
1

Transparent Neural Networks, an Implementation

Master´s Thesis in Applied Information Technology

JUAN SEBASTIAN OLIER

Department of Applied Information Technology
Division of Intelligent Systems Design
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden, 2012
Report No. 2012:010

2

REPORT NO. 2012:010

Transparent Neural Networks, an
Implementation

JUAN SEBASTIAN OLIER.

Department of Applied Information Technology
CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden 2012

3

Transparent Neural Networks, an Implementation

Master Thesis in Applied Information Technology

JUAN S. OLIER

© JUAN SEBASTIAN OLIER, 2012.

ISSN: 1651-4769

Technical report no 2012:010
Department of Applied Information Technology
Chalmers University of Technology
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

4

Abstract

The present work is related to a research project denominated Transparent
Neural Networks (Strannegård 2012); this project aims to propose a model
capable of higher cognitive functions such as deductive and inductive reasoning
by means of transparent, simple and interpretable structures and functionalities.
This simplicity includes interactive building rules based on the manipulation of
basic structures and elements. It considers characteristics of the developmental
robotics and cognitive modeling.

Taking all of these concepts and goals as a basis, the main objective of this
thesis is to help in the development of that model by implementing a toolbox
that allows the creation and evaluation of the networks leading to conclusions
and meaningful feedback that fosters proposals for further development on the
model.

5

Contents

Introduction ... 6

Background ... 6

Transparent Neural Networks ... 15

The implementation .. 18

The building blocks of a TNN .. 18

Networks construction modes ... 26

Network working cycle ... 30

General description of the implementation .. 33

Results .. 44

Descriptive examples .. 44

On the Toolbox .. 52

Discussion .. 53

Conclusions .. 56

Future work ... 57

References ... 59

6

Introduction

The goals of the Transparent Neural Networks project, to which this thesis is
directly connected, are related to achieving higher cognitive functions such as
deductive and inductive reasoning, as well as automatic learning by means of
transparent and interpretable structures. But all of these objectives are in turn
related to problems that have been studied in different fields and which
solutions imply applications of huge relevance.

In order to contextualize the concepts associated to this model an introductory
description is presented depicting some approaches that aim to cope with
problems similar to the ones faced here. These approaches correspond to
some ideas and models emerged throughout the development of the fields of
cognitive modeling, problem solving and robotics, and that are of relevance for
understanding the challenges and needs addressed by this research project.

Background

The challenge of creating systems capable of mimic reasoning and cognition
has been addressed by many and from different perspectives and disciplines.
There are some proposals broader than others, but the main goal has been
mainly related to the ability of creating concepts and manipulating them in order
to draw conclusions and deliver responses.

Most of the approaches could be classified in relation to the way information is
organized and processed; the general division usually is into emergentist,
symbolic and statistical or probabilistic models. Among these there are certain
conceptual differences that give advantages and disadvantages to each as will
be shown.

In the mentioned classification the division into Symbolic and Emergentist -also
called non-Symbolic- approaches is broadly used in the field. They basically
differ in the way they create, represent and manipulate concepts and
knowledge. The symbolic perspective in turn proposes that cognitive systems
use specific symbols as a representation of knowledge and find solution by
carrying out processes on these representations. Complementarily, the
emergentist perspective proposes that the knowledge is represented in a
distributed manner into basic elements, and processing is carried on this
distributed knowledge in a complex and meaningful way. (Troy D, 2003)

Another way of classifying the models is by the top-down and bottom-up
differentiation. Top-down perspectives assume that the basis of cognition lays
on the symbolic abstractions and therefore only that is needed to achieve
intelligent behavior, thus the relevance of whatever structure that is below the
whole process can be neglected. On the other hand, bottom-up perspectives
assume that intelligence and cognition emerge from the behavior of atomic
components in a structure and the way they relate to each other. They argue
that it is possible to achieve abstract associations from basic processes at the

7

bottom of a structure. (McClelland, Botvinick, Noelle, Plaut, Rogers, Seidenberg
and Smith, 2010)

However these classifications are generalizations, there are also models that
combine the approaches in attempts to achieve better results but they do not fit
completely in any on the groups above. To better understand the characteristics
of each of the approaches they will be described below by giving some notions
about their utility as well as advantages, disadvantages and discrepancies
among them.

Emergentist approaches

The emergentist approaches state that any behavior appears as a consequence
of basic changes happening at a very low level; cognition and abstract
representations are therefore seen just as a consequence of processes carried
out in underlying structures. The main examples of this perspective are the
connectionist approaches; in these behavior emerge from the connections
among simple processing units that acquire knowledge through experience by
adjusting strengths between connections or either creating or removing them.
(McClelland, Botvinick, Noelle, Plaut, Rogers, Seidenberg and Smith, 2010).

The emergentist approaches propose alternatives most of the times inspired by
nature, or at least by our understanding of it. The idea arises from the
observation of how every structure around us emerges as patterns created by
the interaction of smaller and simpler processes. Consequently, cognition also
seems to be an emergent result of the interaction of simple and more
understandable units.

Based on that perspective, and considering that the brain is based on the
interconnection of neurons, it is assumed that is possible to have an emergent
behavior from the simulation of simple units that, at least in principal, might
mimic the behavior of real neurons.

This whole idea is the foundation for many connectionist approaches and
specially the artificial neural networks. These lasts attempt to mimic the
behavior of real neural nets by interconnecting units that share information
through weighted signals and activation functions.

The artificial neural networks have been seen in different ways as a feasible
model of cognition and many claim that they not only model the cognition, but
also simulate the actual underlying processes (Sharkey, 2009). Nevertheless,
many arguments against connectionism and artificial neural networks strongly
highlight that, in comparison to real neural networks, the models are
oversimplified: after all, the real biological process is not yet completely
understood and it could happened that certain assumptions may lack
foundations.

For instance, some other proposals on connectionism claim that the
connections in a network should not rely on weights. This is the case of the
HTM model proposed by Numenta. They argue that though in real neural

8

networks synapses might present a phenomenon similar to the one represented
by the weights, their values tend to be random or volatile, therefore it cannot be
safely assumed that calculations in the brain actually rely on those weights
(Numenta Inc., 2011).

Nevertheless the artificial neural networks have been subject of research for
many years; some have perceived them as model of cognition and others,
maybe more successfully, as an optimization tool.

In the case of simulating cognition a good performance has been found based
on fitting the network’s response to some psychology experiments (Sharkey,
2009). However, this kind of experiments are limited to a specific task, and even
when the data is fit, it cannot be said that the networks mimics the process itself
or even more risky that it is comparable to actual reasoning; in fact, it is really
hard to interpret the actual behavior in the network that leads to the result, but it
is known that at the end it performs nothing but an error minimization task.

Moreover, traditional neural networks are dynamic systems that can accomplish
very good performance on optimization and data fitting. This is why most of the
development on this field has been done aiming to solve particular problems
hard for traditional mathematical optimization methods; actually most of the
variations of the artificial neural networks have emerged to fit particular
optimization problems. But when it comes to the ability of modeling cognition or
actual reasoning based on them it is not so clear that these structures possess
it.

Nevertheless artificial neural networks are not the only connectionist model;
some other models have been proposed based on connectionist ideas,
specially aiming to create the ability of learning concepts and use them for
inference. An example of a connectionist model is the Shrutí architecture (The
International Computer Science Institute, 2012).

Shrutí is an architecture that focuses mainly on drawing inferences which its
authors proclaim to be performed “effortlessly, spontaneously, and with
remarkable efficiency”. The project attempts to show how a connectionist model
can be capable of encoding semantics, systematic mapping and knowledge
about entities, and also be available to perform reflexive inferences in a fast and
efficient manner. This is done by creating structures that represent schemas by
focal cells clusters and generating inferences by the propagation of rhythmic
activity over those clusters. Thus, all information processing is based on
temporal synchrony throughout a structured neural representation. This fact is
claimed to demonstrate how such a connectionist structure is sufficient to
achieve rational processing in the brain. This model is related to different
projects related to decision making, problem solving, and planning and
language acquisition (The International Computer Science Institute, 2012).

In general connectionist models are capable of simplifying and generalizing
data from complex inputs to more reduced spaces in the way of inductive
learning. Also, some connectionist models have been merged with other
approaches to achieve better capabilities as will be described further below.

9

Probabilistic approaches

Probabilistic models can be classified mainly as top-down approaches that
relate concepts and perform selections depending on probabilities learnt
through experience. The most basic and classic yet relevant example of this are
the Bayesian Networks.

Probabilistic models are defended as being capable of yielding great flexibility
for exploring the representations and inductive biases that underlie human
cognition (Griffiths, Chater, Kemp, Perfors and Tenenbaum, 2010). That
assertion is based on the assumption that whatever behavior a system displays,
its causes can be easily described by means of probabilities.

This flexibility at the time of exploring inductive behaviors is a characteristic that
represents an advantage when it comes to fully understand the system and
what it represents. In fact, this idea has been used against Bottom-Up and
some connectionist models by arguing that, even when both kind of models
could successfully address similar problems, the way emergentist models solve
them is not necessarily as understandable or transparent to the user as a
probabilistic model could be (Griffiths, Chater, Kemp, Perfors and Tenenbaum,
2010). However, reality is that mathematics behind probabilistic inferences can
easily go beyond unaided intuition, and even simple rules can become
intractable as models are scaled up to fit real world problems (McClelland,
Botvinick, Noelle, Plaut, Rogers, Seidenberg and Smith, 2010). That may
contradict the claim of probabilistic approaches being capable to draw more
understandable descriptions of reasoning and cognition.

Nonetheless, this leads to a more general topic than the one concerned to this
document but that still affects the fundamentals of the Transparent Neural
Networks model to be introduced. This is the more general question on how
intuitive the fundamentals of cognition or reasoning could really be. As
mentioned by (Chater, Tenenbaum and Yuille, 2006) people struggle not only
with probability but with all the branches of mathematics, and this does not
changes the fact that, for example, as hard to understand as it could be, Fourier
analysis is fundamental in audition and vision in biological systems.

Therefore, it may be sound to state that analyzing the complexity behind the
model or its easiness of interpretation may not be the best choice to compare
performance. But regardless of which could be the best measure, it is also
undoubtedly relevant to identify biases in the measures that may be favoring
particular interpretations of reasoning or cognition when proposing or evaluating
a model.

