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ABSTRACT 
In police investigations concerning child sexual abuse crimes, the most important 
evidence is often digital images. Due to the large number of images in such cases, tools 
are needed to reduce the amount of manual work. A desirable feature currently not 
available to law enforcement personnel is the ability to reliably tell if an image was 
captured by a specific camera or not. Another useful feature is the ability to cluster 
images based on the source camera. These goals can be achieved by the use of Sensor 
Pattern Noise and in this study methods to extract the noise from images will be 
evaluated. Furthermore different clustering methods and new clustering heuristics, such 
as pre-clustering based on camera model, is evaluated. To improve clustering results 
correlation between reference patterns constructed from already clustered images is 
studied. 
 
The evaluation of the denoising algorithms concluded that the color decoupled version 
of the Mihçak denoising filter was superior to the other tested methods. The correlation 
between reference patterns from clusters of images was concluded to be highly 
dependent on the number of images in the clusters. The introduction of pre-clustering 
based on if two images where from the same camera, using features from the image and 
noise and a trained classifier, decreased the time consumption of the clustering 
algorithms considerably, thus making the clustering methods more feasible when the 
amount of images is large. By merging the noise from clusters into reference patterns 
more images were grouped together than when only single image noise patterns were 
compared to each other. 
 
Keywords: Child sexual abuse, Source camera identification, Source camera clustering, 
Sensor pattern noise 
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SAMMANFATTNING 
I utredningar angående sexuella övergrepp på barn, är digitala bilder ofta de viktigaste 
bevisen. På grund av det stora antalet bilder som ofta förekommer i dessa fall behövs 
verktyg för att hålla nere andelen manuellt arbete. En användbar funktion som 
polismyndigheter ännu inte har tillgång till är möjligheten att med hög konfidens kunna 
avgöra om en digital bild är tagen av en specifik kamera eller inte. Ytterligare en 
användbar funktion är möjligheten att gruppera bilder baserat på vilken kamera de 
kommer från. Dessa funktioner kan implementeras med hjälp av sensorbrusmönster. I 
denna studie utvärderas olika metoder att extrahera detta brusmönster. Vidare 
utvärderas metoder att gruppera bilder, samt nya tillvägagångssätt så som för-
gruppering baserat på kameramodell. För att förbättra resultaten vid gruppering 
utforskas effekten av antalet bilder vid jämförelser av grupper. 
 
I utvärderingen av brusextraheringsmetoder fastslogs att den bäst lämpade metoden var 
färg-separerad Mihçak-filtrering. Korrelationen mellan grupper av bilder visade sig vara 
starkt beroende av antalet bilder i vardera grupp. Introduceringen av för-gruppering 
baserat på kameramodell, klassificierat av ett tränat neuralt nätverk, reducerade 
tidsåtgången för gruppering avsevärt. Detta gör den presenterade grupperingsmetoden 
mer lämpad för stora datamängder än tidigare metoder. Genom att sammalslå 
brusmönster från bilder i samma grupp kunde fler bilder grupperas jämfört med metoder 
då endast enskilda brusmönster jämförts. 
 
Nyckelord: Kameraidentifikation, Klustring, Sensorbrusmönster  
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1 INTRODUCTION 
In investigations concerning child sexual abuse (CSA), digital images are central in the 
body of evidence, and the analysis of such images is therefore of substantial interest to 
law enforcement. However, seized hardware often contains image sets so large that 
manual analysis of the material is not feasible. Software, facilitating the processing 
power of computers, is of help in the process of manual analysis, and can also be 
capable of analysis that cannot be done by hand at all. 
 
With larger image sets confiscated each year, easier distribution of CSA material is one 
of the downsides of the continued increase in Internet connectedness across the world. 
Not only is access to the material faster than ever, the cost of storing becomes cheaper 
and cheaper. In these sets of images, the size of which can be in the order of hundreds of 
thousands [1], each picture depicts a crime scene and as in other criminal investigations, 
being able to pin a person or an object to a crime scene can prove vital in trial. One way 
of doing this is by visible birthmarks or other visual characteristics of the offender [2], 
but such body marks may not be present. 
 
In the software that is used in CSA investigations today, content based techniques are 
used to recognize objects that are visible in different images, thus pairing crime scenes 
together when the rest of the visuals of the scene might be changed. This gives structure 
in the vast amounts of collected data and can possibly increase the likelihood of 
connecting an offender to several images if he or she can be successfully identified in 
one of the connected images [3]. This is a good example where computers can give 
structure to seized material in a way that cannot be done manually because of the vast 
amounts of data. 
 
In digital cameras, the scene is captured by a sensor that consists of a matrix of 
photocells that reacts to light. Due to imperfections in the manufacturing of these 
sensors, each photocell has a slightly different sensitivity to light. This, together with 
other imperfections, gives rise to noise in the image, called sensor pattern noise (SPN). 
Recent studies have shown that it is possible to classify the source camera from digital 
images, by comparing the SPN extracted from the images [4]. This technique not only 
makes use of the processing power of the computer to analyze more pictures than a 
human could do but also uses intrinsic features of images that are not visible to the 
human eye, therefore providing entirely new possibilities. 
 
By implementing and extending these methods in software used by the law 
enforcement, it is the ambition and motivation of this thesis to aid in the identification 
of perpetrators. This can be accomplished by associating source cameras to images and 
assist in associating different crime scenes by clustering images that have been taken by 
the same camera, even when the camera is not available to the investigators. This would 
provide new means of identifying and helping victims. 
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1.1 PURPOSE AND SCOPE OF THE THESIS 
The thesis is carried out in cooperation with the company NetClean Technologies with 
the goal of providing a thesis result suitable for incorporation in the product NetClean 
Analyze, though the actual integration will be beyond the scope of the thesis. The 
software suite Analyze is used by police authorities of several countries to support in 
CSA investigations. 
 
In order to classify the large amount of images this thesis must provide novel, more time 
efficient, solutions that builds upon the research done by others but scales better when 
applied to the vast data sets that is handled in CSA investigations today. 
 
This thesis compares and discusses efficiency and performance of different denoising 
filters that are used to extract the SPN, as well as different measurements and features 
derived from the SPN and image that are useful when classifying the source camera of a 
digital image. 
 
In the process of extracting noise from images using denoising filters, there will be no 
attempts to design entirely new denoising algorithms. Instead the focus will be to 
evaluate and improve on existing methods. 

 
Cropping, resizing, heavy lossy compression and similar image operations, while 
common, distorts the SPN and thus makes recognition of this pattern much harder or 
infeasible, therefore the effort of the project will go into developing techniques to 
recognize the noise pattern of original images that has been taken by the camera’s 
maximum resolution and that has not been modified in any of the mentioned manners. 
Furthermore, since the results of this thesis should be applicable to the amounts of 

images that are seized by the police in CSA investigations, only the middle 512 ൈ 512 
pixels of each image will be used. 

 
There are two typical use cases that are of interest and will be considered in this thesis: 

 From a set of images and access to a camera, determine which of the images in 
the set were taken with the given camera. In this thesis referred to as source 
camera classification. 

 From a large dataset, form clusters of images taken by the same camera. In this 
thesis referred to as source camera clustering. 
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2 THEORETICAL FRAMEWORK 
Camera source identification evolved as a research field after the success of the digital 
camera, but identification using noise in images is a relatively new field, with Fridrich 
et al proposing the first methods in 2006 [4]. The noise in a digital image originates 
from a number of different sources (See Figure 2.1). The noise components that differ 
from image to image is collectively called shot noise, similarly the noise components 
that remain approximately the same from image to image is called pattern noise [4]. 

 
The shot noise consists of a number of components [5], but is not interesting from a 
forensic point of view since its random nature makes it unfit for any identification. 

 
The pattern noise consists of fixed pattern noise (FPN) and photo-response non-
uniformity (PRNU). The FPN is caused by dark currents, and the signal to noise ratio 
(SNR) will vary with exposure times, light intensity and temperature. Furthermore the 
FPN is often suppressed by modern digital cameras, and it is thus not useful for camera 
source classification [4]. The PRNU is caused mainly by pixel non-uniformity (PNU) 
that is imperfections in the sensor leading to different sensitivity to light at each pixel. 
The PNU component has a constant SNR which makes it well suitable for forensic 
applications. The remaining component of the PRNU is low frequency defects such as 
light refractions on dust particles in the camera, optical imperfections in the lens etc. 

