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Abstract—This work focuses on the identification of nonlinear
dynamic systems. In particular the problem of obtaining good
starting values for the identification of nonlinear state-space
models is addressed. A fast and efficient initialization algorithm
is proposed, combining the use of methods from the statistical
learning community to model the nonlinearities and classic
system identification tools to capture system dynamics. The
performance of the method is evaluated on simulation examples.

I. INTRODUCTION

Most real-life systems are characterised by a nonlinear

behavior, and very often one should also be able to model

dynamics to get a thorough description of the system. Hence,

modeling of nonlinear dynamical systems represents an inter-

esting challenge in system identification.

In this work the problem is addressed by considering

nonlinear state-space models (in the discrete time domain) of

the form:

x(t +1) = f (x(t),u(t)) (1)

y(t) = g(x(t)) (2)

where u(t)∈R
nu and y(t)∈R

ny are the given input and output

signal vectors at time instant t, x(t) ∈ R
nx is the unknown

state vector of the system, and f (·) and g(·) are the nonlinear

functions to be estimated.

Among the different model classes that can be used, state-

space models exhibit some nice properties which make them

often the preferred choice: they are general model structures

that allow one to naturally describe system dynamics, and

they are particularly suited for Multiple Input Multiple Output

(MIMO) systems. Although state-space models have been

extensively studied and employed in the context of linear

system identification [1], [2], the identification of nonlinear

state-space models is a far more complex task.

Nonlinear functions f and g are characterized by a number

of parameters that need to be optimized, by minimizing a given

criterion. If the problem is nonlinear in the parameters, an

iterative search for the cost function minimum is performed,

e.g. using a Levenberg-Marquardt technique [1], [2]. Starting

from initial parameters, in each iteration several simulations

of (1-2) and their derivatives need to be done, resulting in

high time costs. The main idea of this work is to transform

the dynamic identification problem into a nonlinear regression

problem that can be solved much more efficiently.

The statistical learning community provides us with meth-

ods that can be used to identify nonlinear systems, see e.g.

[3] and [4]. In that setting, the nonlinear regression problem

to be solved is the following:

z(t) = h(ϕ(t)) (3)

where ϕ(t) and z(t) are the input and output signals respec-

tively, and h(·) is the nonlinear function to be estimated. Notice

that ϕ(t) is available from the beginning of the estimation,

while the state x(t) in (1-2) is unknown.

The approach proposed in this paper is based on a combina-

tion of ideas from statistical learning used to solve nonlinear

regression problems on one hand, and methods to handle

dynamics from the system identification community on the

other hand [2]. More in particular an approximate version of

the problem is obtained, by getting an approximation of the

nonlinear state x(t) to cut the recursion loop in equation (1),

in order to be able to estimate the nonlinear functions f and

g individually as static mappings, to bring one back to the

statistical learning problem setting in Eq. (3).

By applying this procedure, the aim is to generate good

starting values for the model parameters that need to be opti-

mized, in order to reduce the time to convergence and possibly

to avoid to get stuck in bad local minima. Moreover, since

by applying regression methods the initialization procedure is

speeded up, one can test more efficiently many choices for the

nonlinear functions f and g.

Examples of related methods are present in the literature

(e.g. [5]–[13]), including a combination of kernel canonical

correlation analysis (KCCA) and Least Squares Support Vector

Machines [5], neural state-space models [6], subspace identi-

fication techniques [7], and algorithms based on Expectation-

Maximization [10]–[12]. Although these approaches seem to

be successful in specific applications, in this paper we address

the identification of nonlinear state-space models combining

the use of NNs with more classic system identification tech-

niques to capture system dynamics, by keeping the estimation

of the nonlinearities separated from the estimation of the linear

dynamics.

This paper is organized as follows. The considered problem

is presented in more details in Section II, while the different



steps of the proposed approach are described in Section III.

The proposed method is illustrated by means of a simulation

example (Section IV), and concluding remarks are provided

in Section V.

