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Abstract: This work presents the application of an initialization scheme for nonlinear state-
space models on a real data benchmark example: the Silverbox problem. The goal of the proposed
approach is to transform the identification of a nonlinear dynamic system into an approximate
static problem, so that system dynamics and nonlinear terms are identified separately. Classic
identification techniques are used to handle dynamics, while regression methods from the
statistical learning community are introduced to estimate the nonlinearities in the model. Results
obtained on the Silverbox problem are discussed and compared with the performance of other
related methods.
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1. INTRODUCTION

The field of nonlinear system identification is a very
active research area and presents still many challenges
and open problems (Ljung [2010]). Various methods have
been developed to deal with the difficult task of modeling
nonlinear (dynamic) systems, including a whole set of
grey shades between white-box and black-box models
(Ljung [2010], Sjöberg et al. [1995]), nonparametric and
parametric techniques (Rugh [1981], Billings and Fakhouri
[1982]), block-oriented approaches (Giri and Bai [2010]),
just to mention a few examples.

The challenge becomes particularly interesting when one
wants to model a real system, for which knowledge about
the problem might not be entirely available, based on
a set of measurement data that are typically corrupted
by noise. In this framework, a good opportunity to learn
about advantages and disadvantages of several identifica-
tion methods is given by considering real-life benchmark
problems, on which the different approaches can be tested.
Traditionally, a number of special sessions in identifica-
tion and control conferences have been organized around
challenging benchmark examples (see e.g. Schoukens et al.
[2009b], Cham et al. [2010] for recent examples).

This paper discusses the application of an identification
technique for nonlinear state-space models on a bench-
mark problem of a special session organized at the IFAC
Symposium on Nonlinear Control Systems (NOLCOS) in
2004: the Silverbox.

The Silverbox is an electrical circuit describing the behav-
ior of a mass-spring-damper system. It is an example of

nonlinear dynamic system with feedback, where the linear
contributions are dominant (Schoukens et al. [2003]).

Six papers were presented in the Silverbox special ses-
sion, describing different types of approaches, including
white-box (Hjalmarsson and Schoukens [2004], Paduart
et al. [2004]), grey-box (Ljung et al. [2004]), and black-
box methods (Espinoza et al. [2004], Sragner et al. [2004],
Verdult [2004], Ljung et al. [2004]), and since then other
techniques have been applied to solve the Silverbox prob-
lem (e.g. Paduart [2008], Van Mulders et al. [2011]). A
discussion on these methods and their performance on the
Silverbox case study is provided at the end of this paper.

Among the many possible examples in the class of black-
box approaches, the identification of state-space models
can lead to some advantages. For example, this general
model structure describes naturally system dynamics and
is proven to be equivalent to several classic block-oriented
models (including models with feedback) (Paduart [2008]).
However, identifying nonlinear state-space models is still
considered a difficult task.

In this work a method to efficiently obtain good initial
estimates for nonlinear state-space models is presented,
combining system identification techniques (Pintelon and
Schoukens [2001]) with regression methods from the sta-
tistical learning community (Hastie et al. [2009]). The pro-
posed approach targets systems that are weakly nonlinear
and systems that are assumed to have only one equilibrium
point.

This paper is organized as follows. Section 2 presents
more in details the problem to be solved and describes
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the proposed technique for the identification of nonlinear
state-space models, with focus on a three-steps procedure
for the initialization of the model. The application of
the method on the Silverbox identification problem is
discussed in Section 3. The obtained results are compared
in Section 4 with the ones provided by other related
methods that have been applied to the same benchmark
data. Some final remarks conclude the paper in Section 5.

2. IDENTIFICATION OF NONLINEAR
STATE-SPACE MODELS

2.1 Considered problem

In this work we deal with the problem of identifying
nonlinear state-space models of the form:

x(t + 1) = f(x(t), u(t)) (1)

y(t) = g(x(t), u(t)) (2)

where u(t) ∈ R
nu and y(t) ∈ R

ny are the given input and
output signals at time t, x(t) ∈ R

nx is the unknown state
of the system, and f(·) and g(·) are the nonlinear func-
tions that one wants to estimate with the identification
procedure.

To find a good model, a cost function (e.g. the root mean
square error between the modeled output and the true
output signal) is typically minimized with respect to the
parameters of the model. When the parameters appear
nonlinearly in the cost function, the optimization problem
is solved iteratively by means of algorithms such as the
Levenberg-Marquardt technique (Ljung [1999], Pintelon
and Schoukens [2001]). Therefore, an important issue is
how to generate good starting values for the model param-
eters, so that the search for the cost function minimum can
converge fast to a good solution.

