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Abstract

There is an increasing interest in the development of novel biosensors in the foreseeable future.

The impact on society of diseases connected to the aging of population, for example infectious

diseases, cancer and Alzheimer’s disease, has the potential of increasing the running costs of

welfare over a sustainable threshold already within a few years. Early diagnostics and point-

of-care testing will play a fundamental role in achieving a cost-effective health-care capable of

satisfying the increasing needs. This translates into a drive towards further improved diagnostic

devices where miniaturization and enhanced performances enabling detection of low-abundant

biomarkers is expected a key component.

In this thesis work, the aim has been to translate advanced nanotechnology fabrication processes

to novel biosensor platforms which could address some of thekey issues just presented above.

In order to achieve this, a sensing principle suitable for employment in miniaturized devices is

necessary. In this work, we exploited the sensitivity of theoptical properties of metal nanoparti-

cles to changes in refractive index of the surrounding environment. Such nanoplasmonic struc-

tures enable a transduction of biorecognition events occurring within a few tens of nanometers

from their surface into a detectable optical contrast, or color.

The inherent flexibility of nanofabrication processing combined with the size and simple instru-

mentation of nanoplasmonic based transducers allows for a wide variety of potential applications.

In this work, two novel biosensing platforms were developedaddressing two different challenges:

on the one hand, the development of a portable and simple device for point-of-care diagnostics,

and on the other hand, a sensor with potential to effectivelytackle the challenge of detecting

low-abundant analyte in small volumes.

In the first case, the sensor and detector elements were integrated into the same chip by fabricat-

ing gold nanostructures directly onto photodiodes. In thisway, biorecognition events could be

directly transduced into electric signals via shifts in thephotocurrent generated by the detectors.

The sensor was tested by detection of specific protein binding in a custom made flow cell.

In the second case, steps towards the development of a biosensing platform for detection of low

concentration of biomarkers in small volumes were taken by developing a fabrication process

which integrates gold nanoplasmonic structures in a nanofluidic network. By locating the sensor

elements directly into nanofluidic channels, target molecules can be efficiently transported from

the bulk to the sensor surface. We believe that this could enable combined high capture efficiency,

short detection time and low sample consumption even at low concentration of analytes.

Keywords: Localized surface plasmon resonance, Biosensor, Bioanalytical sensing, Nan-

odisks, Photo diode, Solar cell, Nanofabrication, Nanoplasmonics, Nanopores.
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1 INTRODUCTION

1 Introduction

A bioanalytical sensor, or biosensor, is a device capable ofdetecting suspended analytes, often

referred to as target molecules, by means of a physical/chemical transduction principle. Among

different types of biosensors, one important category is surface-based, where the signal is gen-

erated from biorecognition reactions occurring at the interface between the detector element and

the sample. In a typical surface-based biosensor, a more or less complex sample is placed in con-

tact with the surface of the device, on which a pre-defined setof reactions is allowed to occur.

Specific binding of a target molecule is ensured by having receptor molecules, often referred to as

probe molecules, immobilized on the surface. The biorecognition reaction is then converted into

a detectable signal by means of a transducer principle whichcan be based on different physical

principles, such as optical[1–5], electrochemical[6–8], thermometric[9,10], magnetic[11,12], piezo-

electric.[13–15] The transducer principle should be chosen such that it is sensitive enough to,

within reasonable time scales, detect as low surface coverage of target as possible on the sensor

surface. This minimum surface coverage of target moleculesrequired to generate a detectable

signal, i.e. a signal which is larger than noise floor, determines thesensitivity of a sensor and

consequently its limit of detection with respect to target concentration in the sample. In other

words, the sensitivity of a sensor corresponds to the amountof bound target molecules necessary

to generate a detectable response.

While a high sensitivity is generally perceived as its most important component, a useful biosen-

sor must also ensure that only a specific set of target molecules binds. In fact, the contribution

to the signal from molecules not of interest has merely the effect of increasing the background

and decreasing the reproducibility of the measurements. The discrimination between different

recognition events determines theselectivity of a sensor. This is ensured by careful selection of

probe molecules and the means by which they are immobilized on the sensor surface.