 
Due to the random nature of the shot noise, it will be suppressed when averaging the 
noise component from multiple images. The pattern noise on the other hand will be 
enhanced when averaging multiple noise components as it is the only part contained in 
all residual noise patterns. The dominant part of the PRNU is PNU, also the low 
frequency defects can differ due to zoom, lens cleaning etc. Hence the estimated PRNU 
is also a good approximation of the PNU. PNU in the context of camera source 
identification is often referred to as sensor pattern noise, SPN. 
 

 
Figure 2.1 A hierarchical view of the noise components in an image captured by a digital camera 
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2.1 SOURCE CAMERA CLASSIFICATION 
The task of identifying which camera in a finite set has produced a given image, often 
called source camera identification, has been well researched [4], [6], [7], [8], [9], [10]. 
Even though this is not what this thesis is aimed to, the problem is similar. The most 
important difference between earlier studies and this thesis is that earlier studies have 
made the assumption that the source camera of each image is in a small set of known 
cameras. In the context of experiments made in studies this assumption is correct, but in 
a real situation this assumption cannot be made. 

 
In the typical setting of a real-world application given a set of images and a camera, 
there is no knowledge as to if there are images in the set from the camera. The aim is to 
find out if this is the case. Therefore the goal must be to determine if an image was 
taken with the camera or not, rather than identifying the camera in the set most likely to 
have captured the image. 

 
Previous studies have pointed out that an SPN estimation of multiple images is more 
accurate than that of only one image. Ideally one can by having access to the camera 
produce images to make a reference pattern, but there might also be situations where 
existing images are known to be from the camera, but more images cannot be produced. 
Therefore the proposed method must be able to use an arbitrary number of images as a 
reference pattern. 

2.1.1 EXTRACTING SENSOR PATTERN NOISE 
In order to extract the noise from the image, the general approach is to apply a 
denoising filter, and subtract the denoised image from the original image. The result of 
this operation is the residual noise, which is an estimation of the SPN. One can get a 
more accurate estimation by using multiple images from the same device, as shown in 
[6]. This can be done by averaging the estimates. 
 
The accuracy of the SPN estimation depends on a number of parameters. For example 
images with high luminance gives estimates with lower variance, many denoising filters 
also performs better on images with smooth scenes. The most influential parameter is 
however the choice of denoising filter. In earlier studies a number of different filters, 
called Mihçak’s, Argenti’s, CBM3D and PCAI respectively, have been proposed and 
tested for the purpose of camera identification. [11], [12], [13], [14]. 
 
Studies have shown that use of CBM3D is slightly more accurate than Mihçak and 
Argenti, while Mihçak and Argenti have comparable accuracy when using noise 
correlation to determine the source of an image [7]. CBM3D is very slow in comparison 
to the other denoising algorithms but it can be set to use a faster approximate approach. 
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A recent study [14] introduced the use of the PCAI filter in the context of camera source 
identification and the results appear very promising, suggesting that the performance of 
the PCAI filter exceeds both CBM3D, Mihçak and Argenti filtering. 
 
Another approach to extract the SPN is presented in [8] where the image is decoupled 
into four subimages prior to the denoising. This approach was reported to outperform 
the standard approach. In most modern digital cameras each photocell only captures one 
of the red, green and blue colors. To produce the missing values in each color channel 
the sensor values are interpolated in a demosaicing process. The filter that determines 
which color is captured by which photocell is called a Color Filter Array(CFA), as 

illustrated in Figure 2.2, and it is often defined in a 2 ൈ 2 matrix with two green, one red 

and one blue cell [15]. By dividing each channel into four subimages, one (or two in the 
case of the green channel) of the four images will contain only true measurements while 
the others are interpolated. Thus the denoising of the subimage with original values will 
not be affected by any demosaicing algorithm. 
 

 
Figure 2.2 Digital camera pipeline 

 
Since both CBM3D and PCAI has been shown to give better results than the Mihçak 
filter these two will be considered in the thesis, together with the Mihçak filter with and 
without color decoupling. CBM3D will be used with the fast profile. Using the Argenti 
filter did not improve the performance in the paper that it was introduced and it will not 
be discussed further in this thesis. Additionally a new variant of the color-decoupled 
Mihçak filter described below will be considered. 
 

2.1.1.1 DETAILS OF NEW VERSION OF DECOUPLED MIHÇAK’S FILTER 
When decoupling the image, the neighborhood of each pixel is affected. Pixels in the 

decoupled image are closer than in the original. The neighboring pixel at radius ݎ from 

pixel ݔ in a subimage is at radius	2ݎ from ݔ in the original image. This motivates the 
choice of a smaller neighborhood to estimate the local variance in the subimages. This 
can also be a way to reduce the time consumption of the denoising algorithm, while 
hopefully maintaining a good performance.  
 

As illustrated in Figure 2.3, all the pixels contained in the neighborhood of size 9 ൈ 9 

around pixels ሺ4,4ሻ, ሺ5,4ሻ, ሺ4,5ሻ and ሺ5,5ሻ, in the original image is after the decoupling 

either contained in the neighborhood of size 5 ൈ 5, or in another subimage. By first 
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decoupling the image, and then using the window size radius ܹ ൌ ሼ1,2ሽ instead of 

ܹ ൌ ሼ1,2,3,4ሽ to estimate the local variance, the time consumption (compared to the 

standard Mihçak filter) can be reduced, while the quality of the filter remains close to 
the same as when the larger neighborhoods where used. 
 

 
Figure 2.3 Color-decoupling of an image 

2.1.2 USING SPN TO DETERMINE SOURCE CAMERA DEVICE 
When SPN was introduced to identify the source camera, the means of comparison was 
correlation between two patterns which was shown to work well when the pattern of an 
image is compared to the reference pattern of a device [6]. The formula that was used to 
calculate the correlation between two noise patterns is: 
 

ሺ݊,݉ሻݎݎܥ ൌ
∑ ∑ ൫݊௫௬ െ ൯൫݉௫௬ߤ െ ൯ߤ

௬ୀଵ
௪
௫ୀଵ

ට∑ ∑ ൫݊௫௬ െ ൯ߤ
௬ୀଵ

௪
௫ୀଵ ∗ ∑ ∑ ൫݉௫௬ െ ൯ߤ

௬ୀଵ
௪
௫ୀଵ

 

 

Where ݓ is the width of the images, ݄ is the height of the images, ݅௫௬ is the value of 

image ݅ at pixel ሺݔ,  .݅  is the mean of all pixels in imageߤ ሻ, andݕ
 
When the device is unknown, and thus a device reference pattern is not present, one 
needs to compare the noise from different images, which ideally would give a high 
correlation if they have been acquired using the same device, or a low correlation if the 
opposite is true. The scene of the image and random shot noise also affects the 
correlation, and might cause misleading correlation values.  
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2.2 SOURCE CAMERA CLUSTERING 
An algorithm for clustering of noise patterns was proposed by Caldelli et al. [16] that 
begins by calculating a comparison matrix, where each noise pattern is correlated with 
all other noise patterns. The noise patterns used in the paper by Caldelli et al are 
modified by a method that is supposed to enhance the noise. This method is patented in 
Europe and has thus not been considered in this thesis, instead the clustering algorithm 
worked on the extracted noise, without any post processing applied. From the beginning 
of the algorithm each image is considered as a cluster. The algorithm then iteratively 
picks the cluster pair between which the correlation is the highest. These two clusters 
are merged and the correlation values from these two clusters to other clusters are 
averaged. After each iteration a silhouette coefficient is calculated. This coefficient 
measures how well the clusters are separated from each other, as well as measuring how 
tightly the images in each cluster are connected to each other. One coefficient is 
calculated for each cluster by subtracting the average of the correlations within the 
cluster from the average of the correlations to other clusters. This coefficient is 
calculated and averaged over all clusters to get the silhouette coefficient of the entire 
clustering. 
 
When all images have been merged to one cluster, the iteration with the lowest 
silhouette coefficient is chosen. Since correlation is a costly operation, the fact that the 
correlation between all images is calculated is a drawback of this algorithm and one 
would not want to do this on a big set of images. To decrease the time of the clustering 
process this method must be complemented by other approaches. 
 
An interesting aspect of this problem is that one gets a more reliable correlation result 
between two noise patterns if they have been averaged over many images, thus a good 
clustering algorithm for this problem could preferably take advantage of this. 
 
Since only images in their maximal native resolution will be considered a possible 
heuristic for clustering could be to start by dividing the images into subsets based on the 
sizes of the images. This reduces the size of each set to be clustered, and thereby the 
number of necessary comparisons and the time consumption. Since this thesis however 
is focused on the classification and clustering of noise patterns, this approach will not be 
considered during the evaluation of clustering algorithms in the thesis. 

