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Abstract

In this paper, the design and analysis of a new bandwidth-efficient signaling method

over the bandlimited intensity-modulated direct-detection (IM/DD) channel is pre-

sented. The channel can be modeled as a bandlimited channel with nonnegative

input and additive white Gaussian noise (AWGN). Due to the nonnegativity con-

straint, standard methods for coherent bandlimited channels cannot be applied

here. Previously established techniques for the IM/DD channel require bandwidth

twice the required bandwidth over the conventional coherent channel. We propose

a method to transmit without intersymbol interference in a bandwidth no larger

than the bit rate. This is done by combining Nyquist or root-Nyquist pulses with

a constant bias and using higher-order modulation formats. In fact, we can trans-

mit with a bandwidth equal to that of coherent transmission. A trade-off between

the required average optical power and the bandwidth is investigated. Depending

on the bandwidth required, the most power-efficient transmission is obtained by the

parametric linear pulse, the so-called “better than Nyquist” pulse, or the root-raised

cosine pulse.

Keywords: Indoor diffuse wireless optical communications, intensity-modulated

direct-detection (IM/DD), matched filter, Nyquist pulses, optical communications,

root-Nyquist pulses, short-haul optical fiber links, strictly bandlimited signaling.
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GLOSSARY

Notations

A scaling factor

a information symbol

B lowpass bandwidth

C finite set of constellation points

Cn Fourier series coefficient

E {·} expectation

Eq pulse energy

fc optical carrier frequency

G(ω) receiver filter frequency response

g(t) receiver filter impulse response

h(t) channel impulse response

I(t) electrical signal

J laser conversion factor

L constellation offset

M number of levels in the modulation

N0/2 double-sided power spectral density of noise

n(t) noise at the receiver

O(t) optical signal

Perr bit error probability

Popt average optical power

Pmax maximum optical power

Q(ω) Fourier transform of q(t)

q(t) arbitrary pulse

R responsivity of the photodetector

r(t) output of the receiver filter

Ts symbol duration
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Tb bit duration

u(t) noise at the output of matched filter receiver

x(t) intensity of the optical signal

y(t) received electrical signal

z(t) noise at the output of sampling receiver

Subscripts

k discrete time instant

opt optical

ref reference system

Superscripts

ref reference system

* complex conjugate

Abbreviations

AB-QAM Adaptively Biased QAM

ADR Asymptotic Decay Rate

AWGN Additive White Gausian Noise

BPSK Binary Phase-Shift Keying

BTN Better Than Nyquist

DC Direct-Current

DJ Double-Jump

DPPM Differential PPM

FTTH Fiber to the Home

IM/DD Intensity-Modulated Direct-Detection

ISI Intersymbol Interference

LAN Local Area Network



ix

LED Light-Emitting Diode

MF Matched Filter Receiver

MSM Multi Subcarrier Modulation

OFDM Orthogonal Frequency Division Multiplexing

OOK On-Off Keying

PAM Pulse-Amplitude Modulation

PL Parametric Linear

Poly Polynomial

PPM Pulse Position Modulation

PSK Phase-Shift Keying

QAM Quadrature Amplitude Modulation

RC Raised-Cosine

RRC Root-Raised Cosine

S Sampling Receiver

S2 Squared Sinc

SDJ Squared DJ

SER Symbol Error Rate

SRC Squared Raised-Cosine

Greek Letters

α roll-off factor

ζ matched filter gain

θ random phase of optical signal

µ required DC bias



x

σ2 noise variance

∆ minimum distance between constellation points

Υ optical power gain

Diacritical marks

ˆ maximum

¯ average

ˇ minimum

⊗ convolution
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1 INTRODUCTION

The growing demand for high-speed data transmission systems has introduced new

design paradigms for optical communications. The need for low-complexity and cost-

effective systems has motivated the usage of affordable optical hardware (e.g., inco-

herent transmitters, optical intensity modulators, multimode fibers, direct-detection

receivers) to design short-haul optical fiber links (e.g., fiber-to-the-home and optical

interconnects) [1, 2] and diffuse indoor wireless optical links [3–5]. These devices

impose three important constraints on the signaling design:

• First, the transmitter only modulates information on the instantaneous inten-

sity of an optical carrier, contrary to conventional coherent channels where the

amplitude and phase of the carrier can be used to send information [6, Sec. 4.3].

In the receiver, only the optical intensity of the incoming signal will be de-

tected [4] since the output of detector is an electrical current which is pro-

portional to the detected intensity. Due to these limitations, the transmitted

signal must be nonnegative. Such transmission is called intensity modulation

with direct detection (IM/DD).

• Second, the peak and average optical power (i.e., the peak and average of the

transmitted signal in the electrical domain) must be below a certain threshold

for eye- and skin-safety concerns [4] and to avoid nonlinearities present in the

devices [7, 8]. In conventional channels, such constraints are usually imposed

on the peak and average of the squared electrical signal.

• Third, the bandwidth is limited due to the impairments in the optoelectronic

devices [5, 9] and other limitations (e.g., modal dispersion in short-haul opti-

cal fiber links [10] and multipath distortion in diffuse indoor wireless optical

links [4]). Consequently, the coherent modulation formats and pulse shaping

1



2 Chapter 1 Introduction

methods designed for conventional electrical channels (i.e., with no nonneg-

ativity constraint on the transmitted signal) cannot be directly applied to

IM/DD channels.

1.1 Thesis Contributions

In this study, we present a new signaling method for bandlimited IM/DD channels,

in which the transmitted signal becomes nonnegative by the addition of a constant

direct-current (DC) bias. This method provides us with two benefits: (i) We can

transmit with no intersymbol interference (ISI) with a bandwidth equal to that of

coherent conventional channels, while benefiting from the reduced complexity and

cost of IM/DD system. (ii) We can implement the system using either Nyquist pulses

with sampling receiver or root-Nyquist pulses with matched filter receiver. By being

able to use a larger variety of pulses, the transmitted power can be reduced compared

with known methods, which is advantageous in power-sensitive optical interconnects

and indoor wireless optical links. We also evaluate the spectral efficiency and optical

power efficiency of binary and 4-PAM formats with Nyquist and root-Nyquist pulses

for achieving a specific noise-free eye opening or a specific symbol-error-rate (SER).

1.2 Organization of the Thesis

The remainder of the report is organized as follows. Chapter 2 gives a brief overview

of the previous works that has been done about bandlimited signaling in conven-

tional and intensity modulated channels and investigates various modulation for-

mats. Chapter 3 presents the system model. In Chapter 4, after giving the criteria

in selecting the proper pulse, we define the Nyquist pulses that have been used ex-



1.2 Organization of the Thesis 3

tensively for conventional bandlimited channels, as well as the ones that have been

suggested for nonnegative bandlimited channels. Moreover, the root-Nyquist pulses

used in this study are introduced. Chapter 5 discusses a method of computing the

required DC bias for a general pulse. Chapter 6 introduces the performance mea-

sures and analyzes the performance of the system under different scenarios. Finally,

conclusions are drawn in Chapter 7 on the performance of the system.



2 PREVIOUS WORKS

2.1 Conventional Channels

Modern communication systems aim at increasing the amount of data transmitted

over the channel and decreasing the probability of error simultaneously [11–13]:

• To increase the amount of transmitted data without any need to increase the

bandwidth, multilevel modulation formats have been used [14]. One of the

main drawbacks with multilevel modulation formats is the power consumption

which increases significantly by increasing the level of the modulation. To solve

this problem, the data is modulated on both phase and amplitude of the carrier

using coherent transmitters and detectors. However, this type of transmission

(coherent transmission) requires the phase of the signal to be detected at the

receiver which increases the complexity. In coherent optical applications, the

transmitter requires a narrow-band laser and an external modulator (Mach

Zehnder modulator (MZM)), and the receiver needs a local oscillator laser,

and more advanced devices [15].

• To decrease the error probability, the received samples should not have large

ISI. Using Nyquist criteria, proper pulses which do not create ISI at periodic

sampling instants can be designed [6, Eq. (9.2-11)]. Pulse shaping for the pur-

pose of reducing ISI in conventional channels has been previously investigated

in [6, Sec. 9], [11–13, 16–18].