As the field has been broadly focused on architectures and structures such as
those in connectionists or rules based models, the performance measurement
has to do with their characteristics and the ideas behind them, such as logic and
heuristics (Griffiths, Chater, Kemp, Perfors and Tenenbaum, 2010). This kind of
biasing in the analysis may of course affect models that are based on different
perspectives such as the probabilistic models. However, regardless of the

10

models that it could benefit or affect, this kind of biasing may lead to extremely
dangerous assumptions; an example of this is treating logic almost as an
equivalent to the reasoning itself. Biasing the conception of reasoning in that
way is indeed such a strong assertion that may cause a tremendously narrow
view on the problem.

In any case, the problem on biasing the analysis, and therefore the assessment
of performance of a model may come from any perspective. In a certain way
probability, or mathematical models in general, can be seen as a description of
thought (Chater, Tenenbaum and Yuille, 2006), and that assertion might be
useful for many problems, however one should bear in mind the it will only be a
description and not thought itself either its equivalent.

To conclude, aside of the assertion on reasoning or intelligence, it can be said
that probabilistic models have the abilities to infer and generalize, and that allow
solving problems and creating some useful behavior that may be of interest for
particular applications such as those found in data mining and machine
learning.

Symbolic approaches

The symbolic approaches assume that cognition can be modeled by
manipulating symbols and relations among them by means of structures and
rules; in this group can be included approaches such as the logic and rule
based systems. These models are mainly used as representation systems and
are capable of inferences and deductive learning. However, they are criticized
for lacking the ability of inductive reasoning as they normally are based on
structures or concepts designed by the programmer but not learnt through
experience.

From the very beginning of formal computation and the first ideas on AI,
symbols and specially logic was considered as a basic mechanism by which
minds work. The idea is that symbolic representations stands at the very core of
how intelligence work, and therefore the focus is set on what symbolic
knowledge an agent would need in order to behave intelligently
(Bringsjord,2008). Then this perspective focuses not on how the knowledge
arises but on how it should be used.

The symbolic approaches envision cognition as some sort of computer
programs and describe aspects of cognition and their emerging results as a set
of basic computational processes, claiming that this idea could produce, for
example, predictions with performance comparable to humans (Lewis, 1999).

A foundation of this approach is the so called “physical symbol system
hypothesis” proposed by Newell and Simon. Its idea is to use basic symbols as
representational entities, combine them to form expressions and manipulate
those expressions to create even new ones. Their claim stated that "A physical
symbol system has the necessary and sufficient means for general intelligent
action", and is an idea that has been the foundation of massive efforts in
research in AI (Sun, 2001).

11

Many symbolic representations aim to capture and organize knowledge in the
form of structures or architectures. The idea for the structures is to organize
knowledge by creating relational groups of symbolic entities that may in turn
contain or be contained by other groups. A well-known of these representations
are the semantic networks; these networks mainly used for language
representation and processing, are formed by labeled nodes representing
concepts related in turn by labeled links (Sun, 2001).

An example of a symbolic architecture is the SOAR project (University of
Michigan, 2012). It is a production rule system where problem solving is
basically related to representing a search space. All the decisions are taken by
using the interpretation of the sensory data and the compilation of relevant
knowledge coming from previous experiences. The main goal is basically to
create a general problem solver where every problem, regardless of its
characteristics, is defined as a search space (University of Michigan, 2012).

On the other hand, many symbolic models have used logic as a
representational language. For many the idea of logic has always been a part of
the supreme goal of developing intelligent machines; the promises back in the
50s was on using logic as the mechanism to build computational artifacts
available to even exceed human minds in terms of intelligence. The truth after
many years of research is that the fundamental ideas based on formal logic
have failed to accomplish the task. Nevertheless, people still believe in logic
and it plays a fundamental role on many algorithms and, as mentioned before,
is used to analyze performance in different kinds of models (Perlovsky, 2007).

Many go back to Aristotle to describe logic and argue how even from syllogisms
intelligent responses can be described. The main element of this argument
arises from the idea that Aristotle inferred that certain context-independent
structures can describe and predict human thinking. However, it has to be also
taken into account that these studies on logic came from the search of a
supreme way of argumentation but never as a theory of mind (Bringsjord,
2008).

Thus, to talk about logic as a model that describes human thinking may be too
broad in the sense that argumentation is a particular characteristic of language
and its consequence. But the fact that language, and after it logic, emerge from
reasoning and thinking does not necessarily mean that they are the basis from
which those phenomena emerge. In other words, arguing that a consequence
can be also the basis of the same process may lead to some partial
understanding of the problem.

Nevertheless, approaches based on logic have been successfully implemented
to solve particular problems often related to symbolic manipulation. Many
problems in language processing have been addressed by these approaches,
complemented in many cases by probabilistic models. Other broadly explored
area is the one concerned with constrain satisfaction problems, which are
addressed by logic based models and particularly bi-valuated systems.

12

Logic approaches have also evolved during the last decades to allow more
flexibility than the formal logic, which as limited to discrete truth values runs into
troubles easily. Just in 1902 Russell showed a whole in formal logic which
caricature is described by this simple example: “A barber shaves everybody
who does not shave himself. Does the barber shave himself?” (The Cambridge
Handbook of Computational Psychology , 2008 pp. 127-169). Any possible
answer to this problem -yes or no- is contradictory.

Problems like that and later more complex ones, led to the rise of concepts
such as multivalued and fuzzy logic, where variables can take many values or
virtually any value in an interval between the classical true and false. These
more flexible approaches have allowed addressing a broader range of
problems, but have also shown the need to merge logic and other approaches
to achieve better results as described in the next subsection.

Hybrid models

It seems reasonable to aim for a model that includes both top-down and bottom-
up ideas as they can be complementary. For example, symbolic approaches
that are mainly concerned with deductive reasoning may be complemented by
connectionist approaches that are mainly focused on inductive learning (d’Avila
Garcez and Lamb, 2011). Thus, it is easy to advocate for the search of such a
model and indeed that is not a new idea, nonetheless as easy to argue about its
reasons not so easy is the task of developing it.

A hybrid model mainly concerns with merging characteristic of very
heterogeneous systems such as the symbolic and connectionist models. These
two approaches have very different types of representation, learning and
processing; therefore, most of the proposals are architectures that attempt to
use symbolic perspective for manipulation and connectionist approaches for
learning. In other words, a top-down system that is fed by a bottom-up one
(Troy D, 2003).

A way of seeing this, proposed by Troy (2003), is that cognition can be
considered as a cognitive continuum with two ends, at a highest end the
symbolic processing is carried out, which could be interpreted as the
equivalence of the prefrontal cortex in the human brain. At the other end of that
continuum, the lowest level is related to the most basic input processing, which
in the human system could be equivalent to the reflex nerves. But still, the link
between the two ends of that continuum is not yet clear.

Hence, though in hybrid architectures the sub-symbolic systems present
favorable issues related to learning, the symbolic processing is still mainly
related to representation and inference which transfers many of the symbolic
systems flaws to the hybrid structures (Sun, 2001). This means that at the
symbolic level the structures are still highly dependent of a knowledgeable user,
and therefore not much is really left to learning through experience (Troy D,
2003).

13

Nevertheless, the usage of various approaches certainly enhances the
capability of the models. Several architectures have been developed based on
hybrid structures and some of them have achieved reasonable results and are
known as relevant cognitive architectures, among them ACT-R is a typical
example.

ACT-R (ACT- R Research Group Department of Psychology, Carnegie Mellon
University, 2012) is an architecture that is born with the goal of understanding
human cognition and how knowledge is organized and used to produce
intelligent behavior. This architecture has been evolving for many years
reaching interesting results in various fields related to cognition.

This architecture has been used by researchers to produce data on theories
that can be directly compared to experiments with human participants. This
allows verifying models on cognition directly by means of the architecture.

Some of the models created with ACT-R include: learning and memory,
problem solving and decision making, language and communication, perception
and attention, cognitive development, and individual differences.

ACT-R as a hybrid architecture has both symbolic and a sub-symbolic
structures; the symbolic one is a production system that matches the state of
the system to previously learnt symbols. The sub-symbolic structure is a set of
parallel processes that control many of the symbolic elements through a series
of equations, and in many cases in accordance with utility functions. (ACT- R
Research Group Department of Psychology, Carnegie Mellon University, 2012)

ACT-R shows many of the advantages of the hybrid models, and in fields as
applied psychology it has grown interest on more integrated cognitive
architectures. However, it still exhibits deficiencies typical to these architectures;
for instance and maybe the most important one, most of the knowledge
acquired depend completely on the programmer and not on learning from the
environment. (Troy D, 2003)

Another known cognitive architecture that uses a hybrid approaches is the LIDA
architecture. LIDA uses both symbolic and connectionist approaches merged
together. The architecture is based on a cognitive cycle that goes from
perception to action.

During this cognitive cycle several aspects are taken into account but always
with special emphasis on the roles of feeling and emotions. Emotions are used
for conceptualization and are related by associative relations; they guide actions
and what is called consciousness in the model, which affects decision making at
every level. (Ramamurthy, Baars, D’Mello, Franklin, 2006)

As these two examples, many others have also shown that in general, merging
approaches is a feasible way to improve performance, and that keep on
generating new points of view on the overall problem solving goal. However,
most of the approaches have been based on a cognitivist perspective but it

14

does not mean that it should be the only one, it could be reasonable to evaluate
others or even hybrid approaches at that level; An example could be to focus on
more behavioral models aside of the cognitive perspectives or as their
complement, in a similar way as they have been opponents and complementary
approaches in psychology.

Similarly, a very relevant approach to the goal on general problem solving that
leaves aside the constraints of architectures aiming for specific tasks is the
developmental or epigenetic robotics described below.

Epigenetic robotics

The goal of epigenetic robotics, also known as developmental robotics, is to
model the development of cognition through the usage of elements from
different sciences and approaches, such as robotics, neurophysiology,
psychology and artificial intelligence, where the results may be a beneficial
exchange among all of them (Metta. Giorgio and Berthouze. Luc, 2005).

This is carried out by the study of the development as a process in which
modifications on cognitive structures lead to an overall emergence of abilities,
which in human basically happens form the embryo to the fully developed adult.
Here, development is seen as an open-ended adaptation process generated by
means of interaction with the environment (Metta. Giorgio and Berthouze. Luc,
2005).

The whole idea emerges from the need across the cognitive sciences for
models that can scale up beyond specific domains and scenarios, and that at
the same time, can display a developmental trajectory and are transparent in
their construction and concepts (Anthony F. Morse, Joachim de Greeff, Tony
Belpeame, and Angelo Cangelosi,. 2010).

