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Abstract: In this contribution we provide a status report for the Mathematica toolbox that is
described in ?. The toolbox covers a comprehensive set of functions for handling deterministic
and stochastic signals and models. On top of this the toolbox provides signal processing and
system identification methods ranging from non-parametric to parametric, and from linear
models to a wide class of non-linear models. Algorithms are tailored to be able to efficiently
handle large scale data sets and models as well as symbolic computations. This allows theory
to be handled alongside practice, implying that the toolbox provides an environment suitable
both for education and data processing. In regards to system identification, one of the novel
features is graphical support for building block-based nonlinear models. Another novel feature
is that modeling errors can be propagated through applications.
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1. INTRODUCTION

A number of potent software packages for system identifi-
cation are available today, e.g. ????, offering state-of-the
art numerical algorithms for a number of identification
methods. There are also a number of signal processing
environments available on the market. However, so far
the use of symbolic calculations in such packages has
been quite restricted. In system identification symbolic
calculations can, e.g., be used to compute the predictor
gradients needed for the numerical optimization of the
model parameters and to compute the Cramér-Rao bounds
as an explicit function of model parameters. In fact, by
combining numerical and symbolical algorithms an inte-
grated environment can be obtained covering both theo-
retical concepts and data processing. This is very useful
from an educational point of view, but is also of use for
researchers in the field.

These driving forces lie behind the signals, models and
identification package for Mathematica that is described in
this paper. The package is still under development so this
paper provides a status report. However, the overall aim is
to develop an environment that encompasses analysis tools
for multivariable deterministic and stochastic signals and
systems theory, as well as state-of-the art algorithms for
system identification and signal processing in a seamless
way. Thus it should be useful all the way from standard
courses on signals and linear systems to identification of
non-linear industrial processes. In the sections that follow
we outline the available functionalities and how they can
be used.

2. BASIC STRUCTURE

The package is object oriented, meaning that both sig-
nals and models are treated as objects equipped with
certain properties that determine the behaviour of the
object and how it interacts with other objects. For ex-
ample, a time-domain signal is embedded in an object
called SignalObject. It possesses a number of properties:
Function, the function that defines the actual samples of
the signal in the time-domain. As the function may con-
tain symbolic elements, Variable defines which symbol in
Function that is the time-variable. DataSamplingPeriod
gives the sampling period, Domain determines the time-
interval over which the signal is defined and SignalLabels
contain labels for the elements of the signal (which can
be matrix-valued). Assumptions contain assumptions re-
garding symbolic variables, e.g. which ones are real-valued.
Properties are inherited, or transformed, as operations on
a signal are performed. For example when two signals are
added, Function of the resulting signal becomes the sum
of the Functions for the two signals. In the remaining part
of this section, we outline the main characteristics of the
package.

2.1 Object categories

There are three categories of objects: data records, signals
and models, all of which can be multivariable. Data records
are used for raw data and can be represented in several
ways. Signal objects can be seen as extensions of data
records, able to represent signals over the entire time axis
and with a number of associated properties. A signal can
be represented in the time-domain (as a SignalObject),
as a z-transform (as a ZObject) or, if the signal has
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a finite domain, as a Discrete Fourier Transform (as a
FourierObject).

Models can be represented in a number of formats. Firstly,
the general ImpulseResponseModel, TransferResponse-
Model and FrequencyResponseModel correspond to the
three signal formats discussed in the previous para-
graph. These formats can handle non-causal models.
For linear causal models there are additional formats:
LinearStateSpace and a number of formats adapted to
common model structures in system identification (ARX,
ARMAX, Box-Jenkins,...). For non-linear models there are
a number of ready-made formats, e.g. NLFIR, NLARX,
NLARMAX, NLOE, NLBJ, Wiener and Hammerstein and
combinations of these, but there is also support for more
general tailor-made non-linear state-space models.

2.2 Object transformations

Transformations between equivalent representations is
straightforward. For example, if s is a SignalObject,
ZObject[s] transforms s to the z-transform domain.

Non-linear models can be linearized and then converted to
any of the general formats for linear systems.