In this paper, an initialization scheme for the identification
of nonlinear state-space models is proposed, based on the
idea of separating the estimation of the system dynamics
and the modeling of the nonlinearities in Eqs. (1-2) (see
also Marconato et al. [2012]). To achieve this, one needs
to cut the recursion in the state equation (1), in order to
obtain a static version of the nonlinear dynamic problem,
that can be solved more efficiently.

More in details, assuming that the nonlinear dynamics in
(1-2) are modeled as:

x(t + 1) = f(x(t), u(t)) =

= Ax(t) + Bu(t) + fNL(x(t), u(t)) (3)

y(t) = g(x(t), u(t)) =

= Cx(t) + Du(t) + gNL(x(t), u(t)) (4)

where A ∈ R
nx×nx , B ∈ R

nx×nu , C ∈ R
ny×nx , D ∈

R
ny×nu and nonlinear terms fNL(·) and gNL(·) have nx

and ny outputs respectively, an approximate static version
of the same identification problem can be formulated as
follows, starting from an estimate x̂(t) of the state x(t):

x̂(t + 1) = f(x̂(t), u(t)) + r(t) =

= Ax̂(t) + Bu(t) + fNL(x̂(t), u(t)) + r(t) (5)

y(t) = g(x̂(t), u(t)) + e(t) =

= Cx̂(t) + Du(t) + gNL(x̂(t), u(t)) + e(t) (6)

Since x̂(t) differs from the true state x(t), error terms
r(t) and e(t) are included in the state and in the output
equation respectively.

At this point, Eqs. (5-6) can be regarded as two different
static regression problems, that can be addressed indepen-
dently, and can therefore be solved much more efficiently.
In this work, regression methods from the statistical learn-
ing community will be employed to model nonlinear terms
fNL and gNL. Several examples of nonlinearities can be
easily applied to solve this task (Hastie et al. [2009],
Suykens et al. [1995, 1996]); here multilayer perceptrons
(MLPs) will be used to illustrate the method, and to solve
the Silverbox benchmark problem.

A nonlinear search algorithm is finally applied to optimize
all model parameters.

In the following, the complete algorithm for the identifica-
tion of nonlinear state-space models, consisting of an ini-
tialization phase and an optimization phase, is presented
in details.

2.2 Initialization scheme

First of all, an initialization procedure is proposed, that
exploits the separation between linear dynamics and non-
linearities resulting from the transformation of problem
(3-4) into problem (5-6).

It consist of three main steps:

Estimation of a linear model. As a first step, estimates
Â, B̂, Ĉ, D̂ of the linear part of the model are obtained,
to capture system dynamics and linear behavior. In par-
ticular, the Best Linear Approximation (BLA), which is
optimal in least square sense, of the nonlinear system is
estimated and transformed into state-space form (Pintelon
and Schoukens [2001]).

Approximation of the nonlinear state. Based on the
BLA and on the set of available input/output data

{u(t), y(t)}
N

t=1, an approximation of the unknown nonlin-
ear state x(t) can be determined, so that it will be possible
to cut the recursion in the state equation, as shown in
Section 2.1.

The approximate state x̂(t) is estimated by solving the
following Least Squares problem:

x̂(t) = arg min
{x(t)}

∑

t

(y(t) − Ĉx(t) − D̂u(t))2

+ λ
∑

t

(x(t + 1) − Âx(t) − B̂u(t))2 (7)

where the first term of the cost function represents the
fit to data, and the second term represents the fit to the
linear model; the balance between the two criteria can be
set by changing the value of the trade-off parameter λ.

One could of course obtain the linear state directly from
the BLA, but here the idea is to allow a deviation from
the linear state (by changing the value of λ), to take into
account the nonlinear terms in Eqs. (3-4).

Kalman filtering could also be considered as an alternative
to approximate the state.
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Notice that this state approximation is used only to
initialize the nonlinear model; a nonlinear optimization of
all model parameters is performed at a later stage.

Modeling of the nonlinearities. Once the BLA and the
approximate state are determined, the identification task
can be solved by considering the static version of the prob-
lem in Eqs. (5-6). Any regression method can be used at
this point to estimate nonlinear terms fNL and gNL. The
statistical learning community offers many examples of
nonlinearities that can be simply plugged in the considered
problem.

