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Characteristic Basis Function Patterns –

A Novel Expansion Method for the Fast and

Accurate Prediction of Antenna Array Beams

R. Maaskant∗ M. Ivashina†

Abstract — A novel beam expansion method is pro-
posed for the fast and accurate prediction of antenna
radiation patterns. Only a few physics-based entire-
domain vector basis functions – called Character-
istic Basis Function Patterns (CBFPs) – are em-
ployed for modeling each far-field beam. To deter-
mine the beam expansion coefficients, it suffices to
measure the unknown beam for a few angular direc-
tions only, after which the beam shape is modeled
over a large angular region through the interpola-
tory CBFPs. In practical systems where multiple
embedded element- or array-beams are correlated
to form a covariace matrix, it even suffices to per-
form a single measurement on multiple independent
reference point sources in the antenna’s field of view.
This is an important step forward for the fast and
accurate calibration of antenna beams, in particular
for imaging array systems. An illustrative example
is presented on both the procedure for generating
the CBFPs and determining their expansion coeffi-
cients.

1 INTRODUCTION

Optimal beam shaping and multi-beaming through
the use of advanced antenna array signal processing
algorithms are being increasingly applied in vari-
ous radar, satellite and mobile communication sys-
tems, and since recently in radio telescopes and mi-
crowave imaging instruments. These antenna ar-
rays offer the flexibility to match the shape of the
antenna beam to a required contour, and to max-
imize the gain or receiving sensitivity of multiple
pencil beams with controlled side-lobe and cross-
polarization levels.
However, the realized beam pattern may be dif-

ferent in practice from the ideally expected one; for
instance, the antenna system may be exposed to
temperature variations, mechanical forces, or other
temporal perturbations as a result of which the elec-
trical properties of the antenna system may drift.
Correction for these drifts requires a complex cali-
bration procedure that is realized in both hardware
and software. In practice, it involves several mea-
surements of the gain and/or the pattern shape –
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performed at regular time intervals and spatial di-
rections – and can consume up to 50% of the total
operation time.

In this paper, we propose a novel methodol-
ogy for the rapid characterization of antenna beam
patterns through expanding each (unknown) beam
in terms of Characteristic Basis Function Patterns
(CBFPs)1. The set of CBFPs is generated for a spe-
cific EM structure and therefore contains physics-
based information about the antenna system. Fur-
thermore, the CBFPs are chosen to model only spe-
cific type of beam errors that are likely to occur, so
that only a few CBFPs are required for modeling
each beam. Hence, the proposed beam modeling
methodology holds the promise to expedient ex-
isting beam calibration schemes by 1–2 orders of
magnitude and is therefore believed to constitute
an important contribution in developing effective
calibrationmethods for large-scale antenna systems
and complex beamforming scenarios.

The paper starts by explaining the general con-
cept of generating a set of CBFPs for modeling
an unknown beam. Afterwards, the measurement
methodology is described to determine the CBFP
expansion coefficients using only a few reference
sources in the sky. Finally, some illustrative ex-
amples are given demonstrating the powerfulness
of the novel beam prediction method.

2 METHODOLOGY – CHARACTERIS-
TIC BASIS FUNCTION PATTERNS

2.1 CBFP Generation

We provide a brief description of the method to
generate CBFPs and to determine their expansion
coefficients. Analogously to the Characteristic Ba-
sis Function Method for modeling the current [1],
the mth unknown antenna array beam pattern – or
embedded element pattern (EEP) – F [m](θ, φ), is
expanded into a relatively small set of N [m] CBFPs

1A “beam” can refer to an embedded element pattern or
a beamformed array pattern.
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set of expansion coefficients, yet to be determined.
Although Eq. (1) is a general series expansion, the
powerful property of CBFPs is that relatively few
CBFPs are required for the accurate modeling of
the beams, because:

• CBFPs are physics-based basis function
patterns that include a priori informa-
tion about the antenna system. For
instance, for the mth beam pattern, F [m],

the primary CBFP, G
[m]
1 , is chosen to be

as close as possible to the ideally expected
beam pattern in the absence of system er-
rors. This CBFP can therefore be determined
through physics-based EM simulations or mea-
surements to match the actual expected beam
best.