2.2.1 MODEL CLUSTERING 
To decrease the amount of correlations that needs to be calculated one idea is to do an 
initial clustering, based on something else than the correlation of noise. A natural idea is 
to base this clustering on what camera model, instead of unique device, that has 
captured the image. If one can achieve a fast comparison between two images, that can 
fairly separate different models, this can be used as a first step to reduce the number of 
correlations to compute. 
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Before SPN was recognized as a means of identifying the source device of digital 
images, attempts was made to use Image Quality Metrics and other measurements on 
the image and on different transformed representations of the image, for identification 
of the source [9]. These features have later been used as a complement to measurements 
that can be derived from the SPN when determining which camera device or model a 
specific image was taken with. More features that were specifically intended to indicate 
the camera model was tested by Filler et al. [10]. The features are generally statistical 
measures on the image and/or noise, or correlations between the noise and modified 
versions of the noise. There are existing methods that aim to find out from an image 
what CFA the capturing camera had [17], and this was also used as a candidate feature. 
All tested features are described in detail in Appendix A. While it could take some time 
to calculate the features of each individual image, the comparisons between the feature 
sets of the different images can be significantly faster than calculating the correlation, 
depending on the used classifier. 

2.2.1.1 FEATURE SELECTION 
To help machine learning algorithms to make sense of training data it is sometimes 
beneficial to reduce the feature space by removing redundant or irrelevant features. 
Decreasing the number of features naturally also decreases the time needed to calculate 
all features of an image. To select which features that are indicative of the label of test 
data there are several existing methods. Correlation based feature selection (CFS) is fast 
and takes into account if the features correlate with the already selected features, but the 
drawback is that locally indicative features might be lost in the process. To counteract 
the drawback of CFS, after a base set of features has been selected using CFS, one can 
select more features using a wrapper selector, which is a slower but more exhaustive 
and precise method [18]. 
 
The idea behind the wrapper selection algorithm is to incorporate the classifier in the 
algorithm that selects the features, since some classifiers can make use of some features, 
and others not. To select more features one tests all, or a subset of all, possible feature 
subsets and determines if adding a subset of the remaining features increases the 
performance of the classifier [18]. 
 

2.2.1.2 CLASSIFICATION BY FEATURES 
The input to the classifier that should determine if two images were captured by the 
same camera model will be the result of a comparison between two feature sets, a vector 
of high dimensionality (the same number of dimensions as the number of features). The 
comparison methods of different features are further described in section 3.6.1. 
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One common type of classifiers are artificial neural networks (ANN) which is a 
classifier inspired by the human brain. It consists of a set of neurons linked together, 
which each performs a simple calculation. A common configuration is to organize the 
neurons in layers where the output of one layer is linked to the next. The links in the 
network each have a weight, and by setting these weights, one affects the behavior of 
the network. To adapt a neural network to the problem at hand supervised learning is 
often used. More specifically one can train a neural network by feeding it data, and 
altering the links when its prediction is wrong, using the backpropagation algorithm. 
The stochastic version of the backpropagation algorithm handles the training data in a 
random order and updates the network weights after each considered training instance 
[19]. 
 
The reason that ANNs was favored over other forms of classifiers, most notably support 
vector machines (SVM), was the combination of good classification performance and a 
very good execution time. The number of comparisons needed when comparing every 

instance to every other instance grows in ܱሺ݊ଶሻ, where ݊ is the number of instances. 

The time it takes for the classifier to give a result is thus very important. 
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3 METHOD 
After the first method of identifying a source camera from the SPN was proposed, many 
research papers on how to improve the identification using other, possibly improved, 
approaches, has been published. Therefore a large portion of the work was focused on 
implementing and testing these suggested ideas as well as trying new ones, in order to 
find the optimal method in the setting of the thesis. 
 

3.1 THE OUTLINE OF THE STUDY 
The work was divided into two main problems based on the two features previously 
described as useful in CSA investigations. The first area of research was to assess 
existing ways of determining if two images were taken by the same unique device, and 
apply this to the problem of identifying images in a set taken by a given camera. The 
second area was to use these methods to cluster images, where one cluster should 
represent one camera device. 
 

3.2 TEST IMAGES 
The images used in this study were collected from image-sharing portal Flickr.com, 
using their API. Each candidate image was checked so that it fulfilled the following 
criteria: 
 

 The image contains EXIF data about manufacturer and model 

 The image is in the highest native resolution of the model 

 The image has not been digitally zoomed, according to EXIF data 

 The EXIF data does not indicate that photo manipulation software has been used 
on the image. 

 The image is in landscape orientation. This guarantees that the orientation of the 
sensor is the same for all images. 

 
Many images were collected in this manner for use in the study. The images were 
separated into sets of different cardinality, so that quick evaluation could be done on the 
smaller sets, while more important or less time consuming tests could be carried out on 
the larger image sets. Cameras are distinguished by the camera model and Flickr user 
account. 
 
An image in a lower resolution than the highest native to the source camera will have a 
noise component that is equally scaled down. This means that it cannot be successfully 
compared to a noise pattern from an image of the native resolution without further 
processing. It can however be compared to other noise patterns extracted from images 
of the same size. The classification performance will likely be lower in this case since 
the noise has been downsampled. 
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3.3 TEST EVALUATION 
When testing different denoising filters or classification methods etc. the means of 
comparison used is the so called F-Measure, unless otherwise stated. The F-Measure is 
a measure of how good a classification of data is, and in this study it is used to measure 
how separable a dataset is when hard thresholding is applied to classify the data. 
 

The F-measure is also known as ܨଵ	݁ݎܿݏ and is calculated as: 
 

ଵܨ ൌ
2 ∗ ݏ݁ݒ݅ݐ݅ݏ	݁ݑݎݐ

2 ∗ ݏ݁ݒ݅ݐ݅ݏ	݁ݑݎݐ  ݏ݁ݒ݅ݐ݅ݏ	݁ݏ݈݂ܽ  ݏ݁ݒ݅ݐܽ݃݁݊	݁ݏ݈݂ܽ
 

 
The classification performance of the clustering algorithms was assessed using two 
constructed measurements. The first is the number of constructed clusters divided by the 
number of clusters that the test data actually consisted of, thus giving a ratio above 1 if 
the algorithm outputs too many clusters and below one if it groups the images to much. 
This measurement gives however no indication of the number of correctly grouped 
images. 
 
To give an indication on how well the clustering algorithm manages to avoid clustering 
images from different sources together, each image in each cluster that was not from the 
same source as the majority in the respective cluster was counted. This number was 
divided by the total number of images to give an error rate. 
 

3.4 SOURCE CAMERA CLASSIFICATION 
With a more accurate SPN estimation one would naturally expect a higher rate of 
correct classifications, therefore different tests was carried out to find the best denoising 
filter and parameters for the task.  
 
In the scenario that one wants to determine if an image was taken with a specific camera 
available for examination, one typically uses the following approach: Produce new 
images from the camera, and make a reference pattern from them. Then compare this 
reference pattern to the image in question by correlation. The reference pattern can be 
computed in different ways, for example by averaging the patterns.  
 
To decide if a comparison was a match or not one method is to use a hard threshold, and 
regard results above the threshold as a match, and results below it as a mismatch. One 
can adjust the threshold for example to yield a low overall error rate, or to yield a low 
false positive rate. 
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3.4.1 CHOICE OF DENOISING FILTER 
The denoising filters considered in this thesis was compared by measuring how well one 
could separate comparisons made between an image and a reference pattern from the 
same camera and comparisons made between an image and a reference pattern from a 
different camera. This was measured with the F-Measure in the following way: 
 
A set of 12 500 images from 198 different cameras, from 50 different models, was 
denoised by each denoising filter, giving one residual noise pattern (RNP) for each 

image. The dimension of the images was 512 ൈ 512, cropped out from the center of the 
image. This part is less likely to contain fully saturated pixels, making the RNP a better 

estimation of the SPN [20]. The number of images used to create a reference pattern,݊, 

was varied from 5 to 50, in intervals of 5. For each value of ݊, ݊ RNPs were selected 

randomly from the set of images belonging to a camera that in total had more than ݊ 
images. These RNPs was used to create a reference pattern which was correlated with 
the remaining images of that camera, and the same number of images randomly picked 

from other cameras, which also had more than ݊ images. In this manner the number of 
comparisons where the image and reference pattern came from the same camera will be 
the same as the number that came from different sources. 
 