Evidently pre-programing for specific behaviors cannot give solutions to
scalability problems as the systems are expected to work in too complex and
unpredictable environments; that as the limitation set by constraints and
assumptions made by the programmer usually fail when the systems are faced
to real problems. Therefore the best is to make the systems in charge of their
development by giving them the ability of verifying their own learning and the
possibility of growing their cognitive structures freely towards broader goals
(Stoytchev. Alexander, 2009)

However, as the systems are expected to develop by means of interacting with
the environment, a clear limitation and crucial aspect in the design is the actual
body of the robot in the sense that it will constraint any interaction and therefore
the whole process. Body and brain cannot be separated, and at the end is the
body what shapes the brain (Asada, Hosoda, Yasuo, Hiroshi, Toshio,
Yoshikawa, Ogino and Yoshida, 2009), reason why in epigenetic robotics the
design of the body, in terms of sensors and actuators, plays a very important
role in the abilities that can be achieved and therefore great deal of the research
is focused on this fact.

15

Epigenetic robotics is a relatively new field, but it has shown interesting results
as many limitation and constraints of other approaches are overcame by means
of a more freely development. Nevertheless, the main fuscous on research has
been set on sensory-motor development leaving aside higher functions as the
ones cognitive models and others pretend, such as inductive and deductive
learning or concept formation and manipulation.

Epigenetic robotics is in fact a source of inspiration for the model related to this
thesis and presented below as even when the ideas are mainly focused on
sensory-motor approaches, they seem promising for applications at higher
functions as the ones aimed here.

Transparent Neural Networks

The Transparent Neural Networks (TNN) model proposed by Claes
Strannegård (Strannegård 2012) is being developed since 2011 at Chalmers
University of Technology and the University of Gothenburg. Until the writing of
the present thesis it is a theoretical model which has been presented in different
conferences at the mentioned institutions as well as at the Lund University and
the SewCog.

The TNN project attempts to develop a model with problem solving abilities
achieved by means of transparent structures, meaning that they are as clear as
possible for the user at any time. Thus the goal is to achieve transparency not
only when designing a solution to a given problem but especially when the
system has performed any kind of learning.

As described before, when it comes to modeling traditionally the symbolic
approaches are mainly concerned with deductive reasoning, whereas
emergenist are largely focused on inductive learning (d’Avila Garcez and Lamb,
2011). Therefore, one of the major goals of TNN is to include both deductive
and inductive reasoning as simultaneous capabilities of the same model.

Of course there have been many different attempts to achieve that with hybrid
architectures; nevertheless the fundamentals of TNN differ in the stress on the
need for models that remain transparent while achieving the two kinds of
reasoning by means of just one process.

It has been common that when merging approaches the architectures tend to
have different structures for symbolic and sub-symbolic processing that are
connected but still independent. In the case of TNN the proposal is to achieve
both, the deductive and inductive capabilities, by means of a single structure
and a single learning algorithm.

As mentioned the main goal with the structure proposed in TNN is to keep the
transparency, also called interpretability, which refers to a model being easily
understood or interpreted by its users. This fact is stress as the problem of
lacking transparency is an issue that affects many models and especially those

16

based on connectionist approaches, which leads to great problems when
interpreting and grasping the underlying process of a structure even if it solves
a particular problem.

An example of that are the feed-forward artificial neural networks; in these
structures there is not much transparency since it is not trivial to give a meaning
to the values the weights reach after training, and actually the meaning of the
activity in a particular neuron (apart of those in the inputs or outputs) is not clear
for the programmer.

Transparency is a desirable characteristic for any model as it makes it easy to
explain, maintain, modify and verify. Thus, this is why the TNN attempts to
maintain the transparency as a crucial issue in all the building element and
learning rules in the model. This is, every element in the network must have a
meaning or it may be easily inferred by the programmer; equally, any parameter
that is modified by learning is to represent a simple and easy to comprehend
relation among elements.

An introductory description of TNN

The TNNs are networks constructed in stages by means of a small set of
construction rules. The construction rules are related to the addition of nodes
and connections; each node is to represent a clear function and its connections
are to be easy to understand relations, this way a compositional semantics in
the networks is to be ensured.

It is important to make clear that even when the ideas behind TNN are related
to cognitive modeling and are partially inspired by biology, the aim is not to
model any real neural system but instead the only concern of TNN is problem
solving.

Again, the main goal of the model is to achieve a transparent model capable of
both inductive and deductive reasoning. This transparency is to be achieved by
the limitation in the construction rules that ensure the interpretability of every
element. Therefore the basic elements are to represent clear concepts, and
their association to others must be clear relationships.

The most basic elements of the networks are the nodes, which in the model are
to represent concepts learnt by experience. This way each node in the network
is a concept and is related to other by means of connections called edges.

The relations between concepts by means of the edges and the information
spread through them, further called activity, allow the formation of conceptual
relationships that emerge contextual meaning for each node. This permits that
concepts with partial information are retrieved, or that inferences of concepts
contextually connected are made even when the explicit information that elicits
them is not in a given input.

To illustrate this imagine a concept representing a physical object and therefore
its activation is elicited by sensing the physical characteristics of the real object

17

when presented as an input; However, this concept could also be related to a
concept that represents the name of the object in the form of a word, which
activity is elicited by the sound that corresponds to the word presented as an
input. Then, even when the physical characteristics of the object are not present
in the input, activity in the concept representing it may be elicited if the concept
representing the word is active. That means that contextual relationships and
inferences are being carried out all the time.

On the other hand, to achieve both inductive and deductive reasoning, two
kinds of activity are used. One of the activities in the network is called the real
activity. It is used to generate associations that may represent temporal
relationships or specific concepts. It also allows achieving inductive learning
through the creation of deeper associations from more basic concepts scaling
up the abstraction of the concepts at each level of association.

The other kind of activity is the imaginary activity; this takes as basis the real
activity and performs inductive reasoning by means of inferring causality,
predicting activity in future, or deducing previous activity that could have led to
the present state of the network. At the same time this activity is capable of
inferring missing information in an input or deducing possible relations by using
existing associations.

When it comes to the construction rules they can be related to the way the
nodes are added, which can be manually done by the user, or by an automatic
addition partially assisted by the user taking into account information states in
the network.

The way the activities are spread through the network as well as the
construction rules and the characteristics in the elements of the network are
detailed in the following section.

18

The implementation

Given the general concepts of what TNNs are and the reasons behind them, the
main goals of the present thesis is to implement a toolbox that allows its users
to experiment with this kind of networks and draw conclusions about their
behavior and utility.

Bearing that in mind, and the fact that at the moment of the implementation the
TNN research project is just starting, the main value of this thesis becomes to
generate feedback for further development on the ground concepts of the TNN.

The implementation was based on unpublished manuscripts that contained the
general ideas and concepts of the TNN model, which were evolving as the work
was carried out. Therefore to design the toolbox was needed to face a lack of
specifications and take only as a major objective the concepts on modularity
and transparency. That implied to design a tool that could be flexible enough to
fit the constant changes in the theory while producing useful and fast feedback.

The focus on modularity in the design allowed making the development flexible
while fulfilling the TNN’s main character of being built with elements and
interactions as understandable as possible.

At the same time, other important factor that led the design was to make
interaction and building as easy and accessible as possible. Thus there was a
special emphasis on creating a friendly and simple to use interface that gives
enough information to the user and at the same time allows creating, exploring,
and evaluating TNNs fast and easily.

As highlighted before, the concept is still being developed and so are the
algorithms and implementation details; then all the results reported here are the
outcomes of an iterative process that led both the concepts and the
implementation. So, and as the research is to keep on advancing, the following
description focuses in the usage and the concepts included as well as in
technical details that are considered necessary for further development of the
tool.

The building blocks of a TNN

19

The networks are built using basic elements that are related to each other and
possess specific information that allows the network to work. These elements or
building blocks in TNN are denominated Nodes and Edges.

Nodes

The TNNs, as implied in the name, are the interconnection of a given number of
elements that share information. Thus it could be seen as a directed graph, but
in this case it deals with two kinds of information that flow in opposite directions
as will be explained later.

These interconnected elements in the network are called nodes; they are
individual processing units that can be selected and added to the network either
manually by the user, or automatically by the tool when it is specified to do so.

All the nodes in the network represent simple concepts that can be labeled by
the user in order to keep the transparency. In a sense of conceptual learning
every node represents a concept that basically comes from the association of
either previously existing concepts, or sensor nodes. The sensor nodes are the
inputs to the network and are how the network is fed and receives information
from environment.

Figure 1 The two main kinds of nodes, sensor (left) and general (right), connected by an edge from the sensor

to the general one.

At any time every node has twos activity parameters called real and imaginary
states. These states may vary from zero to one where zero means no activity
and one means full activity. The way the real state is calculated depend on the
kind of node being used, each of them has a specific activation function that will
always depend on the activity coming from other nodes or inputs. The only kind
of nodes that changes their activity based on the inputs is the sensor node; they
simply copy the environment that is, generally speaking, the input given by the
user.

All the implemented types of node in relation to their activation function will be
described in the Activities section.

The expression for the real activity of a given node k over time is
described by:

20

(ݐ)ݎ 	= 	A൫۷(ݐ)൯
where A is the activation function of node k and I is the vector of size n
containing the n inputs to the node k.

Imaginary activity of node k over time:

݅(ݐ) 	= 	P൫(ݐ)۷۾൯
where P is the prediction function and PI(t) is the prediction input vector
calculated from the states of the nodes at the outputs of k at time t.

Figure 2 Description of the parameters appearing in a general node; the node id, the imaginary state and the

real state.

Edges
All nodes that are not sensors must always be connected to at least other node
and this connection is represented by edges.

The Edges possess different characteristics, firstly they may belong to two
principal kinds depending on their direction; they can be either those that are
going out of the node, or those that go into it. However, they are added by pairs,
so for every node going out of a node there is one going into another, but
graphically they are represented by the same connection. This is done in order
to treat separately the two kinds of activity that are there in the network.

All edges have a weight that can change over time but whether they change or
not and the meaning they have depend on the kind of network being used.

The Edges also have an activity reverberation, which means that after some
activity is transmitted from one node to another the activity in the edge
connecting them does not disappear immediately; instead it fades down slowly
according to a parameter learnt by experience called the decay parameter.

The reverberation activity of edge i at time t is denoted by ܾ(ݐ).
Equally, a vector of reverberation activities is denoted by (ݐ).