• Higher-order CBFPs, G[m]
n

, for n > 1,
must be chosen to compensate for ex-
pected beam errors. Since the primary
CBFP is assumed tomodel the beam in the ab-
sence of system errors, higher-order CBFPs are
supposed to compensate for beam errors, i.e.,
they should span the most dominant subspace
of expected errors for the mth beam pattern
in order to be most effective. Example 1: if
the antenna geometry is exposed tomechanical
forces, it is recommended to determine the pat-
terns for several deformed geometries and em-
ploy these as higher-order CBFPs, because the
actual pattern for any geometrical deformation
is likely to be a linear superposition of the pri-
mary and higher-order CBFPs. Example 2: if
an impedancematching error is to be expected,
and one aims to predict an EEP in an an-
tenna array, it is natural to employ the EEPs of
neighboring antenna elements as higher-order
CBFPs to model the perturbed EEP under
consideration; since matching errors effectively
result in excitations on the neighboring ele-
ments causing the EEP under consideration to
be modified by a weighted sum of the EEPs of
the adjacent antenna elements.

• In a multi-level context, each of the sam-
pled CBFPs can, in turn, be expanded
in analytical basis function patterns. Be-
cause CBFPs are measured or simulated for
discrete directions only, each of the angular

sampled CBFPs in (1) can, in turn, be ex-
panded in analytical basis function patterns
with fixed expansion coefficients to ease pat-
tern interpolation at any given direction, with-
out increasing the degrees of freedom (DoFs)
to solve for.

It is pointed out that, in some cases, scanned
array patterns – or EEPs otherwise – may be as-
sumed close to identical in certain array configura-
tions, or be related through simple relations, so that
the DoFs in Eq. (1) can be reduced significantly.
Example: when the array beam can be modeled by
the array factor multiplied by an EEP, only a single
EEP needs to be expanded in CBFPs.

Also, it is worthwhile to realize that, in order to
minimize the total number of unknown coefficients,
the CBFPs should span only the physically relevant
subspace of possibly expected patterns. This basis
is therefore incomplete in a mathematical sense –
as it does not model any arbitrary pattern – but is
sufficiently complete from a physical point of view.

Finally, note that a set of CBFPs needs to be gen-
erated only once, as opposed to the set of expansion
coefficients which may need regular updates during
operation.

2.2 Expansion Coefficient Determination

2.2.1 Method 1:

A straightforward manner to determine the N [m]

complex-valued expansion coefficients {α
[m]
n }

N
[m]

n=1

in (1) for the mth antenna beam is to sequentially
measure the corresponding beam voltage responses
for P independent reference point sources in the
sky (point matching), where P ≥ N [m]. Thus, if

V
[m]
p denotes the open-circuited voltage of the mth

beam in the receiving situation for the pth far-field
source in the direction Ωp, then
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for p = 1, 2, . . . , P directions, and where Ei(Ωp)
is the complex-valued incident plane wave field
from the pth source/direction. The pattern F [m]

is defined by exciting the mth beam port by a
unit current source, while all other beam ports
are open-circuited. From (2), we conclude that
the CBFP expansion coefficient vector α[m] =

[α
[m]
1 , α

[m]
2 , . . . , α

[m]
M

]T can be found by solving the

linear system A
[m]α[m] = V

[m], where A
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P × N [m], and because P ≥ N [m], the solution to
the linear system of equations is given through the
Moore-Penrose pseudoinverse

α[m] =

((
A

[m]
)H

A
[m]

)−1 (
A

[m]
)H

V
[m]. (3)

Note that the matrix condition number of A[m] de-
pends on the position of the sources, which, in turn,
may affect the solution accuracy as explained in [2].

2.2.2 Method 2:

In “Method 1” we assumed that the distant
complex-valued reference point sources are deter-
ministic in both amplitude and phase. In prac-
tice, however, the sources may be natural inco-
herent power point sources that have, statistically
seen, no time-averaged phase relation. Then, by
using (2), one can instead measure and model the

time-averaged beam output power 〈|V
[m]
n |

2
〉. How-

ever, since this quantity is real-valued, at least
2N [m] measurements are required to find the N [m]

complex-valued CBFP expansion coefficients. Also,
solving for voltage beams through power relations
requires the solution of a non-linear system of equa-
tions.
Instead of observing one point source, one can