To get a measure on how well the denoising algorithms separated the instances coming 
from the same source from the ones coming from different sources, a threshold was 
adjusted so that the obtained F-measure was maximized. 
 
To compare the time consumption of denoising filters the following test was conducted; 
from a dataset of 100 images collected from Flickr.com, all images were cropped down 

to sizes 256 ൈ 256, 512 ൈ 512 and 1024 ൈ 1024. Denoising filters were then applied 
to all the images in the three cropped sets, and the mean time consumption to denoise a 
single image was calculated. 

3.4.2 DENOISING FILTER PARAMETERS 
The Wiener filter, used in all denoising filters considered in this thesis takes one 

parameter, namely the estimation of the standard deviation of the noise, ߪ. In previous 

studies this parameter is commonly set to 5 [4]. In this thesis different values of ߪ has 

been evaluated in order to make a more informed choice.  
 
A set of 490 images from 12 cameras of 10 different models was randomly selected 
from the total test image dataset. The noise residuals of these images were then 
extracted. The noise residuals was then correlated to each other, and a decision 
threshold for the correlation was set to predict if the images were taken with the same 
camera or not. The threshold was chosen so that the F-measure of the prediction was 

maximized. This process was repeated for different values of ߪ. The results are shown 
inFigure 4.2. 
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3.4.3 NUMBER OF IMAGES NEEDED FOR REFERENCE PATTERNS 
As described in section 3.4, camera reference patterns are made from a number of 
images known to be taken by the camera. To determine how many images that are 
needed to create a reference pattern of high quality the results from the same test that 
was defined in section 3.4.1 was evaluated. 
 

3.5 SOURCE CAMERA CLUSTERING 
In this thesis, three different methods of clustering are used. In each method one starts 
with a number of clusters (where each cluster consists of at least one image) and aims to 
further cluster the data, merging groups of clusters into new clusters. First a method 
called chain clustering is used to reduce number of clusters which are then fed to the 
Caldelli clustering method described in section 2.2. Finally the remaining clusters are 
clustered using a method called simple clustering. Chain clustering and simple 
clustering are new approaches presented in this thesis. 

3.5.1 CHAIN CLUSTERING 
In this method all the images are only compared to the previous and the next image, 

meaning that the number of comparisons is ܱሺ݊ሻ instead of ܱሺ݊ଶሻ. In each step one 
merges the clusters that has the highest correlation into one (by averaging the residual 
noise patterns of the images in the cluster), and then re-computes the correlation to its 
neighbors. This is iterated until no correlation is above a certain threshold. See Figure 
3.1. 
 
This method makes use of the assumption that images from the same camera are 
adjacent to each other in some ordering. This ordering can for example be by file names 
or timestamps. Also random ordering gives a high probability of neighboring images 
being from the same camera, as long as the number of cameras in the dataset is small.  
 
For example, on a dataset with 10 images from one camera and 10 from another camera, 
the expected number of images from the same camera adjacent in random ordering is 
approximately 9.47. If the chain clustering finds 9 matches, the number of comparisons 
needed to be computed for the fast clustering is reduced from 190 to 55 (and 10 of them 
are already calculated in the chain clustering). 
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Figure 3.1 Explanation of chain-clustering 

3.5.2 CALDELLI CLUSTERING 
This clustering algorithm is described briefly in section 2.2, for the full description see 
[16]. In this study we use a slight modification, namely that only clusters with a 
correlation above a threshold are merged. When the algorithm is finished the residual 
noise of the clusters are merged by averaging, and new correlations are calculated. 

3.5.3 SIMPLE CLUSTERING 
This final clustering step once again uses the correlations between all the remaining 
clusters, and in each step merges the clusters with the highest correlation by averaging 
the residual noise. Then the correlations to this new cluster are updated and the 
procedure is iterated until no correlation is above a threshold. 

3.5.4 CORRELATION BETWEEN CLUSTERS OF RNPS 
With the proposed methods of clustering described in previous sections, correlations 
will be calculated between noise patterns averaged from clusters of RNPs. In order to 
investigate how the correlation values depend on the number of images in the involved 
clusters, reference patterns were built and correlated from the set of 12 500 images from 
198 cameras of 50 different models. Different numbers of images were used in the 
clusters and the cluster patterns were correlated with each other. For every combination 
of differently sized clusters, a threshold was set so that the F-measure was maximized. 
By analyzing how the correlation depends on the sizes of the clusters, the threshold used 
in the clustering algorithms can be dynamically adjusted to compensate when the sizes 
of the clusters varies. A model for this was generated by applying curve fitting to the 
data points in the software Wolfram Mathematica. 

3.5.5 CLUSTERING METHODS EVALUATION 
Three different purely correlation based clustering approaches will be evaluated on a set 
of 500 images from 12 different cameras collected from Flickr.com, in addition one 
approach also incorporating camera model clustering will be evaluated. The first 
approach is only using the Caldelli clustering algorithm as it was defined in [16]. The 
second approach is to do the chain clustering, Caldelli clustering and the simple 
clustering, in that order. The third approach is to divide the 500 images into four sets of 
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125 images, carry out approach 2 on each of the sets and then combine them as 
described in section 3.6.4. The fourth approach is to first cluster the images using 
camera model clustering, which is described further in section 3.6, then clustering each 
individual model cluster with the correlation based clustering methods and combining 
the clusters as described in section 3.6.4. To reduce any unfair advantage that the chain 
clustering might gain from the order of the images, the order was randomized in all 
evaluated clustering approaches. 
 

3.6 CAMERA MODEL CLUSTERING BY FEATURES 
In a similar way as described in section 3.5, clustering on camera model can be done by 
using the comparison between features as input to an artificial neural network (ANN). 
While two feature vectors could be merged to a “reference feature vector”, for example 
by averaging the values of the two vectors, comparisons of two merged feature vectors 
was not part of the classifiers training set, nor validation set. It is thus not certain how 
well the classifier would cope with such modified feature vectors and therefore only the 
Caldelli clustering algorithm will be used together with the classifier. 

3.6.1 COMPARING FEATURE VECTORS 
When the features presented in Appendix A has been calculated from an image one 
wants to compare the values to the same features derived from another image to produce 
an array of values suitable as input to a classifier such as an ANN. Since the 
representation of the features differ, a number of methods to provide a quantitative 
measure of the difference between two feature values has been used.  
 
If a feature represented an array of values in between which the relation was more 
interesting than the magnitude of the values, correlation between the arrays derived 
from different images was used to compare them. The features that used this kind of 
comparison were the features derived from the linear pattern cross-correlation (see 
“Noise pattern statistics and characteristics” in Appendix A) and the six frequency 
signal features indicating periodicity in the demosaicing. Also the three color channel 
energy pairs was combined as one feature which was compared with correlation. 
 
Furthermore the three color channel energy pairs was compared between images by 
calculating the euclidean distance between the three variables. 
 
The Color Filter Array determination suggests which of the possible Bayer filters that 
exists in the source camera of an image, and thus when this feature is compared between 
images, it was simply determined if the same green, red or blue pattern was used, and 
indicating this with a one or a zero for each color channel. During the determination of 
the color filter array, another feature, the majority of the vote, is derived and this feature 
is compared between two images by multiplying the two ratios. Thus a high ratio in 
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both images is needed to give a high value and if the result of the comparison between 
the CFA-patterns is reliable this majority feature will indicate this. 
 
To compare the positions of max- and min-values among the demosaicing artifacts 
between two images, a high number of pixels in the intersection between the “max-
value” pixels and in the intersection between the “min-value” pixels, and thus also a low 
number of pixels in the intersection between the “max-value” set of one image and the 
“min-value” pixel set of the other image was taken as an indication towards the fact that 
two images were taken by the same camera, and vice versa.  
 
Just calculating the absolute value of the difference of the values is perhaps the simplest 
way of comparing two features and this was applied in all other cases when the feature 
only consisted of a single value. 

3.6.2 FEATURE SELECTION 
To find the feature subset that best determines if two images were taken by cameras of 
the same model, when used as input to a neural network, the CFS algorithm, as 
implemented in machine learning software WEKA [21], was used to find an initial base 
set. After that, one feature was added at a time by evaluating which additional feature 
that increased the performance of the neural network the most, so called forward best 
first selection, inspired by wrapper selection which can be used as a complement to the 
CFS algorithm [18]. To calculate the performance when adding a new feature, eight 
neural networks were trained using stochastic backpropagation, and the error percentage 
of the different networks on the validation set was averaged. The feature that gave the 
lowest average error percentage was added and the process was iterated until adding 
more features did not increase performance. If adding a feature meant that the error 
percentage became one percentage point higher the feature was discarded and would not 
be considered during later iterations. This was done to decrease the time needed by the 
feature selector. 
 
