related to representing a search space. All the decisions are taken by 
using the interpretation of the sensory data and the compilation of relevant 
knowledge coming from previous experiences. The main goal is basically to 
create a general problem solver where every problem, regardless of its 
characteristics, is defined as a search space (University of Michigan, 2012). 
 
On the other hand, many symbolic models have used logic as a 
representational language. For many the idea of logic has always been a part of 
the supreme goal of developing intelligent machines; the promises back in the 
50s was on using logic as the mechanism to build computational artifacts 
available to even exceed human minds in terms of intelligence. The truth after 
many years of research is that the fundamental ideas based on formal logic 
have failed to accomplish the task. Nevertheless, people still believe in logic 
and it plays a fundamental role on many algorithms and, as mentioned before, 
is used to analyze performance in different kinds of models (Perlovsky, 2007). 
 
Many go back to Aristotle to describe logic and argue how even from syllogisms 
intelligent responses can be described. The main element of this argument 
arises from the idea that Aristotle inferred that certain context-independent 
structures can describe and predict human thinking. However, it has to be also 
taken into account that these studies on logic came from the search of a 
supreme way of argumentation but never as a theory of mind (Bringsjord, 
2008).  
 
Thus, to talk about logic as a model that describes human thinking may be too 
broad in the sense that argumentation is a particular characteristic of language 
and its consequence. But the fact that language, and after it logic, emerge from 
reasoning and thinking does not necessarily mean that they are the basis from 
which those phenomena emerge. In other words, arguing that a consequence 
can be also the basis of the same process may lead to some partial 
understanding of the problem. 
 
Nevertheless, approaches based on logic have been successfully implemented 
to solve particular problems often related to symbolic manipulation. Many 
problems in language processing have been addressed by these approaches, 
complemented in many cases by probabilistic models. Other broadly explored 
area is the one concerned with constrain satisfaction problems, which are 
addressed by logic based models and particularly bi-valuated systems. 
 



12 
 

Logic approaches have also evolved during the last decades to allow more 
flexibility than the formal logic, which as limited to discrete truth values runs into 
troubles easily. Just in 1902 Russell showed a whole in formal logic which 
caricature is described by this simple example: “A barber shaves everybody 
who does not shave himself. Does the barber shave himself?”  (The Cambridge 
Handbook of Computational Psychology , 2008 pp. 127-169). Any possible 
answer to this problem -yes or no- is contradictory. 
 
Problems like that and later more complex ones, led to the rise of concepts 
such as multivalued and fuzzy logic, where variables can take many values or 
virtually any value in an interval between the classical true and false. These 
more flexible approaches have allowed addressing a broader range of 
problems, but have also shown the need to merge logic and other approaches 
to achieve better results as described in the next subsection. 
 
 

Hybrid models 
 
It seems reasonable to aim for a model that includes both top-down and bottom-
up ideas as they can be complementary. For example, symbolic approaches 
that are mainly concerned with deductive reasoning may be complemented by 
connectionist approaches that are mainly focused on inductive learning (d’Avila 
Garcez and Lamb, 2011). Thus, it is easy to advocate for the search of such a 
model and indeed that is not a new idea, nonetheless as easy to argue about its 
reasons not so easy is the task of developing it. 
 
A hybrid model mainly concerns with merging characteristic of very 
heterogeneous systems such as the symbolic and connectionist models. These 
two approaches have very different types of representation, learning and 
processing; therefore, most of the proposals are architectures that attempt to 
use symbolic perspective for manipulation and connectionist approaches for 
learning. In other words, a top-down system that is fed by a bottom-up one 
(Troy D, 2003).  
 
A way of seeing this, proposed by Troy (2003), is that cognition can be 
considered as a cognitive continuum with two ends, at a highest end the 
symbolic processing is carried out, which could be interpreted as the 
equivalence of the prefrontal cortex in the human brain. At the other end of that 
continuum, the lowest level is related to the most basic input processing, which 
in the human system could be equivalent to the reflex nerves. But still, the link 
between the two ends of that continuum is not yet clear. 
 
Hence, though in hybrid architectures the sub-symbolic systems present 
favorable issues related to learning, the symbolic processing is still mainly 
related to representation and inference which transfers many of the symbolic 
systems flaws to the hybrid structures (Sun, 2001). This means that at the 
symbolic level the structures are still highly dependent of a knowledgeable user, 
and therefore not much is really left to learning through experience (Troy D, 
2003). 
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Nevertheless, the usage of various approaches certainly enhances the 
capability of the models. Several architectures have been developed based on 
hybrid structures and some of them have achieved reasonable results and are 
known as relevant cognitive architectures, among them ACT-R is a typical 
example. 
 
ACT-R (ACT- R Research Group Department of Psychology, Carnegie Mellon 
University, 2012) is an architecture that is born with the goal of understanding 
human cognition and how knowledge is organized and used to produce 
intelligent behavior. This architecture has been evolving for many years 
reaching interesting results in various fields related to cognition. 
 
This architecture has been used by researchers to produce data on theories 
that can be directly compared to experiments with human participants. This 
allows verifying models on cognition directly by means of the architecture. 
 
Some of the models created with ACT-R include: learning and memory, 
problem solving and decision making, language and communication, perception 
and attention, cognitive development, and individual differences. 
 
ACT-R as a hybrid architecture has both symbolic and a sub-symbolic 
structures; the symbolic one is a production system that matches the state of 
the system to previously learnt symbols. The sub-symbolic structure is a set of 
parallel processes that control many of the symbolic elements through a series 
of equations, and in many cases in accordance with utility functions. (ACT- R 
Research Group Department of Psychology, Carnegie Mellon University, 2012) 
 
ACT-R shows many of the advantages of the hybrid models, and in fields as 
applied psychology it has grown interest on more integrated cognitive 
architectures. However, it still exhibits deficiencies typical to these architectures; 
for instance and maybe the most important one, most of the knowledge 
acquired depend completely on the programmer and not on learning from the 
environment. (Troy D, 2003) 
 
Another known cognitive architecture that uses a hybrid approaches is the LIDA 
architecture. LIDA uses both symbolic and connectionist approaches merged 
together. The architecture is based on a cognitive cycle that goes from 
perception to action.  
 
During this cognitive cycle several aspects are taken into account but always 
with special emphasis on the roles of feeling and emotions. Emotions are used 
for conceptualization and are related by associative relations; they guide actions 
and what is called consciousness in the model, which affects decision making at 
every level. (Ramamurthy, Baars,  D’Mello, Franklin, 2006) 
 
As these two examples, many others have also shown that in general, merging 
approaches is a feasible way to improve performance, and that keep on 
generating new points of view on the overall problem solving goal. However, 
most of the approaches have been based on a cognitivist perspective but it 
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does not mean that it should be the only one, it could be reasonable to evaluate 
others or even hybrid approaches at that level; An example could be to focus on 
more behavioral models aside of the cognitive perspectives or as their 
complement, in a similar way as they have been opponents and complementary 
approaches in psychology. 
 
Similarly, a very relevant approach to the goal on general problem solving that 
leaves aside the constraints of architectures aiming for specific tasks is the 
developmental or epigenetic robotics described below. 
 

Epigenetic robotics 
 
The goal of epigenetic robotics, also known as developmental robotics, is to 
model the development of cognition through the usage of elements from 
different sciences and approaches, such as robotics, neurophysiology, 
psychology and artificial intelligence, where the results may be a beneficial 
exchange among all of them (Metta. Giorgio and Berthouze. Luc, 2005). 
 
This is carried out by the study of the development as a process in which 
modifications on cognitive structures lead to an overall emergence of abilities, 
which in human basically happens form the embryo to the fully developed adult. 
Here, development is seen as an open-ended adaptation process generated by 
means of interaction with the environment (Metta. Giorgio and Berthouze. Luc, 
2005). 
 
The whole idea emerges from the need across the cognitive sciences for 
models that can scale up beyond specific domains and scenarios, and that at 
the same time, can display a developmental trajectory and are transparent in 
their construction and concepts (Anthony F. Morse, Joachim de Greeff, Tony 
Belpeame, and Angelo Cangelosi,. 2010). 
 