4



2.2 Intensity-Modulated Direct-Detection channels 5

2.2 Intensity-Modulated Direct-Detection channels

Depending on the devices used in the link, there are three types of optical commu-

nication systems: (i) Coherent detection systems which have similar shaping tech-

niques to the coherent conventional channels [19]. (ii) Intensity-modulated direct-

detection (IM/DD) systems without optical amplifiers, which are analyzed in this

study. Such systems can be modeled with nonnegative transmitted signal and ad-

ditive white Gaussian noise (AWGN). As a result, in contrast to previous case,

the shaping methods for coherent transmission cannot be applied directly [20].(iii)

IM/DD systems with optical amplifiers which are used in long-haul and metropoli-

tan fiber systems. The only difference with (IM/DD) is that the dominant noise

source is signal-spontaneous beat noise, which is signal-dependent [21].

In applications such as diffuse indoor wireless optical links [22, 23] and short-haul

optical fiber communications [1, 2], where inexpensive hardware is used, IM/DD is

often employed. In such systems, the data is modulated on the optical intensity of

the transmitted light using an optical intensity modulator such as a laser diode or a

light-emitting diode (LED). This optical intensity is proportional to the transmitted

electrical signal. As a result, the transmitted electrical signal must be nonnegative.

This is in contrast to conventional electrical channels, where the data is modulated

on the amplitude and phase of the carrier [6, Sec. 4.3]. In the receiver, the direct-

detection method is used in which the photodetector generates an output which is

proportional to the incident received instantaneous power [24]. Another limitation,

which is considered for safety purposes, is a constraint on the peak and average

optical power, or equivalently, a constraint on the peak and average of the signal in

the electrical domain [4, 9, 25–27]. Consequently, the methods designed for coher-

ent conventional transmission cannot be directly applied here. Much research has

been conducted on determining upper and lower bounds on the capacity of IM/DD
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channels considering power and bandwidth limitations [25–30].

2.2.1 Time-Limited Signaling

Many studies have analyzed the time-limited signaling design for IM/DD channels.

In [4, 24, 31–36], the performance of various modulation formats in IM/DD chan-

nels were studied using rectangular or other time-disjoint (i.e., infinite-bandwidth)

pulses. Specifically, these pulses are used with M-ary pulse-amplitude modulation

[4,37,38] and M-ary pulse-position modulation (M-PPM) [22, Sec. 5.3.3] [4,5,37,38]

(which is more power efficient while requiring additional bandwidth).

To be able to use more variety of multi-level modulation formats (e.g., M-ary phase-

shift keying (M-PSK) or M-ary quadrature amplitude modulation (M-QAM)), sub-

carrier modulation method [22, Ch. 5] [39–41] is employed. In this method, the data

is initially modulated using any two-dimensional modulation format. The lowest

possible subcarrier frequency that can be used in this stage, while maintaining or-

thogonality between the in-phase and quadrature components, is equal to the symbol

rate. To make the signal nonnegative, a DC bias is added. Finally, the signal will be

modulated to the optical carrier frequency. Most of the operations including modu-

lation are done in electrical domain (i.e., baseband part of the system) which reduces

the complexity of the devices. Since this method performs an initial modulation to

an electrical subcarrier frequency before modulation to the optical frequency, the

required bandwidth is more than that of the M-ary pulse amplitude modulation

(M-PAM) [22, p. 125]. In the receiver, after converting the signal from optical fre-

quency to subcarrier frequency, conventional detection methods are used. In [34], it

is shown that to make the signal nonnegative for QAM format over IM/DD channel,

the constellation points must be within an infinite cone, with apex angle equal to

cos−1(1/3) = 70.5◦.
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We can superimpose a large number of the subcarriers used to modulate information

to create multiple-subcarrier modulation (MSM) [22, p. 122] [33], and orthogonal

frequency-division multiplexing (OFDM) if the carriers are orthogonal [42]. MSM is

not power efficient since the peak-to-average power ratio is high in these systems. [4]

has proved that MSM schemes require several decibels more optical power than on-

off keying (OOK). Moreover, the interference between subcarriers and multipath

distortion (since multipath channels are lowpass) [4, 33] increases the amount of

required power. OFDM is widely used in conventional channels to reduce ISI caused

by multipath transmission or by a dispersive channel [43]. The OFDM requires a

large DC bias to become nonnegative [5, 33, 44, 45] since in MSM systems, large

negative amplitude may occur. As a result, systems using OFDM will suffer from

large optical power. To solve this problem, asymmetrically clipped optical OFDM

signals (ACO-OFDM) are used which have been shown to be more efficient in terms

of optical power than OOK and PPM [46]. Alternatively, [47] designed optimized

block codes to reduce average optical power in MSM systems.

In all the mentioned methods which use DC bias to become nonnegative, to improve

the power efficiency, the bias can carry information. [24,48] changes the DC bias on a

symbol-by-symbol basis to reduce optical power consumption and improve detection.

[47] changes the DC bias within the symbol interval. In [44] the constellation points

are assigned to subcarriers in a given symbol such that the average optical power

will be low and minimum distance between each pair of codewords is maximized. [49]

adds carriers at high frequencies outside of the data transmission bandwidth of the

channel to reduce the average optical power.

2.2.2 Bandwidth-Limited Signaling

In most of the previous studies, as explained in Sec. 2.2.1, the bandwidth constraint

of the channel was ignored in signaling design. Previous studies mostly concentrated
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on spectrally efficient signaling using rectangular pulse sets [4, 24, 31, 32]. Wider

classes of time-limited pulse sets have also been considered in [33, 34]. Using such

pulses creates problems specially for the applications where having a large bandwidth

will cause multipath distortion or other impairments. [5] presents an overview of the

bandwidth efficient modulation schemes for indoor wireless optical links. However,

in all the aforementioned works, strictly time-limited pulses are considered and none

of these references has worked on strictly bandlimited pulses.

Hranilovic in [50] pioneered in investigating the problem of designing strictly ban-

dlimited pulses for IM/DD channels with nonnegative PAM schemes. Unlike pre-

vious works, he did not restrict his work to time-limited pulses. He showed the

existence of nonnegative bandlimited Nyquist pulses, which can be used for ISI-free

transmission over IM/DD channels, and evaluated the performance of such pulses.

He proved that the pulses that satisfy all three constraints (i.e., being nonnegative,

bandlimited, and Nyquist) must be square of a Nyquist pulse. He also showed that

any nonnegative root-Nyquist pulse must be time limited to a single symbol interval

(i.e., infinite bandwidth). In other words, amplitude nonnegativity constraint of

optical intensity channels eliminates the possibility of finding bandlimited nonneg-

ative root-Nyquist pulses. Hence receivers with matched filters are not suitable for

Hranilovic’s signaling method. He concluded that transmission is possible with a

bandwidth twice the required bandwidth over the corresponding conventional elec-

trical channels. This work was extended to other Nyquist pulses that can introduce

a trade-off between bandwidth and average optical power in [9,51]. In other words,

pulses with excess bandwidth are introduced that are more power efficient. More-

over, he investigated a family of bandwidth-efficient nonnegative root-Nyquist pulses

called prolate spheroidal wave functions. These pulses have the lowest bandwidth

among all time-limited functions [52], and might be a good substitute for other

time-limited pulses [9].
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2.3 Overview of Different Modulation Formats

2.3.1 On-Off Keying (OOK)

On-off keying (OOK) is one of the simplest modulation schemes. In OOK, there

are two levels for data transmission (zero and one), so the presence and absence of

signal each represents a symbol. OOK is often used for IM/DD channels since it

is very power efficient and simple. However, it uses more bandwidth compared to

multilevel modulation formats at the same bitrate.

2.3.2 M -ary Pulse-Amplitude Modulation (M -PAM)

In this modulation scheme, the amplitude of the pulse obtains one of the M levels

depending on the input symbol. This scheme is widely used over indoor optical

channels [4]. [53] conducts an analysis of the 4-PAM IM/DD link. The advantage

with this scheme is that we can transmit log2M bits per each transmitted symbol, so

it reduces the required bandwidth compared to binary modulation schemes. How-

ever, since the level of the signal increases, the required power increases compared

to binary schemes. We have made minor changes in the design of M-PAM so it can

be used in noncoherent transmission.