Moreover, the target molecules of interest must reach the surface of the sensor in an efficient way,

since the rate of binding depends strongly on the means oftransport , especially in samples with

slowly diffusing analyte present in small quantities. To accomplish this,miniaturization of the

devices is often used in combination with microfluidics, which decreases the minimum sample

volume required to operate at sufficient transport conditions. This has led to the development

of diverse liquid-handling strategies, such as flowing the sample over the sensor[16], through the

sensor[17], or even drying it on top of the detector.[18]

Even if a recipe for a successful biosensor is impossible to determine a priori, a look at the biosen-

sor market gives some hints on the common characteristics oftoday’s commercially successful

devices. The most cited example of a commercial biosensor isthe glucose biosensor, which

1



1 INTRODUCTION

represents a considerable fraction of the sales of biosensors worldwide.[19] In these devices, a

drop of blood (1-50 µl) is needed in order to detect a sufficient number of glucose molecules (tar-

gets) within a few tens of seconds.[19] Another example of a biosensor that is readily available is

the pregnancy test. In this device, the presence of the hormone human chorionic gonadotrophin

(hCG) in urine is commonly detected by means of agglomerationof antibody-modified gold sol

gel particles mediated by the hormone itself.[20] A filter discriminates between the agglomerated

and non-agglomerated particles, thus turning the screen ofthe device visibly pink in presence

of a sufficient quantity of hCG. The latter example is a peculiar example of an optical biosensor

where the biological recognition is transduced into an optical contrast, i.e. a change in color

detectable by the naked eye.

A large number of alternative biosensor platforms are also commercially available, but primar-

ily used in clinical or research settings. This stems from the fact that they are relatively labor

intensive and because the analysis requires trained personal. Examples include enzyme-linked

immunosorbent assay (ELISA)[21] and the polymerase chain reaction (PCR).[22]

The success of the glucose sensor and the pregnancy test originates to a significant extent from

a combination of i) a sensitivity that meets the need, ii) reliability, i.e. device delivering repro-

ducible outcomes and iii) ease of large-scale manufacturing at affordable costs. However, both

the glucose biosensor and the pregnancy test tackle situations in which the analyte is present

at relatively high concentrations (in the mM to µM regime). Unfortunately, this is not the case

for early diagnostics of most other diseases which are considerably influencing the lives of mil-

lions of patients per year, among those cancer,[23] myocardial infarction[24] and Alzheimer’s

disease.[25] Here, the biomarkers (targets) are often present at concentrations down to the pM

regime or below, i.e. several orders of magnitude lower thanin the previous examples. The

accuracy required to detect such low concentrations essentially sets the required standard of a

generically applicable biosensor.

To better understand the correlation between target concentration and surface coverage, a model

describing the nature of the probe-target interaction is presented below. Under the assumption

that the binding between the target and the probe is reversible, i.e. the target can be released from

the probe after binding, two reaction coefficients, kon and koff, are used to describe respectively

the binding and the release processes. The time dependence of the surface coverageΘ is given

by the Langmuir isotherm model:

∂Θ
∂t

= konC(Θmax−Θ)−ko f fΘ (1)
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1 INTRODUCTION

whereΘmax is the surface coverage at saturation, i.e. when there are nomore available binding

sites and C is the concentration of the analyte.

The link between concentration and surface coverage can be further exemplified by evaluating

eq. 1 at equilibrium, i.e.limt→+∞:

Θ = Θmax
1

1+ Kd
C

(2)

where Kd is the equilibrium dissociation constant and is defined as the ratio between koff and kon.

In this model, all the parameters related to the biorecognition event are completely described by

just the affinity constant. Thus, by knowing the nature of theinteraction, eq. 2 leads to a direct

correlation between the concentration, C, and the surface coverage at equilibrium,Θ. Even in

the case of strong affinity, for example an antibody-antigeninteraction (Kd = 1 nM),[26] the sur-

face coverage at equilibrium is already smaller than 1 % withrespect to the maximum surface

coverage, for concentrations in the order of 10 pmol. In essence, a low analyte concentration

converts into a low equilibrium surface coverage, which in turn translates into signals that might

be below the noise threshold. For this reason, there is a demand on sensors capable of detecting

of a measurable response at as low surface coverage as possible, in other words sensors with high

sensitivity.