2.3 Primitives

The function of an object can be accessed by applying
an argument to the object. For example if s is a Sig-
nalObject s[t] gives the signal’s value at time t and
ZObject[s][z] gives the z-transform of s evaluated at z.
If G is a TransferResponseModel, G[Exp[I omega]] gives
the frequency response of the model. Thus the underlying
function can be manipulated by any function available in
Mathematica.

In addition, objects can be directly manipulated by a
number of common operations. For example, with s1
and s2 being two SignalObjects, s1+s2 generates a
new SignalObject with the signal values being the
sum of those of the signals. With G1 and G2 being
two TransferResponseModel, G1.G2 generates a new
TransferResponseModel corresponding to G2 in series
with G1. Other primitives include parallell interconnection
of systems and inversion of systems and signals.

3. A SELECTION OF FUNCTIONALITIES

3.1 Model properties

Model properties that can be computed are transmission
zeros, model poles, transfer function, impulse response, the
McMillan degree and the causal- and anti-causal parts.

3.2 Model and stochastic signal interaction

For a spectrum Φ (which can be represented as a
SignalObject or a ZObject), the positive real part can
be computed as well as a stable spectral factor.

The correlation function and spectrum of the output
of a system excited by a signal with a given spectrum
can be computed. Also the cross-correlation function and
the cross-spectrum between outputs and inputs can be
computed.

3.3 Estimation of signal properties

Standard second-order properties of stationary signals,
such as the correlation function and the spectrum, can
be estimated from data. Smoothing can be applied, and a
number of smoothing windows are available. The user can
also define new smoothing windows. The resulting objects
are SignalObject, ZObject or FourierObject and are
thus fully integrated in the environment.

3.4 Non-parametric model estimation

Standard non-parametric model estimation methods are
available, such as Empirical Transfer Function Estimate
and Spectral Analysis. These models are represented
as ImpulseResponseModel, TransferResponseModel or
FrequencyResponseModel objects and are thus fully in-
tegrated in the environment.

3.5 Nonlinear identification

The number of model structures one can choose beteewen
increase considerably when one takes the step from linear
to nonlinear identification. To help the user to handle this
increase of complexity, the package structures nonlinear
models in a logical way in analogy with linear black-box
models. Also, a substantial effort has been devoted to
create tools which enhance the possibilities to illustrate
and evaluate nonlinear models.

Parameter estimation

The tool supports prediction error identification of param-
eters in linear and nonlinear models. There are defaults
for many of the user choices, but thanks to the symbolic
computational possibilities the user can modify the options
readily. For example, the user can specify any criterion of
their choice and the criterion can be parameterized so that
the noise distribution is estimated together with the other
model parameters.

Nonlinear Model Structures

The tool can handle, basically, any model structure which
can be expressed in state-space form

x(t+ 1) = f(x(t), u(t), v(t)θ) (1)

y(t) = g(x(t), u(t), v(t), θ) (2)

where y(t) is the ouput signal, u(t) the input signal, and
v(t) the disturbance signal. x[t] is the state vector. The
only requirement is that the derivative of the output exists
so that derivative based criterion minimization can be
applied.

Tailored model structures A tailored model means that
the user specifies the model equations on the form (2). The
user can specify the functions f and g freely, based on any
prior insights.

Black box model structures Nonlinear counterparts of
the linear black-box models are supported, namely NL-
FIR, NLARX, NLARMAX, NLBJ, NLAR and NLARMA
models. They are described by a pseudo-regressor and a
nonlinear mapping.
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Summary of Functionalities

In short, the package supports a wide range of algorithms
for identification of linear and nonlinear models of dynam-
ical systems, which can be used for simulation, prediction,
and for control design. It also supports numerical and sym-
bolic processing of deterministic and stationary stochastic
processes. The toolbox works with discrete time signals.
Below we list available functionalities.

Deterministic signals. Double sided z-transform and
Fourier transforms.