2.3.3 M -ary Pulse-Position Modulation (M -PPM)

In this modulation scheme, each symbol period is divided into several intervals

(chips). Depending on the transmitted symbol, a pulse is transmitted in one of

the chips, while other chips have zero amplitude. In other words, the transmitted

symbol is modulated on the position of the chip in symbol period. In PPM, all

signals are orthogonal and have equal energy. Since M-PPM requires time-limited



10 Chapter 2 Previous Works

pulses, it is not suitable for a bandlimited system. Consequently, we have not used

it in our problem.

Overlapping-PPM (OPPM), is a variation of PPM which is used widely in IM/DD

systems and allows overlap between adjacent pulse-positions and requires less band-

width compared to PPM [37, 54–56]. In [57, 58], it is shown that to maximize the

SNR, a binary modulation format is designed which consists of a zero pulse and

a pulse which is nonzero only in a narrow part of the whole symbol period. The

difference between this modulation format and OOK is that OOK is nonzero in the

whole symbol period whereas this is nonzero only in a narrow part.

Comparison of PPM and PAM

Comparing PAM and PPM, it can be determined that PPM requires less power at

the expense of extra bandwidth requirement (for a given bit rate). The bandwidth

is directly proportional to the number of chips in a symbol interval whereas the

power is inversely proportional to it. Due to its decreased power requirement, PPM

is a suitable choice for portable infrared transmitters [4]. Another advantage of the

PPM over PAM is that the near DC noise from fluorescent lamps has less effects on

PPM [4].

In M-ary transmission with no strict bandwidth limitation, Gagliardi and Karp [59]

have shown that the optimal modulation scheme in maximum likelihood sense for

high background illumination consists of M disjoint narrow pulses.

Differential PPM (DPPM)

To improve the spectral efficiency of PPM, differential PPM (DPPM) is designed

[20,60]. Another advantage of DPPM is that it only requires synchronization to the

individual chips and not the symbol interval. In DPPM, the data is transmitted

by omitting the zero chips following a pulse, so symbol duration is unequal. The

DPPM requires less bandwidth and slightly more power than PPM.
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Other variations of the PPM which increase its spectral efficiency while descreas-

ing average optical power include: multiple PPM, overlapping PPM, pulse interval

modulation and edge position modulation [4, 22, 31, 32, 55].

2.3.4 M -ary Quadrature Amplitude Modulation (M -QAM)

This is a two dimensional modulation format in which the data is sent over in-phase

and quadrature dimensions of the channel. The bandwidth required for QAM is

more than PAM (if we are not using subcarrier modulation). However, the power

efficiency of QAM is more [22]. The reason is that QAM is two orthogonal PAM,

and for the same average optical power, the distance between constellation points is

more in QAM compared to PAM.

The QAM requires coherent transmission so the orthogonality between the in-phase

and quadrature dimensions is maintained. As a result, we cannot utilize QAM in

our application.

Adaptively Biased QAM (AB-QAM)

AB-QAM is a variation of QAM in which the DC bias changes in each symbol

period according to the transmitted symbol in that interval [24] in a way that the

transmitted signal in that period has minimum value equal to zero. As a result,

power consumption for DC bias reduces. Another advantage of AB-QAM is that

the DC bias (the third dimension) provides a degree of signal space diversity in the

receiver and increases the minimum distance between symbols.

2.3.5 Optical Impulse Modulation

In this scheme [61], the information will be transmitted in lowpass frequencies. The

high-pass frequencies which are attenuated by the channel contain no information,

and are used to satisfy the amplitude constraint. As a result, they are suitable for

bandlimited channels.



3 System Model

In this section, we consider the IM/DD transmission system with a strict bandwidth

limitation and general M-level modulation. Fig. 3.1 represents the system model for

an IM/DD optical transmission system. It can be modeled as an electrical baseband

transmission system with AWGN and a nonnegativity constraint on the channel

input [3, 4, 9, 62].

3.1 Transmitter

We consider an ergodic source with independent and identically distributed informa-

tion symbols ak ∈ C, where k ∈ Z is the discrete time instant, and C is a finite set of

constellation points. Based on these symbols, an electrical signal I(t) is generated.

The optical intensity modulator converts the electrical signal to an optical signal

with optical carrier frequency fc and random phase θ, given by

O(t) =
√

2x(t)cos (2πfct+ θ) ,

where x(t) is the intensity of the optical signal. Information is transmitted by

varying or modulating the optical intensity, in response to the driving electrical

current signal, I(t). As a result, this intensity is a linear function of I(t) [4], given

by

x(t) = JI(t) = JA

(

µ+

∞
∑

k=−∞
akq(t− kTs)

)

, (3.1)

where J is the laser conversion factor, A is a scaling factor that can be adjusted

depending on the desired transmitted power, µ is the required DC bias, q(t) is an

arbitrary pulse, and Ts is the symbol duration.

Three requirements are placed on x(t): it should be nonnegative, bandlimited, and

12
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ak
q(t)

µ

I(t)
Modulator

x(t)
h(t) Detector

n(t)

y(t)
g(t)

r(t)

kTs

âk

Electrical domain Optical domain Electrical domain

Figure 3.1. Baseband system model, where ak is the k-th input symbol, q(t) is
an arbitrary pulse, µ is the DC bias, I(t) is the transmitted electrical signal, x(t)
is the optical intensity, h(t) is the channel impulse response, n(t) is the Gaussian
noise, g(t) is the impulse response of the receiver filter, and âk is an estimate of
ak.

ISI-free. The nonnegativity constraint, x(t) ≥ 0 for all t ∈ R, is fulfilled by choosing

µ in (3.1) sufficiently large, see Sec. 5. This DC bias is added equally to each symbol

to maintain a strictly bandlimited signal x(t), in contrast to works like [24,34,35] in

which the bias is allowed to vary with time. The bandwidth constraint is fulfilled

by choosing the pulse q(t) such that

Q(ω) =

∞
∫

−∞

q(t)e−jωtdt = 0, |ω| ≥ 2πB, (3.2)

where Q(ω) denotes the Fourier transform of q(t). The condition of ISI-free trans-

mission, finally, is fulfilled by either choosing q(t) as a Nyquist pulse, see Sec. 4.2,

when using a sampling receiver, or choosing q(t) as a root-Nyquist pulse (also known

as Ts-orthogonal pulse), see Sec. 4.3, when using a matched filter in the receiver.

Fig. 4.1 illustrates an example of the transmitted intensity given by (3.1) where

C = {0, 1}.

Depending on the application, it is desirable to minimize the average optical power

or the peak optical power [4, 7–9, 26, 27]. The average optical power is

Popt =
1

Ts

Ts
∫

0

E {x(t)} dt,
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where E {·} denotes expectation, which for the definition of x(t) in (3.1) yields

Popt =
1

Ts

Ts
∫

0

JA

(

µ+ E {ak}
∞
∑

k=−∞
q(t− kTs)

)

dt

= JA (µ+ E {ak} q) , (3.3)

where

q =
1

Ts

∞
∫

−∞

q(t)dt =
Q(0)

Ts

. (3.4)

The peak optical power is

Pmax = maxx(t) = JA

(

µ+max

∞
∑

k=−∞
akq(t− kTs)

)

(3.5)

where the maximum is taken over all symbol sequences . . . , a−1, a0, a1, a2, . . . and all

times t.

3.2 Channel

The described system can be modeled as a conventional linear channel with additive,

white, signal independent, Gaussian noise [4] and nonnegative input [22, Ch. 5]

[4, 26, 27, 63]. The analysis in this study covers two types of channels: (i) diffuse

indoor wireless optical intensity channels, and (ii) short-haul fiber optic channels.

3.2.1 Diffuse Indoor Wireless Optical Intensity Channels

In case of diffuse indoor wireless optical intensity channels [3], the transmitted opti-

cal signal is radiated to the environment, and is detected by a photodetector. These

channels are attractive for the following reasons: (i) Low-cost devices are used in

this type of transmission. (ii) LED and photodiodes have compact size in contrast
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to radio-frequency antennae. (iii) Since the photodiode receives the incoming signal

from a wide field of view, there is no need for direct line of sight between transmitter

and receiver [3]. (iv) The frequency range used in this type of transmission is not

regulated [4]. (v) The detected signal is not affected by multipath fading since the

photodiode benefits from spatial diversity by integrating the optical intensity field

over an area of millions of square wavelengths [4, 62]. (vi) Since the radiations are

in the infrared frequency range, they cannot pass through the wall or other opaque

barriers. As a result, interference between the rooms do not happen [3, 22].