Levels

21

As edges possess directions the way the network grows and propagates
information is affected by this fact and gives rise to the concept of level. The
levels work as a hierarchy, meaning that every node correspond to a higher
level than all the nodes it receives information from. This can be seen as levels
of abstraction since the higher the level is, the more concept have to be active
and associated. The levels are labeled with increasing numbers starting at 0
which correspond to the sensors level, and up to the highest level where nodes
have no outputs.

Figure 3 Example of how the nodes are shown by levels in the toolbox, and how to interpret them.

Inhibitory edges
This kind of edge inhibits the activity of a node depending on the state of a set
of other nodes.

The inhibition activity over a node will corresponds to the addition of activities in
the nodes inhibiting it; that addition is truncated at a maximum of 1 ensuring the
inhibition over a node fits in the interval [0, 1].

The inhibition is performed after the activation has been calculated by
multiplying the complement of the inhibitory addition.

When inhibition is applied the real activity of node k over time is modified
by:

(ݐ)ݎ 	= 	A൫۷(ݐ)൯൫1 − ℎ(ݐ)൯
where ℎ(ݐ) is the sum over all the inhibitory inputs of k at time t.

In the interface this kind of edges is depicted as orange connection between
nodes.

22

Figure 4 Depicts an inhibitory connection from the node with id 1 to the one with id 2.

Activities

As mentioned before, there are two kinds of activity that propagates in opposite
directions. The main activity is called the real activity and is the one that
propagates from the sensors forward till the deepest level. When propagating
the real activity the activation function of all the nodes at a certain level are
evaluated taking into account the activity from the nodes in the previous levels,
so the activity is propagated level by level. The second kind of activity is the
imaginary activity, which propagates backwards in the opposite direction than
the real activity. That means that the imaginary activity starts at the deepest
level and propagates back until the first one. However the imaginary activity at
the deepest level, or actually at every node that has no outputs, will copy its real
activity as the imaginary activity.

Each of the activities has different meaning. On one hand, the real activity is the
natural response of the network to a given input, and it is also the activity taken
into account for the creation of new associations or concepts. When evaluating
the meaning of the real activity for each given node the amount of activity it has
is related to how much of the concepts it associates were present in the inputs;
that relation depends on the activation function of each node and the
interpretation may vary somehow based on that function.

The activation functions depend on the goal of the node and the way the
information is fed to it; the information can be the real activity of the nodes that
are feeding it or the activity reverberation in its incoming edges (reverberation
activity).

The types of nodes implemented regarding their real activation function is listed
here:

23

- Min Nodes: Nodes which activity is set to the minimum at its inputs.

൯(ݐ)ࡵ൫ܣ = ݉݅݊൛ܫ		 (ݐ) ∶ ݅ = 1, … ,݊	ൟ

- Max Nodes: Nodes which activity is set to the maximum at its inputs.
-

൯(ݐ)ࡵ൫ܣ = 		ܫ൛ݔܽ݉ (ݐ) ∶ ݅ = 1, … ,݊	ൟ

- Average Nodes: Nodes which activity is set to the average of its
inputs.

൯(ݐ)ࡵ൫ܣ = 	
∑ (ݐ)ܫ
ୀଵ

݊ 	

- Delay Nodes: Have only one input and set their state as the real
activity at its input in the previous time step.

(ݐ)ݎ 	= ݐ)۷	 − 1); Size of vector I is always 1.

- Buffer Nodes: Have only one input and copies the same state that
the real activity at its input; used to bring the same activity to a deeper
level.

(ݐ)ݎ 	= .Size of vector I is always 1 ;(ݐ)۷	

- Association node: Average of the real reverberation activity at their
incoming edges.

൯(ݐ)ࡵ൫ܣ = 	
∑ (ݐ)ܤ
ୀଵ

݊

where B(t) is the reverberation vector in the inputs of node k at time t.

- Simple Gaussian node: Have only one input and learns by
experience the average and the standard deviation of the inputs
shown. The real activity is calculated by means of the parameters
learnt using a bell-shaped function.

A൫۷(ݐ)൯ = 	 ݁ି
(ூିఓ)మ
ଶఙమ

where ߤ is the mean learnt and ߪ is the standard deviation.

- Complete Gaussian Node: Is a compilation n of function like the one
described for the simple Gaussian node, where n is the number of
inputs of the node and individual parameters are learnt for each of
them. The final result is the multiplication of all of these functions.

A൫۷(ݐ)൯ = 	ෑ݁
ି(ூିఓ)మ

ଶఙమ

ୀଵ

- Sensor: Nodes that set their activity from the input given by the user

(environment).

24

The second kind of activity is the imaginary; this is meant to infer or complete
information from the one present at a specific moment in the input; however,
imaginary activity can also be a prediction of information over time as a relation
to expected concepts or inputs in both the past and the future.

The imaginary state of a node will depend on the state of those that are fed by
its real activity. Nonetheless, when a node does not feed any other, or has no
outputs, then it will copy its real activity as imaginary activity in order to use it as
the source for inference.

To calculate the imaginary activity of a node weights at its outgoing connections
are to be learnt. After the proper learning the value of these weights
corresponds to the probability of the node being active, when the node at that
output is active.

Every node that has connections going outwards adapts a weight for each of
those edges. Then when the imaginary activity is being propagated, the
imaginary activity is set to the maximum value of all the imaginary activities of
the nodes at its outputs multiplied by the respective weights.

The imaginary activity is calculated by:

݅(ݐ) 	= 	P൫(ݐ)۷۾൯ = ݃:(ݐ)݅(ݐ)ܫ൛ܹݔܽ݉ = 1, … , ݊ൟ

where ܹܫ(ݐ)is the weight from the node g which is at an output of node

k, and ݅(ݐ) is the imaginary activity of node g.

In the example on Figure 5 the node at the deepest level copies its real activity
as its imaginary one, but meanwhile, the nodes on the previous level have
slightly different weights and therefore different imaginary activity that depends
on the node at the deepest level. The sensors have weight close to 1.0, and as
described they take for imaginary activity the maximum of the possible activities
coming from nodes at their outputs.

25

Figure 5 A simple network at a given state to depict the real and imaginary propagation. The node at the

deepest level copies its real activity as imaginary, while in the others the imaginary activities are affected by
the whights.

Time step

Updating the states of the network means to take an input and calculate the real
and imaginary activities of all the nodes in the network. The update of the
network is carried out every time a new input is presented; this is defined as a
time step.

In this sense, there is no delay in between the moment the input appears and
the moment the activity of all the nodes are updated. That means as well that if
an input is to last longer than other, it simply has to be repeated several times in
the input stream. In other words, if an input is repeated in several time steps this
will keep the network in the same state after it is stable.

26

Networks construction modes

To build networks different construction rules can be used, but which and how
are used depend on the construction mode selected. The two modes existing in
the current implementation are the Manual and the Interactive modes.

Manual mode
The most basic construction mode that can be used to create networks is the
manual one. The construction of a network in this mode depends completely on
the user. The architecture of the networks does not change while they are being
used but only as the user decides to add or remove elements.

In this mode the user chooses to add any kind of node by connecting them
through edges from whatever node that already exists, unless the node added
is an input. This allows a complete and easy understanding of the network,
though at the same time its usage is limited to a rigid architecture. It works to
evaluate and visualize how the activities spread through a network’s
architecture, but no automatic addition of elements is performed.

This mode is used mainly to propose anatomies and check their performance.
Building a solution might require a complete understanding of the problem,
reason why is not suitable for this purpose, but instead it is a good way of
getting to visualize the problems and possible behaviors. Exploring the problem
in this mode can help to find a reasonable starting point for the further growth
based on an interactive construction.

Interactive mode
In contrast to the Manual mode in the interactive mode the network can be
modified automatically by adding new nodes and connections depending on the
need. However, it is not completely automatic since is the user that controls
when the network should look for new associations.

The user has the ability to set the network in a recording mode and stop it when
needed. In this way the network will look for associations presented in between
the time the recording signal is active, but this search in only performed in the
time step at which the recording signal stops.

Associations in the interactive mode
To better understand the idea with the interactive mode the definition of
association has to be enhanced. An association, in the sense used in this
particular mode, is the formation of a node that represents a relationship
between the activities of two or more nodes limited by a maximum that can be
set.

These relationships may represent a simultaneous activation of nodes, or a
temporal relation among them, though in general is the same behavior.
The temporal relations refer to the situations at which one node or a group of
nodes get active or increase their activity after other has done the same. This
may include many steps and relate many nodes.

27

As mentioned the simultaneous activation of a node is just a particular case of
the temporal relationships at which all the activations are presented in the same
time step. In this kind of associations the order does matter; for example, given
two nodes a and b that belong to the same level may have two possible
temporal associations; this is, If node b gets activated after node a got
activated, it is a different association than if a gets activated after b.

On the other hand, differences in time are not considered as different
associations. If the order is the same, that means that if b gets activated one
time step after a, it will be considered as the same association than b getting
activated two or more time steps after a did so.

The activation of an association must represent how much of the actual
relationship is achieved, which implies that in the case of temporal relationships
the activity must relate different time steps. To achieve that, the activity
reverberation of the edges going to the association, and in particular their decay
parameters, are used to enclose temporal information.

The activity reverberation of an edge copies the real states of the node it comes
from and decays depending on the decay parameter; this parameter is to be
learnt by experience and has to do with how many time steps the whole
association takes to be complete after the node sending information through the
edge was first activated.

The activity reverberation depends on the decay parameter in the following way:

ܾ(ݐ) = 	 ܾ(ݐ − 1)ଷ

1 + ݁ିඥ(௧ିଵ)ோೖ(௧)

where ܴ(ݐ)is the decay parameter of the edge.

To depict the behavior of the activity reverberation in relation to time as the
parameter ܴ(ݐ) changes is depicted in the figure 6.

Figure 6 Reverberation activity over time for different values of the reverberation parameter

 .܀	܌܍ܜܗܖ܍܌,(࢚)ࡾ

0

0,2
0,4

0,6

0,8

1
1,2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Ac
tiv

ity

Time steps

Reverberation activity over time

R = 1

R = 2

R = 4

R = 8

R = 12

R = 16

28

To illustrate the temporal relationships a simple example of a sequence is
shown in the figure 7. First, a sequence of three consecutive inputs is shown in
the first three time steps, which happens while the recording signal is active.
After, at the fourth time step, the recording signal is deactivated, thus the
sequence is considered to be over and the association is formed as a new
node.

This new node has three inputs and each one of the corresponding edges
possess different reverberation decay parameter; the first has a parameter 3 as
it takes three time steps from the activation of the corresponding node until the
whole sequence is over. The same way, the second edge will have a decay
parameter 2, and the last one 1.