Evidently pre-programing for specific behaviors cannot give solutions to 
scalability problems as the systems are expected to work in too complex and 
unpredictable environments; that as the limitation set by constraints and 
assumptions made by the programmer usually fail when the systems are faced 
to real problems. Therefore the best is to make the systems in charge of their 
development by giving them the ability of verifying their own learning and the 
possibility of growing their cognitive structures freely towards broader goals 
(Stoytchev. Alexander, 2009) 
 
However, as the systems are expected to develop by means of interacting with 
the environment, a clear limitation and crucial aspect in the design is the actual 
body of the robot in the sense that it will constraint any interaction and therefore 
the whole process. Body and brain cannot be separated, and at the end is the 
body what shapes the brain (Asada, Hosoda, Yasuo, Hiroshi, Toshio, 
Yoshikawa, Ogino and Yoshida, 2009), reason why in epigenetic robotics the 
design of the body, in terms of sensors and actuators, plays a very important 
role in the abilities that can be achieved and therefore great deal of the research 
is focused on this fact. 
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Epigenetic robotics is a relatively new field, but it has shown interesting results 
as many limitation and constraints of other approaches are overcame by means 
of a more freely development. Nevertheless, the main fuscous on research has 
been set on sensory-motor development leaving aside higher functions as the 
ones cognitive models and others pretend, such as inductive and deductive 
learning or concept formation and manipulation. 
 
Epigenetic robotics is in fact a source of inspiration for the model related to this 
thesis and presented below as even when the ideas are mainly focused on 
sensory-motor approaches, they seem promising for applications at higher 
functions as the ones aimed here. 
 
 

Transparent Neural Networks 
 
The Transparent Neural Networks (TNN) model proposed by Claes 
Strannegård (Strannegård 2012) is being developed since 2011 at Chalmers 
University of Technology and the University of Gothenburg. Until the writing of 
the present thesis it is a theoretical model which has been presented in different 
conferences at the mentioned institutions as well as at the Lund University and 
the SewCog. 
 
The TNN project attempts to develop a model with problem solving abilities 
achieved by means of transparent structures, meaning that they are as clear as 
possible for the user at any time. Thus the goal is to achieve transparency not 
only when designing a solution to a given problem but especially when the 
system has performed any kind of learning. 
 
As described before, when it comes to modeling traditionally the symbolic 
approaches are mainly concerned with deductive reasoning, whereas 
emergenist are largely focused on inductive learning (d’Avila Garcez and Lamb, 
2011). Therefore, one of the major goals of TNN is to include both deductive 
and inductive reasoning as simultaneous capabilities of the same model. 
 
Of course there have been many different attempts to achieve that with hybrid 
architectures; nevertheless the fundamentals of TNN differ in the stress on the 
need for models that remain transparent while achieving the two kinds of 
reasoning by means of just one process.  
 
It has been common that when merging approaches the architectures tend to 
have different structures for symbolic and sub-symbolic processing that are 
connected but still independent. In the case of TNN the proposal is to achieve 
both, the deductive and inductive capabilities, by means of a single structure 
and a single learning algorithm.  
 
As mentioned the main goal with the structure proposed in TNN is to keep the 
transparency, also called interpretability, which refers to a model being easily 
understood or interpreted by its users. This fact is stress as the problem of 
lacking transparency is an issue that affects many models and especially those 
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based on connectionist approaches, which leads to great problems when 
interpreting and grasping the underlying process of a structure even if it solves 
a particular problem.  
 
An example of that are the feed-forward artificial neural networks; in these 
structures there is not much transparency since it is not trivial to give a meaning 
to the values the weights reach after training, and actually the meaning of the 
activity in a particular neuron (apart of those in the inputs or outputs) is not clear 
for the programmer.  
 
Transparency is a desirable characteristic for any model as it makes it easy to 
explain, maintain, modify and verify. Thus, this is why the TNN attempts to 
maintain the transparency as a crucial issue in all the building element and 
learning rules in the model. This is, every element in the network must have a 
meaning or it may be easily inferred by the programmer; equally, any parameter 
that is modified by learning is to represent a simple and easy to comprehend 
relation among elements. 
 

An introductory description of TNN 
 
The TNNs are networks constructed in stages by means of a small set of 
construction rules. The construction rules are related to the addition of nodes 
and connections; each node is to represent a clear function and its connections 
are to be easy to understand relations, this way a compositional semantics in 
the networks is to be ensured. 
 
It is important to make clear that even when the ideas behind TNN are related 
to cognitive modeling and are partially inspired by biology, the aim is not to 
model any real neural system but instead the only concern of TNN is problem 
solving. 
 
Again, the main goal of the model is to achieve a transparent model capable of 
both inductive and deductive reasoning. This transparency is to be achieved by 
the limitation in the construction rules that ensure the interpretability of every 
element. Therefore the basic elements are to represent clear concepts, and 
their association to others must be clear relationships. 
 
The most basic elements of the networks are the nodes, which in the model are 
to represent concepts learnt by experience. This way each node in the network 
is a concept and is related to other by means of connections called edges.  
 
The relations between concepts by means of the edges and the information 
spread through them, further called activity, allow the formation of conceptual 
relationships that emerge contextual meaning for each node. This permits that 
concepts with partial information are retrieved, or that inferences of concepts 
contextually connected are made even when the explicit information that elicits 
them is not in a given input. 
 
To illustrate this imagine a concept representing a physical object and therefore 
its activation is elicited by sensing the physical characteristics of the real object 
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when presented as an input; However, this concept could also be related to a 
concept that represents the name of the object in the form of a word, which 
activity is elicited by the sound that corresponds to the word presented as an 
input. Then, even when the physical characteristics of the object are not present 
in the input, activity in the concept representing it may be elicited if the concept 
representing the word is active. That means that contextual relationships and 
inferences are being carried out all the time. 
 
On the other hand, to achieve both inductive and deductive reasoning, two 
kinds of activity are used. One of the activities in the network is called the real 
activity. It is used to generate associations that may represent temporal 
relationships or specific concepts. It also allows achieving inductive learning 
through the creation of deeper associations from more basic concepts scaling 
up the abstraction of the concepts at each level of association.   
 
The other kind of activity is the imaginary activity; this takes as basis the real 
activity and performs inductive reasoning by means of inferring causality, 
predicting activity in future, or deducing previous activity that could have led to 
the present state of the network. At the same time this activity is capable of 
inferring missing information in an input or deducing possible relations by using 
existing associations.  
 
When it comes to the construction rules they can be related to the way the 
nodes are added, which can be manually done by the user, or by an automatic 
addition partially assisted by the user taking into account information states in 
the network. 
 
The way the activities are spread through the network as well as the 
construction rules and the characteristics in the elements of the network are 
detailed in the following section.  
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The implementation 
 
 
 
 
Given the general concepts of what TNNs are and the reasons behind them, the 
main goals of the present thesis is to implement a toolbox that allows its users 
to experiment with this kind of networks and draw conclusions about their 
behavior and utility.  
 
Bearing that in mind, and the fact that at the moment of the implementation the 
TNN research project is just starting, the main value of this thesis becomes to 
generate feedback for further development on the ground concepts of the TNN.  
 
The implementation was based on unpublished manuscripts that contained the 
general ideas and concepts of the TNN model, which were evolving as the work 
was carried out. Therefore to design the toolbox was needed to face a lack of 
specifications and take only as a major objective the concepts on modularity 
and transparency. That implied to design a tool that could be flexible enough to 
fit the constant changes in the theory while producing useful and fast feedback.   
 
The focus on modularity in the design allowed making the development flexible 
while fulfilling the TNN’s main character of being built with elements and 
interactions as understandable as possible.  
 
At the same time, other important factor that led the design was to make 
interaction and building as easy and accessible as possible. Thus there was a 
special emphasis on creating a friendly and simple to use interface that gives 
enough information to the user and at the same time allows creating, exploring, 
and evaluating TNNs fast and easily.  
 
As highlighted before, the concept is still being developed and so are the 
algorithms and implementation details; then all the results reported here are the 
outcomes of an iterative process that led both the concepts and the 
implementation. So, and as the research is to keep on advancing, the following 
description focuses in the usage and the concepts included as well as in 
technical details that are considered necessary for further development of the 
tool. 
 
 
 
 
 
 
 

The building blocks of a TNN 
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The networks are built using basic elements that are related to each other and 
possess specific information that allows the network to work. These elements or 
building blocks in TNN are denominated Nodes and Edges. 

Nodes 
 
The TNNs, as implied in the name, are the interconnection of a given number of 
elements that share information. Thus it could be seen as a directed graph, but 
in this case it deals with two kinds of information that flow in opposite directions 
as will be explained later. 
 
These interconnected elements in the network are called nodes; they are 
individual processing units that can be selected and added to the network either 
manually by the user, or automatically by the tool when it is specified to do so. 
 
All the nodes in the network represent simple concepts that can be labeled by 
the user in order to keep the transparency. In a sense of conceptual learning 
every node represents a concept that basically comes from the association of 
either previously existing concepts, or sensor nodes. The sensor nodes are the 
inputs to the network and are how the network is fed and receives information 
from environment. 

 
Figure 1  The two main kinds of nodes, sensor (left) and general (right), connected by an edge from the sensor 

to the general one.  