One drawback of this system is that since the receiver will detect the reflections

of the signal off the surfaces, multipath distortion arises. As a result, the received

signal in high-speed links suffers from severe ISI and limited bandiwdth [4, 5].

The intense ambient light in indoor environments (e.g., daylight, tungsten, and

fluorescent lamps) is the main noise source in diffuse indoor wireless systems. The

reason is that the photodiode produces shot noise if it is exposed to the ambient

light. Assuming that the quantum fluctuations of the channel are negligible [4], the

shot noise induced by the ambient light can be modeled as Gaussian since the noise

consists of the superposition of many independent sources. In case of high-density

shot noise, this approximation is highly accurate [63].

3.2.2 Short-haul Fiber Optic Channels

The invention of multimode fibers opened the door to the short-haul high-speed op-

tical transmission systems [64]. Since they are inexpensive, they are used extensively

in local area networks (LAN), fiber to the home (FTTH), and computer intercon-

nects (connecting computers and chips within computers) [10]. The dominant noise

source in these type of channels is the thermal noise caused by the electronic pream-

plifier.
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The hardware bandwidth, chromatic and modal dispersions limit the transmission

bandwidth over multimode fibers. Modal dispersion is the dominant impairment in

short range applications, which puts a constraint on bandwidth×distance (modal

bandwidth expressed in MHz.km). As a result, multimode fibers are used for optical

interconnects which are around a few hundred meters [10]. In FTTH with length

around 5-10 km, single-mode fibers are used which have a bandwidth constraint

approximately equal to 40 GHz [65].

Another reason for bandwidth constraint which is common for both type of channels

is reverse bias depletion capacitances which is generated due to the implementation

of inexpensive, large area photodiodes in the receivers [5].

3.3 Receiver

In the receiver, the direct-detection method is used in which the photodetector

generates an output electrical current which is proportional to the incident received

instantaneous optical power [24]. To do so, electron-hole pairs are generated in the

depletion layer of the device by the incident photons. These carriers are swept out

by the large electric field in the region [24]. The optical signal then propagates

through the channel and is detected and converted to the electrical signal [4, 26]

y(t) = Rh(t)⊗ x(t) + n(t),

where R is the responsivity of the photodetector which represents an optoelectrical

conversion factor (from optical intensity signal to electrical current signal), ⊗ is the

convolution operator, h(t) is the channel impulse response, and n(t) is the noise.

In this study, the channel is considered to be flat in the bandwidth of interest, i.e.,

h(t) = H(0)δ(t). Without loss of generality, we assume that R = J = 1 [4] and

H(0) = 1. Since the thermal noise of the receiver and the shot noise induced by
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ambient light are two major noise sources in this setup, which are independent from

the signal, n(t) can be modeled as a zero-mean AWGN with double-sided power

spectral density N0/2 [4, 6, 27, 37]. Although the input signal to the channel x(t)

must be nonnegative, there is no such constraint on the received signal y(t) [25].

The received signal passes through a filter with impulse response g(t), resulting in

r(t) = y(t)⊗ g(t), (3.6)

which is then sampled at the symbol rate. From these samples, the received symbol

will be estimated. In this study, two scenarios are considered for the receiver filter:

(i) Similarly to [9, 50], y(t) can enter a sampling receiver, which in this study is

assumed to have a rectangular frequency response to limit the power of the noise in

the receiver, and is given by

G(ω) =















G(0) |ω| < 2πB

0 |ω| ≥ 2πB

. (3.7)

(ii) According to our proposed method, y(t) can enter a matched filter receiver with

frequency response

G(ω) = ζQ∗(ω)

where (·)∗ is the complex conjugate and ζ is an arbitrary scaling factor. This type

of filter will limit the power of the noise, and can also result in ISI-free transmission

if the pulses are root-Nyquist (see Sec. 4.3).

The system model introduced in this section is a generalization of the one in [9],

which is obtained by considering C ⊂ R
+ and setting µ = 0 in (3.1). If µ = 0,

the pulse q(t) should be nonnegative to guarantee a nonnegative signal x(t). In our
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proposed system model, by introducing the bias µ, the nonnegativity condition can

be fulfilled for a wider selection of pulses q(t) and constellation C ⊂ R.



4 AN OVERVIEW OF PULSES

4.1 The Criteria in Selecting the Pulse

In order to have ISI-free transmission with a sampling receiver, the transmitted

pulse q(t) defined in Sec. 3.1 must satisfy the Nyquist criterion [11]. In other words,

for any k ∈ Z [6, Eq. (9.2-11)],

q(kTs) =















q(0) k = 0

0 k 6= 0

. (4.1)

In frequency domain, the Nyquist criterion can be written as

1

Ts

∞
∑

k=−∞
Q(ω − k2π

Ts
) = q(0). (4.2)

This criterion guarantees that a sequence of pulses sampled at the optimum, uni-

formly spaced sampling instants, k = ...,−2,−1, 0, 1, 2, ..., will have zero ISI.

4.2 Nyquist Pulses

The pulses that satisfy condition (4.1) are called Nyquist pulses. In some references,

these pulses are called Nyquist-I pulses, since there are three criteria defined by

Nyquist and condition (4.1) is the first criterion.

The most popular Nyquist pulses are the classical “sinc” pulse, defined as sinc(x) =

sin(πx)/(πx), and the raised-cosine (RC) pulse [6, Sec. 9.2]. Many other Nyquist

pulses have been proposed recently for the conventional channel; see [66, 67] and

references therein.

19
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4.2.1 Regular Nyquist Pulses

In this section, we consider four Nyquist pulses that have been studied for the

conventional coherent channel. In all cases, the bandwidth can be adjusted via the

roll-off factor α chosen in the range 0 ≤ α ≤ 1. Since these pulses can be negative,

they must be used in a system with µ > 0. We denote these four pulses as regular

Nyquist pulses.

(i) Raised-cosine (RC) pulse which is one of the most popular Nyquist pulses and is

defined as

qRC(t) = sinc

(

t

Ts

)

(

cos(απt/Ts)

1− (2αt
Ts
)2

)

. (4.3)

The tails of this pulse decay asymptotically as t−3. The RC pulse is a low-pass

filter with odd symmetry around a cutoff frequency and has a cosine shaped roll-off

portion [11].

(ii) The parametric linear (PL) pulse of first order defined in [13], which is given

by [68]

qPL(t) = sinc

(

t

Ts

)

sinc

(

α
t

Ts

)

. (4.4)

and decays as 1/t2. The advantage of this pulse compared to RC pulse is its less

sensitivity to timing jitter.

(iii) The so-called “better than Nyquist” (BTN) pulse [16], which in [13] was referred

to as parametric exponential pulse, given by

qBTN(t) = sinc

(

t

Ts

) 4βπt sin
(

παt
Ts

)

+ 2β2 cos
(

παt
Ts

)

− β2

4π2t2 + β2
, (4.5)

where β = 2Ts ln 2/α. The tails of this pulse decay as t−2. The magnitudes of the

two largest sidelobes of the RC pulse are larger than the magnitudes of the two

largest sidelobes of the BTN or PL. The maximum distortion (the magnitude of the
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largest possible ISI sample at any given time instant) , which occurs at t/Ts = 0.5,

is less for the BTN and PL than the RC pulse.

(iv) The polynomial (Poly) pulse designed in [18] which has fast asymptotic decay

rate (ADR) and flexible design even after the α is selected. This pulse for ADR of

t−4 is defined as

q(t) =















1, t = 0,

3 sinc
(

t
Ts

)

sinc( αt
2Ts

)
2−sinc(αt

Ts
)

(παt
2Ts

)
2 , otherwise

All these pulses have a lowpass bandwidth B = (1 + α)/(2Ts) and q = 1.

4.2.2 Nonnegative Nyquist Pulses

In this section, which is motivated by [9], all the three aforementioned constraints

(see Section 3.1) should be satisfied by the pulse. As a result, in (3.1), µ = 0 and

q(t) ≥ 0 for all t ∈ R. As in Sec. 4.2.1, the roll-off factor α satisfies 0 ≤ α ≤ 1.

In [9], it has been shown that pulses that satisfy these three requirements must

be the square of a general Nyquist pulse. This will result in having pulses with

bandwidth twice that of the original Nyquist pulses. Three pulses that satisfy these

constraints were introduced in [9], and we use them in our study for compatibility

with previous works:

(i) Squared sinc (S2), which is given by

qS2(t) = sinc2
(

t

Ts

)

, (4.6)

has the lowpass bandwidth B = 1/Ts and q = 1.