In addition to the classification performance of a feature, the time it takes to derive the 
feature from the image was considered in order to keep the time consumption of the 
final solution to a minimum.  

3.6.3 ANN LEARNING PARAMETERS 
The values of the parameters that the ANN used during its learning phase was 
determined with cross validation, by finding the setting that had the lowest error 
percentage when the training and validation sets consisted of an equal number of 
positive (same camera model) and negative (different camera models) instances. To get 
an equal number of positive and negative instances, negative instances was discarded at 
random until this was achieved. The reason that negative instances was discarded was 
that the error percentage otherwise would have favored classifying negative instances 
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correctly to the point that the algorithms might classify all instances as negative to get 
the best solution, in terms of error percentage. 

3.6.4 DIVIDE AND CONQUER APPROACH 
By dividing the image sets into clusters containing images from the same camera model, 
and then dividing these smaller sets into clusters from the same unique camera device 
the approach can be viewed as the dividing part of a divide and conquer algorithm, 
using the camera model as a heuristic. However, since the classifier does not have a 100 
percent classification success rate there is a risk that images from one model is divided 
into two or more sets. There is also a risk that images from one unique camera device 
will end up in different clusters, therefore it is good to merge the model clusters 
afterwards. Also if the number of images is too big to keep all noise patterns in memory 
it would be good to consider smaller batches of images and then combining the results. 
 
When two model clusters have been processed and divided into camera clusters the two 
model clusters are combined by calculating a correlation matrix of the camera clusters. 
Since the correlations between clusters in the same model set are already known, it is 
only the correlation between camera clusters from different sets that needs to be 
calculated. After this the Caldelli clustering algorithm described in section 2.2 and the 
simple clustering approach described in section 3.5.3 is used to merge clusters with high 
correlation. When two model clusters have been merged to one set, that set can be 
further merged with another pair of merged model clusters. By iterating this one finally 
gets only one remaining set where each cluster of images belonging to a unique device 
has been compared to each other cluster. 
 

 
Figure 3.2 Divide and conquer approach to image clustering. In this example the model clustering is not 
perfect as can be seen when images 2 and 9 are misplaced, this is however corrected in the merge step. 
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4 RESULTS AND DISCUSSION 
The test results and discussion has been divided into results that affect the denoising 
methods and residual noise patterns, and results that affect the clustering procedure. 
These results will be presented in this chapter. 
 

4.1 DENOISING FILTER AND PARAMETERS 
A denoising filter that produces a “cleaner” noise, a noise with less artifacts from image 
objects, could hopefully decrease the number of images needed to create a good 
reference pattern. Different methods achieve this to varying extent and in this part the 
results from the evaluation of the different methods will be presented. 

4.1.1 DENOISING FILTER CLASSIFICATION PERFORMANCE 
The different denoising filters mentioned in section 2.1.1 was tested as described in 
section 3.4.1, and as can be seen in Figure 4.1, the results confirm results from previous 
studies that stated that the PCAI filter is superior to the standard Mihçak filter (M). 
Furthermore the CBM3D algorithm performed better than the Mihçak filter if only a 
small number of images are available for the reference pattern. The algorithm that 
clearly performs best is however the decoupled version of the Mihçak filter (MD). 
Noteworthy is that the difference in performance between the MD filter with only the 

two smaller window size radiuses ܹ ൌ ሼ1,2ሽ, and the MD filter with all radiuses 

ܹ ൌ ሼ1,2,3,4ሽ, is very small. 

 

 
Figure 4.1 Comparison of different denoising filters 
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4.1.2 NUMBER OF IMAGES IN REFERENCE PATTERN 
The more images used to create a reference pattern, the more random shot noise and 
artifacts from the scenes of the images are suppressed to form a noise pattern closer to 
the actual SPN of the camera. As can be seen in Figure 4.1 some denoising techniques 
require more images to get a good SPN approximation. The performance increase of the 
MD filter utilized in this thesis stagnates when the reference patterns are created from 
more than around 50 images. These results are consistent with earlier research [4]. Since 
the test images are ordinary photos collected from Flickr.com, the amount of scene 
artifacts is higher than if for instance only images of a clear blue sky were used, and 
thus the image set, from which the reference pattern is created, could be made smaller if 
only images with little scene artifacts are considered, as has been pointed out in 
previous research [6]. 

4.1.3 DENOISING FILTER TIME COMPARISON 
While the classification performance of the denoising filters is important, the time the 
filter uses to denoise images is also relevant. 
 

Image Size M 1,2,3,4 MD 1,2,3,4 MD 1,2 PCAI CBM3D

 ൈ 	 1.087	 0.808	 0.368	 0.091	 1.617	
 ൈ 	 4.397	 3.387	 1.482	 0.329	 6.708	
 ൈ 	 18.452	 15.174	 6.004	 1.579	 28.838	

Table 4.1 Comparison of time consumption of different denoising filters, in seconds 

The system used to compute the noise and measure time had an Intel Core Duo T2050 
processor and while the actual time consumption will vary between different systems, 
the PCAI algorithm was the fastest of the tested denoising filters. This is quite natural 
since the PCAI only works in the spatial domain, while the other filters first transform 
the image to the wavelet domain. The Decoupled Mihçak filter however was the filter 
with the highest classification performance and since the version with only 1 and 2 as 
window size radiuses had a time consumption which was deemed to be acceptable, this 
filter was chosen as the one best suited and thus this is the filter used in the rest of the 
thesis. This is motivated by the fact that a good classification performance can lead to a 
better clustering, which in turn results in less calculations of correlation between 
clusters. Since the denoising procedure only is done once per image, but the number of 

correlations is in the order of ݊ଶ, where ݊ is the number of images, reducing the number 
of clusters is of a higher priority. 

4.1.4 SETTING 0ߪ 
When evaluating the performance of the denoising filter with different values of the ߪ 

parameter, the highest F-measure observed was at ߪ ൌ 2, as can be seen in Figure 4.2, 

and thus in the rest of the thesis this value is used. One can also see in Figure 4.3 that 
the noise residual of the example image contains more artifacts from the image when it 

was denoised using ߪ ൌ 5 than ߪ ൌ 2. 
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Figure 4.2 Evaluation of different values of ߪ 

 
Figure 4.3 Original image, residual noise extracted with ߪ ൌ 2, and residual noise extracted with ߪ ൌ 5, 

noise intensity enhanced for better visualization 

4.2 CLUSTERING 
Different clustering methods needed evaluation of the building blocks such as 
evaluating how the correlation is affected when it is reference patterns that are 
evaluated, as well as model clustering needed evaluation of what features that gave the 
best model classification performance. These results together with the evaluation of the 
different approaches to clustering is presented in this chapter. 

4.2.1 CORRELATION BETWEEN CLUSTERS OF IMAGES 
The data collected in the test defined in section 3.5.4, shown in Figure 4.1, clearly 
shows that the optimal threshold varies with the number of images used to create the 
reference patterns.  
 
To model how the threshold varies residual noise patterns from single images was 

correlated to find the optimal standard threshold, ݐ, to use for image clusters of size 1 

and 1 (i.e. comparing two images). This was found to be ݐ ൎ 0.002551. To find a good 

model that fits the data when the number of images increases, all data points were 
divided by the standard threshold. Thus the modified data points indicate how much the 

correlation between two patterns should be adjusted. By letting ሺݔ  1ሻ and ሺݕ  1ሻ be 
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the number of images in the reference patterns, a function ݂ሺݔ,  ሻ should give a factorݕ
that the correlation should be divided by before it is checked against the threshold. 
 