Figure 7 Example depicting the learning of a simple sequence in four timesteps, by means of an association

node.

29

The parameters of each edge can change over time through experience,
tending to be the average time that it takes for the sequence, or association, to
finish since the first activation of the edge.

Gaussian growth and generalization
Other construction rule that can be used in the interactive mode is known as the
Gaussian growth. This construction rules creates nodes of the class Complete
Gaussian Node which learning allows them to build concepts by generalizing
characteristics of a set of inputs.

The main idea of this construction rule is to create a new Gaussian node when
a given input is far from the characteristics learnt by the existing ones.
Therefore, a new class will be created from a set of sensors by means of new a
new node.

To set the sensors to be grouped in these classes, they must be selected by
manually adding a Complete Gaussian Node fed by those sensors as the seed
of the whole learning. Therefore, the Gaussian growth is only performed in the
level 1 of the network fed directly by sensors, and consists on creating a new
node if the ones existing do not fit the current input by the following measure.

(ݐ)ܦ = 	
ܫ| − ߤ |(1− (ߪ

∑ (1 −)ߪ
ୀଵ ∑ ߪ

ୀଵ 	

ୀଵ

> 1

30

Network working cycle

Updating the network is the process carried out at every time step. The
following description depicts the implementation in General networks for both
the manual and the interactive modes.

The overall process of updating is performed after reading the corresponding
input array and copying it to the sensors as real activity, then the process of
updating starts. First the update of the real state is performed by propagating
the real activity forward. The second step is to update the imaginary activity
going backwards. Once both the activities have been propagated the recording
signal is checked in order to decide whether to look for associations or not, and
in any case the last step is always to perform training.

-Input format: The input for each time step must be an array of size n + 1 where
n is the number of sensors the network has. The first element of the array must
be the recording signal which is to be different to zero only if the network is
expected to create associations. The rest of the inputs correspond to the value
of the input sent to the sensors. In the network each sensor has an Id which
corresponds to the order in which they were added; these ids are the order
used to update them from the input array. If the size of the input is shorter than
n+1 the inputs given will be used to update sensors from the first id until the end
of the array.

Train

Update Real States

Update Imaginary
activity

Look for
Associations

Recording
signal

Input Stream

Yes

No

31

Figure 8 Input format.

Update Real states
When updating the real states all the levels are checked starting at level 1,
since level 0 or sensors level is first updated by copying the values from the
input. From then on the nodes are updated by using their corresponding
updating function r(t) level by level.

After a whole level has been updated the inhibitions of the nodes are carried
out. This is done at each level in order to avoid the propagation of activity of
nodes that are to be inhibited.

Update imaginary states (Predict)
Once the real activity in the nodes has been set, the imaginary activity is
propagated backwards from the last level to the sensors. The calculation is
done as was described in the imaginary activities section.

Look for associations
When the recording signal is being used, this function performs the search for
new possible associations when certain behavior in the signal is met.

-The recording signal:
The recording signal must be used to set the network in the interactive mode,
meaning that associations are to be searched and automatically created when
the user decides to. The recording is done for time intervals that are specified
by this signal. The interval starts at the time step in which the signal changes
from 0 to any higher value in the interval (0, 1], and it finishes when the signal
goes back to 0.

In the interactive mode this input is referred to as the recording signal; however,
in the implementation and the interface of the toolbox this parameter is known
as the emotional impact of the input. In other words, the recording is performed
while there is a positive emotional impact in the input.

To create associations the process is as follows: The search is performed after
an interval of time steps has elapsed. During the interval an attribute of each
node called reverberation of the node, is set to the maximum real state the node
reaches within the interval. Similarly, at the time step at which the real state is
found to be lower than the reverberation the attribute called count, starts to
keep track of how many steps pass from that event until the end of the interval.

Once the interval is finished the associations search starts; it begins at the
deepest level going backwards to the sensors level, but it stops wherever an
association is created. The search is carried out basically by grouping all the
nodes that have first, a reverberation value at the previous time step higher than

32

an association threshold given by the user; and secondly, if the predicted stated
is lower than the last reverberation or the node has no outputs.

In principle the group can be of any size, but only a maximum number is
associated depending on a parameter of maximum association size that is
determined also by the user. The nodes of this final group are organized by the
count parameter and so are added to a new association node. This allows
differentiating associations including the same nodes but different time order.

In case it is found that an association already exists, an update is performed on
the reverberation parameters of the incoming edges in the node representing
that association. This update is performed taking into account the count
parameters of the nodes feeding the association tending to the mean of all the
examples seen.

Train
When training the network two processes can be performed, the principal one
has to do with the weights training, whereas the other is carried out at each
node and is related to the update of certain parameters.

In the manual mode no training is performed on the weights; meanwhile, in the
interactive modes the only weights changes are those related to the imaginary
activity. These are trained to represent a probabilistic relation between the
activation of the nodes linked by the edge. The idea is to get a parameter that
encloses how probable is that a node a feeding node b, was active during the
recording interval if b had certain activity during the same interval.

The other kind of training occur for some nodes that have parameters to be
adjusted to the inputs, the Gaussian nodes are the only ones that train
parameters as they adjust their mean and standard deviation values at each
time step, unless a Gaussian growth is performed.

33

General description of the implementation

The implementation of the toolbox is divided in three main block as depicted in
the diagram below. The principal block is the network in which the functionality
and algorithms as well as the structure and management of the networks are
carried out. On the other end of the diagram is found the Graphical user
interface which deals with all the graphics generation and interaction with the
user as well as the information flow between the user and the toolbox. And
finally to manage the link between these two main blocks there is an interface
that deals with the communication and information flow between the network
and the interface.

As the focus of this work is on the design of the network the description below is
focused only on the main block Network; therefore the descriptions regarding
the implementation for the Graphics and the Interface blocks are not included.

The whole system is created under an object oriented paradigm, and for the
Network block basically there are three principal classes, the Networks, the
Nodes, and the Edges. The Node and the Network classes are abstract
classes, and the different type of nodes and networks are classes that extend
the main ones implementing the abstract methods that differentiate them.

These classes are created abstract in order to allow future implementation of
new kinds of nodes or networks. However, in the current description the only
network used is the so called General Network, which is designed to work in
both interactive and manual modes.

The figure 9 depicts a general class diagram where the main relationships and
inheritances are shown. There appear all the node kinds that are available as
classes that extend the abstract class Node. There are also special
relationships for the nodes of classes Input, Association and Complete
Gaussian.

There are special relationships because, firstly the Association and Complete
Gaussian are the only kind of nodes that are added automatically, reason why
there are special processes to check for the need of new nodes and the
functions to create them.

Similarly, the Input nodes (sensors) need to be tracked in order to update the
network correctly since these nodes are updated in a different way than the
rest. There is also a need to track them in order to create groups and handle
them, which makes easier to add and remove sets of sensors easily.

Graphical User Interface Interface Network

34

Figure 9 Classes diagram of the networks and nodes classes.

Main classes description

The network is built as a collection of nodes of different kinds with individual
characteristics, behaviors and even some special functions to be handled.
However, all the nodes possess a similar basic structure to which particular
features are added, and therefore all of them belong to the same basic class.

The class Node
The abstract class Node has methods and attributes that are shared by all the
nodes, as well as some abstract methods to be implemented in any case when
creating new types. Below are listed the shared attributes and the abstract
methods to be implemented for new types.

Attributes:

- Id:
It is a unique number that identifies the node and also corresponds to
the index in the principal list of nodes in the network.

35

- state:

It is a double field that contains the real state of the node. It is
updated at every time step.

- lastState:
Retains the real state at the previous time step and is updated
whenever a value is set for the atribute state.

- predictedState:
Is a double field that contains the imaginary state of the node also
called predicted state. It is updated at every time step by the predict
function.

- lastPredictedState:
Retains the imaginary state at the previous time step and is updated
when a value for predictedState is set.

- reverberation:

It is a parameter used for creation of new association, it copies the
real state as long as it’s value is higher than the one stored in
reverberation and the recording signal (emotional Impact) is active.
Once the recording signal gets to 0, the reverberation is set to 0
again.

- lastReverberation:
Retains the value of the previous value of reverberation. It is updated
each time a value for reverberation is set.

- count:
Keeps track of the number of time steps the reverberation stays in an
active state (value higher than zero). It starts to count only after the
real state is set to a lower value than the one stored in the
reverberation. It is set to zero when reverberation changes from zero
to any other value.

- incomingEdges:
It is a list of objects of the class Edge that represent the edges going
to the node.

- outgoingEdges:
Is a list of objects of the class Edge that represent the edges going
out of the node.

- depth:

 It represents the level in the network at which the node is.

- lastInput:

 It is an array containing the values received as input in the last time

36

step.

- lastPredictionInput:
It is an array containing the values received as input for updating the
imaginary state in the last time step.

Abstract methods:
- double updateStateFunction (double[] statesOfInputNodes):

This function takes as parameter an array which must contain the
information from the nodes at the inputs of the given one, that are to
be used to calculate the state. The order of the states in the array is
assumed to have the same order that the nodes have in the
incomingEdges list. The function must perform the calculation
corresponding to the node type and return the result in the interval [0,
1].

- void trainFunction (double relevance) :
This is used if the node needs to update any parameter after the
update is performed at the end of every time step. It receives as
parameter a number in the interval [0, 1] that may be used to indicate
the relevance of the example being trained in case of being
necessary. In the General Network the only kinds of nodes that train
values through this function are the simple Gaussian and the
complete Gaussian nodes.

- boolean addIncomingEdge(int origin, double weight, boolean
inhibitory):
This function must return a Boolean that indicates whether the edge
was added or not. There is a default function called
createIncomingEdge() that receives the same parameters and
returns a Boolean. The implementation of addIncomingEdge() can be
just a call to createIncomingEdge(); however, it is left abstract in order
to allow certain rules for each node; for example, at a buffer node it is
not possible to add more than one edge, then this function is used to
add that rule; however to add the corresponding object Edge,
createIncomingEdge() must always be used.

- restartFunction():
When a node is restarted it goes back to its initial state undoing any
kind of learning and resetting default values. When a node is
restarted all the edges and principal attributes are restarted; however,
if more parameters are included in certain kinds of nodes this function
should include the restart procedure of those parameters if needed.

- String getInfo():
It returns a string where some information about the node can be
added. This info is what will be displayed in the interface when
checking the information of the node. It has no relation to the actual
functioning of the network.