(ii) Squared RC (SRC), given by
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qSRC(t) = q2RC(t), (4.7)

requires a larger lowpass bandwidth B = (1+α)/Ts compared to S2, and q = 1− α
4
.

(iii) Squared double-jump (SDJ), given by

qSDJ(t) =

[(

1− α

2

)

sinc

(

(1− α)t

Ts

)

+

(

1 + α

2

)

sinc

(

(1 + α)t

Ts

)]2

, (4.8)

requires the same lowpass bandwidth as SRC (i.e., B = (1+α)/Ts), but has a lower

q for a given α than the other two pulses, q = 1− α
2
.

Double-jump (DJ) pulses [12] were designed to minimize the mean-square error due

to time-jitter for a specified value of α. This pulse is called double-jump since in

frequency domain it possesses two jump discontinuities at f = (1 − α)/(2Ts) and

f = (1 + α)/(2Ts) [69](see [12, Fig. 2]).

Figs. 4.1 and 4.2 depict the normalized transmitted signal x(t)/A using the RC

(4.3) and SRC (4.7) pulses, respectively assuming C = {0, 1}. The most important

parameters of the pulses are summarized in Table 4.1.

4.3 Bandlimited Root-Nyquist Pulses

ISI-free transmission is achieved with the pulses in Sec. 4.2 as long as the input of

the sampling unit satisfies the Nyquist criterion given in (4.1). In addition to the

method of using a Nyquist pulse in the transmitter and a rectangular filter (3.7)

in the receiver, other scenarios can be designed that generate Nyquist pulses at the

input r(t) of the sampling unit. In one of these methods, the transmitted pulse is

a root-Nyquist pulse, and the receiver contains a filter matched to the transmitted

pulse [6, Sec. 5.1] [70–72]. Consequently, the output of the matched filter will be

ISI-free if for any integer k
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Figure 4.1. The normalized transmitted signal x(t)/A for C = {0, 1} and using
an RC pulse (4.3) with α = 0.6 as q(t). It can be seen that without using the
bias µ = 0.184, the RC pulse would create a signal x(t) that can be negative.
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Figure 4.2. The normalized transmitted signal x(t)/A for C = {0, 1} and using
an SRC pulse (4.7) with α = 0.6 as q(t). In this case, the required DC µ is zero.
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Table 4.1. Parameters of all considered pulses. The energy Eq is relevant for
root-Nyquist pulses only.

Pulse Nyquist root-Nyquist q q(0) BTs Eq/Ts

RC X 1 1 (1 + α)/2
BTN X 1 1 (1 + α)/2
PL X 1 1 (1 + α)/2
Poly X 1 1 (1 + α)/2
S2 X 1 1 1
SRC X 1− α/4 1 1 + α
SDJ X 1− α/2 1 1 + α
RRC X 1 1− α+ 4α/π (1 + α)/2 1
Xia X X 1 1 (1 + α)/2 1

∞
∫

−∞

q(t)q(t− kTs)dt =















Eq k = 0

0 k 6= 0

, (4.9)

where Eq =
∫∞
−∞ q2(t)dt.

In designing transmit and receive filters for data transmission, having zero ISI,

a linear phase characteristic, being matched to the transmitter filter, and small

bandwidth are main issues [73]. Furthermore, since for the digital implementation

of the filters, they are truncated, the output of the matched filter receiver in practice

is not Nyquist anymore. This is the reason that those root-Nyquist pulses with tails

that decay rapidly are preferable to reduce the resulting ISI.

Table 4.1 also includes two root-Nyquist pulses that have been previously used for

conventional coherent channels, where again 0 ≤ α ≤ 1: (i) Root-RC (RRC) pulse,

which is given by (4.10)

qRRC(t) =































1− α + 4α
π

t = 0

α√
2

[

(1 + 2
π
)sin( π

4α
) + (1− 2

π
)cos( π

4α
)
]

t = ± Ts

4α

sin(π t
Ts

(1−α))+4α t
Ts

cos(π t
Ts

(1+α))
π t

Ts

(

1−(4α t
Ts
)
2
) otherwise

(4.10)
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(ii) First order Xia pulse [74], which is given by

qXia(t) = sinc

(

t

Ts

) cos
(

απt
Ts

)

(

2α
(

t
Ts

)

+ 1
) . (4.11)

Both RRC and Xia pulses have the lowpass bandwidth B = (1 + α)/(2Ts), and

q = 1.

The Xia pulse is an example of the conjugate-root pulses used to have ISI-free

transmission. In this case, the complex conjugate roots of the frequency response

of a Nyquist pulse (RC pulse for (4.11)) is used to derive the pulse [74–77]. The

conjugate-root pulses do not have better performance compared to matched filter

receivers [78]. Their main application is when the matched filter is used solely to

eliminate ISI. So the complexity can be reduced by using a pulse which satisfies

Nyquist criterion alone or with matched filter.

Although the output of the matched filter for both the first order Xia pulse and

the RRC pulse are similar (r(t) consists of RC pulses in both cases), the RRC is

symmetric in time, whereas the Xia pulse has more energy in the precursor (i.e.,

the part of the pulse before the peak) [78]. This is visible in part (d) of Fig. 6.1.

Moreover, the maximum of a Xia pulse does not happen at the origin. The important

point with the Xia pulse is that it is both a Nyquist and a root-Nyquist pulse.

In contrast to the general Nyquist pulses from which nonnegative Nyquist pulses

can be generated by squaring the original Nyquist pulse (see Sec. 4.2.2), the square

of a root-Nyquist pulse is not root-Nyquist anymore. Moreover, [9] has proven that

there is no nonnegative root-Nyquist pulse with strictly limited bandwidth.

A summary of all the pulses used in this report is provided in Table 4.2.
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Table 4.2. Definitions of the studied Nyquist and root-Nyquist pulses.

Pulse Definition q(t)

RC











π
4 sinc

(

t
Ts

)

, t = ± Ts
2α ,

sinc
(

t
Ts

) cos
(

παt
Ts

)

1−( 2αt
Ts

)2
, otherwise

BTN sinc
(

t
Ts

) 2παt
Ts ln 2

sin
(

παt
Ts

)

+2 cos
(

παt
Ts

)

−1
(

παt
Ts ln 2

)2
+1

PL sinc
(

t
Ts

)

sinc
(

αt
Ts

)

Poly











1, t = 0,

3 sinc
(

t
Ts

) sinc
(

αt
2Ts

)2
−sinc

(

αt
Ts

)

(

παt
2Ts

)2 , otherwise

S2 sinc2
(

t
Ts

)

SRC q2RC(t), where qRC is the RC pulse defined above

SDJ
[

(

1−α
2

)

sinc
(

(1−α)t
Ts

)

+
(

1+α
2

)

sinc
(

(1+α)t
Ts

)]2

RRC























1− α+ 4α
π , t = 0,

α√
2

[

(1 + 2
π ) sin(

π
4α ) + (1− 2

π ) cos(
π
4α )
]

, t = ± Ts
4α ,

sin
(

π(1−α)t
Ts

)

+ 4αt
Ts

cos
(

π(1+α)t
Ts

)

πt
Ts

(

1−
(

4αt
Ts

)2
) , otherwise

Xia sinc
(

t
Ts

) cos
(

παt
Ts

)

2αt
Ts

+1

4.4 Other Pulses

Hranilovic [9] has proved that the nonnegative root-Nyquist pulses must be time lim-

ited. Moreover, he has investigated the family of prolate spheroidal wave functions

which consists of time limited pulses that have the lowest bandwidth among func-

tions limited to [−Ts/2, Ts/2] [52]. It was mentioned that the zeroth member of this

family is both a smooth function of time and has no zero crossings in [Ts/2, Ts/2] [79].

As a result, it is nonnegative pulse with approximately limited bandwidth.