In particular here MLPs with one hidden layer and tanh(·)
as activation function are considered to illustrate the main
idea, but the method could be extended to include other
choices of nonlinear functions.

2.3 Nonlinear optimization of the model parameters

Once the previous three steps are performed, and therefore
initial values for the parameters of both linear and non-
linear parts of the model are determined, the initialized
nonlinear state-space model can be simulated, reintroduc-
ing the recursion in the state equation, i.e. going back to
the nonlinear dynamic problem in Eqs. (3-4).

Finally, after initialization, all model parameters need to
be optimized applying a nonlinear optmization algorithm,
e.g. a Levenberg-Marquardt technique.

3. THE SILVERBOX EXAMPLE

3.1 Description of the data

The Silverbox is an electrical circuit simulating a mass-
spring-damper system. The system’s behavior can be ap-
proximately described by the following equation:

mÿ(t) + dẏ(t) + k1y(t) + k3y
3(t) = u(t) (8)

where u(t) represents the input force applied to the mass
m and output y(t) is the mass displacement. Parameters k1

and k3 describe the (nonlinear) behavior of the spring, and
d is the damping of the system (Pintelon and Schoukens
[2001]).

The dataset was generated by exciting the system with the
input signal shown in Figure 1.

The first part of the excitation signal is a filtered Gaussian
noise sequence with increasing RMS value. This sequence
is made of 40000 samples and is used for the final testing
of the models. The second part of the excitation consists of
ten different realizations of an odd random phase multisine
(Schoukens et al. [2009a]), each realization consisting of
8192 samples (plus 500 transient samples). This portion
of the data is used to estimate the models. For both
the estimation and the test data, the excitation signal
has a bandwidth of 200 Hz, and an RMS value equal
to 22.3 mV (notice that for the test data the signal is
non-stationary, so this value indicates the average RMS
value). The considered sampling frequency is 610.35 Hz.
Notice that since the amplitude of the last part of the test
data is bigger than the amplitude of the data portion used
for estimation, extrapolation issues will be present when
testing the models on this part of the data.
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Fig. 1. Excitation signal for the Silverbox problem. The
first part (in black) is a filtered Gaussian noise signal
used as test set. The second part (in grey) is an odd
random phase multisine signal used to estimate the
models.

3.2 Initialization of the nonlinear state-space model

The initialization scheme proposed in Section 2.2 is now
applied to the benchmark data, to obtain initial estimates
for the nonlinear state-space model parameters.

Estimation of the BLA. First of all, a linear model
is determined to describe the dynamic behavior of the
system. The BLA is computed by exploiting the fact that
10 realizations of the multisine signal are available. More
in details, the FRF of the different realizations is first
computed and then the average over the realizations is
taken (Pintelon and Schoukens [2001]). Transient terms
are removed by means of a local polynomial approximation
(Pintelon et al. [2010]). Starting from this nonparametric
BLA, a parametric second order linear model is estimated,
and transformed into state-space form, so that Â is a 2×2
matrix, B̂ is a 2 × 1 vector, Ĉ is a 1 × 2 vector, and D̂ is
a scalar value (see Eqs. (3-4)).

The error of the BLA model on the final test data is
shown in Figure 2, together with the test output. The
obtained linear model gives a RMSE equal to 7.2 mV on
the estimation data and 13.5 mV on the test data (notice
the difference in the error values, due to the presence of an
extrapolation region in the test data, where large spikes of
the error signal are located).

Note. In the following, since the algorithm will not make
explicit use of the multisine properties of the excitation
signal, this splitting of the data is considered:

• estimation data: the first portion of the multisine data
(40000 samples) will be used to build the models;

• validation data: the second portion of the multisine
data (45000 samples) will be used to validate the
models during model selection;

• test data: the Gaussian noise part of the data (40000
samples) will be used to assess the performance of the
models.

Approximation of the nonlinear state. To approximate
the unknown nonlinear state x(t), the Least Squares prob-
lem in (7) was solved. The trade-off parameter λ was tuned
choosing from a grid of values, by observing the trend
of the RMSE (on the validation data) of the obtained
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Fig. 2. Error signal given by the BLA model on the test
data (grey line), and test output signal (black line).