Stochastic signals. Sample correlations, spectral analysis

Deterministic systems. Multi-input/multi-output, freq-
uency function, poles and transmission zeros, impulse
response. Transformations between system representations

Stochastic systems. Positive real part, spectral factor-
ization, system realization, output covariance and in-
put/output cross-correlation functions, propagation of
model uncertainty

Linear parametric model estimation. Prediction error es-
timation of standard model structures, e.g. FIR, ARX,
ARMA, ARMAX, OE, BJ. Tailor made model structures.
Subspace identification. Non-parametric identification us-
ing spectral analysis

Non-linear parametric model estimation. Prediction er-
ror estimation of standard model structures, e.g. NLFIR,
NLARX, NLARMA, NLARMAX, NLOE, NLBJ, Wiener,
Hammerstein, Wiener-Hammerstein, Hammerstein-Wiener.
Tailor made block based model structures.

4. SOME APPLICATIONS

Below we illustrate the use of the package with some simple
applications.

4.1 Spectral factorization of a sum of spectra

Here two first order systems are defined

G1 =TransferResponseModel[

{TransformFunction → {{z/(z − 0.5)}},

ROC → {{{0.5, Indeterminate}}}}]

G2 =TransferResponseModel[

{TransformFunction → {{z/(z − 0.8)}},

ROC → {{{0.8, Indeterminate}}}}]

Above, ROC is the model property that defines the
region of convergence for the z-transform. The spectra of
the outputs of these two systems when they have zero
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Fig. 6. Comparison of original spectrum and spectrum
from spectral factorization (totally overlapping).

mean white noise with unit variance are obtained by the
operations

Φ1 = Spectrum[G1]

Φ2 = Spectrum[G2]

which results in

ZObject [{ROC → {{{0.5, 2.}}},

SignalLabels → {{Φy1y1
}},

TransformFunction →

{{

1

1.25− 0.5

z
− 0.5z

}}}]

and

ZObject [{ROC → {{{0.8, 1.25}}},

SignalLabels → {{Φy2y2
}},

TransformFunction →

{{

1

1.64− 0.8

z
− 0.8z

}}}]

Performing the operation

Φ = Φ1 + Φ2

gives the spectrum when the outputs from G1 and
G2 are added, assuming that the white noise inputs are
independent. The result is

ZObject [{ROC → {{{0.8, 1.25}}},

SignalLabels → {{Φy1y1
+Φy2y2

}},TransformFunction →
{{

1

1.64− 0.8

z
− 0.8z

+
1

1.25− 0.5

z
− 0.5z

}}}]

A stable minimum phase spectral factor of this spectrum
is now obtained by

H = SpectralFactorization[Φ]

and the result is

TransferResponseModel [{ROC → {{{0.8, Indeterminate}}},

SignalLabels → {{{}}, {{}}},

TransformFunction →

{{

−0.902279z + 1.4408z2

0.4− 1.3z + z2

}}}]

We can verify that this is a spectral factor by computing
the spectrum of the output from H and comparing with
Φ

ΦH = Spectrum[H];

Plot[Abs[{Φ[Exp[Iω]][[1, 1]],ΦH[Exp[Iω]][[1, 1]]}],

{ω, 0,Pi},PlotRange → {0, 30}]

The result is shown in Figure 6. As seen, the spectra
overlaps since the two spectra are identical.
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processing, sometimes using entirely different algorithms,
is required dependent on the input. One example is the
computation of the transfer response of a model. For linear
state-space models, with numerical state space matrices
(A,B;C,D), a numerically stable and computationally
efficient algorithm based on the Hessenberg form ? is used,
but when the model contains symbolic parameters the
starightforward, but numerically worse, expression

G(s) = C(sI −A)−1B +D

has to be used.

Another complicating factor in the development is that
it is not straightforward to foresee the result of symbolic
manipulations such as simplifications of expressions. Post-
processing after such manipulations thus have to be made
with care.

A final observation is that testing time of implementations
also grows significantly as compared with pure numerical
algorithms. The reason is simply that there are just so
many more possibilities that have to be tested.

6. CONCLUSIONS

There is a range of interesting avenues for further devel-
opments when it comes to using symbolic tools in signal
processing and system identification. For example, Math-
ematica offers capabilities to maximize and solve multino-
mial problems.

An interesting research topic is how to balance symbolic
and numerical computations. It is usually more computa-
tionally expensive to make a symbolic solution but once
this is available, it is easy to compute the solution for any
parameter.
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