5 THE REQUIRED DC BIAS

Our goal is to find the lowest µ that guarantees the nonnegativity of x(t). From

(3.1) and x(t) ≥ 0, the smallest required DC bias is

µ = − min
∀a,−∞<t<∞

∞
∑

k=−∞
akq(t− kTs) (5.1)

= − min
∀a,−∞<t<∞

∞
∑

k=−∞
[(ak − L) q(t− kTs) + Lq(t− kTs)] (5.2)

where L = (â + ǎ)/2, â = maxa∈C a, and ǎ = mina∈C a. The notation ∀a in

(5.1) and (5.2) means that the minimization should be over all ak ∈ C where

k = . . . ,−1, 0, 1, 2, . . . Going from (5.1) to (5.2), we created a factor (ak −L) which

is a function of ak and symmetric with respect to zero. As a result, the minimum of

the first term in (5.2) occurs if, for all k, either ak = â and q(t− kTs) < 0 or ak = ǎ

and q(t−kTs) > 0. In both cases, due to the fact that the factor â−L = −(ǎ−L),

µ = max
0≤t<Ts

[

(â− L)

∞
∑

k=−∞
|q(t− kTs)| − L

∞
∑

k=−∞
q(t− kTs)

]

. (5.3)

The reason why (5.3) is minimized over 0 ≤ t < Ts is that
∑∞

i=−∞ q(t − iTs) and

∑∞
i=−∞ |q(t−iTs)| are periodic functions with period equal to Ts. Since for all pulses

defined in Sec. 4.2 and 4.3, q(t) rescales with Ts as q(t) = v(t/Ts) for some function

v(t), then µ is independent of Ts.

To simplify (5.3), Lemma 1 and Corollary 2 will be helpful, since they prove that

the second term in (5.3) does not change over time.

27
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Lemma 1. For an arbitrary pulse q(t),

∞
∑

k=−∞
q(t− kTs) =

1

Ts

∞
∑

n=−∞
Q

(

2πn

Ts

)

e
j2πnt

Ts .

Proof. Since f(t) =
∑∞

k=−∞ q(t − kTs) is a periodic function with period Ts, it can

be expanded as a Fourier series. Its Fourier series coefficients are

Cn =
1

Ts

Ts/2
∫

−Ts/2

f(t)e−
j2πnt

Ts dt

=
1

Ts

Ts/2
∫

−Ts/2

∞
∑

k=−∞
q(t− kTs)e

− j2πnt

Ts dt. (5.4)

Since both n and k are integers, ej2πnk = 1. As a result, (5.4) can be written as

Cn =
1

Ts

Ts/2
∫

−Ts/2

∞
∑

k=−∞
q(t− kTs)e

− j2πn

Ts
(t−kTs)dt

=
1

Ts

∞
∫

−∞

q(t)e−
j2πnt

Ts dt =
1

Ts
Q

(

2πn

Ts

)

.

Hence,

f(t) =

∞
∑

n=−∞
Cne

j2πnt

Ts =
1

Ts

∞
∑

n=−∞
Q

(

2πn

Ts

)

e
j2πnt

Ts , (5.5)

which proves the lemma.

The usefulness of this lemma follows from the fact that for bandlimited pulses q(t),

(5.5) is reduced to a finite number of terms. As a special case, we have the following

corollary.

Corollary 2. If q(t) is a bandlimited pulse defined in (3.2), where BTs ≤ 1, then

(5.5) can be written as
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f(t) =
∞
∑

k=−∞
q(t− kTs) =

1

Ts

Q(0). (5.6)

In other words, for such q(t), this sum is not a function of time.

Proof. Since BTs ≤ 1, the sum in (5.5) has only one nonzero term (i.e., Q(0) can be

nonzero whereas Q(2πn/Ts) = 0 for all n 6= 0 due to (3.2)).

As a result of Corollary 2, (5.3) for the regular Nyquist pulses and root-Nyquist

pulses considered in Sec. 4.2.1 and Sec. 4.3 (but not SRC and SDJ) can be written

as

µ = (â− L) max
0≤t<Ts

[ ∞
∑

i=−∞
|q(t− iTs)|

]

− L
Q(0)

Ts
, (5.7)

where Q(0) = qTs for all pulses, see (3.4). It appears that solving the summation in

(5.7) is impossible analytically even for simple pulses.

Theorem 3. For bandlimited pulses where BTs ≤ 1, the transmitted signal (3.1) is

unchanged if all constellation points in C are shifted by a constant offset.

Proof. Since the chosen pulse has limited bandwidth given by (3.2), using (5.6) given

in Corollary 2, the transmitted signal (3.1) can be written as

x(t) = A

(

µ+
∞
∑

k=−∞
(ak − L+ L) q (t− kTs)

)

= A

(

µ+
∞
∑

k=−∞
(ak − L) q (t− kTs) + L

Q(0)

Ts

)

. (5.8)

Substituting the required bias given by (5.7), (5.8) can be written as

x(t) = A

(

(â− L) max
0≤t<Ts

[ ∞
∑

i=−∞
|q(t− iTs)|

]

+
∞
∑

k=−∞
(ak − L) q (t− kTs)

)

. (5.9)

It can be seen that (5.9) only depends on symbols through â− L and ak −L. Both
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Figure 5.1. The normalized minimum DC bias µ/â vs. roll-off factor α for a
variety of pulses and M-PAM. The dotted line represents the required bias for
the RC pulse at α = 0.6, see Fig. 4.1.

terms are independent of the constellation offset.

Theorem 3 shows that for narrow-band pulses defined in (3.2), the constellation

offset does not have an effect on the performance. This result which holds for

intensity modulated channels (with nonnegative transmitted signal requirement) is

in contrast to the standard result for conventional channels. For instance, binary

phase-shift keying (BPSK) and OOK are equivalent in this IM/DD system, whereas

BPSK is 3 dB better over the conventional AWGN channel [6, Sec. 5].

Fig. 5.1 illustrates the required DC bias (5.7) for various pulses considering any

nonnegativeM-PAM constellation (C = {0, 1, ...,M − 1}). In case of Nyquist pulses,

due to the fact that by increasing α, the ripples of the pulses decrease, the required

DC bias decreases as well. It can be seen that the Poly and RC pulses (4.3) always

require more DC bias than other Nyquist pulses. Moreover, the PL (4.4) and the

BTN (4.5) pulses require approximately the same DC bias. The BTN pulse requires

slightly less DC bias in 0.250 ≤ α ≤ 0.256, 0.333 ≤ α ≤ 0.363, and 0.500 ≤ α ≤
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0.610, while the PL is better for all other roll-off factors in the range 0 < α < 1.

The RRC (4.10) has a different behavior. For 0 < α ≤ 0.420, similar to Nyquist

pulses, by increasing the roll-off factor, the required DC bias decreases, and is

approximately equal to the required DC bias for BTN and PL. However, when

0.420 ≤ α < 1, the required DC bias starts to fluctuate slightly around µ = 0.25â

and the minimum happens for α = 0.715. The reason for this behavior is that

in RRC, the peak is a function of α, see (4.10). As a result, by increasing the

roll-off factor, there will be a compromise between the reduction in the sidelobe

amplitude and the increase in peak amplitude. For small values of α, the sidelobe

reduction is more significant than the peak increase, and as a result, the required

DC bias decreases. The Xia pulse (4.11) always requires the largest DC bias. For

0 < α ≤ 0.730, similar to other pulses, by increasing the roll-off factor, the required

DC bias for Xia pulses decreases. However, when 0.730 ≤ α < 1, the required DC

bias starts to fluctuate slightly and starts to approach the required DC for RRC.

The expression for µ given in (5.3) illustrates the reason why the double-jump and

sinc pulses are not considered in Sec. 4.2.1. These pulses decay as 1/|t|. As a result,

the summation in (5.3) does not converge to a finite value. Hence, they require an

infinite amount of DC bias to be nonnegative.



6 ANALYSIS AND RESULTS

6.1 Received Sequence Analysis

6.1.1 Received Sequence for Sampling Receiver

Considering the assumptions mentioned in Sec. 3, the received signal (3.6) is

r(t) = (x(t) + n(t))⊗ g(t) (6.1)

= A

(

µ+

∞
∑

k=−∞
akq(t− kTs)

)

⊗ g(t) + z(t) (6.2)

= AG(0)

[

µ+

∞
∑

k=−∞
akq(t− kTs)

]

+ z(t), (6.3)

where (6.3) holds since g(t) has a flat frequency response given by (3.7) over the

bandwidth of q(t) given by (3.2); Therefore, the convolution has no effect on x(t).

The noise at the output of the receiver filter, which is given by z(t) = n(t)⊗ g(t), is

zero mean additive white Gaussian with variance σ2
z = G(0)2N0B.