 
At any time every node has twos activity parameters called real and imaginary 
states. These states may vary from zero to one where zero means no activity 
and one means full activity. The way the real state is calculated depend on the 
kind of node being used, each of them has a specific activation function that will 
always depend on the activity coming from other nodes or inputs. The only kind 
of nodes that changes their activity based on the inputs is the sensor node; they 
simply copy the environment that is, generally speaking, the input given by the 
user.  
 
All the implemented types of node in relation to their activation function will be 
described in the Activities section. 
 
 

 
The expression for the real activity of a given node k over time is 
described by: 
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(ݐ)ݎ 	= 	A൫۷(ݐ)൯ 
where A is the activation function of node k and I is the vector of size n 
containing the n inputs to the node k. 

 
Imaginary activity of node k over time:  

݅(ݐ) 	= 	P൫(ݐ)۷۾൯ 
where P is the prediction function and PI(t) is the prediction input vector 
calculated from the states of the nodes at the outputs of k at time t. 

 

 
Figure 2  Description of the parameters appearing in a general node; the node id, the imaginary state and the 

real state. 

 

Edges 
All nodes that are not sensors must always be connected to at least other node 
and this connection is represented by edges.  
 
The Edges possess different characteristics, firstly they may belong to two 
principal kinds depending on their direction; they can be either those that are 
going out of the node, or those that go into it. However, they are added by pairs, 
so for every node going out of a node there is one going into another, but 
graphically they are represented by the same connection. This is done in order 
to treat separately the two kinds of activity that are there in the network. 
 
All edges have a weight that can change over time but whether they change or 
not and the meaning they have depend on the kind of network being used.  
 
The Edges also have an activity reverberation, which means that after some 
activity is transmitted from one node to another the activity in the edge 
connecting them does not disappear immediately; instead it fades down slowly 
according to a parameter learnt by experience called the decay parameter.  
 

The reverberation activity of edge i at time t is denoted by ܾ(ݐ).  
Equally, a vector of reverberation activities is denoted by (ݐ). 

 
 

Levels 
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As edges possess directions the way the network grows and propagates 
information is affected by this fact and gives rise to the concept of level. The 
levels work as a hierarchy, meaning that every node correspond to a higher 
level than all the nodes it receives information from. This can be seen as levels 
of abstraction since the higher the level is, the more concept have to be active 
and associated. The levels are labeled with increasing numbers starting at 0 
which correspond to the sensors level, and up to the highest level where nodes 
have no outputs. 
 

 
 

Figure 3  Example of  how the nodes are shown by levels in the toolbox, and how to interpret them. 

 
 

Inhibitory edges 
This kind of edge inhibits the activity of a node depending on the state of a set 
of other nodes.  
 
The inhibition activity over a node will corresponds to the addition of activities in 
the nodes inhibiting it; that addition is truncated at a maximum of 1 ensuring the 
inhibition over a node fits in the interval [0, 1].  
 
The inhibition is performed after the activation has been calculated by 
multiplying the complement of the inhibitory addition. 
 

When inhibition is applied the real activity of node k over time is modified 
by: 

(ݐ)ݎ 	= 	A൫۷(ݐ)൯൫1 − ℎ(ݐ)൯ 
where ℎ(ݐ) is the sum over all the inhibitory inputs of k at time t. 
 
 
 

In the interface this kind of edges is depicted as orange connection between 
nodes. 
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Figure 4  Depicts an inhibitory connection from the node with id 1 to the one with id 2. 

 
 

 

Activities 
 
As mentioned before, there are two kinds of activity that propagates in opposite 
directions. The main activity is called the real activity and is the one that 
propagates from the sensors forward till the deepest level. When propagating 
the real activity the activation function of all the nodes at a certain level are 
evaluated  taking into account the activity from the nodes in the previous levels, 
so the activity is propagated level by level.  The second kind of activity is the 
imaginary activity, which propagates backwards in the opposite direction than 
the real activity. That means that the imaginary activity starts at the deepest 
level and propagates back until the first one. However the imaginary activity at 
the deepest level, or actually at every node that has no outputs, will copy its real 
activity as the imaginary activity.  

 
Each of the activities has different meaning. On one hand, the real activity is the 
natural response of the network to a given input, and it is also the activity taken 
into account for the creation of new associations or concepts. When evaluating 
the meaning of the real activity for each given node the amount of activity it has 
is related to how much of the concepts it associates were present in the inputs; 
that relation depends on the activation function of each node and the 
interpretation may vary somehow based on that function. 
 
The activation functions depend on the goal of the node and the way the 
information is fed to it; the information can be the real activity of the nodes that 
are feeding it or the activity reverberation in its incoming edges (reverberation 
activity).  
 
The types of nodes implemented regarding their real activation function is listed 
here: 
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- Min Nodes: Nodes which activity is set to the minimum at its inputs.  
 

൯(ݐ)ࡵ൫ܣ = ݉݅݊൛ܫ		 (ݐ) ∶ ݅ = 1, … ,݊	ൟ 
 

- Max Nodes: Nodes which activity is set to the maximum at its inputs.  
-  

൯(ݐ)ࡵ൫ܣ = 		ܫ൛ݔܽ݉ (ݐ) ∶ ݅ = 1, … ,݊	ൟ 
 

- Average Nodes: Nodes which activity is set to the average of its 
inputs.  

൯(ݐ)ࡵ൫ܣ = 	
∑ (ݐ)ܫ
ୀଵ

݊ 	 
 

- Delay Nodes: Have only one input and set their state as the real 
activity at its input in the previous time step.  
 

(ݐ)ݎ 	= ݐ)۷	 − 1); Size of vector I is always 1. 
 

- Buffer Nodes: Have only one input and copies the same state that 
the real activity at its input; used to bring the same activity to a deeper 
level.  

(ݐ)ݎ 	=  .Size of vector I is always 1 ;(ݐ)۷	
 

- Association node: Average of the real reverberation activity at their 
incoming edges.  

൯(ݐ)ࡵ൫ܣ = 	
∑ (ݐ)ܤ
ୀଵ

݊  
 

where B(t) is the reverberation vector in the inputs of node k at time t. 
 

- Simple Gaussian node: Have only one input and learns by 
experience the average and the standard deviation of the inputs 
shown. The real activity is calculated by means of the parameters 
learnt using a bell-shaped function. 
 

A൫۷(ݐ)൯ = 	 ݁ି
(ூିఓ)మ
ଶఙమ  

 
where ߤ is the mean learnt and ߪ is the standard deviation. 
 

- Complete Gaussian Node: Is a compilation n of function like the one 
described for the simple Gaussian node, where n is the number of 
inputs of the node and individual parameters are learnt for each of 
them. The final result is the multiplication of all of these functions.  

A൫۷(ݐ)൯ = 	ෑ݁
ି(ூିఓ)మ

ଶఙమ


ୀଵ

 

 
- Sensor: Nodes that set their activity from the input given by the user 

(environment). 
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The second kind of activity is the imaginary; this is meant to infer or complete 
information from the one present at a specific moment in the input; however, 
imaginary activity can also be a prediction of information over time as a relation 
to expected concepts or inputs in both the past and the future.  
 
The imaginary state of a node will depend on the state of those that are fed by 
its real activity. Nonetheless, when a node does not feed any other, or has no 
outputs, then it will copy its real activity as imaginary activity in order to use it as 
the source for inference.  
 
To calculate the imaginary activity of a node weights at its outgoing connections 
are to be learnt. After the proper learning the value of these weights 
corresponds to the probability of the node being active, when the node at that 
output is active. 
  
Every node that has connections going outwards adapts a weight for each of 
those edges. Then when the imaginary activity is being propagated, the 
imaginary activity is set to the maximum value of all the imaginary activities of 
the nodes at its outputs multiplied by the respective weights.  
 

 
The imaginary activity is calculated by: 

 
݅(ݐ) 	= 	P൫(ݐ)۷۾൯ = ݃:(ݐ)݅(ݐ)ܫ൛ܹݔܽ݉ = 1, … , ݊ൟ 

 
where ܹܫ(ݐ)is the weight from the node g which is at an output of node 

k, and ݅(ݐ) is the imaginary activity of node g. 
 
 
 
In the example on Figure 5 the node at the deepest level copies its real activity 
as its imaginary one, but meanwhile, the nodes on the previous level have 
slightly different weights and therefore different imaginary activity that depends 
on the node at the deepest level. The sensors have weight close to 1.0, and as 
described they take for imaginary activity the maximum of the possible activities 
coming from nodes at their outputs. 
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Figure 5 A simple network at a given state to depict the real and imaginary propagation. The node at the 

deepest level copies its real activity as imaginary, while in the others the imaginary activities are affected by 
the whights. 

 
 

Time step 
 
Updating the states of the network means to take an input and calculate the real 
and imaginary activities of all the nodes in the network. The update of the 
network is carried out every time a new input is presented; this is defined as a 
time step.  
 