37

The class Network
The same way as in Node, the abstract class Network has methods and
attributes that are shared by any possible kind of network. It also has some
abstract methods to be implemented when creating new types.

Attributes:
- Nodes:

It is a list of objects of the class Node where the index of each
element corresponds to the id of the corresponding node.

- Levels:
It is a list containing lists of nodes. Each list of nodes is a level, and
points to the nodes corresponding to that level. The level id
corresponds to the index in the main list.

- inputNodes:
It is a list containing the ids of all the input nodes.

- inputGroups:
Is a list containing lists of ids; each list contains the ids of all the input
nodes that belong to a group. The id of each group corresponds to
the index in the main list.

- associationNodes:
Is a list of nodes of the class AssociationNode that points to all the
nodes of this class, is used to keep track of the existing associations
and check the existence of a particular one when looking for new
possible ones.

- emotionalImpact :

Is a field updated at every time step and is used for control, it is the
one used as recording signal in the interactive mode and always
takes the value of the first position in the input array.

- lastEmotionalImpact:
It retains the value of the emotionalImpact at the previous time step
and is updated when a value is set for emotionalImpact.

- depth:
It’s an integer that represents the number of levels the network has.

- associationThreshold:
It is used in the interactive mode. It is a number in the interval (0, 1)
that indicated the minimum reverberation a node must have in order
to be considered when looking for new associations.

- maxAssociationSize:

Used in the interactive mode, is an integer that represents the
maximum number of nodes that can be associated by a single node.

38

Abstract methods:
- void protected abstract void lookForAssociations():

This is the function called when associations are created
automatically, the process should perform both the search for
possible associations as well as the addition of the corresponding
nodes.

- void train(double emotionalImpact):
This method is called at every time step while the emotional impact is
higher than zero and must include all the trainings procedures at the
network level. It also must call the train function of each node, which
is done by calling the method train of the class Node.

Basic management functions

There are several basic functions that allow handling the network, those that are
necessary to build a network are:

- addNode(Node node)
o This function receives as input an object of any subclass of

Node, and adds it to the nodes list of the network, but also to
different lists depending of the kind of node. It assigns an id to
each node added taken from the index in the nodes list.

- removeNode(int nodeId):
o Receives the id of the node to be removed and performs the

removal taking care of all the lists at which the node is
included, and the updating of the ids of the rest of the nodes.
The function will remove all nodes that have no input or
associations with just one after the removal. So when the
function is called more than one node can be actually
removed.

- addEdge(int originNode, int destinationNode, double
imaginaryWeight, double realWeight, Boolean inhibitory)

This function takes as parameter, first the origin and the
destination nodes id. It also receives the initial weights for
imaginary activity at the origin node, and real activity at the
destination node. Finally, it receives a Boolean value that
indicates whether the edge is inhibitory or not. When an edge
is created an Edge object is added to each of the nodes, one in
the outgoingEdges list of the origin node, and other in the
incomingEdges of the destination node.

- remove edge(int originNode, int destinationNode)
o Given the ids of the origin node and the destination node, the

edge is removed if it exists. This is done by removing the
objects at the corresponding edges lists of each node.

39

The Tool box user’s manual

In this section the main issues on the usage of the toolbox are explained. The
functionality of the toolbars and menus are shown, as well as the characteristics
of the interface and the way information is displayed.

The toolbar is divided in two smaller ones; the first one is file toolbar that is the
one with which the basic actions over files can be performed; these actions are
described below.

Figure 10 The file Tool bar in the tool box.

- New network (Ctrl+N): Creates a new network of general purpose

that, depending on settings and the input stream with which is fed,
can be used in manual or interactive mode.

- Open network (Ctrl+O): Loads a previously saved network in a .TNN
file.

- Save network (Ctrl+S): Saves the network in a TNN file in a specified

path, if no such a file has been specified it will open a file dialog in
order to select it.

- Open input file (Ctrl+I): Opens an input file with which the network will

be fed; it looks for text files (.txt).

- Add nodes (Ctrl+A): Opens the add node dialog with which the nodes
to construct the network can be added.

Some of these functions are found in the File menu, plus the function Save
network as which allows to change the destination file at which the network is
saved. It also includes the Exit item (Ctrl+Q).

Figure 11 The file menu in the tool box.

40

When add nodes is called the following dialog is displayed, allowing to choose
the kind of node to be added. It displays a description of the function the
selected kind of node performs and the quantity of nodes to add can be
selected.

Figure 12 The add nodes dialog.

The second part in the division of the bar is the inputs toolbar which handles the
way the inputs are fed into the network. It has four buttons, two of them are to
read streams from the input files, and the other two are to generate random
inputs.

Figure 13 The inputs tool bar in the tool box.

From left to right the buttons in this bar are:

- Complete stream button: This will read the whole input file feeding the
network step by step. It will do that several times depending on the
parameter “Number of iterations over input file” that can be set by the
user in the settings dialog.

-Step button: This will only read one line in the input file at the time, so it
goes one step at the time through the input stream.

41

- Random stream button: This will generate a random stream whit a
number of steps equal to the same parameter used for the Complete
stream button.

- Random step: It will generate a single random input.

While exploring the network and manipulating the nodes they will be shown in
three different ways in relation to the mouse actions. The three states are
normal, mouse over, and node selected.

Figure 14 Different states for interaction with the nodes in the tool box. From left to right, normal state,

mouse over state, and selected state.

When clicking over a node this will get selected and while the mose pointer is
over it its information will be shown.

Figure 15 Information of the selected node displayed when the mose is over it.

The same way, as the node is selected it can be removed restarted or its label
can be changed, this is done by right clicking on the selected node.

 Figure 16 Edit menu for a selected node.

42

Also when the node is selected its relation to other node can be edited by
clicking the node to be related; this action will display a pop up menu that gives
the options:

- Add edge
- Add inhibitory edge
- Remove edge

If there is no edge between the two nodes an edge in purple color will show the
possible connection to be created in order to visualize it easier.

Figure 17 Connections menue deployed on a node to be related to the currently selected node.

Settings (Ctrl+T)
The settings dialog allows changing the basic parameters for the creation of
nodes as well as options for the input stream reading and the random input
generation.

In the upper part of the dialog the parameters for the creation of new nodes can
be edited. These are the “Association Threshold” for the minimum reverberation
needed on a node to be considered for new associations, and the “Maximum
Association Size” which determines the maximum number of nodes admitted
per association when added automatically.

It also can be selected whether or not to “Allow Gaussian growth” for the
creation of new Complete Gaussian Nodes.

43

Figure 18 Association parameters in the Settings box.

The second part in the dialog allows changing the number of times the input file
is read when the complete stream button or random streams are used. It can be
also specified whether the randomly generated inputs are binary or not. When
not selected the random inputs generated will be numbers in the interval [0, 1],
otherwise they will be binary (values 0 or 1).

Figure 19 Inputs reading and generation parameters in the settings box.

Zooming and exploration

For zooming the zoom bar or the scroll wheel of the mouse can be used which
will enlarge the size of the nodes and therefore the whole network.

To explore the network this can be moved throughout the scree by clicking at
any empty space and moving the mouse while still clicking, the network will
follow the movement of the mouse.

44

Results

The objectives of the TNN model, as stated in the description are mainly related
to both the transparency and the ability to perform deductive and inductive
reasoning at the same time. The transparency on one hand is a point that has
been stressed during the implementation and was explained in the
corresponding section of this document. On the other hand the performance of
the model on the proposed abilities for reasoning has not been shown directly
so far. Therefore this results section is mainly focused on showing how this
model deals with these kinds of reasoning through some basic examples.

Descriptive examples

Simple associations

This example shows how a simple association is created when three inputs
appear simultaneously and how partial information elicits certain prediction in
form of imaginary activity.

At the first time step of the example the three inputs are completely active as
well as the recording signal. At the following step the inputs all go down to 0 and
the association is created (Node 3 in figure 20).

Figure 20 Depicts the differences betwwen the activation of an association node when the information is

complete and when it is partial.

This simple example can be used to show how the imaginary activity of the
nodes is useful to predict or infer possible inputs out of partial information. To
show this the network is fed with partial information; taken into account that in
this example there is only one association the predictions of the sensors will
only depend on that association.

45

If the input activates only the second sensor then the association will be active
at approximately a 33%, and as the only examples shown to the network has
been the complete association including the three sensors, the prediction to
each of them is going to be a third as well. Note that if the pattern is complete
the prediction at every sensor will be practically 1.

Composed concepts and inferences

The following example shows how a network that has created a composed
concept out of two previous ones. In this case two different concepts are shown
to the network separately, each of them relates two specific sensors. Afterwards
the two concepts are shown at the same time and that creates another at a
deeper level.

When each concept is presented at different time the network creates an
association node for each of them, called concept 1 and concept 2 in figure 21.
Afterwards, when the two concepts are shown together the network uses the
associations created previously to build a composed concept at a deeper level
representing the two basic ones together.

That means that no concept is created including the four sensors since deeper
composed concepts are preferred by the construction rules. This can be seen
as an inductive learning since the network is creating more abstract and
concrete associations as it finds relationships in the activation of more basic
ones.

Figure 21 Depicts how to interpret the formation of a concept from two previous ones.

46

When the network is fed again with just one of the two basic concepts one can
see how the composed concept gets activated to a 50%. This partial activation
allows the network to predict possible associations that could appear by means
of the imaginary activity as shown in figure 22.

The imaginary activation at node 5 representing the second concept, as well as
in the two inactivated sensors, represents an inference from the known
association between the two basic concepts. This activation indicates that there
is a possibility of the two basic associations of appearing together, which is an
association that has been learnt and is used for inference through imaginary
activity in this case.

Figure 22 Partial activation of a deep concept when only one of the concepts associated is presented in the

input.

Temporal associations

Similarly, association will be created when the sensors are activated
sequentially, and in this case the maximum activation of the association will be
reached as the sequence is completed after increasing after each time step.
This means that as more information in relation to the sequence learnt more
real and imaginary activities there will be in the corresponding association.

However if all the elements of the sequence are presented in different order
than the one learnt, the association will increase its real activity but will never

47

reach the same value as in the case of the sequence being presented as it was
learnt.

The sequence taught to the network in this example is simply three sensors
being activated consecutively. In figure 23 after training is done one can see
how the activation in the association node increases accordingly to the amount
of information as the sequence learnt is shown again. This increase appears
both in the real and the imaginary activities, showing how through imaginary
activity prediction on future and inference on past are performed.