Model nf ng
Number of Est. Val.

parameters RMSE RMSE

A 3 2 40 2.5 2.3

B 2 2 34 4.5 4.1

C 1 1 23 6.5 6.1

BLA - - 9 7.2 6.9

Table 1. Initialized models. Number of param-
eters and RMSE values (in mV) on estimation
and validation data are shown, for different
choices of the number of neurons for fNL (nf )
and gNL (ng). As a reference, the BLA result

is also shown.

initialized nonlinear models. The lowest RMSE values were
obtained by fixing λ = 0.01.

Modeling of the nonlinearities. Using the estimated
x̂(t), the identification problem is transformed into the
static form (5-6). One-hidden-layer MLPs with tanh(·) as
activation function are used to model the nonlinear terms
fNL and gNL.

Model selection. In order to reduce the RMSE value
of the initialized model on the validation data, and at
the same time keeping the number of parameters in the
model low, several numbers of neurons have been taken
into account during model selection. For each choice of
number of neurons, 10 different initializations of the MLPs
were considered, and the best resulting initialized model
in terms of RMSE on the validation data was selected.

In Table 1 the results obtained with the initialized models
on the different data portions are summarized. The total
amount of parameters resulting from the different choices
for the number of neurons is also shown.

Although the initialized model C with only one neuron
in the hidden layer for both fNL and gNL gives a poor
result in terms of RMSE (it does not really improve much
the performance of the BLA estimate), it was decided
to optimize the model parameters starting from all the
three initialized models A, B and C, to try to obtain a
good final fitted model characterized by a small number
of parameters.
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Fig. 3. Error signal given by initialized model A on the test
data (grey line), and test output signal (black line).

Model
Number of Est. Val. Test

parameters RMSE RMSE RMSE

A 40 0.22 0.23 0.50

B 34 0.25 0.25 0.49

C 23 0.24 0.24 0.34

Table 2. Final fitted models. Number of param-
eters and RMSE values (in mV) on estimation,

validation and test data are shown.

In Figure 3 the error on the test data of the initialized
model A (the best among the initialized models) is plotted,
together with the test output. Notice again the spikes in
the extrapolation region.

3.3 Optimization of all model parameters

Starting from the three initialized models, a Levenberg-
Marquardt algorithm was applied to optimize all model
parameters. The optimization algorithm was let run for
1000 iterations, although in most cases only approximately
100 iterations were needed for convergence.

The results obtained in terms of RMSE by the final fitted
models are summarized in Table 2.

All the three fitted models give very low values of the
RMSE on the validation data, including model C for which
the initial parameter values gave poor results. Since the
goal was to obtain a model with a good trade-off between
low RMSE on the validation data and reduced number of
parameters, model C is preferred to model A, given that
its RMSE is slightly higher, but the number of parameters
is almost 50% smaller.

The higher RMSE on the test data is due only to the
difficulty of the models to extrapolate on the last portion
of the test data. If results on the first 30000 samples (data
for which no extrapolation occurs) are considered, it can
be observed that for the three models the RMSE drops to
the same value as for the validation data. However, observe
that model C achieves good results also when the RMSE
is computed on the whole test data set. The error plot for
model C on the test data is shown in Figure 4.

16th IFAC Symposium on System Identification
Brussels, Belgium. July 11-13, 2012

635



0 1 2 3 4

x 10
4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Sample number

A
m

p
li

tu
d

e 
[V

]

Fig. 4. Error signal given by model C (after optimization)
on the test data (grey line), and test output signal
(black line).

4. DISCUSSION

4.1 Obtained results

As seen in the previous section, the application of the
proposed initialization scheme for nonlinear state-space
models gives satisfactory results on the Silverbox problem.
In particular, low values of the RMSE were obtained for
the final fitted models, starting from initialized models
that improved the performance of the linear model. More-
over, it was possible to significantly reduce the number
of parameters by considering less neurons in the hidden
layer, obtaining the best result in terms of RMSE on the
test data, with an optimized model characterized by only
23 parameters.

A note on extrapolation issues: the considered nonlinear-
ity did not always allow to generalize very well in the
extrapolation region. This is due to the fact that there
is a mismatch with the intrinsic nonlinear structure of
the underlying system (i.e. a cubic nonlinearity of the
output in the feedback loop, as shown in Eq. (8)). The
advantage of including in the model the same kind of
nonlinear terms will be clear from the discussion of the
performance of other methods applied to the Silverbox. It
should be underlined that, although this was one of the
features of the benchmark problem, it is not completely
fair to compare the methods on test data that include an
extrapolation part, since achieving good extrapolation is
actually a matter of luck.