have multiple incoherent point sources within the
antenna’s FoV, so that these sources are measured
simultaneously. Then, by using an array antenna
in conjunction with a complex correlator at the an-
tenna output ports, one canmodel and measure the
Q×Q antenna output covariance matrix R, where
Q ≥ P ≥ N [m] is the number of antenna array ele-

ments, and where element Rpq = 〈V
[m]
p (V

[m]
q )�〉 for

{p, q} ∈ {1, 2, . . . , Q}. As detailed in [2], we then fit
the modeled antenna output covariance matrix to
the measured one to determine the complex-valued
expansion coefficients. This again is a non-linear
fitting problem.
Finally, and for completeness, we mention that

the case of distributed sky reference sources is
briefly discussed in [2] as well.

3 ILLUSTRATIVE EXAMPLE

Since “Method 2” in the previous section has been
largely detailed in [2], we provide an example for the
readily comprehensible “Method 1” instead. How-
ever, it is by no means limited to this specific ex-
ample, as already described above.
Fig. 1 illustrates a 3×1 Vivaldi array with beam-

forming network for maximizing the gain in a de-
sired direction; in this case θ = φ = 0 (see the
ideal beam pattern in Fig. 1). However, the actual
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Figure 1: Vivaldi array (3 × 1) with beamforming
network; ideally expected beam pattern, and actual
deformed beam.

beamformer weights may drift in practice, e.g. due
to temperature variations and/or hardware imper-
fections. We will therefore assume that the actual
beam has a gain maximimum in the θ = 5◦ di-
rection (cf. Fig. 1). The objective is to model the
actual beam through only a few CBFPs and cali-
bration sources in the sky.

Following the above proposed procedure for gen-
erating the CBFPs, the primary CBFP is chosen
to be the ideal broadside-scanned beam as indi-
cated in Fig. 2 (black curve), since this pattern is
assumed to be close to the actual beam pattern
(blue curve). The higher-order CBFPs are sup-
posed to minimize the beam error. Since the er-
ror is expected to be in the beamformer weights,
we generate CBFPs through simulations by ad-
justing the beamformer weights and scan to two
offset directions, for example to θ0 = −10◦ and
θ0 = +10◦. The corresponding two additional pat-
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Figure 2: Three CBFPs are generated.

terns are then employed together with the primary
one to form the set of 3 CBFPs as shown in Fig. 2.
The next step is to determine the 3 expansion co-
efficients for these CBFPs to predict the actual
beam. Toward this end, we measure the actual
pattern using 3 reference point sources, for example
for θ ∈ {−10◦, 0◦,+10◦}. The actual subsequently
measured beam voltages form the 3×1 right-hand-
side vector V[1]. The 3×3matrix A

[1] is constructed
by sampling each of the 3 CBPFs in the 3 source
directions. Accordingly the CBFP expansion coef-

ficient vector is computed, α[1] =
(
A

[1]
)−1

V
[1], so

that the predicted beam can be determined.
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Figure 3: Actual and predicted beam patterns.

Fig. 3 shows that the actual and the predicted
beam patterns are identical. This is to be expected,
since the pattern for any weight vector can be con-
structed from a linear combination of the 3 embed-
ded element patterns – or in this case 3 independent
array-scanned beams.

Many other examples and scenerios can be an-
alyzed with the proposed beam modeling concept.
One example: if an error in the element geometry is
to be expected, CBFPs can be generated for several
deformed geometries and then be used to predict
the actual beam. However, one should realize that
the relation between geometrical variations and the
beam shape is a non-linear one, as opposed to vari-
ations of the beamformer weights on the beam pat-
tern. If the errors are small, however, one can lin-
earize the problem so that the proposed modeling
method is still valid, albeit in approximated form.

4 CONCLUSIONS

A novel expansionmethod is proposed that requires
to employ only a small number of physics-based
characteristic basis function patterns (CBFPs) for
modeling antenna beams. Only few CBFPs are re-
quired since they incorporate the electromagnetic
radiation properties of the antenna system and ex-
ploit a priori knowledge on the type of beam errors
that are to be expected in practice. The CBFP
expansion coefficients are determined by measur-
ing on only a few far-field reference sources in
the sky. An illustrative example is shown which
demonstrates the methodology in one of its sim-
plest forms.
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