II. PROBLEM DESCRIPTION

The nonlinear dynamics in Eqs. (1-2) are assumed to be

modeled as:

f (x(t),u(t)) = Ax(t)+Bu(t)+ fNL(x(t),u(t)) (4)

g(x(t)) = Cx(t)+gNL(x(t)) (5)

where A ∈ R
nx×nx , B ∈ R

nx×nu , C ∈ R
ny×nx and fNL(·) and

gNL(·) have nx and ny outputs respectively.

In this way, once the Best Linear Approximation (BLA)

is estimated (that is, once an initial estimate for the matrices

A, B and C is obtained, see next section for more details),

only the deviation from the linear model needs to be modeled,

which has been proposed by several authors, see e.g. [14]

and [15]. Notice that the proposed approach targets systems

that are weakly nonlinear (the linear part is considered to be

dominant if compared with the nonlinear part) and systems

that are assumed to have only one equilibrium point.

By obtaining approximate nonlinear states (based on the

BLA and on the available data) the estimation problem is

transformed into a nonlinear regression problem of the form

(3), and basically any method from the statistical learning

community can be used to obtain preliminary estimates of fNL

and gNL. To illustrate the idea, multilayer perceptrons (MLP)

with one hidden layer are used, i.e. the nonlinear terms fNL

and gNL are described as weighted sums of sigmoid functions

of the form s(a) = 1
1+e−a [3], with parameters characterizing

their center position, width and amplitude. This is a general

way of describing the nonlinearities in the model, which allows

one to extend the method to include other possibilities for the

basis function [16].

In the classic (nonlinear) system identification framework,

on the basis of a set of N input/output measurement data

{u(t),y(t)}N
t=1, one can build a model characterised by a vector

of parameters θ to describe the behavior of the underlying

system. The obtained model can then be used to predict

the output values ŷ(t,θ).In our case, beside the parameters

characterizing the linear part of the model, the parameters of

the sigmoid functions mentioned above need to be estimated.

Following the Least Squares approach, optimal values of

θ are found that minimize a least squares cost function V ,

typically the mean square error of the modeled outputs (on

the basis of past input/ouput measurements) with respect to

the true output values:

θopt = argmin
θ

V (θ)

where

V (θ) =
1

N

N

∑
t=1

(y(t)− ŷ(t,θ))2

Since the resulting problem is nonlinear in the parameters,

a numerical optimization is needed.

A typical difficulty that is encountered when minimizing the

cost function V (θ) is the presence of a number of local minima

in which the search algorithm may get trapped. Therefore,

choosing the starting values for parameters θ represents a

crucial issue, since the initialization step has a big impact

both on the quality of the final solution and on the time

required for convergence. The goal of this work is to obtain

better starting values, by employing an initialization procedure

that combines system identification techniques to model the

dynamics of the system and NNs as a regression method

to estimate the nonlinearities. In this way, when fitting the

parameters of model (1-2), one hopes to end up in a good

(local) minimum to increase the quality of the final solution.

III. PROPOSED ALGORITHM

The proposed scheme for the initialization of nonlinear

state-space models consists of three main steps:

• obtain a linear model to capture the dynamics of the

system;

• estimate the nonlinear states;

• model the nonlinearities.

In this section all the different steps are described in details.

A. Obtain a linear model

First of all, the nonlinear input-output behavior is approxi-

mated with a linear model, by estimating the BLA [2]. Among

the possible choices of linear models that one can use, the BLA

is defined to be optimal in least square sense. More in details,

in the set of linear models G , the BLA is defined as the model

G such that:

GBLA = argmin
G∈G

E {|y(t)−G(u(t))|2}

where u(t) and y(t) are the input and output of the nonlinear

system [2], [17]. In this way matrices Â, B̂ and Ĉ can be

determined, obtaining the following linear model:

x(t +1) = Âx(t)+ B̂u(t) (6)

y(t) = Ĉx(t) (7)

The linear model can then be used to get an approximation

of the nonlinear states, as discussed in the next paragraph.

B. Estimate x̂LS

A main point in the proposed approach is based on the fact

that if the states x(t) would be exactly known, the problem of

obtaining a nonlinear model could be solved much more easily

by estimating f and g individually and as static mappings.