Figure 23 Depicts the process of activation of a temporal association when the sequence it associates its shown.

48

Predicting the most probable input form partial information

In this example two different sequences are shown to the network. Both the
sequences are of a three time steps length and both include the first two
sensors as the beginning of the sequence. Then, the only difference between
them is the last element, being in one case the third sensor and in the other the
fourth one.

These examples can resemble the two number sequences 1-2-3 and 1-2-4,
which only differ on one number but one can be more probable to occur than
the other.

Here is shown how the imaginary activity also represents the probability of
activation of a concept or sensor given certain activation at a deeper level. To
do this, the second sequence (1-2-4) is presented to the network half of the
times the other one (in this case 15 times). Then the probability of occurring of
each is different and in principle one must be half of the other.

When the network is fed with partial information (sequence 1-2), then the
prediction on future input can be seen in the imaginary activity of the other two
sensors; in this cases, as shown in figure 24, the imaginary activity of the third
sensor is 0.5, whereas the one at the fourth it is 0.27. This implies that the
probabilities learnt by the network into the weights of imaginary activities are
tending to the actual probability of appearance of the sequences learnt.

Figure 24 Imaginary activity as probabilistic inference for two different sequences that are parially equal.

49

Generalization

Generalization is performed by the Gaussian growth, to show how this works a
simple example is shown.

In this example the network has only two sensors and the generalization is to be
made over two different classes. Thus, at the beginning a Complete Gaussian
Node is manually added receiving inputs from both the sensors, and afterwards
examples from the two classes are shown from a distribution as the one that
appears in the first table.

Figure 25 Generalization by means og gaussian nodes.

 Class 1 Class 2
 Input 1 Input 2 Input 1 Input 2

Mean 0,750 0,183 0,190 0,750
Std deviation 0,041 0,062 0,070 0,041

After training is performed with a hundred inputs for each class the result is a
network with two nodes, each representing one class with the following
parameters

50

 Class 1 (Node 2) Class 2 (Node 3)
 Input 1 Input 2 Input 1 Input 2

Mean 0,74 0,19 0,19 0,74
Std deviation 0,063 0,081 0,086 0,063

Figure 26 Generalization of two different classes by means of gaussian nodes and gaussian growth.

The same way the weights for the imaginary activities of the sensors reflect
basically the same values as the means learnt at the nodes. This shows that, in
this case, the imaginary activity reflects the expected value of the input from the
activation of a node. In other words, if for example node 3 were to have a real
state of 1.0, the imaginary activity at the inputs would be 0.19 and 0.74
respectively depicting the expected value of the inputs for each class.

51

Drawbacks

Through these examples it is shown the basic idea behind the attempt of TNN
to achieve both kinds of reasoning in the same model while keeping the
transparency. However, these are achieved when inputs are shown in a very
controlled manner which can only be accomplished if the problem is known
enough by the user. However, in cases where the problem is not completely
known setting the basic parameters can become a complicated task, and a bad
selection can easily lead the network to an explosion of redundant associations.

Redundant and unnecessary associations certainly make the network not really
useful and affects the transparency as it reaches states at which the meaning of
the concepts created are incomprehensible.

To give an example of this if a sequence of four sensors is shown repeatedly to
a network and the association threshold is set too low (in this case 0.5), even
when there is control by means of the recording signal there are at least three
associations created for this sequence in the first level. Each of these
associations is allowed by the constructions rules as they have different inputs.

All of these associations get activated as the sequence is presented again, and
therefore will be associated again at the next level. This process is repeated
over and over again as the sequence is repeated creating an endless number of
levels as depicted in figure 27.

Figure 27 Explosive growth in lack of proper control.

This drawback on the controllability affects the utility of the model and its own
transparency creating a need for new approaches in relation to the construction
rules.

52

On the Toolbox

In relation to the main objectives set for the thesis in terms of the
implementation, the toolbox turned out to be a very beneficial and easy to use
instrument for the developing of the TNN.

The goals of modularity and flexibility of the elements was achieved by means
of a simple object oriented approach, that after deployed allowed a very fast
editing which represented an advantage for experimenting with many changing
ideas and designs during the development of different concepts of the TNN.

The final interface fulfilled completely the desired characteristics for the
application and even went beyond the requirements. The usability of the tool is
based on a very simple and intuitive interface that, once the concept of TNN is
clear, allows creating, training and manipulating a network in about three simple
steps.

The final result offers a great deal of freedom to get information of the elements
of the network as well as to manipulate and customize them stressing the point
of transparency on which the whole project is based.

The ability to move freely through the network by just one click and as the zoom
is easily manipulated exploring results into a very simple and helpful task,
especially when the networks grow to some many nodes.

In general the feedback that the platform allowed while it was being improved
permitted highlighting different drawbacks of presented approaches for the
TNNs and opportunely fostered new proposal to improve the model.

53

Discussion

As implemented the TNN model allowed performing basic inferences, inductive
learning and generalization for specific problems as depicted in the results
section. All of the capabilities are achieved keeping the transparency as it is one
of the main objectives, and in fact this characteristic is completely useful and
understandable for the problems evaluated.

However, all of the evaluations have been performed in relation to basic,
controlled and constrained problems, reason why one could ask whether the
ability for induction is still feasible if the data stops being constrained. This
question arises as the symbolic structures are always manipulated by the
definition of a concept represented in the inputs, but induction has not been
clearly achieved for inputs which meanings or behaviors are not clear for the
user at the design stage.

Similarly, the growth control turns out to be a crucial issue for the equilibrium of
the network, but it may get quite instable as the data becomes more complex.
That fact sets a big challenge for developing automatic learning, but again it
may be challenging even for problems that include an unknown behavior.

Thus, coping with the control problem is an objective to be stressed in further
development as the reality is that almost any real problem may include
unknown behaviors and unpredictable complexity. But it is also important to
highlight that there is an apparent tradeoff between the stability, the control and
the transparency that is not easy to deal whit in the current model. Not
controlling leads to instability and therefore interpretability and transparency get
spoiled.

When studying other models it is found that the problem on controlling growth
has been addressed by many, and they always end up facing the so called
combinatorial complexity or the biding problem. These problems arise when
models create concepts by binding representations of intrinsic characteristics in
the entities to be represented. This idea becomes problematic as the
representations include more and more characteristics since the possible
number of combination increases exponentially.

Therefore, in the field there has been a quest for reducing the complexity and
the amount of associations created when these kinds of problems arise. One
important process with which possible solutions to the biding problem in real
biological systems have been described is the need for attention (Holcombe,
2009). Attention can be described in many ways and the real process is not
completely known, however its possible need for solving the biding problem
implies certain control on which inputs and the way they are bind at a given
time.

This overall idea of attention may have direct relation to the control signals in
the TNN model, which allow proper performance by stating when to associate
and selecting the inputs that are to be related. In that sense the control and the

54

constraining of inputs proposed is arguable in terms of solving the binding
problem, but then again it is not a feasible solution for automating the process.
In order to achieve automatic selectivity, for associations many other features
have to be included in the model.

Some other issues are also related to the biding problem beyond the complexity
and growth of the structures. Typical examples are connected to the ability of
assessing proper meaning to the associations and are those including relational
statements of the kind “Mary loves John”. That relation could be seen as two
subject or concepts bind by a relation called “love”, or a relation among three
particular concepts that are bind together; however, the original statement does
not imply the complementary “John loves Mary”, but when the relationship is
created as described both the statements can mean the same, which is not
necessarily the case.

For this example the TNN model may manage the two possible statements by
means of two different associations having the possibility of interpreting them
differently. This is possible if the statements are presented as different
sequences, then each sequence will represent a different concept to which a
distinctive meaning could be assessed. However this implies a symbolic
manipulation that requires that the three concepts are clear and again the
design is limited to a symbolic well understand behavior of the inputs.

In general, this discussion and the development of the model are related to a
broader set of questions on the need for the development of models capable of
really creating and understanding concepts and not only perform some
manipulations on specific symbols to solve particular tasks.

When analyzing the existing models for cognition and problem solving one may
have the sense that generally all the applications aim to solve a particular task
that the researches have in mind and leave many details apart. This fact is
reasonable as the goal is based on solving specific problems; however it is a
very narrow perspective if the goal is to enhance the performance and capability
of models, or aiming for a more general problem solving approach.

The fact is that, as mentioned by Ekbia (2010), there is a utilitarian notion of
human life as being composed by a set of problems and human intelligence as
nothing but a capability to solve them. The issue with this idea is that it
somehow neglects that the human brain, and in fact any other brain, even when
capable of solving problems by sequences of steps is rather a dynamic system
with many structures shaping behavior, and the basis of its characteristics
should never be confused with that particular ability of describing problems by
sequences or by any other semantics.

For example, when one focuses on an specific problem and asses intelligence
based on the ability of performing clear steps for reaching a desired solution,
one must also think that in reality humans do not always reason in a correct way
(Bringsjord,2008). In fact, psychological works by Kahneman, Tversky and
colleagues suggest that human cognition might be “non-rational, non-optimal,
and non-probabilistic in fundamental ways” (Chater, Tenenbaum and Yuille,

55

2006). Thus, it is questionable to try to emerge intelligence from a fact that is
not completely related to the actual phenomena being modeled.

Nevertheless, this partial definitions on intelligence are common to many
models, for instances in the SOAR architecture (University of Michigan, 2012)
the ultimate goal in intelligence and complete rationality is settled as the ability
to use all available knowledge to solve any problem the system encounters; but
then again, if rationality is inspired by human behavior, the question is why such
a crucial definition does not take into account the fact that humans never
consider all the possibilities when taking a decision, but just some particular
ones that depend on parameters of which we may not be even conscious at all
(Overskeid, 2008).

On the other hand, there are approaches such as the epigenetic robotics that
emerges from the need of robots to understand and develop in relation to their
environments, and rejects more classical views of robotics in which the
capabilities of robots are completely based on pre-programed behaviors that
removes any possibility of concept creation and development. This approach
also states the absolute need for the robots to have a body with which to
explore and verify knowledge, which implies that any model to develop
knowledge and intelligence must be available to interact with the environment.

In this sense the TNN model lacks crucial characteristics as it cannot interact
with its environment at all, and actually its development is not related to any
kind of interaction beyond the inputs it receives. In fact interaction may be
needed to achieve the automatic characteristics that would remove the need for
the control signals that are implemented in the current model.

Nevertheless the TNN model is still being developed, and further versions of it
may take into account lessons from the present work and existing models and
approaches that have faced similar problems. Therefore, as a consequence of
the discussed issues and ideas, some particular future work considered
relevant for the TNN is mentioned in the following section.