In this sense, there is no delay in between the moment the input appears and 
the moment the activity of all the nodes are updated. That means as well that if 
an input is to last longer than other, it simply has to be repeated several times in 
the input stream. In other words, if an input is repeated in several time steps this 
will keep the network in the same state after it is stable. 
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Networks construction modes 
 
To build networks different construction rules can be used, but which and how 
are used depend on the construction mode selected. The two modes existing in 
the current implementation are the Manual and the Interactive modes. 

Manual mode 
The most basic construction mode that can be used to create networks is the 
manual one. The construction of a network in this mode depends completely on 
the user. The architecture of the networks does not change while they are being 
used but only as the user decides to add or remove elements. 
 
In this mode the user chooses to add any kind of node by connecting them 
through edges from whatever node that already exists, unless the node added 
is an input. This allows a complete and easy understanding of the network, 
though at the same time its usage is limited to a rigid architecture. It works to 
evaluate and visualize how the activities spread through a network’s 
architecture, but no automatic addition of elements is performed. 
 
This mode is used mainly to propose anatomies and check their performance. 
Building a solution might require a complete understanding of the problem, 
reason why is not suitable for this purpose, but instead it is a good way of 
getting to visualize the problems and possible behaviors. Exploring the problem 
in this mode can help to find a reasonable starting point for the further growth 
based on an interactive construction. 
 

Interactive mode 
In contrast to the Manual mode in the interactive mode the network can be 
modified automatically by adding new nodes and connections depending on the 
need. However, it is not completely automatic since is the user that controls 
when the network should look for new associations. 
 
The user has the ability to set the network in a recording mode and stop it when 
needed. In this way the network will look for associations presented in between 
the time the recording signal is active, but this search in only performed in the 
time step at which the recording signal stops. 
  

Associations in the interactive mode  
To better understand the idea with the interactive mode the definition of 
association has to be enhanced. An association, in the sense used in this 
particular mode, is the formation of a node that represents a relationship 
between the activities of two or more nodes limited by a maximum that can be 
set.  
 
These relationships may represent a simultaneous activation of nodes, or a 
temporal relation among them, though in general is the same behavior.  
The temporal relations refer to the situations at which one node or a group of 
nodes get active or increase their activity after other has done the same. This 
may include many steps and relate many nodes.  
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As mentioned the simultaneous activation of a node is just a particular case of 
the temporal relationships at which all the activations are presented in the same 
time step. In this kind of associations the order does matter; for example, given 
two nodes a and b that belong to the same level may have two possible 
temporal associations; this is, If node b gets activated after node a got 
activated, it is a different association than if a gets activated after b.  
 
On the other hand, differences in time are not considered as different 
associations. If the order is the same, that means that if b gets activated one 
time step after a, it will be considered as the same association than b getting 
activated two or more time steps after a did so. 
 
The activation of an association must represent how much of the actual 
relationship is achieved, which implies that in the case of temporal relationships 
the activity must relate different time steps. To achieve that, the activity 
reverberation of the edges going to the association, and in particular their decay 
parameters, are used to enclose temporal information.  
 
The activity reverberation of an edge copies the real states of the node it comes 
from and decays depending on the decay parameter; this parameter is to be 
learnt by experience and has to do with how many time steps the whole 
association takes to be complete after the node sending information through the 
edge was first activated. 
 
The activity reverberation depends on the decay parameter in the following way: 

 

ܾ(ݐ) = 	 ܾ(ݐ − 1)ଷ

1 + ݁ିඥ(௧ିଵ)ோೖ(௧)
 

 
where ܴ(ݐ)is the decay parameter of the edge. 

 
To depict the behavior of the activity reverberation in relation to time as the 
parameter ܴ(ݐ) changes is depicted in the figure 6. 
 

 
Figure 6 Reverberation activity over time for different values of the reverberation parameter 
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To illustrate the temporal relationships a simple example of a sequence is 
shown in the figure 7. First, a sequence of three consecutive inputs is shown in 
the first three time steps, which happens while the recording signal is active. 
After, at the fourth time step, the recording signal is deactivated, thus the 
sequence is considered to be over and the association is formed as a new 
node.  
 
This new node has three inputs and each one of the corresponding edges 
possess different reverberation decay parameter; the first has a parameter 3 as 
it takes three time steps from the activation of the corresponding node until the 
whole sequence is over. The same way, the second edge will have a decay 
parameter 2, and the last one 1. 
 

 
Figure 7 Example depicting the learning of a simple sequence in four timesteps, by means of an association 

node. 
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The parameters of each edge can change over time through experience, 
tending to be the average time that it takes for the sequence, or association, to 
finish since the first activation of the edge. 
 

Gaussian growth and generalization 
Other construction rule that can be used in the interactive mode is known as the 
Gaussian growth. This construction rules creates nodes of the class Complete 
Gaussian Node which learning allows them to build concepts by generalizing 
characteristics of a set of inputs. 
 
The main idea of this construction rule is to create a new Gaussian node when 
a given input is far from the characteristics learnt by the existing ones. 
Therefore, a new class will be created from a set of sensors by means of new a 
new node.  
 
To set the sensors to be grouped in these classes, they must be selected by 
manually adding a Complete Gaussian Node fed by those sensors as the seed 
of the whole learning. Therefore, the Gaussian growth is only performed in the 
level 1 of the network fed directly by sensors, and consists on creating a new 
node if the ones existing do not fit the current input by the following measure. 
 

(ݐ)ܦ = 	
ܫ| − ߤ |(1− (ߪ

∑ (1 − )ߪ
ୀଵ ∑ ߪ

ୀଵ 	



ୀଵ

> 1 
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Network working cycle 
 
Updating the network is the process carried out at every time step. The 
following description depicts the implementation in General networks for both 
the manual and the interactive modes.  
 
The overall process of updating is performed after reading the corresponding 
input array and copying it to the sensors as real activity, then the process of 
updating starts. First the update of the real state is performed by propagating 
the real activity forward. The second step is to update the imaginary activity 
going backwards. Once both the activities have been propagated the recording 
signal is checked in order to decide whether to look for associations or not, and 
in any case the last step is always to perform training. 
 
 
 
 
 
 
 
 
 
  
 

 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
-Input format: The input for each time step must be an array of size n + 1 where 
n is the number of sensors the network has. The first element of the array must 
be the recording signal which is to be different to zero only if the network is 
expected to create associations. The rest of the inputs correspond to the value 
of the input sent to the sensors. In the network each sensor has an Id which 
corresponds to the order in which they were added; these ids are the order 
used to update them from the input array. If the size of the input is shorter than 
n+1 the inputs given will be used to update sensors from the first id until the end 
of the array. 
 

Train 

Update Real States 

Update Imaginary 
activity 

Look for 
Associations 

Recording 
signal 

Input Stream 

Yes 

No 
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Figure 8  Input format. 

 

Update Real states 
When updating the real states all the levels are checked starting at level 1, 
since level 0 or sensors level is first updated by copying the values from the 
input. From then on the nodes are updated by using their corresponding 
updating function r(t) level by level.  
 
After a whole level has been updated the inhibitions of the nodes are carried 
out. This is done at each level in order to avoid the propagation of activity of 
nodes that are to be inhibited. 

Update imaginary states (Predict) 
Once the real activity in the nodes has been set, the imaginary activity is 
propagated backwards from the last level to the sensors. The calculation is 
done as was described in the imaginary activities section. 

Look for associations 
When the recording signal is being used, this function performs the search for 
new possible associations when certain behavior in the signal is met.  
 

-The recording signal:  
The recording signal must be used to set the network in the interactive mode, 
meaning that associations are to be searched and automatically created when 
the user decides to. The recording is done for time intervals that are specified 
by this signal. The interval starts at the time step in which the signal changes 
from 0 to any higher value in the interval (0, 1], and it finishes when the signal 
goes back to 0.  
 
In the interactive mode this input is referred to as the recording signal; however, 
in the implementation and the interface of the toolbox this parameter is known 
as the emotional impact of the input. In other words, the recording is performed 
while there is a positive emotional impact in the input. 
 
To create associations the process is as follows: The search is performed after 
an interval of time steps has elapsed. During the interval an attribute of each 
node called reverberation of the node, is set to the maximum real state the node 
reaches within the interval. Similarly, at the time step at which the real state is 
found to be lower than the reverberation the attribute called count, starts to 
keep track of how many steps pass from that event until the end of the interval. 
 
Once the interval is finished the associations search starts; it begins at the 
deepest level going backwards to the sensors level, but it stops wherever an 
association is created. The search is carried out basically by grouping all the 
nodes that have first, a reverberation value at the previous time step higher than 
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an association threshold given by the user; and secondly, if the predicted stated 
is lower than the last reverberation or the node has no outputs.  
 