Since the nonlinear states are in practice not available, one

would like to obtain an approximation of x(t), to be able to

obtain initial estimates of f and g.

In particular, using the available data {u(t),y(t)}N
t=1 and

the BLA estimates Â, B̂, Ĉ obtained in the previous step,

the nonlinear states are approximated as a trade-off between

the linear model and data fit, by solving the following Least

Squares problem:



x̂LS(t) =arg min
{x(t)}

∑
t

(y(t)−Ĉx(t))2

+λ ∑
t

(x(t +1)− Âx(t)− B̂u(t))2 (8)

The first term of the cost function in Eq. (8) represents the

data fit, while the second term represents the linear model fit; λ
is the trade-off parameter that needs to be tuned to change the

emphasis given on the two criteria. By tuning λ a deviation

from the linear states (resulting from the BLA estimates Â,

B̂, Ĉ) is allowed, to take into account the nonlinear terms in

Eqs. (4-5). Problem (8) could be replaced by a Kalman filter

which would change the approximation slightly.

C. Estimate nonlinear functions f and g

Once the nonlinear states {x̂LS(t)}
N
t=1 are obtained, regres-

sion methods are employed to solve the following approximate

static problem:

x̂LS(t +1) = f (x̂LS(t),u(t))+ rLS(t) = Âx̂LS(t)+ B̂u(t)+

+ fNL(x̂LS(t),u(t))+ rLS(t) (9)

y(t) = g(x̂LS(t))+ eLS(t) =

= Ĉx̂LS(t)+gNL(x̂LS(t))+ eLS(t) (10)

where rLS(t) and eLS(t) are error terms resulting from the

fact that here the approximated nonlinear states are intro-

duced in the problem. By solving this nonlinear regression

problem without recursion, one can estimate both functions

f (x̂LS(t),u(t)) and g(x̂LS(t)) using the methods of the sta-

tistical learning community. As already mentioned, in this

work a specific type of nonlinearity is used, namely one-

hidden-layer sigmoidal MLPs, since they are proved to be

“universal approximators”. This means that such networks can

approximate any continuous function arbitrary well [6], and

their use seems therefore appealing for our purposes, although

local minima issues may pop up when using NNs.

Model structure

The model structure represented in Fig. 1 will be used. In

Fig. 1(a) the representation of state equation (1) is given in

the case of having one input, one output and two states. In

the block scheme the three inputs are the states x̂1
LS(t), x̂

2
LS(t)

and the input u(t), while the two outputs are the states x̂1
LS(t +

1), x̂2
LS(t +1). The sigmoidal MLP block is added in parallel to

the linear model, so that the update for both states consists of

a linear plus a nonlinear part, see Eq. (4). The same structure

is used to describe the output equation (2) in Fig. 1(b).

The MLP blocks, namely fNL and gNL in Eqs. (4-5), consist

of the sum of a number of sigmoids, each one characterized

by three types of parameters: center position, width and

amplitude. These parameters are estimated together with the

ones defining the linear model, using the input-output data

{u(t),y(t)}N
t=1 and the nonlinear states {x̂LS(t)}

N
t=1.
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Fig. 1. Model structure used to describe (a) the state equation, (b) the output
equation, in the case of one input, one output and two states. The MLP block
is added in parallel to the linear model.

Simulation of the initialized nonlinear model

The two estimated blocks f̂NL and ĝNL can then be included

in a general nonlinear state-space structure; at this point the

dynamics are again taken into account, and one can simulate

the obtained initialized model to assess its performance. In

other words, the recursion in the state equation is included

again, switching back from the approximate initialization

obtained using (9-10) to (4-5), which is the problem one wants

to solve.

Finally, the obtained initial estimate of the nonlinear model

can be further fitted to data.

Time saving

One of the advantages of employing the initialization tech-

nique presented in this paper rather than a linear initialization

scheme is related to the reduction of time needed for the

estimation of the nonlinear model.

In particular, the proposed method allows one to reduce the

computational time at different stages of the algorithm, thanks

to the fact that f and g are estimated separately. For instance,

a considerable amount of time can be saved during model

selection since many different choices for the nonlinearities

can be tested independently.