This demand for improved sensitivity is tackled by tailoring the physical design of the sensor

with respect to the desired biorecognition reaction. Commonstrategies include: i) optimizing

the measurement: devices used for detection, treatment of the measured response, etc. ii) design

of the actual sensor element by choosing the most suitable material, for example silver[27] or

gold[28] elements in plasmonics; iii) implementation of strategiesto minimize the background

contribution to the signal, for example by localizing the sensitivity to within a few nanometers

from the interface sensor-medium;[29–31] iv) modification of the surface properties of the detec-

tor element to maximize the signal, for example allowing thebinding to high-sensitivity areas

only.[32]

As mentioned above, the surface of the sensor has also to be functionalized in order to enable

just the desired analyte to generate a signal, i.e. the sensor must provide high selectivity. This

is typically ensured by anchoring bio-molecules acting as probes to the detector element while

making the underlying surface inert for all other reactions.[17,32]

At the same time, even if both the sensitivity and the selectivity of a sensor are high enough to

detect target molecules at concentrations being a fractionKd of the interaction, see eq. 2, the

response of the sensor must be obtained within a reasonable time scale. Therefore, the sample

liquid has to be handled such that the target molecules are efficiently transported from the bulk
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1 INTRODUCTION

to the sensor surface. Improved transport conditions, without sacrificing high sensitivity, can in

fact be achieved by miniaturizing the key components of a biosensor. One may thus envision that

binding reactions at the interface of a nanoscale sensor could yield comparably larger contrasts

in the physical properties utilized to convert the binding reaction into a detectable signal than that

of sensors with larger dimensions, thereby reducing the number of target molecules per surface

area, i.e. surface coverage required in order to generate a detectable signal. First, by reducing the

dimension of the sensor element, samples volumes can be reduced by rescaling the liquid chan-

nels down to the micro- and nano dimensions.[33] Second, a combination of small-scale fluidics

and nano-scale sensor elements may also enable more efficient transport of analyte molecules

to the sensor element, as schematically shown in Figure 1 andarticulated in the text box below.

In essence, conditions can be reached in which it is rather the rate of the actual biorecognition

reaction than the diffusion of the analyte molecules that determines the time response of the

sensor.[34]

– Microchannel –
fast flow

(d) Nanochannel(c)(b) Microchannel –
stagnant analyte solution

(a) Bulk 
stagnant analyte solution

Figure 1: A schematic representation of different flow configurations (a-d). A depletion layer (light
blue) is generated when targets from the analyte solution (green) bind to theprobe molecules on the
sensor surface (yellow). The presence, profile and extension of thedepletion layer are determined by the
geometrical constraint of the channel and by the applied flow.

Text box: influence of channel size and flow speed on analyte transport

The analyte solution (green in Figure 1) is in contact with thesensor surface (yellow). The

binding of the targets to the probe molecules on the sensor generates a depletion layer (light

blue) where no target molecules are present. The time response in mass-transport limited

regime, depends on the rate of transport of targets to the sensor surface rather than on the ki-

netics of the biorecognition reaction. Considering a stagnant analyte solution, the transport

is purely diffusive since it is determined by the concentration gradient between the analyte

solution and the depletion layer. This translates in bulk, Figure 1(a), to a depletion zone

which is infinitely growing in every direction, and therefore to non efficient transport. If the
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1 INTRODUCTION

sensor is integrated in a microfluidic network, the growth of the depletion layer will be sup-

pressed by the height of the channel even in stagnant condition, Figure 1(b). Moreover, the

transport rate and the profile of the depletion layer can be dramatically changed by applying

a flow perpendicular to the sensor surface. For fast flow rates(above tens ofµm s−1), Figure

1(c), the extension of the depletion layer in height is for protein molecules typically limited

to approx. 10µm.[35] In this case, the target molecules must diffuse through a significantly

smaller depletion zone to reach the sensor surface comparedto case (a) and (b). Thus, the

time response of such a sensor is considerably faster than inthe case with a stagnant analyte

solution. However, a fast flow leads also to increased sample consumption with respect to

the stagnant cases even if the time to reach equilibrium surface coverage is shorter.[36] This

is due to the high number of target molecules leaving the channel without having a chance

to bind on the sensor surface due to lack of proximity to the depletion layer. This problem

could be overcome by further reducing the size of the channelinto the nanometer range, Fig-

ure 1(d). In this case, the size of the channel ensures that every target molecule transported

through the channel is given a chance to diffuse to and bind atthe sensor surface. This faster

transport mechanism combined with high capture efficiency could potentially lead to excep-

tional performances of such system for detection of low-abundant analytes in small volumes,

and constitutes a key motivation of this thesis work.

The aim of this thesis work is to contribute to these goals using a combination of top-down

and bottom-up nanofabrication schemes of sensor devices providing sufficiently simple liquid

handling protocols and readout principles for efficient useoutside advanced laboratory settings.