In principle the group can be of any size, but only a maximum number is 
associated depending on a parameter of maximum association size that is 
determined also by the user. The nodes of this final group are organized by the 
count parameter and so are added to a new association node. This allows 
differentiating associations including the same nodes but different time order. 
 
In case it is found that an association already exists, an update is performed on 
the reverberation parameters of the incoming edges in the node representing 
that association. This update is performed taking into account the count 
parameters of the nodes feeding the association tending to the mean of all the 
examples seen. 

 

Train 
When training the network two processes can be performed, the principal one 
has to do with the weights training, whereas the other is carried out at each 
node and is related to the update of certain parameters. 
 
In the manual mode no training is performed on the weights; meanwhile, in the 
interactive modes the only weights changes are those related to the imaginary 
activity. These are trained to represent a probabilistic relation between the 
activation of the nodes linked by the edge. The idea is to get a parameter that 
encloses how probable is that a node a feeding node b, was active during the 
recording interval if b had certain activity during the same interval. 
 
The other kind of training occur for some nodes that have parameters to be 
adjusted to the inputs, the Gaussian nodes are the only ones that train 
parameters as they adjust their mean and standard deviation values at each 
time step, unless a Gaussian growth is performed. 
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General description of the implementation 
 
The implementation of the toolbox is divided in three main block as depicted in 
the diagram below. The principal block is the network in which the functionality 
and algorithms as well as the structure and management of the networks are 
carried out. On the other end of the diagram is found the Graphical user 
interface which deals with all the graphics generation and interaction with the 
user as well as the information flow between the user and the toolbox. And 
finally to manage the link between these two main blocks there is an interface 
that deals with the communication and information flow between the network 
and the interface. 
 
 
 
 
 
 
 
As the focus of this work is on the design of the network the description below is 
focused only on the main block Network; therefore the descriptions regarding 
the implementation for the Graphics and the Interface blocks are not included. 
 
The whole system is created under an object oriented paradigm, and for the 
Network block basically there are three principal classes, the Networks, the 
Nodes, and the Edges. The Node and the Network classes are abstract 
classes, and the different type of nodes and networks are classes that extend 
the main ones implementing the abstract methods that differentiate them. 
 
These classes are created abstract in order to allow future implementation of 
new kinds of nodes or networks. However, in the current description the only 
network used is the so called General Network, which is designed to work in 
both interactive and manual modes.  
 
The figure 9 depicts a general class diagram where the main relationships and 
inheritances are shown. There appear all the node kinds that are available as 
classes that extend the abstract class Node. There are also special 
relationships for the nodes of classes Input, Association and Complete 
Gaussian.  
 
There are special relationships because, firstly the Association and Complete 
Gaussian are the only kind of nodes that are added automatically, reason why 
there are special processes to check for the need of new nodes and the 
functions to create them. 
 
Similarly, the Input nodes (sensors) need to be tracked in order to update the 
network correctly since these nodes are updated in a different way than the 
rest. There is also a need to track them in order to create groups and handle 
them, which makes easier to add and remove sets of sensors easily.  

 
 

Graphical User Interface Interface Network 
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Figure 9 Classes diagram of the networks and nodes classes. 

Main classes description 
 
The network is built as a collection of nodes of different kinds with individual 
characteristics, behaviors and even some special functions to be handled. 
However, all the nodes possess a similar basic structure to which particular 
features are added, and therefore all of them belong to the same basic class. 

The class Node 
The abstract class Node has methods and attributes that are shared by all the 
nodes, as well as some abstract methods to be implemented in any case when 
creating new types. Below are listed the shared attributes and the abstract 
methods to be implemented for new types. 

Attributes: 
 

- Id:  
It is a unique number that identifies the node and also corresponds to 
the index in the principal list of nodes in the network. 
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- state: 

It is a double field that contains the real state of the node. It is 
updated at every time step.  
 

- lastState:  
Retains the real state at the previous time step and is updated 
whenever a value is set for the atribute state.  
 

- predictedState:   
Is a double field that contains the imaginary state of the node also 
called predicted state. It is updated at every time step by the predict 
function.  
 

- lastPredictedState:  
Retains the imaginary state at the previous time step and is updated 
when a value for predictedState is set. 

  
- reverberation:  

It is a parameter used for creation of new association, it copies the 
real state as long as it’s value is higher than the one stored in 
reverberation and the recording signal  (emotional Impact) is active. 
Once the recording signal gets to 0, the reverberation is set to 0 
again.  
 

- lastReverberation:  
Retains the value of the previous value of reverberation. It is updated 
each time a value for reverberation is set. 
 

- count:  
Keeps track of the number of time steps the reverberation stays in an 
active state (value higher than zero). It starts to count only after the 
real state is set to a lower value than the one stored in the 
reverberation. It is set to zero when reverberation changes from zero 
to any other value. 
 

- incomingEdges: 
It is a list of objects of the class Edge that represent the edges going 
to the node. 
 

- outgoingEdges:  
Is a list of objects of the class Edge that represent the edges going 
out of the node. 

 
- depth: 

 It represents the level in the network at which the node is. 
 
- lastInput: 

 It is an array containing the values received as input in the last time 
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step. 
 

- lastPredictionInput:  
It is an array containing the values received as input for updating the 
imaginary state in the last time step. 

 

Abstract methods: 
- double  updateStateFunction (double[] statesOfInputNodes): 

This function takes as parameter an array which must contain the 
information from the nodes at the inputs of the given one, that are to 
be used to calculate the state. The order of the states in the array is 
assumed to have the same order that the nodes have in the 
incomingEdges list. The function must perform the calculation 
corresponding to the node type and return the result in the interval [0, 
1]. 
 

- void trainFunction (double relevance) : 
This is used if the node needs to update any parameter after the 
update is performed at the end of every time step. It receives as 
parameter a number in the interval [0, 1] that may be used to indicate 
the relevance of the example being trained in case of being 
necessary. In the General Network the only kinds of nodes that train 
values through this function are the simple Gaussian and the 
complete Gaussian nodes. 
 

- boolean addIncomingEdge(int origin, double weight, boolean 
inhibitory): 
This function must return a Boolean that indicates whether the edge 
was added or not. There is a default function called 
createIncomingEdge()  that receives the same parameters and 
returns a Boolean. The implementation of addIncomingEdge() can be 
just a call to createIncomingEdge(); however, it is left abstract in order 
to allow certain rules for each node; for example, at a buffer node it is 
not possible to add more than one edge, then this function is used to 
add that rule; however to add the corresponding object Edge, 
createIncomingEdge() must always be used. 
 

- restartFunction(): 
When a node is restarted it goes back to its initial state undoing any 
kind of learning and resetting default values. When a node is 
restarted all the edges and principal attributes are restarted; however, 
if more parameters are included in certain kinds of nodes this function 
should include the restart procedure of those parameters if needed. 
 

- String getInfo(): 
It returns a string where some information about the node can be 
added. This info is what will be displayed in the interface when 
checking the information of the node. It has no relation to the actual 
functioning of the network.  
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The class Network 
The same way as in Node, the abstract class Network has methods and 
attributes that are shared by any possible kind of network. It also has some 
abstract methods to be implemented when creating new types. 

Attributes: 
- Nodes:  

It is a list of objects of the class Node where the index of each 
element corresponds to the id of the corresponding node. 
 

- Levels: 
It is a list containing lists of nodes. Each list of nodes is a level, and 
points to the nodes corresponding to that level. The level id 
corresponds to the index in the main list. 
 

- inputNodes: 
It is a list containing the ids of all the input nodes. 
 

- inputGroups: 
Is a list containing lists of ids; each list contains the ids of all the input 
nodes that belong to a group. The id of each group corresponds to 
the index in the main list. 
 

- associationNodes: 
Is a list of nodes of the class AssociationNode that points to all the 
nodes of this class, is used to keep track of the existing associations 
and check the existence of a particular one when looking for new 
possible ones. 

 
- emotionalImpact : 

Is a field updated at every time step and is used for control, it is the 
one used as recording signal in the interactive mode and always 
takes the value of the first position in the input array. 
 

- lastEmotionalImpact: 
It retains the value of the emotionalImpact at the previous time step 
and is updated when a value is set for emotionalImpact. 
 

- depth: 
It’s an integer that represents the number of levels the network has. 
 

-  associationThreshold: 
It is used in the interactive mode. It is a number in the interval (0, 1) 
that indicated the minimum reverberation a node must have in order 
to be considered when looking for new associations. 

 
- maxAssociationSize: 

Used in the interactive mode, is an integer that represents the 
maximum number of nodes that can be associated by a single node. 
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Abstract methods:     
- void protected abstract void lookForAssociations(): 

This is the function called when associations are created 
automatically, the process should perform both the search for 
possible associations as well as the addition of the corresponding 
nodes. 
 