Applying the Nyquist criterion given in (4.1) to the sampled version of (6.3), we can

write the i-th filtered sample as

r(iTs) = AG(0) [µ+ aiq(0)] + z(iTs). (6.4)

for any constellation C. The received waveform r(t), for several Nyquist pulses, is

shown in Fig. 6.1, in the form of eye diagrams in a noise-free setting (z(t) = 0). As

expected, the output samples r(iTs) are ISI-free.

32
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6.1.2 Received Sequence for Matched Filter Receiver

Similar to Sec. 6.1.1, the received signal will be

r(t) = (x(t) + n(t))⊗ g(t)

= A

(

µ+

∞
∑

k=−∞
akq(t− kTs)

)

⊗ ζq(−t) + u(t)

= Aζ
(

µ

∞
∫

−∞

q(−t)dt +

∞
∑

k=−∞
ak

∞
∫

−∞

q(τ − kTs)q(τ − t)dτ
)

+ u(t)

= Aζ



µQ(0) +
∞
∑

k=−∞
ak

∞
∫

−∞

q(τ)q(τ − t + kTs)dτ



+ u(t) (6.5)

where u(t) is zero mean additive white Gaussian noise with variance σ2
u = ζ2N0Eq/2.

Applying the root-Nyquist criterion given in (4.9) to the sampled version of (6.5),

the i-th filtered sample will be, for any constellation C,

r(iTs) = Aζ (µQ(0) + aiEq) + u(iTs). (6.6)

6.2 Comparison Between the Pulses

As mentioned in Sec. 3, it may be desirable to minimize the average or peak optical

power. The next theorem shows that these two criteria are equivalent for narrow-

band pulses (BTs < 1) and symmetric constellations (E{ak} = L).

Theorem 4. If BTs < 1 and E{ak} = L, then Pmax = 2Popt.

Proof. From (3.5) and Corollary 2,

Pmax = JA

(

µ+ max
∀a,−∞<t<∞

∞
∑

k=−∞
[(ak − L) q(t− kTs) + Lq(t− kTs)]

)

= JA

(

µ+ max
∀a,−∞<t<∞

[ ∞
∑

k=−∞
(ak − L) q(t− kTs) +

LQ(0)

Ts

])

.
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In analogy to (5.7), the maximum is

Pmax = JA

(

µ+ (â− L) max
0≤t<Ts

∞
∑

k=−∞
|q(t− kTs)|+

LQ(0)

Ts

)

= JA

(

2µ+ 2
LQ(0)

Ts

)

which compared with (3.3) completes the proof.

To compare the optical power of various pulses, a criterion called optical power gain

is used, which is defined as [9]

Υ = 10 log10

(

P ref
opt

Popt

)

,

where P ref
opt is the average optical power for a reference system (according to Theo-

rem 4, Υ would be the same if defined in terms of Pmax, for all pulses in our study

except SRC and SDJ). Similarly to [50], this reference is chosen to be the S2 pulse

(4.6) with OOK modulation and sampling receiver, for which no bias is needed.

Using (3.3), P ref
opt = ArefEref {ak} and

Υ = 10 log10

(

ArefEref {ak}
A (µ+ E {ak} q)

)

(6.7)

where Aref and Eref {ak} are the scaling factor and the symbol average for the refer-

ence system, resp. Defining

∆a = min
a,a′∈C,a6=a′

|a− a′| (6.8)

as the minimum distance between any two constellation points a and a′, Eref {ak} =

∆aref/2, where ∆aref is the minimum distance for the reference system. The ex-

pressions in (6.7) and (6.8) hold in general for all finite set of constellation points

C.

6.2.1 Similar Eye-opening

Initially, we compare the pulses in a noise-free setting. For any Nyquist pulse with

a sampling receiver, the minimum eye opening after filtering (see Fig. 6.1) is given
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by (6.4) as

min
a,a′∈C,a6=a′

|AG(0) (µ+ aq(0))− AG(0) (µ+ a′q(0))| = AG(0)∆aq(0). (6.9)

As a result, to have the same eye opening as with the reference pulse, we require

Aref/A = ∆aq(0)/∆aref , which substituted into (6.7) yields

Υ = 10 log10

(

∆aq(0)

2 (µ+ E {ak} q)

)

. (6.10)

Fig. 6.2 demonstrates the comparison of the optical power gain for various pulses

defined in Sec. 4.2 for both OOK and 4-PAM formats, where the signals are scaled to

have equal eye opening. The S2 pulse (4.6) with OOK modulation, which is used as

a baseline for comparison, is shown in the figure with an arrow. The results for SRC

and SDJ have been derived before in [9, Fig. 4], whereas the results for other pulses

are novel, where Tb = Ts/ log2M is the bit rate. OOK is chosen rather than BPSK

for compatibility with [9], although these binary formats are entirely equivalent for

BTb ≤ 1, as shown in Theorem 3. In these examples, we use ∆a = ∆aref ; however,

rescaling the considered constellation C would not change the results, as it would

affect the numerator and denominator of (6.10) equally.

For the nonnegative pulses in Sec. 4.2.2 (i.e., SRC and SDJ) with OOK, where

µ = 0, by increasing the bandwidth, the optical power gain, which depends on α

through its dependence on q, increases since q decreases. The results in Fig. 6.2 are

consistent with [9, Fig. 4], where the same nonnegative pulses were presented. It can

be seen that when the regular Nyquist pulses (RC, BTN, PL, and Poly) are used,

and the nonnegativity constraint is satisfied by adding a DC bias, transmission is

possible over a much narrower bandwidth. However, since the DC bias consumes

energy and does not carry information, the optical power gain will be reduced.
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Figure 6.1. Noise-free eye diagrams for (a) RC, (b) PL, (c) BTN, and (d) Xia
pulses with OOK modulation (C = {0, 1}) and sampling receiver. All pulses have
α = 0.60 and are normalized to have the same optical power q̄ = 1.
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Figure 6.2. The optical power gain Υ versus normalized bandwidth BTb for
various Nyquist pulses with a sampling receiver. The noiseless eye opening for
all pulses is equal. The curves for BTb ≥ 1 agree with [9].

There is a compromise between bandwidth and optical power gain, due to the fact

that µ will be reduced by increasing the roll-off factor (see Fig. 5.1), whereas the

required bandwidth increases. The highest optical power gain for all pulses will be

achieved when the roll-off factor α is one. The reason is that by increasing the roll-

off factor, the required bias which is the only parameter in (6.7) that depends on α

decreases (see Fig. 5.1). The BTN and the PL pulses have approximately similar

optical power gain, and the RC and Poly pulses have smaller gains, due to higher

µ, which is also visible in the eye diagrams of Fig. 6.1.

Comparing the binary and 4-PAM cases for the same α and ∆a, we can see in

Fig. 6.2 that by using higher-order modulation formats, the optical power gain for

all pulses decreases, since in (6.7), E {ak} and µ will increase. For 0.5 < BTb < 1,

the optical power gain for the best 4-PAM system with nonnegative Nyquist pulses

is up to 2.39 dB less than the gain of the best OOK system with regular Nyquist

pulses. For 0.5 < BTb < 1, the optical power gain for the best 4-PAM system with
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nonnegative Nyquist pulses is up to 2.39 dB less than the gain of the best OOK

system with regular Nyquist pulses.

For any root-Nyquist pulse with a matched filter receiver, the minimum eye opening

after filtering is given by (6.6) as

min
a,a′∈C,a6=a′

|Aζ (µQ(0) + aEq)− Aζ (µQ(0) + a′Eq)| = Aζ∆aEq. (6.11)

Since the eye openings in (6.9) and (6.11) depend on the receiver filter gains G(0) or

ζ , pulses should be compared using the same receiver filter. In particular, it is not

relevant to compare the sampling receiver with matched filters in this context, since

the outcome would depend on the ratio G(0)/ζ , which can be chosen arbitrarily.

This is the reason why root-Nyquist pulses are not included in Fig. 6.2.