56

Conclusions

- The toolbox implemented successfully satisfied the needs and met
the requirements under the constraints given by the partial
development of the TNN model.

- Basic inferences, inductions and generalizations achieved are linked

to the symbolic manipulation of the input grounded on previous
knowledge of the problem by the user, reason why there is not
enough information or evidence to claim that in general the model is
capable of the two main reasoning capabilities aimed.

- The emphasis on symbolic meanings of the inputs in the problems

definitions may be restricting the model into becoming completely
symbolic one.

- The model still requires of great deal of control signals and thresholds

definitions for proper performance, so that the scalability and creation
of solutions for dynamic and complex problems is not yet feasible with
the current model.

- The imaginary activity allows generating inferences and predictions

by means of probabilistic relations; therefore it should be used in the
learning rules as it represents big part of the knowledge in the
network and may be of utility to infer the relevance of a given input.

- Despite the information given by the imaginary activity, its

interpretability in some cases is still too ambiguous as it encloses
different concepts in just one parameter; thus if inference and
prediction or expectancy are to be interpreted separately there should
be a difference in the treatment of this parameter for each of them.

- The introduction of outputs and manipulation of inputs in relation to

the knowledge needs of the system and specific goals may be
needed to achieve automatic learning. That is, interaction with the
environment may be mandatory to reach the ambitious goals of this
model.

57

Future work

Here some issues considered to be relevant for future development of the TNN
are mentioned as well as possible hints for their solution.

- Firstly, with the model as implemented when an association is created it asses
the same relevance to each of its inputs; however, it can be sound to argue that
not in every case the concepts associated give the same amount of information
about the concept represented.

A toy example of this is an association that represents the concept “apple”; let’s
assume that this concept is formed just by biding together the concepts “apple
shape” and “green color“. It is highly probable that “green color” is associated to
many concepts, whereas “apple shape” may be associated only by the concept
“apple” (if all the apples were green); so the concept “apple shape” gives much
more information to this association than what “green color” does. In, other
words, the relevance of the “apple shape” concept is much higher to the
association “apple” than the color green.

To solve this it is suggested that weights for the real activity must be included in
the edges. The meaning of these weights, as mentioned, would be the
relevance of each input, which if managed correctly may keep the transparency
of the model intact and give it better capabilities.

- Another issue, in this case related to controlling the growth of the network, is
that stability depends largely on the association threshold, and a low threshold
normally leads to an uncontrolled growth; but even worst, the problem is
extended as the definition of “low value” in general is different for any given
situation.

To partially cope with this problem an incremental threshold is proposed. The
idea is that as more abstract the concepts are the more stable they should be.
This means that at the bottom levels the association could be created and also
deleted easily, but the deeper the concepts being related are, the more the
threshold should be increased to ensure that associations created bind clearer
concepts at each level. However, there will still exist a dependence on the
nature of the problem being addressed.

- It was also shown that by means of the imaginary activity it is possible to
achieve inferences and predictions by means of probabilistic relations; however
these are related in the same way and represented by the same unique value.
This unique value affects the interpretability of the results as it is hard to tell
what of the possible meaning the activity has at a given point, or in fact, the
meaning may always arise from a mixture of all possible interpretations, which
is against the supreme goal of transparency. Therefor a different treatment for
either the interpretation or the computation of the imaginary activity is
suggested.

58

- Something also related to the amount of associations created and its control is
the forgetting rules that have to be implemented. The goal of these rules is to
delete certain associations that are not really relevant as may have been
caused by noisy inputs or other situations.

However, though not currently implemented, the forgetting rules in the model
have been proposed to be simply based on the usage frequency of the
associations, meaning that if an association does not get activated in a “long”
time it will be deleted.

That idea presents to main problems in practice. First, the amount of time steps
that have to be elapsed in order to delete certain association is defined in a too
ambiguous way. A wrong definition of this time may lead to instability, in this
case because there will be forgetting of relevant information as concepts are not
presented in a certain period, and also may avoid the creation of deeper
concepts.

Secondly, the basic idea of this rule may be ignoring that some associations
might be extremely relevant but at the same time very rare, then the importance
of an association is not taken into account here.

Therefore, it is suggested that certain kind of relevance is assed to each
association in order to control forgetting, which at the same time may help in
controlling growth of the whole network, but without the risk of deleting curtail
information because of an arbitrary definition of time thresholds for forgetting.

- In relation to the problems evaluated and the way they are presented, more
emphasis on different kinds of inputs and evaluations are highly recommended
as the model and its performance as it is now, is strongly directed to be a
symbolic model with all what that implies. The model should be available to
create representations beyond the restrictions and reach the interpretation the
user wants without a previous forced definition.

- Finally, as mentioned in the previous subsection, there is a strong need for
interaction in order to develop intelligent systems, then the model has to be
focused more in the creation of concepts and behavior based on interaction and
not only on extracting information from the inputs. Thus, a more context based
and interactive learning both for the model and the implementation is suggested
for a better and more interesting progress.

59

References

C. Strannegård, O. Häggström, J. Wessberg, C. Balkenius 2012 Transparent
Neural Networks, paper presented at the SweCog

C. Strannegård 2011. Transparent Neural Networks. [manuscripts] March 2011,
Chalmers University of Technology

Troy D. Kelley., 2003. Symbolic and Sub-symbolic Representations in
Computational Models of Human Cognition: What Can be Learned from
Biology?. Theory & Psychology, Vol. 13, No. 6, 2003, pp. 847–860

James L. McClelland, Matthew M. Botvinick, David C. Noelle, David C. Plaut,
Timothy T. Rogers, Mark S. Seidenberg and Linda B. Smith., 2010. Letting
structure emerge: connectionist and dynamical systems approaches to
cognition. Trends in Cognitive Sciences, Vol. 14, Issue 8, August 2010, pp. 348-
356

Thomas L. Griffiths, Nick Chater, Charles Kemp, Amy Perfors and Joshua B.
Tenenbaum., 2010. Probabilistic models of cognition: exploring representations
and inductive biases. Trends in cognitive Sciences, Volume 14, Issue 8, August
2010, pp. 357–364

Nick Chater, Joshua B. Tenenbaum and Alan Yuille., 2006. Probabilistic models
of cognition: Conceptual foundations. Trends in Cognitive Sciences Volume 10,
Issue 7, July 2006, pp. 287–291

Amanda J.C. Sharkey., 2009. Artificial Neural Networks and Cognitive A
Modelling. Encyclopedia of Artificial Intelligence 2009, pp. 161-166

Inc. Numenta., 2011. Hierarchical Temporal Memory including HTM Cortical
Learning Algorithms.

The International Computer Science Institute, 2012. shrutí.[online] Available at:
< http://www.icsi.berkeley.edu/~shastri/shruti/> [Accessed April 2012]

Bringsjord, S.,2008. Declarative/Logic-Based Computational Cognitive
Modeling, in Sun, R., ed., The Cambridge Handbook of Computational
Psychology (Cambridge, UK: Cambridge University Press 2008), pp. 127-169

Lewis, R.L., 1999. Cognitive modeling, symbolic. In Wilson, R. and Keil, F.
(eds.), The MIT Encyclopedia of the Cognitive Sciences. Cambridge, MA: MIT
Press, 1999

R. Sun., 2001. Artificial intelligence: Connectionist and symbolic approaches.
In: N. J. Smelser and P. B. Baltes (eds.), International Encyclopedia of the
Social and Behavioral Sciences. pp.783-789. Pergamon/Elsevier, Oxford.

University of Michigan, 2012. SOAR. [online] Available at:
<http://sitemaker.umich.edu/soar/home> [Accessed April 2012]

60

Perlovsky, L.I., 2007. Neural Dynamic Logic of Consciousness: the Knowledge
Instinct. In Eds. L.I. Perlovsky, R. Kozma, Neurodynamics of High Cognitive
Functions, Springer.

ACT-R Research Group Department of Psychology, Carnegie Mellon
University., 2012., ACT-R. [online] Available at: < [http://act-r.psy.cmu.edu/>
[Accessed April 2012]

Ramamurthy. Uma, Baars. Bernard J, D’Mello. Sidney K, Franklin. Stan., 2006.
LIDA: A Working Model of Cognition. The 7th International Conference on
Cognitive Modeling, Trieste, Italy, April 2006. (Eds: Danilo Fum, Fabio Del
Missier and Andrea Stocco, p. 244-249, published by Edizioni Goliardiche,
Trieste)

Metta. Giorgio and Berthouze. Luc,. 2005. Epigenetic robotics: Modelling
cognitive development in robotic systems. Cognitive Systems Research,
Volume: 6, Issue: 3, pp, 189-192

Anthony F. Morse, Joachim de Greeff, Tony Belpeame, and Angelo Cangelosi,.
2010. Epigenetic Robotics Architecture (ERA). IEEE Transactions on
Autonomous Mental Development, Vol. 2, Issue. 4, December 2010

Stoytchev. Alexander., 2009. Some Basic Principles of Developmental
Robotics. IEEE Transactions on Autonomous Mental Development, Vol. 1,
Issue. 2, August 2009

Asada. Minoru, Hosoda. Koh, Kuniyoshi. Yasuo, Ishiguro. Hiroshi, Inui. Toshio,
Yoshikawa. Yuichiro, Ogino. Masaki and Yoshida. Chisato., 2009.Cognitive
Developmental Robotics: A Survey. IEEE Transactions on Autonomous Mental
Development, Vol. 1, Issue. 1, May 2009

d’Avila Garcez. Artur S, and Lamb. Luis C., 2011. Chapter 18 Cognitive
Algorithms and Systems: Reasoning and Knowledge Representation.,
Perception-Action Cycle: Models, Architectures, and Hardware: Models,
Algorithms and Systems (Springer Series in Cognitive and Neural Systems)

Holcombe, A.O., 2009. The Binding Problem., In E. Bruce. Goldstein (Ed.), The
Sage Encyclopedia of Perception.

Ekbia, H., 2010. Fifty years of research in artificial intelligence. In: Cronin, B.
(Ed.) Annual Review of Information Science and Technology, Volume 44.
Medford, NJ: Information Today/American Society for Information Science and
Technology, pp. 201-242.

Overskeid. Geir., 2008. They Should Have Thought About the Consequences:
The Crisis of Cognitivism and a Second Chance for Behavior Analysis., The
Psychological Record, 2008, Vol 58, issue 1, pp. 131–151