 

 
Figure 4.4 Optimal threshold for different cluster sizes, two different angles 

Since the random noise and scene artifacts will be fully suppressed after a certain 

number of images it is reasonable that the function flattens for high values of ݔ and ݕ as 

well as that the condition ݂ሺ0,0ሻ ൌ 1 holds. Furthermore the function should be 

symmetric, so that ∀ሺݔ, :ሻݕ ݂ሺݔ, ሻݕ 	ൌ 	݂ሺݕ,  ሻ since the correlation should be the sameݔ

whether pattern ܽ is compared to pattern ܾ or vice versa. Different functions that fulfills 
these requirements was tested to approximate the increased threshold and the function 
that was chosen to be fitted to the data was: 
 

݂ሺݔ, ሻݕ ൌ 1  ܽ൫√ݔ  ඥݕ൯  ܾඥݕݔ  ܿඥݔ   ݕ
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The constants ܽ, ܾ and ܿ was found using curve fitting in Wolfram Mathematica, and 
the final function, that adjusts the correlation values, was found to be: 
 

݂ሺݔ, ሻݕ ൌ 1 െ 1.41429൫√ݔ  ඥݕ൯  0.802655ඥݕݔ  2.00206ඥݔ   ݕ

  
As seen in Figure 4.5 it fits the data well. 
 

 

 
Figure 4.5Fitted function to approximate optimal threshold for given size of clusters, two different angles 

 
Since the optimal threshold is much higher when the number of images in the clusters 
grow, it is clear that none of the chain clustering or the simple clustering procedures, 
which both rely on merging residual noise patterns into reference patterns, would work 
without a dynamically set threshold. 
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4.2.2 CLUSTERING BY FEATURE VECTORS 
If a classifier is trained to recognize images taken by cameras of the same model one 
can do an initial clustering and divide the big set of images into smaller sets of images 
taken by the same camera model. The algorithm described in section 3.5 can then be 
used to cluster these smaller sets of images. 

4.2.2.1 SELECTED FEATURES 
A first set of 19 features was selected by the CFS selection algorithm from the features 
described in Appendix A. The selected features were:  

 The skewness of the noise, that is the third centralized statistical moment, in the 
green color channel 

 The euclidean distance between the channel pair energy vectors, the linear-
pattern cross-correlation of the noise in both the rows and columns of all color 
channels (6 features) 

 The correlation between the noise of two color channels, all three possible pairs 
(3 features) 

 The correlation between the noise in the red color channel and the same noise 
shifted three steps both horizontally and vertically 

 The correlation between the noise in the green color channel and the same noise 
shifted one step horizontally 

 If the images are thought to have the same configuration of the green part of 
their CFA as well as the majority with which this is determined (2 features). 

 The average of the diagonal subband of the first level of the wavelet 
decomposition of the noise in the three different color channels (3 features). 

 The average of the horizontal subband of the first level of the wavelet 
decomposition of the noise in the blue color channel. 

 
Eleven more features were selected one after another by the best first selection 
algorithm decreasing the error percentage as seen in Figure 4.6. 
 

 
Figure 4.6 Wrapper selection progress 
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The features added after the 19 features selected by the CFS algorithm were, in the 
following order: 
 

20. The correlation between the noise in the red color channel and the same noise 
shifted three steps vertically. 

21. The average of the horizontal subband of the second level of the wavelet 
decomposition of the noise in the green color channel. 

22. The average of the diagonal subband the second level of the wavelet 
decomposition of the noise in the blue color channel. 

23. The majority of the red channel CFA-pattern vote 
24. The IQM-feature structural content of the red color channel. 
25. The correlation between the noise in the red color channel and the same noise 

shifted one step horizontally and three steps vertically. 
26. The average of the vertical subband of the second level of the wavelet 

decomposition of the noise in the blue color channel. 
27. The average of the diagonal subband of the third level of the wavelet 

decomposition of the noise in the green color channel. 
28. The correlation between the noise in the red channel and the same noise shifted 

eight steps horizontally. 
29. The mean square error of the noise in the blue color channel 
30. Variance of the noise in the green color channel. 

 
It was decided that the increased performance of feature 23, the CFA majority vote of 
the red color channel, was not enough to justify the time it took to calculate that feature 
and thus it was discarded. In total 29 features was selected to be used with the ANN. 
This gave an error rate of less than 0.13 on the validation set. 

4.2.2.2 TIME COMPARISON BETWEEN NOISE- AND FEATURE BASED 

CLASSIFICATION 
The time taken to compare two descriptors with an ANN is approximately 1.32ms 
compared to the time taken to correlate two noise patterns, 446ms. However the 
descriptor takes more time to compute, approximately 4990ms compared to 1482ms for 
the noise. These measurements were made from an average of 100 computations on an 
Intel Core Duo T2050, no parallelization used. By using feature-based image 
classification one can thus perform many more comparisons between images. There is 
no guarantee that the model clustering results in smaller clusters, the images could all be 
from cameras of the same model. As can be seen in Figure 4.7 already when the image 
set consists of 17 images, even if the model clustering puts all images in the same 
cluster, performing the initial clustering would only double the needed time to compute 
all noise patterns and correlate each RNP with each other RNP. As more images are 
added only a fraction of the total time would be devoted to model clustering. How long 
it takes to combine the different model clusters is however very dependent on each 
specific instance of the problem. 
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Figure 4.7 Comparison of worst case time consumption of different comparison methods for clustering, in 

the time estimation both computation of the noise pattern/feature vector and comparison between them are 
included. 

4.2.2.3 PERFORMANCE OF DIFFERENT CLUSTERING METHODS 
Performance testing of the clustering algorithms was carried out as described in section 
3.5.5. All calculations were done on an Intel Core i7-2630QM processor and no 
parallelization was used when running the algorithms. Thus the presented time 
consumption results should only be used for comparison between the different 
approaches, since the time could be cut considerably if the algorithms were slightly 
modified to incorporate parallelization. 

 
Approach 2, 3 and 4, the ones using chain clustering and simple clustering, uses a 
correlation threshold. In section 4.2.1 the threshold that separated positive from negative 
instances best, i.e. the one with the highest F-measure, were found to be 0.002551. 
When clustering however, it is important not to group images if they do not belong 
together, since that could possibly corrupt the reference pattern. Thus the threshold was 
increased to decrease the risk of wrong classifications. A value of the threshold that was 
found to give good results with this aspect taken into consideration was 0.006667, and 
this threshold is used when clustering based on correlation.  

 
The results are presented in Table 4.2. Clustering time indicates the time the algorithms 
use and total time includes the time it takes to denoise the images, as well as calculating 
feature vectors in approach 4. Approach 1, only applying the Caldelli algorithm, 
resulted in many clusters only containing one image and thus the “clusters per image”-
value was very high. It did however not group any images that were not from the same 
camera.  Approach 2 increases the time consumption, which can be considered as an 
argument against chain and simple clustering. The idea behind the chain clustering 
however is that the images might already be ordered by name or in a file system 
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hierarchy and chain clustering would take advantage of that. Since the order of the 
images is randomized in approach 2 the gain of the chain clustering will be limited. 
Approach 2 also introduces a small error. 1.8% of the images are put in clusters where 
the majority of the images are from another camera. On the positive side the number of 
clusters per camera is much smaller than for approach 1. Both approach 3 and 4 lowers 
the time consumption considerably. Approach 4, when the images was clustered on 
model first, had a lower error rate than approach 3 as well as having the lowest “clusters 
per camera”-value. While tests on other datasets can be carried out to see how the 
performance of the different approaches varies with different data it is still clear from 
these tests that clustering on models provides a significant speed increase compared to 
not dividing the images into sets at al. 
 

	 1: Caldelli 2: Chain, 
Caldelli, Simple 

3: Divide and 
Conquer 

4: Model Divide 
and Conquer 

Error per image 0	 0.01871	 0.03367	 0.03197	
Clusters per camera 33.75	 6.236	 4.75	 4.083	

Clustering time 5:34:35	 8:01:43	 1:39:29	 1:01:09	
Total time 5:44:01	 8:11:09	 1:48:55	 1:37:00	

Table 4.2 Comparison of different clustering approaches, time on h:mm:ss format 

The Caldelli clustering algorithm picks the next pair of images to group by finding the 
pair with the highest correlation between them. Therefore it is natural that approach 3 
and 4 gets a higher error rate than the other two approaches. Dividing the sets of images 
means that the Caldelli algorithm has fewer comparisons to look at and there is thus a 
higher risk that the max value is a false positive. Since the number of true positives 
hopefully is high when the image set has been divided based on the model, as in 
approach 4, it is also natural that the probability of the max value being a true positive is 
higher than in approach 3. It seems reasonable that a higher threshold could lower the 
error rate when smaller sets of images are considered. How this affects the number of 
clusters per camera has however not been evaluated. 
 