- void train(double emotionalImpact): 
This method is called at every time step while the emotional impact is 
higher than zero and must include all the trainings procedures at the 
network level. It also must call the train function of each node, which 
is done by calling the method train of the class Node. 

 

Basic management functions 
 
There are several basic functions that allow handling the network, those that are 
necessary to build a network are: 
 

- addNode(Node node) 
o This function receives as input an object of any subclass of 

Node, and adds it to the nodes list of the network, but also to 
different lists depending of the kind of node. It assigns an id to 
each node added taken from the index in the nodes list. 
 

- removeNode(int nodeId): 
o Receives the id of the node to be removed and performs the 

removal taking care of all the lists at which the node is 
included, and the updating of the ids of the rest of the nodes. 
The function will remove all nodes that have no input or 
associations with just one after the removal. So when the 
function is called more than one node can be actually 
removed. 
 

- addEdge(int originNode, int destinationNode, double 
imaginaryWeight, double realWeight, Boolean inhibitory) 

This function takes as parameter, first the origin and the 
destination nodes id. It also receives the initial weights for 
imaginary activity at the origin node, and real activity at the 
destination node. Finally, it receives a Boolean value that 
indicates whether the edge is inhibitory or not. When an edge 
is created an Edge object is added to each of the nodes, one in 
the outgoingEdges list of the origin node, and other in the 
incomingEdges of the destination node. 
 

- remove edge(int originNode, int destinationNode) 
o Given the ids of the origin node and the destination node, the 

edge is removed if it exists. This is done by removing the 
objects at the corresponding edges lists of each node. 
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The Tool box user’s manual 
 
In this section the main issues on the usage of the toolbox are explained. The 
functionality of the toolbars and menus are shown, as well as the characteristics 
of the interface and the way information is displayed. 
 
The toolbar is divided in two smaller ones; the first one is file toolbar that is the 
one with which the basic actions over files can be performed; these actions are 
described below.  
 

 
Figure 10 The file Tool bar in the tool box. 

 
- New network (Ctrl+N): Creates a new network of general purpose 

that, depending on settings and the input stream with which is fed, 
can be used in manual or interactive mode. 
 

- Open network (Ctrl+O): Loads a previously saved network in a .TNN 
file. 

 
- Save network (Ctrl+S): Saves the network in a TNN file in a specified 

path, if no such a file has been specified it will open a file dialog in 
order to select it. 

 
- Open input file (Ctrl+I): Opens an input file with which the network will 

be fed; it looks for text files (.txt). 
 

- Add nodes (Ctrl+A): Opens the add node dialog with which the nodes 
to construct the network can be added. 
 

Some of these functions are found in the File menu, plus the function Save 
network as which allows to change the destination file at which the network is 
saved. It also includes the Exit item (Ctrl+Q). 
 
 

 
Figure 11  The file menu in the tool box. 
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When add nodes is called the following dialog is displayed, allowing to choose 
the kind of node to be added. It displays a description of the function the 
selected kind of node performs and the quantity of nodes to add can be 
selected. 

 

 
 

Figure 12  The add nodes dialog. 

 
The second part in the division of the bar is the inputs toolbar which handles the 
way the inputs are fed into the network. It has four buttons, two of them are to 
read streams from the input files, and the other two are to generate random 
inputs. 
 

 
Figure 13  The inputs tool bar in the tool box. 

 
From left to right the buttons in this bar are: 
 

- Complete stream button: This will read the whole input file feeding the 
network step by step. It will do that several times depending on the 
parameter “Number of iterations over input file” that can be set by the 
user in the settings dialog.  
 
-Step button: This will only read one line in the input file at the time, so it 
goes one step at the time through the input stream. 
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- Random stream button: This will generate a random stream whit a 
number of steps equal to the same parameter used for the Complete 
stream button.  
 
- Random step: It will generate a single random input. 
 

While exploring the network and manipulating the nodes they will be shown in 
three different ways in relation to the mouse actions. The three states are 
normal, mouse over, and node selected. 

 

 
Figure 14  Different states for interaction with the nodes in the tool box. From left to right, normal state, 

mouse over state, and selected state. 

 
When clicking over a node this will get selected and while the mose pointer is 
over it its information will be shown. 

 
Figure 15  Information of the selected node displayed when the mose is over it. 

 
The same way, as the node is selected it can be removed restarted or its label 
can be changed, this is done by right clicking on the selected node. 

 
 Figure 16  Edit menu for a selected node.  
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Also when the node is selected its relation to other node can be edited by 
clicking the node to be related; this action will display a pop up menu that gives 
the options:  
 

- Add edge 
- Add inhibitory edge 
- Remove edge 

 
If there is no edge between the two nodes an edge in purple color will show the 
possible connection to be created in order to visualize it easier. 
 

 
Figure 17  Connections menue deployed on a node to be related to the currently selected node. 

 
 

Settings (Ctrl+T) 
The settings dialog allows changing the basic parameters for the creation of 
nodes as well as options for the input stream reading and the random input 
generation. 
 
In the upper part of the dialog the parameters for the creation of new nodes can 
be edited. These are the “Association Threshold” for the minimum reverberation 
needed on a node to be considered for new associations, and the “Maximum 
Association Size” which determines the maximum number of nodes admitted 
per association when added automatically. 
 
It also can be selected whether or not to “Allow Gaussian growth” for the 
creation of new Complete Gaussian Nodes. 
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Figure 18  Association parameters in the Settings box. 

 
The second part in the dialog allows changing the number of times the input file 
is read when the complete stream button or random streams are used. It can be 
also specified whether the randomly generated inputs are binary or not. When 
not selected the random inputs generated will be numbers in the interval [0, 1], 
otherwise they will be binary (values 0 or 1). 

 

 
Figure 19   Inputs reading and generation parameters in the settings box. 

 
 
Zooming and exploration 
 
For zooming the zoom bar or the scroll wheel of the mouse can be used which 
will enlarge the size of the nodes and therefore the whole network. 
 
To explore the network this can be moved throughout the scree by clicking at 
any empty space and moving the mouse while still clicking, the network will 
follow the movement of the mouse. 
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Results 
 
The objectives of the TNN model, as stated in the description are mainly related 
to both the transparency and the ability to perform deductive and inductive 
reasoning at the same time. The transparency on one hand is a point that has 
been stressed during the implementation and was explained in the 
corresponding section of this document. On the other hand the performance of 
the model on the proposed abilities for reasoning has not been shown directly 
so far. Therefore this results section is mainly focused on showing how this 
model deals with these kinds of reasoning through some basic examples. 
 

Descriptive examples 

Simple associations 
 
This example shows how a simple association is created when three inputs 
appear simultaneously and how partial information elicits certain prediction in 
form of imaginary activity.   
 
At the first time step of the example the three inputs are completely active as 
well as the recording signal. At the following step the inputs all go down to 0 and 
the association is created (Node 3 in figure 20). 

 
Figure 20 Depicts the differences betwwen the activation of an association node when the information is 

complete and when it is partial. 

 
This simple example can be used to show how the imaginary activity of the 
nodes is useful to predict or infer possible inputs out of partial information. To 
show this the network is fed with partial information; taken into account that in 
this example there is only one association the predictions of the sensors will 
only depend on that association. 
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If the input activates only the second sensor then the association will be active 
at approximately a 33%, and as the only examples shown to the network has 
been the complete association including the three sensors, the prediction to 
each of them is going to be a third as well. Note that if the pattern is complete 
the prediction at every sensor will be practically 1. 
 

Composed concepts and inferences 
 
The following example shows how a network that has created a composed 
concept out of two previous ones. In this case two different concepts are shown 
to the network separately, each of them relates two specific sensors. Afterwards 
the two concepts are shown at the same time and that creates another at a 
deeper level.   
 
When each concept is presented at different time the network creates an 
association node for each of them, called concept 1 and concept 2 in figure 21. 
Afterwards, when the two concepts are shown together the network uses the 
associations created previously to build a composed concept at a deeper level 
representing the two basic ones together.  
 
That means that no concept is created including the four sensors since deeper 
composed concepts are preferred by the construction rules. This can be seen 
as an inductive learning since the network is creating more abstract and 
concrete associations as it finds relationships in the activation of more basic 
ones. 
 

 
Figure 21  Depicts how to interpret the formation of  a concept from two previous ones. 
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When the network is fed again with just one of the two basic concepts one can 
see how the composed concept gets activated to a 50%. This partial activation 
allows the network to predict possible associations that could appear by means 
of the imaginary activity as shown in figure 22. 
 
The imaginary activation at node 5 representing the second concept, as well as 
in the two inactivated sensors, represents an inference from the known 
association between the two basic concepts. This activation indicates that there 
is a possibility of the two basic associations of appearing together, which is an 
association that has been learnt and is used for inference through imaginary 
activity in this case. 
 