6.2.2 Similar SER

It appears from Fig. 6.2 that the studied pulses become more power-efficient when

the bandwidth is increased. A higher bandwidth, however, for sampling receiver

means that the receiver filter admits more noise, which reduces the receiver perfor-

mance. In Fig. 6.3, we therefore compare the average optical power gain of Nyquist

and root-Nyquist pulses, when the power is adjusted to yield a constant SER equal

to 10−6. Since the amount of noise after the matched filter receiver does not depend

on the bandwidth, we considered this fact as a potential advantage, and therefore

included root-Nyquist pulses in the following analysis. Similarly to the previous

case, the S2 pulse (4.6) with OOK and sampling receiver is used as a baseline for

comparison.

So far, the analysis holds for a general C. To find the optical power gain as a function
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of SER for the sampling receiver, we first apply a maximum likelihood detector to

(6.4), assuming a special case in which C is an M-PAM constellation, which yields

the SER [6, Sec. 9.3]

Perr = 2
M − 1

M
Q

(

AG(0)∆aq(0)

2
√

G(0)2N0B

)

where

Q(x) =
1√
2π

∞
∫

x

exp

(−x2

2

)

dx

is the Gaussian Q-function. As a result,

A =
2

∆aq(0)
Q−1

(

Perr
M

2 (M − 1)

)

√

N0B

and

Aref

A
=

∆aq(0)

∆aref

Q−1 (Perr)

Q−1
(

Perr
M

2(M−1)

)

√

Bref

B
, (6.12)

where Bref = 1/Tb is the bandwidth of the reference pulse. The optical power gain

now follows from (6.7).

For the matched filter receiver, by applying the maximum likelihood detector to

(6.6), the SER will be [6, Sec. 9.3]

Perr = 2
M − 1

M
Q





A∆aEqζ

2
√

ζ2N0Eq

2





= 2
M − 1

M
Q

(

A∆a

√

Eq

2N0

)

.

As a result,

A =
1

∆a
Q−1

(

Perr
M

2 (M − 1)

)

√

2N0

Eq



40 Chapter 6 Analysis and Results

0.25 0.5 1 2
−8

−7

−6

−5

−4

−3

−2

−1

0

1

 

 

RC/S
BTN/S
PL/S
Poly/S
SRC/S
SDJ/S
RRC/MF
Xia/MF

OOK

Squared sinc with
OOK modulation

4−PAM

Squared sinc
with 4−PAM
modulation

BTb

Υ
(d
B
)

Figure 6.3. The optical power gain versus normalized bandwidth BTb for various
pulses with a sampling receiver (S) or matched filter receiver (MF). The SER for
all pulses is 10−6.

and

Aref

A
=

∆a

∆aref

√
2Q−1 (Perr)

Q−1
(

Perr
M

2(M−1)

)

√

EqBref . (6.13)

In contrast to the case with equal eye openings (see Fig. 6.2), Nyquist and root-

Nyquist pulses can be compared with each other when the SER is kept constant,

since neither (6.12) nor (6.13) depend on the filter gains G(0) and ζ .

By increasing the bandwidth, the gain for SRC decreases slightly, whereas it in-

creases for SDJ, where µ = 0 for both cases. The reason is that for these pulses

by increasing α, both q and the ratio Aref/A decreases. We observe that for the

regular Nyquist pulses in Sec. 4.2.1, the gain increases by increasing the bandwidth.

The reason is that by increasing the roll-off factor, the required bias decreases much

faster (see Fig. 5.1) than the speed of increase in bandwidth. The BTN and the PL

pulses have approximately similar gain, and the gains of the RC and Poly pulses are

always smaller than the gain of the other two pulses.
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In case of the matched filter receiver, the noise variance does not depend on band-

width. As a result, the ratio Aref/A (6.13) is not a function of the roll-off factor and

the optical power gain only depends on the roll-off factor through its dependence

on the required DC bias. In Fig. 6.3, for 0.5 < BTb ≤ 0.71, the optical power

gain of the RRC pulse increases, and a wide gap is maintained with respect to the

Nyquist pulses. For 0.71 < BTb ≤ 1, since the required DC is slightly fluctuating,

the same happens for optical power gain of RRC, and the maximum optical power

gain happens at BTb = 0.86, where it is Υ = −0.22 dB. The Xia pulse has a similar

behavior, though it is not better than all Nyquist pulses.

For α → 1, the optical power gain of the Xia, RC, and RRC pulses are approximately

equal since the output of matched filter will be equal to an RC pulse by either using

the RRC or the Xia pulse. However, the optical power of mentioned pulses will be

different for other values of α.

By increasing the modulation level from binary to 4-PAM, for the same α and

∆a, the optical power gain for all pulses decreases, since the required DC bias and

symbol average increase while the ratio Aref/A decreases. For 0.5 < BTb < 1, the

optical power gain of the regular Nyquist pulses and root-Nyquist pulses with OOK

modulation is significantly higher than the gain for the all nonnegative Nyquist

pulses with 4-PAM.

When the roll-off factor is equal to zero (i.e., the normalized bandwidth BTb for the

biased pulses with binary modulation is equal to 0.5 and for the biased pulses with

4-PAM is equal to 0.25), the regular Nyquist pulses discussed in Sec. 4.2.1 and the

root-Nyquist pulses in 4.3 will become equal to a sinc pulse with bandwidth 1/(2Ts).

As discussed in Chap. 5, the required DC will be infinite for the sinc pulse. Hence,

the gain Υ will asymptotically go to −∞ when α → 0.



7 CONCLUSION AND FUTURE WORK

In this work, a pulse shaping method for strictly bandlimited IM/DD systems is

presented, in which the transmitted electrical signal must be nonnegative. The

proposed approach adds a constant DC bias to the transmitted signal, which allows a

wider selection of transmitted pulses without violating the nonnegativity constraint.

This allows us to use Nyquist or root-Nyquist pulses for ISI-free transmission, with

narrower bandwidth compared to previous works. It is possible to transmit with a

bandwidth equal to that of ISI-free transmission in conventional coherent channels.

To compare our proposed transmission schemes with previously designed schemes

and to see the effect of increasing the modulation level, we evaluated analytically the

average optical power versus bandwidth in two different scenarios. The optimization

of modulation formats means a tradeoff between the two components of the optical

power: the constellation power, which carries the data and is similar to the coherent

case, and the bias power, which is constant. We prove the somewhat unexpected

results that for narrowband transmission (BTs ≤ 1), the two powers balance each

other perfectly, so that OOK and BPSK have identical performance regardless of

the pulse.

In the first scenario, the Nyquist pulses are compared when the noise-free eye opening

is equal for all the pulses and modulation formats. Of the studied pulses, the

SDJ pulse with OOK is the best known, as previously shown in [9] over BTb ≥ 1.

At 0.5 < BTb < 1, the PL and BTN pulses with binary modulation have the

best performance, being up to 2.39 dB better than SDJ with 4-PAM modulation.

Similarly, the 4-PAM BTN and PL pulses have highest gain over 0.25 < BTb < 0.5.

In the second scenario, all pulses have equal SER. Of the studied pulses, the SDJ

with OOK modulation and sampling receiver has the highest gain for BTb ≥ 1.

42
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At 0.869 < BTb < 1, the binary PL pulse has the best performance, whereas for

0.5 < BTb ≤ 0.869, the RRC pulse with matched filter receiver achieves the highest

gain. For 0.25 < BTb ≤ 0.434, the 4-PAM system with an RRC pulse has the best

performance, while for 0.434 < BTb ≤ 0.5, the PL pulse has the best performance.

The gain of RRC in this scenario is up to 0.74 dB over the best Nyquist pulse and

2.80 dB over the best known results with unbiased PAM.

7.1 Suggestions for Future Work

This work can be a starting point for ISI-free pulse shaping design for transmission

within a bandwidth equal to that of coherent conventional channels. Future work

can concentrate on:

• Designing coding schemes in bandlimited regime, to improve the BER perfor-

mance and compensate the effect of the DC bias.

• Analyzing the effect of other types of noise on the performance of the designed

transmission scheme since in this thesis, the noise was modeled as AWGN.

Although, as it was mentioned earlier, this is a good approximation, it does

not cover all applications.

• Relaxing the strictly bandlimited condition and conducting research on the ap-

plication of prolate spheroidal functions on the minimum bandwidth intensity

modulation systems.

• Utilizing the most recently proposed Nyquist pulses [13,16,18,66,67], or their

corresponding root-Nyquist pulses, and carefully optimizing their parameters

to achieve further improvements in optical power gain.

• Extending to M-PAM systems with M > 4 to gain more spectral efficiency at

the cost of reduced power efficiency.
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