For comparison, Approach 3 was also tested with all files already ordered on what 
camera that took the images, to see how chain clustering can improve the results if the 
circumstances are the best possible. The error rate dropped to 0.0102 and the number of 
cluster per camera were 5.25. Those results were achieved in 45 minutes total time and 
thus it is clear that chain clustering can provide a significant speed up in these 
circumstances. Also situations with few cameras and seemingly random order will 
benefit from this, since more images will be adjacent than in this example with 12 
different cameras.  
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5 CONCLUSIONS 
The focus of the thesis has been to evaluate the existing research in an environment 
where the number of images that should be analyzed is very high. Furthermore new 
methods that could make the clustering procedure more efficient in an applied 
environment has been introduced and tested. 
 
In the research field of source camera identification Mihçak’s denoising filter has been 
the standard filter to compare new denoising filters against since the first papers on the 
subject used that filter. This has however led to new denoising methods rarely being 
compared to each other, and this is something that has been done in this thesis. The 
outcome was that color decoupling improved the Mihçak filter to the extent that the 
color decoupled version should be considered standard rather than the original version. 
 
Another aspect of the denoising filter that has been standard since the first papers on the 
subject of source camera identification was assuming the noise had a standard deviation 
of five. When testing what assumption of standard deviation that gave the best 
classification results in this thesis however, the choice of five had no justification. 
Instead a standard deviation of two was favored. 
 
It was concluded that when one correlates two reference patterns, the correlation will 
depend on how many images that was used to create the patterns. This is an aspect of 
the correlation classification approach that will need to be considered if one wants to 
take advantage of the reduced amount of random shot noise in reference patterns. 
 
A number of different clustering approaches were tested and the ones that divided the 
images into smaller sets that were clustered individually, and then combined, were 
much faster than the methods that tried to cluster all images at once. By dividing the 
images on model instead of dividing the images randomly in equally sized subsets, the 
error rate could be lowered a bit while the number of clusters per camera also was 
lower. 
 
A number of different clustering approaches were tested and the ones that divided the 
images into smaller sets that were clustered individually, and then combined, were 
much faster than the methods that tried to cluster all images at once. By dividing the 
images on model instead of dividing the images randomly in equally sized subsets, the 
error rate could be lowered a bit while the number of clusters per camera also was 
lower. Furthermore an initial chain clustering can speed up the clustering procedure if 
the images are ordered by camera, as can be the case if the files have not been renamed 
or if images from the same set lie in their own folders. 
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This is still a relatively new research field and there are still many aspects to improve 
and explore. New denoising algorithms developed specifically with source camera 
classification in mind, such as color decoupled denoising, improve the methods. The 
existing research is often evaluated on toy examples and to apply the methods to real 
world examples more work can still be done. 
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6 FUTURE WORK 
During the course of the thesis potential improvements and extensions of the work has 
been identified. Some of the ideas could be the basis of another master’s thesis while all 
topics could be areas of interesting research.  
 

6.1 JPEG QUANTIZATION TABLES 
In JPEG images, the compression algorithm uses a quantization table to set the level of 
compression in the image. Many camera manufacturers have their own quantization 
tables [22], making this a good candidate feature to use for initial clustering. Since it is 
defined in the JPEG-file itself, it is fast and easy to obtain. 

 
Often the quantization tables are multiples of a base table, where the scaling factor 
determines the magnitude of the jpeg compression [23]. If one were to compare two 
quantization tables using correlation, the scaling would not affect the calculation and 
thus a correlation close to one would indicate that the cameras that produced the images 
used the same base table, and hence they might also be of the same model. By including 
the correlation between quantization tables one could hopefully increase the 
performance of a classifier designed to find images of the same model. Since it however 
is a characteristic of the file format and not the image data itself, this was not considered 
in this thesis. 
 

6.2 VIDEO CAMERA IDENTIFICATION 
In this thesis only still image photography cameras have been considered. It is tempting 
to say that the solution would work as well on the identification of video cameras from 
the frames of a video sequence, or perhaps even better since a single second of video 
could give 30 images and thus a good device reference pattern, but there exists 
difficulties not present during normal photography. 
 
One additional difficulty is block-like artifacts that are often present across several 
frames due to compression [24]. Another feature that is more common when dealing 
with video cameras than ordinary cameras is digital image stabilization (DIS). A video 
camera that utilizes DIS has a larger sensor than output resolution and can thus shift the 
captured frames to give a less shaky final output [25]. This means that averaging the 
residual noise pattern over several frames might suppress the SPN instead of enhancing 
it. Thus it is evident that in order to adapt the solution to video, further studies and 
subsequent modifications need to be carried out. 
 

6.3 MERGING FEATURE VECTORS 
When one uses residual noise patterns for classification one gets a better performance if 
the noise patterns have been derived from a set of images and averaged into a reference 
noise pattern. Since the calculation of features also is affected by random shot noise and 
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artifacts from the scene of the image, the model clustering performance could possibly 
also be increased if feature vectors could be merged into a reference version. It is 
however not as simple as with the residual noise patterns since the ANN is a non-linear 
classifier working on a high dimensional space. Just because two feature vectors have 
been classified as being from the same model does not necessarily mean that they are 
close to each other in the high dimensional space. It could thus be of interest to further 
study if there is a way to merge feature vectors that decreases the error rate of the ANN. 
 

6.4 COLOR DECOUPLED DENOISING 
Since color decoupling the image before using the Mihçak denoising filter increased 
classification performance significantly as presented in Figure 4.1, it would be 
interesting to see if also other denoising filters could benefit from color decoupling. The 
PCAI filter is much faster than the other filters and if color decoupling could improve 
the PCAI approach as much as it improved the Mihçak filter, PCAI could possibly be a 
better filter to use than the decoupled version of the Mihçak filter. 
 

6.5 NON-BINARY CLASSIFICATION 
One problem is that while comparing images by correlation of the RNPs, the instances 
of true and false matches overlap a bit in the correlation values. This is why a 100% rate 
of classification cannot be reached by only considering the noise of two images. Instead 
of using hard thresholding, one could assign a probability that a comparison is a match, 
given the correlation and the number of images that was used in each of the RNPs. This 
can for example be accomplished by modeling the probability density of true and false 
matches as functions, and for each comparison compute what the probability density is 
for true and false at that point. In this way one could distinguish the predicted matches 
that are that are very likely to be true from those that are just above 50% probability to 
be true.  
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APPENDIX A – CANDIDATE FEATURES FOR CAMERA 

MODEL CLASSIFICATION 
Many different features have been used by others to give an indication on what camera 
that took an image. In the setting of this thesis the features should indicate what camera 
model, rather than unique device, that captured the image, or more specifically if two 
images, or clusters of images, were captured by the same model. Thus features defined 
by others were tested in this new setting and the features implemented and tested are 
described in detail in this appendix. 
 

A.1 NOISE PATTERN STATISTICS AND CHARACTERISTICS 
After the introduction of SPN for camera source identification Filler et al [10] 
introduced a number of features calculated from the noise pattern to identify what 
camera model that captured the original photo. The study by Filler et al suggested that 
the first three centralized statistical moments of the noise could be used, and since no 
argument was made by Filler et al as to why only the three first moments was used, it 
was decided that also the fourth centralized statistical moment where to be tested as a 
feature.  
 
Furthermore a number of correlation based features was introduced by Filler et al.; for 
each color channel pair out of the red, green and blue channel, and for each horizontal 
and/or vertical pixel shift in the interval of zero to three pixels, the correlation between 
the resulting shifted channel pairs made up 96 extracted values. By using principle 
component analysis (PCA) Filler et al reduced the 96 values to four features. This 
approach means that to extract one of these four features from an image; all 96 original 
correlations must be calculated. Since the reason that features are considered in this 
thesis is to speed up the clustering process, and the correlation is a costly operation, 
calculating 96 correlations to extract four features is not a good approach in the setting 
of the thesis, if only a part of the 96 features are useful or if some of them are 
redundant. Therefore PCA was not applied to the original correlation values and not all 
96 combinations of shifts and channels were used. More specifically the only 
correlation between different color channels was without any positional shift, resulting 
in 3 values. Furthermore each color channel was correlated with the shifted versions of 
itself, adding another 3x4x4 = 48 features. 

 
A third group of features, known as linear-pattern cross-correlations was introduced by 
Filler et al. The feature is calculated by averaging row and column noise so that one 
value for each row and channel and one value for each column and channel is obtained. 
Since the noise in each pixel ideally is a random variable with the zero mean, how much 
the rows and columns diverge from this can give information on the post processing 
done by the camera model. One thus gets one vector with the row means and one vector 
with the column means. By shifting the vectors a number of steps, and correlating the 
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vectors with the shifted versions of itself, one gets new vectors with one value for each 
step the vector was shifted, which can then be compared to the respective vectors from 
other images. 