 
Figure 22  Partial activation of a deep concept when only one of the concepts associated is presented in the 

input. 

 
 

Temporal associations 
 
Similarly, association will be created when the sensors are activated 
sequentially, and in this case the maximum activation of the association will be 
reached as the sequence is completed after increasing after each time step. 
This means that as more information in relation to the sequence learnt more 
real and imaginary activities there will be in the corresponding association. 
  
However if all the elements of the sequence are presented in different order 
than the one learnt, the association will increase its real activity but will never 
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reach the same value as in the case of the sequence being presented as it was 
learnt. 
 
The sequence taught to the network in this example is simply three sensors 
being activated consecutively. In figure 23 after training is done one can see 
how the activation in the association node increases accordingly to the amount 
of information as the sequence learnt is shown again. This increase appears 
both in the real and the imaginary activities, showing how through imaginary 
activity prediction on future and inference on past are performed. 

 
Figure 23  Depicts the process of activation of a temporal association when the sequence it associates its shown. 
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Predicting the most probable input form partial information 
 
In this example two different sequences are shown to the network. Both the 
sequences are of a three time steps length and both include the first two 
sensors as the beginning of the sequence. Then, the only difference between 
them is the last element, being in one case the third sensor and in the other the 
fourth one. 
 
These examples can resemble the two number sequences 1-2-3 and 1-2-4, 
which only differ on one number but one can be more probable to occur than 
the other. 
 
Here is shown how the imaginary activity also represents the probability of 
activation of a concept or sensor given certain activation at a deeper level. To 
do this, the second sequence (1-2-4) is presented to the network half of the 
times the other one (in this case 15 times). Then the probability of occurring of 
each is different and in principle one must be half of the other. 
 
When the network is fed with partial information (sequence 1-2), then the 
prediction on future input can be seen in the imaginary activity of the other two 
sensors; in this cases, as shown in figure 24, the imaginary activity of the third 
sensor is 0.5, whereas the one at the fourth it is 0.27. This implies that the 
probabilities learnt by the network into the weights of imaginary activities are 
tending to the actual probability of appearance of the sequences learnt. 
 

 
Figure 24  Imaginary activity as probabilistic inference for two different sequences that are parially equal. 
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Generalization 
 
Generalization is performed by the Gaussian growth, to show how this works a 
simple example is shown. 
 
In this example the network has only two sensors and the generalization is to be 
made over two different classes. Thus, at the beginning a Complete Gaussian 
Node is manually added receiving inputs from both the sensors, and afterwards 
examples from the two classes are shown from a distribution as the one that 
appears in the first table. 
 
 

 
Figure 25 Generalization by means og gaussian nodes. 

 
 
 

 Class 1 Class 2 
  Input 1 Input 2  Input 1 Input 2 

Mean 0,750 0,183 0,190 0,750 
Std deviation 0,041 0,062 0,070 0,041 

 
 
After training is performed with a hundred inputs for each class the result is a 
network with two nodes, each representing one class with the following 
parameters 
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 Class 1 (Node 2) Class 2 (Node 3) 
  Input 1 Input 2  Input 1 Input 2 

Mean 0,74 0,19 0,19 0,74 
Std deviation 0,063 0,081 0,086 0,063 

 
 
 

 
Figure 26  Generalization of two different classes by means of gaussian nodes and gaussian growth. 

 
 
The same way the weights for the imaginary activities of the sensors reflect 
basically the same values as the means learnt at the nodes. This shows that, in 
this case, the imaginary activity reflects the expected value of the input from the 
activation of a node. In other words, if for example node 3 were to have a real 
state of 1.0, the imaginary activity at the inputs would be 0.19 and 0.74 
respectively depicting the expected value of the inputs for each class. 
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Drawbacks 
 
Through these examples it is shown the basic idea behind the attempt of TNN 
to achieve both kinds of reasoning in the same model while keeping the 
transparency. However, these are achieved when inputs are shown in a very 
controlled manner which can only be accomplished if the problem is known 
enough by the user. However, in cases where the problem is not completely 
known setting the basic parameters can become a complicated task, and a bad 
selection can easily lead the network to an explosion of redundant associations.  
 
Redundant and unnecessary associations certainly make the network not really 
useful and affects the transparency as it reaches states at which the meaning of 
the concepts created are incomprehensible. 
 
To give an example of this if a sequence of four sensors is shown repeatedly to 
a network and the association threshold is set too low ( in this case 0.5), even 
when there is control by means of the recording signal there are at least three 
associations created for this sequence in the first level. Each of these 
associations is allowed by the constructions rules as they have different inputs.  
 
All of these associations get activated as the sequence is presented again, and 
therefore will be associated again at the next level. This process is repeated 
over and over again as the sequence is repeated creating an endless number of 
levels as depicted in figure 27. 
 

 
Figure 27  Explosive growth in lack of proper control. 

  
This drawback on the controllability affects the utility of the model and its own 
transparency creating a need for new approaches in relation to the construction 
rules. 
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On the Toolbox 
 
In relation to the main objectives set for the thesis in terms of the 
implementation, the toolbox turned out to be a very beneficial and easy to use 
instrument for the developing of the TNN.  
 
The goals of modularity and flexibility of the elements was achieved by means 
of a simple object oriented approach, that after deployed allowed a very fast 
editing which represented an advantage for experimenting with many changing 
ideas and designs during the development of different concepts of the TNN. 
 
The final interface fulfilled completely the desired characteristics for the 
application and even went beyond the requirements. The usability of the tool is 
based on a very simple and intuitive interface that, once the concept of TNN is 
clear, allows creating, training and manipulating a network in about three simple 
steps. 
 
The final result offers a great deal of freedom to get information of the elements 
of the network as well as to manipulate and customize them stressing the point 
of transparency on which the whole project is based.  
 
The ability to move freely through the network by just one click and as the zoom 
is easily manipulated exploring results into a very simple and helpful task, 
especially when the networks grow to some many nodes. 
 
In general the feedback that the platform allowed while it was being improved 
permitted highlighting different drawbacks of presented approaches for the 
TNNs and opportunely fostered new proposal to improve the model.  
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Discussion 
 
 
As implemented the TNN model allowed performing basic inferences, inductive 
learning and generalization for specific problems as depicted in the results 
section. All of the capabilities are achieved keeping the transparency as it is one 
of the main objectives, and in fact this characteristic is completely useful and 
understandable for the problems evaluated.  
 
However, all of the evaluations have been performed in relation to basic, 
controlled and constrained problems, reason why one could ask whether the 
ability for induction is still feasible if the data stops being constrained. This 
question arises as the symbolic structures are always manipulated by the 
definition of a concept represented in the inputs, but induction has not been 
clearly achieved for inputs which meanings or behaviors are not clear for the 
user at the design stage. 
 
Similarly, the growth control turns out to be a crucial issue for the equilibrium of 
the network, but it may get quite instable as the data becomes more complex. 
That fact sets a big challenge for developing automatic learning, but again it 
may be challenging even for problems that include an unknown behavior.  
 
Thus, coping with the control problem is an objective to be stressed in further 
development as the reality is that almost any real problem may include 
unknown behaviors and unpredictable complexity. But it is also important to 
highlight that there is an apparent tradeoff between the stability, the control and 
the transparency that is not easy to deal whit in the current model. Not 
controlling leads to instability and therefore interpretability and transparency get 
spoiled.  
 
When studying other models it is found that the problem on controlling growth 
has been addressed by many, and they always end up facing the so called 
combinatorial complexity or the biding problem. These problems arise when 
models create concepts by binding representations of intrinsic characteristics in 
the entities to be represented. This idea becomes problematic as the 
representations include more and more characteristics since the possible 
number of combination increases exponentially.  
 
Therefore, in the field there has been a quest for reducing the complexity and 
the amount of associations created when these kinds of problems arise. One 
important process with which possible solutions to the biding problem in real 
biological systems have been described is the need for attention (Holcombe, 
2009). Attention can be described in many ways and the real process is not 
completely known, however its possible need for solving the biding problem 
implies certain control on which inputs and the way they are bind at a given 
time.  
 
This overall idea of attention may have direct relation to the control signals in 
the TNN model, which allow proper performance by stating when to associate 
and selecting the inputs that are to be related. In that sense the control and the 
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constraining of inputs proposed is arguable in terms of solving the binding 
problem, but then again it is not a feasible solution for automating the process. 
In order to achieve automatic selectivity, for associations many other features 
have to be included in the model. 
 
Some other issues are also related to the biding problem beyond the complexity 
and growth of the structures. Typical examples are connected to the ability of 
assessing proper meaning to the associations and are those including relational 
statements of the kind “Mary loves John”. That relation could be seen as two 
subject or concepts bind by a relation called “love”, or a relation among three 
particular concepts that are bind together; however, the original statement does 
not imply the complementary “John loves Mary”, but when the relationship is 
created as described both the statements can mean the same, which is not 
necessarily the case. 
 