IV. SIMULATION EXAMPLES

In this section the proposed initialization technique is ap-

plied on a simulation example, which is useful to evaluate

the pros and cons of the method. In particular, the case in

which a nonlinear term is present only in the state equation is

considered, i.e. f is nonlinear and g is linear.

A. Simulation settings

The considered nonlinearity is a sum of sigmoid functions,

i.e. the same model structure that has already been described

in Section III-C is used.

One input, one output and two states are considered. Data

were generated by considering a normally distributed input

signal characterized by zero mean and unit variance. Two

data records of 2000 samples each were generated, one used

for estimation and one for validation purposes. In this simple

example, no noise was added to the output. Matrices A,B,C

were chosen as follows:

A =

(

0.4 −0.2

−0.1 0.5

)

B =

(

1

2

)

C =
(

2 1
)



Fig. 2. Sum of sigmoids used for the two states. In both cases the sum of
three different sigmoid functions is considered.

An example of a weakly nonlinear system is considered, in

particular for each state a sum of three different sigmoids was

added to the linear part in the state equation.

The resulting nonlinear terms for the two states are shown

in Fig. 2.

B. Simulation results

In the following the results obtained for the considered

simulation problem will be discussed. In particular, the gain

in performance (e.g. in terms of RMSE) of the proposed

initialization technique will be evaluated when compared with

a linear initialization. RMSE results both after the initialization

phase, and after the fitting of all parameters will be shown.

Different ‘realizations’ of the sigmoidal MLP are taken into

account, meaning that the initialization scheme was repeated

several times, each time with a different initial position of

the sigmoids. The initial center position parameters of the

sigmoids are chosen randomly in the domain of the data, so

by looking at different initializations a statistical overview on

the results is obtained.

In this simple example our input/output data were generated

by considering a nonlinear f and a linear g. However, since

this information is not available a priori, both f and g will be

estimated as nonlinear functions with the following structure:

a linear block plus a sum of sigmoids.

The results on the validation set obtained when comparing

the proposed initialization technique with the linear initializa-

tion will now be discussed. Fig. 3 depicts the improvement

in terms of RMSE after the initialization phase. Since no

information on the nonlinear terms was available, the use of

ten sigmoids for f and five sigmoids for g was empirically

chosen. 50 different initializations of the MLPs (50 different

center positions of the sigmoid functions) are taken into

account, which explains the variability of the results. Instead,

for the linear initialization, only one RMSE value is obtained.

One can see that, by employing the proposed method, the

RMSE values of the initialized models are approximately 50%

lower than in the case of an initialized linear model.

Next, the performance of the models obtained when fitting

all parameters by means of an iterative Levenberg-Marquardt

procedure is compared in Fig. 4. RMSE values of the final

fitted models obtained starting from the proposed initialization

and starting from the linear initialization are shown.
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Fig. 3. RMSE values (on validation data) of the initialized models, with the
linear initialization (dashed line) and with the proposed approach (solid line).
50 different initializations of the sigmoids are considered.

The proposed initialization scheme gives significantly better

results for the 20 best models characterized by low RMSE

values (the best model shows an improvement of three orders

of magnitude if compared with the linear initialization).

Notice that the RMSE values shown here for the validation

set are almost identical to the ones obtained on the estimation

data, indicating not only that the proposed approach yields a

significant improvement in terms of error reduction, but also

that the obtained nonlinear models can generalize very well

on previously unseen data.
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Fig. 4. RMSE values (on validation data) of the final fitted models, obtained
by starting with the proposed initalization technique (black circles) and with
the linear initialization (white squares), for 50 different initializations of the
sigmoids. The RMSE values (in log scale) are sorted in increasing order.

V. CONCLUSION

In this work a novel initialization scheme for the identifica-

tion of nonlinear state-space models has been presented. The

approach was successfully applied on simulation examples.

The proposed initialization procedure has several advantages,

as (i) the separation between system dynamics and nonlinear

terms makes it possible to identify them independently; (ii)

many nonlinear model structures can be tested rapidly on the

obtained regression problem; (iii) two different fields - system

identification and statistical learning - are brought together,

combining the advantages of both.
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