 
In previous studies the energy ratio between color channels has been used to find the 
source camera of images [9], the mathematical definition of the energy between 

channelܣ and ܤis: 
 

∑ ∑ ,ݔሺܣ ሻଶݕ
௬ୀ

௪
௫ୀ

∑ ∑ ,ݔሺܤ ሻଶݕ
௬ୀ

௪
௫ୀ

 

 

Where ܣሺݔ, ,ݔሻ is the value of pixel ሺݕ  .ܣ ሻ in channelݕ

 
In addition to the features presented, a number of new features, derived from the noise 
are presented in this thesis. Since Jpeg-compression divides the image into blocks that 
are eight pixels high and wide during processing [26], a new feature introduced in this 
thesis was the correlation between each color channel and an eight-step shifted version, 
horizontally and/or vertically, of the respective channel. 

 
Scanners uses a sensor array, instead of matrix, and therefore when the task is to 
identify what scanner that captured a digital image, the noise of the different rows in the 
image is averaged, since all pixels in a row was captured with the same sensor [27]. 
This approach inspired a number of new features derived from the described row 
average vector. From this vector the first four central statistical moments was 
calculated. Four additional features were acquired by repeating the same procedure but 
considering columns instead of rows. 
 

A.2 COLOR FILTER ARRAY 
Nearly all digital cameras today use a color filter array (CFA) in order to make the 
camera able to capture colors in the visible spectra. The most common filter is the Bayer 

filter [15], [28], in which there is a repeating 2 ൈ 2 pattern with two green cells and one 

each of red and blue. Among the four variations of Bayer patterns, all are used in digital 
cameras. Efforts have been made to be able to tell which pattern was used by the camera 
that took a specific image [29]. 

 
Using the method described in [17], one can compute a prediction for the green channel, 
and subsequently predictions for the red and blue channel. These three predictions can 
then be used as features. The algorithm divides the image into blocks and lets each 
block cast one vote on which of the types of Bayer patterns that is the most likely. The 
algorithm concludes that the configuration that is the most likely one for the most 
blocks is the true configuration. In addition to the prediction, the certainty of the 
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prediction in each channel was considered as features. By letting ݒଵ and ݒଶ be the 
number of votes for filter one and two respectively, this certainty, called majority 
overweight, was calculated by the following formula: 
 

ݕݐ݅ݎ݆ܽܯ ൌ
ଵݒ| െ |ଶݒ

ଵݒ  ଶݒ
 

 

A.3 IMAGE QUALITY METRICS 
To assess the quality of an image generated by a camera, Image Quality Metrics are a 
set of mostly statistical image features that for instance has been used to detect if images 
contain embedded hidden messages [30]. The idea then was that the quality of an image 
would worsen when a message was embedded, but Kharazzi et al. used them to classify 
image sources on the premise that different camera models and possibly even different 
camera devices of the same model produce images of different quality [9]. The work 
done in [30] concluded that some IQM features had a greater impact than others and 
therefore only those features are presented here. 

A.3.1 IMAGE MEASUREMENTS 
Mean square error, where error in this case is the noise value in each pixel, is defined as 
an IQM feature in [30]; one value for each channel is calculated on the premise that a 
camera device might be more prone to noise in one channel than another. 

 
Furthermore a number of features related to correlation can be calculated by considering 
both the original image and the denoised image, namely Czekanowski distance, angular 
correlation, normalized cross correlation, image fidelity and structural content [30]. All 
but structural content was concluded by Avcibas et al as good characteristics for 
steganalysis, but it was picked up as a feature again in [31] and thus for completeness it 
was also included in this study. 

A.3.2 SPECTRAL FEATURES 
By transforming the image channels to the Fourier Domain we get coefficients 
representing different frequencies and these coefficients can be analyzed. A number of 
spectral features were proposed in [30]. The simplest of the features is the mean square 
difference of the magnitude of the spectral coefficients. The other proposed spectral 
features are instead taken by dividing the image into square blocks and performing the 
Fourier transform on these. The extracted feature is then the median value of the blocks. 
This seems like a good approach when identifying camera sources since there might be 
more extracted noise in some areas of the image because of edges in the original and 
thus this noise is not attributable to the sensor, or there might be less extracted noise if 
the pixels in the original image are fully saturated [32]. 
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The median features are derived by calculating the root mean squared difference in 
magnitude and the root mean squared difference in phase. This gives two new features 
and a third feature is given by, for each block, combining the magnitude and phase 
features as defined below: 
 

ܬ ൌ 	ெܬߣ  ሺ1 െ  ఝܬሻߣ

 

Where ܬெ is the magnitude error and ܬఝis the phase error.ߣis set so that the magnitude 

and phase error contributes in equal part. Once again the used feature is the median of 
the block values. 

A.3.3 HUMAN VISUAL SYSTEM 
By applying a band pass filter in the discrete cosine transform domain one gets an 
image on which image quality measurements has produced better results when 
compared to how humans perceive the quality and thus a feature applied to the filtered 
image might produce better results, since the noise of a camera affects the visual 
appearance. The feature in the human visual system domain (HVS), defined in [30], 
called normalized mean square HVS error is calculated between the filtered original and 
denoised images.  

A.3.4 WAVELET DOMAIN FEATURES 
By representing an image in the wavelet domain one can perform analysis on the high 
frequency components of an image, and since noise differs from pixel to pixel it is 
clearly a detail that will be represented in the high frequency part of a wavelet 
decomposition of an image. The wavelet decomposition extracts the high frequency 
parts into horizontal, vertical and diagonal subbands. By further breaking down the low 
frequency part of the wavelet decomposition, one gets new high frequency subbands. 

 
The decomposition considers each color channel separately. Simple features such as the 
first four statistical moments in the different subbands and scales were used by Farid et 
al. [33]. As when extracting the noise component with Mihçak’s filter [11] an 8-tap 
Daubechies transform was used to decompose the image in four levels.  

 
Additionally [33] suggested defining linear predictors that given neighboring wavelet 

coefficients predicts the coefficient at position ሺݔ,  ሻ in different levels. By calculatingݕ
the weights that solves the linear prediction optimally the proposed features are to 
calculate the four statistical moments of the error in each coefficient, and thus one 
receives again four features for three subbands and three levels of decomposition. 
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A.4 INTENSITY NEIGHBORHOOD DISTRIBUTION CENTER OF 

MASS 
Intensity neighborhood distribution center of mass is a value that is used to indicate if 
the sensor is more prone to intercept low or high values in each of the color channels, 
that is if it is more susceptible to some intensity levels than others. In similar images the 
distribution is similar as well but shifted in one direction when comparing different 
cameras and by calculating the center of mass one can find this shift [9]. The first part 
of the calculation was counting the number of pixels that had each intensity level, thus 
getting one value for each intensity level. The neighborhood distribution was then 
retrieved by assigning each intensity level a new value, the sum of the two previously 
counted number of pixels that had either of the neighboring intensity values. The 
extracted value was then the middle point where the accumulated number of neighbor 
intensity values was the same above and below.  

 
A neighborhood distribution center of mass of the noise values was in this study 
introduced as a complement to the mean noise value, by mapping the noise to the same 

discrete interval as the image intensity values, that is ሾ0,255ሿ, where the minimum noise 
value in the image, that is the negative noise value of highest amplitude, was assigned 
the lowest intensity value and the maximum noise value was assigned the highest 
intensity value. After this scaling and discretization the noise neighborhood center of 
mass was calculated as for the image and the extracted value is intended to show if the 
camera is more susceptible to positive or negative noise. 
 

A.5 DEMOSAICING ARTIFACTS 
In the image, one can calculate the second derivative in each row of the image using the 
following formula: 
 

௬ݏ ൌ ݔሺ  1, ሻݕ  ݔሺ െ 1, ሻݕ െ ,ݔሺ2  ሻݕ

 

Where ሺݔ, ,ݔሻ is the value of the pixel at position ሺݕ  ሻ. Next, one computes the meanݕ

of the rows to form a one-dimensional signal according to: 
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Finally, by computing the discrete Fourier transform of this signal, one can see 
periodicity in the resulting signal. This resulting signal can be computed similarly for 
the columns in the image. Using both columns and rows one obtains 6 features, two for 
each color channel. For each of these resulting signals, we located the 32 highest and 
lowest values, giving 6 more features [34]. 