For this example the TNN model may manage the two possible statements by 
means of two different associations having the possibility of interpreting them 
differently. This is possible if the statements are presented as different 
sequences, then each sequence will represent a different concept to which a 
distinctive meaning could be assessed. However this implies a symbolic 
manipulation that requires that the three concepts are clear and again the 
design is limited to a symbolic well understand behavior of the inputs. 
  
In general, this discussion and the development of the model are related to a 
broader set of questions on the need for the development of models capable of 
really creating and understanding concepts and not only perform some 
manipulations on specific symbols to solve particular tasks.  
 
When analyzing the existing models for cognition and problem solving one may 
have the sense that generally all the applications aim to solve a particular task 
that the researches have in mind and leave many details apart. This fact is 
reasonable as the goal is based on solving specific problems; however it is a 
very narrow perspective if the goal is to enhance the performance and capability 
of models, or aiming for a more general problem solving approach.  
 
The fact is that, as mentioned by Ekbia (2010), there is a utilitarian notion of 
human life as being composed by a set of problems and human intelligence as 
nothing but a capability to solve them. The issue with this idea is that it 
somehow neglects that the human brain, and in fact any other brain, even when 
capable of solving problems by sequences of steps is rather a dynamic system 
with many structures shaping behavior, and the basis of its characteristics 
should never be confused with that particular ability of describing problems by 
sequences or by any other semantics.  
 
For example, when one focuses on an specific problem and asses intelligence 
based on the ability of performing clear steps for reaching a desired solution, 
one must also think that in reality humans do not always reason in a correct way 
(Bringsjord,2008). In fact, psychological works by Kahneman, Tversky and 
colleagues suggest that human cognition might be “non-rational, non-optimal, 
and non-probabilistic in fundamental ways” (Chater, Tenenbaum and Yuille, 
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2006). Thus, it is questionable to try to emerge intelligence from a fact that is 
not completely related to the actual phenomena being modeled. 
 
Nevertheless, this partial definitions on intelligence are common to many 
models, for instances in the SOAR architecture (University of Michigan, 2012) 
the ultimate goal in intelligence and complete rationality is settled as the ability 
to use all available knowledge to solve any problem the system encounters; but 
then again, if rationality is inspired by human behavior, the question is why such 
a crucial definition does not take into account the fact that humans never 
consider all the possibilities when taking a decision, but just some particular 
ones that depend on parameters of which we may not be even conscious at all  
(Overskeid, 2008). 
 
On the other hand, there are approaches such as the epigenetic robotics that 
emerges from the need of robots to understand and develop in relation to their 
environments, and rejects more classical views of robotics in which the 
capabilities of robots are completely based on pre-programed behaviors that 
removes any possibility of concept creation and development. This approach 
also states the absolute need for the robots to have a body with which to 
explore and verify knowledge, which implies that any model to develop 
knowledge and intelligence must be available to interact with the environment. 
 
In this sense the TNN model lacks crucial characteristics as it cannot interact 
with its environment at all, and actually its development is not related to any 
kind of interaction beyond the inputs it receives. In fact interaction may be 
needed to achieve the automatic characteristics that would remove the need for 
the control signals that are implemented in the current model. 
 
Nevertheless the TNN model is still being developed, and further versions of it 
may take into account lessons from the present work and existing models and 
approaches that have faced similar problems. Therefore, as a consequence of 
the discussed issues and ideas, some particular future work considered 
relevant for the TNN is mentioned in the following section. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



56 
 

Conclusions 
 
 
 

- The toolbox implemented successfully satisfied the needs and met 
the requirements under the constraints given by the partial 
development of the TNN model. 

 
- Basic inferences, inductions and generalizations achieved are linked 

to the symbolic manipulation of the input grounded on previous 
knowledge of the problem by the user, reason why there is not 
enough information or evidence to claim that in general the model is 
capable of the two main reasoning capabilities aimed.  

 
- The emphasis on symbolic meanings of the inputs in the problems 

definitions may be restricting the model into becoming completely 
symbolic one. 

 
- The model still requires of great deal of control signals and thresholds 

definitions for proper performance, so that the scalability and creation 
of solutions for dynamic and complex problems is not yet feasible with 
the current model. 

 
- The imaginary activity allows generating inferences and predictions 

by means of probabilistic relations; therefore it should be used in the 
learning rules as it represents big part of the knowledge in the 
network and may be of utility to infer the relevance of a given input.  

 
- Despite the information given by the imaginary activity, its 

interpretability in some cases is still too ambiguous as it encloses 
different concepts in just one parameter; thus if inference and 
prediction or expectancy are to be interpreted separately there should 
be a difference in the treatment of this parameter for each of them. 

 
- The introduction of outputs and manipulation of inputs in relation to 

the knowledge needs of the system and specific goals may be 
needed to achieve automatic learning. That is, interaction with the 
environment may be mandatory to reach the ambitious goals of this 
model. 
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Future work 
  
Here some issues considered to be relevant for future development of the TNN 
are mentioned as well as possible hints for their solution. 
 
- Firstly, with the model as implemented when an association is created it asses 
the same relevance to each of its inputs; however, it can be sound to argue that 
not in every case the concepts associated give the same amount of information 
about the concept represented.  
 
A toy example of this is an association that represents the concept “apple”; let’s 
assume that this concept is formed just by biding together the concepts “apple 
shape” and “green color“. It is highly probable that “green color” is associated to 
many concepts, whereas “apple shape” may be associated only by the concept 
“apple” (if all the apples were green); so the concept “apple shape” gives much 
more information to this association than what “green color” does. In, other 
words, the relevance of the “apple shape” concept is much higher to the 
association “apple” than the color green. 
 
To solve this it is suggested that weights for the real activity must be included in 
the edges. The meaning of these weights, as mentioned, would be the 
relevance of each input, which if managed correctly may keep the transparency 
of the model intact and give it better capabilities. 
  
- Another issue, in this case related to controlling the growth of the network, is 
that stability depends largely on the association threshold, and a low threshold 
normally leads to an uncontrolled growth; but even worst, the problem is 
extended as the definition of “low value” in general is different for any given 
situation.  
 
To partially cope with this problem an incremental threshold is proposed. The 
idea is that as more abstract the concepts are the more stable they should be. 
This means that at the bottom levels the association could be created and also 
deleted easily, but the deeper the concepts being related are, the more the 
threshold should be increased to ensure that associations created bind clearer 
concepts at each level. However, there will still exist a dependence on the 
nature of the problem being addressed. 
 
- It was also shown that by means of the imaginary activity it is possible to 
achieve inferences and predictions by means of probabilistic relations; however 
these are related in the same way and represented by the same unique value. 
This unique value affects the interpretability of the results as it is hard to tell 
what of the possible meaning the activity has at a given point, or in fact, the 
meaning may always arise from a mixture of all possible interpretations, which 
is against the supreme goal of transparency. Therefor a different treatment for 
either the interpretation or the computation of the imaginary activity is 
suggested. 
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- Something also related to the amount of associations created and its control is 
the forgetting rules that have to be implemented. The goal of these rules is to 
delete certain associations that are not really relevant as may have been 
caused by noisy inputs or other situations. 
 
However, though not currently implemented, the forgetting rules in the model 
have been proposed to be simply based on the usage frequency of the 
associations, meaning that if an association does not get activated in a “long” 
time it will be deleted.  
 
That idea presents to main problems in practice. First, the amount of time steps 
that have to be elapsed in order to delete certain association is defined in a too 
ambiguous way. A wrong definition of this time may lead to instability, in this 
case because there will be forgetting of relevant information as concepts are not 
presented in a certain period, and also may avoid the creation of deeper 
concepts.  
 
Secondly, the basic idea of this rule may be ignoring that some associations 
might be extremely relevant but at the same time very rare, then the importance 
of an association is not taken into account here. 
 
Therefore, it is suggested that certain kind of relevance is assed to each 
association in order to control forgetting, which at the same time may help in 
controlling growth of the whole network, but without the risk of deleting curtail 
information because of an arbitrary definition of time thresholds for forgetting. 
 
- In relation to the problems evaluated and the way they are presented, more 
emphasis on different kinds of inputs and evaluations are highly recommended 
as the model and its performance as it is now, is strongly directed to be a 
symbolic model with all what that implies. The model should be available to 
create representations beyond the restrictions and reach the interpretation the 
user wants without a previous forced definition. 
 
- Finally, as mentioned in the previous subsection, there is a strong need for 
interaction in order to develop intelligent systems, then the model has to be 
focused more in the creation of concepts and behavior based on interaction and 
not only on extracting information from the inputs. Thus, a more context based 
and interactive learning both for the model and the implementation is suggested 
for a better and more interesting progress. 
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