4.2 Related methods

In the special session at NOLCOS’04 different methods
were applied to the Silverbox benchmark. A brief overview
on those techniques is provided here, that will also help to
get a better understanding of the approach proposed in
this paper.

Two white-box approaches, exploiting information about
the physical structure of the device, were presented. In
(Hjalmarsson and Schoukens [2004]) the internal model
structure of the Silverbox is transformed into a MISO
Hammerstein system, to which a relaxation algorithm is

applied to estimate the model parameters. The obtained
model is characterized by only 5 parameters and results in
a RMSE value of 0.95 mV.

In (Paduart et al. [2004]) a LTI system with a cubic
nonlinearity in the feedback loop is identified, obtaining
a RMSE of 0.38 mV on the test data, with a model
characterized by only 10 parameters.

The work in (Ljung et al. [2004]) describes a number of
grey-box and black-box methods applied to the Silverbox.
Different types of nonlinearities are considered, including
a one-hidden-layer sigmoidal neural network. The results
are significantly improved if a cubic regressor is embedded
in the nonlinear models. The best result in terms of
RMSE (0.30 mV) is achieved with a neural network model
containing more than 700 parameters.

Two other contributions make use of nonlinearities from
the statistical learning community. In (Espinoza et al.
[2004]) several examples of Least Squares Support Vector
Machines (LS-SVMs) are compared on the benchmark
problem. Using standard LS-SVMs solved in the dual
space requires subsampling of the estimation data, since
this method can not deal with very large data sets. Fixed
Size LS-SVMs solved in the primal space obtain the best
performance on the test set (0.32 mV), with a fixed number
of 500 support vectors. In all cases the use of polynomial
kernels gives better results than radial basis functions,
given the dominant linear behavior of the device.

Several examples of neural networks are considered in
(Sragner et al. [2004]), resulting in large RMSE values on
the test data (the best model achieves 7.8 mV), and high
number of parameters (around 600).

In (Verdult [2004]) a weighted combination of local linear
state-space models is used to approximate the nonlinear
behavior of the system, considering radial basis functions
as weigthing vectors. A limited portion of the data is
considered due to computational complexity constraints.
The best obtained model, characterized by 16 parameters,
achieves a RMSE of 1.3 mV on the test data.

More recently, two nonlinear state-space methods have
been applied to the Silverbox problem. In (Paduart
[2008]), a Polynomial Nonlinear State-Space (PNLSS)
model with a cubic nonlinearity is proposed, obtaining a
RMSE equal to 0.26 mV, with 37 parameters. The work in
(Van Mulders et al. [2011]) aims at reducing the number
of parameters of a PNLSS model, by transforming it into a
general block-structured model. Using that approach, it is
possible to decrease the number of parameters to 12, with
a RMSE on the test data equal to 0.35 mV.

Table 3 summarizes some of the best results obtained on
the Silverbox problem with the methods discussed above.

The method proposed in this work performs comparably
with the other approaches, showing a good trade-off be-
tween low RMSE and low number of parameters. Notice
that the best model in this sense (model C) is characterized
by a significantly lower number of parameters if compared
with the other methods that make use of nonlinear func-
tions from the statistical learning community. Moreover,
it can be observed that, among the different approaches
that obtain a RMSE lower than 1 mV on the test data,
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Approach
Number of Test

parameters RMSE

Hjalmarsson and Schoukens [2004] 5 0.95

Paduart et al. [2004] 10 0.38

Ljung et al. [2004] >700 0.30

Espinoza et al. [2004] 500 (SVs) 0.32

Verdult [2004] 16 1.3

Paduart [2008] 37 0.26

Van Mulders et al. [2011] 12 0.35

This paper 23 0.34

Table 3. Comparison of different methods ap-
plied to the Silverbox benchmark. The RMSE

values are expressed in mV.

the proposed method is the only one that does not include
explicitly a polynomial representation of the nonlinearity
to solve the problem, meaning that it was possible to
achieve a low RMSE on the test data (including the ex-
trapolation region) without using any a priori knowledge
on the internal structure of the device.

5. CONCLUSION

This paper has presented a method based on ideas from
both system identification and statistical learning for the
initialization of nonlinear state-space models. To be able
to exploit nonlinear regression methods such as MLPs, the
identification of nonlinear dynamic systems is transformed
into a static problem by cutting the recursion in the state
equation. The proposed approach has been applied to the
Silverbox identification problem, obtaining good results
both in terms of RMSE and of number of parameters.
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