Ease of sensor readout was accomplished by utilizing the exceptional optical properties of nano-

scale noble metals particles. In fact, the optical properties of these nanoparticles are highly sen-

sitive to changes in the refractive index at the interface between the structure and the surrounding

medium. This enables label-free detection of biomolecularbinding events in real-time by simply

monitoring the far field optical properties, i.e. color, of an ensemble of nanoparticles. Small scale

liquid handling was accomplished using a combination of microfluidics and nanofluidics, where

the latter was accomplished by positioning nano-scale sensor elements within nano-scale pores

that penetrate a 220 nm thin suspended silicon nitride membrane and the former - although still

work in progress - was obtained by integrating these sensor elements with relatively conventional

soft-lithography-based microfluidics.

In Chapter 2, I will present the basic physical principles behind nanoplasmonics with particular

focus on its applicability to biosensing. Chapter 3 introduces the techniques necessary for the
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1 INTRODUCTION

development of the nanofabrication processes employed in this work. A summary of the contri-

butions is presented in Chapter 4 along with an outlook on the future extension of this thesis.

6



2 NANOPLASMONICS

2 Nanoplasmonics

This chapter introduces the basic physical principles behind nanoplasmonics. A description of

a standard setup for tracking changes in nanoplasmonic signals is also presented along with a

summary of the advantages of nanoplasmonics for label-freesensing applications.

2.1 Introduction to nanoplasmonics

The search for an in-depth understanding of the vivid colorsof ”small” noble metal particles took

off many centuries after their use for fine arts. Being an experimentalist myself, I would like to

introduce the topic mentioning the pioneering work of Faraday, who in the mid-19th century sys-

tematically analyzed the dependence of the optical properties of noble metals on their physical

properties.[37] He noticed that the color of gold particles and thin films varied throughout the

visible spectrum in a systematic fashion depending on size,aggregation state and environmental

conditions. Since then, it took about 50 years before the first publication providing a theoretical

description of these phenomena was published in the early 1900’s by Mie.[38]

Mie’s work describes the interaction of light with spherical particles of arbitrary size in terms of

light absorption and scattering, i.e. extinction, obtained by analytically solving the Maxwell’s

equations. These solutions are valid for the analysis of disperse particle systems in the electro-

static dipole regime at wavelengths significantly longer than the dimension of the particles. In

particular, an ensemble made up of nanospheres, that are much smaller than the wavelength of

light, enhances the extinction of light within a certain wavelength range. In the case of metal

nanoparticles, the wavelength region at which resonance occurs is in the visible spectrum. As a

consequence, the particles have a color recognizable by thehuman eye.

The strong extinction of light originates from its interaction with conduction electrons that,

for specific wavelengths, are excited to oscillate collectively at a metal-dielectric interface, as

schematically represented in Figure 2.[39]

7



2.1 Introduction to nanoplasmonics 2 NANOPLASMONICS

Incident light
Metal nanoparticle

Conduction electrons

Figure 2: The incident light interacts with the conduction electrons of the metal nanoparticles. The
electrons oscillate collectively in phase with the incoming wave.

This collective motion of free electrons is referred to as surface plasmons and the study of the

interaction of light with metal nanostructures is referredto nanoplasmonics or localized surface

plasmon resonance (LSPR).

The possibility to use nanoplasmonic structures for sensing derives from the dependence of their

optical properties on the surrounding environment. In the following paragraphs, I will derive an

explicit relationship connecting intrinsic optical properties of gold nanoparticles to local refrac-

tive index changes for the simplest possible case of interest, that is a disperse ensemble made up

of nanospheres.

In this case, the optical cross-section of a non-dense system of nanospheres (much smaller than

the wavelength of light), can be identified as:[38]

σ(λ) =
18πV

λ
n3 εi(λ)

(εr(λ)+2n2)2+ εi(λ)2 (3)

where:V is the volume of the structure

λ is the wavelength of the radiation

n is the refractive index of the surrounding medium

εi is the imaginary part of the dielectric function of the metal

εr is the real part of the dielectric function of the metal

8



2.1 Introduction to nanoplasmonics 2 NANOPLASMONICS

It is obvious that the resonant condition, i.e. the condition for the excitation of the localized

surface plasmon, is fulfilled when the denominator ofσ(λ) goes to zero:

(εr(λ)+2n2)2+ εi(λ)2 = 0 (4)

It is worth mentioning that for gold and silver nanoparticles, it is possible to assume a relatively

smallεi(λ).[40] Thus, the resonance condition can be simplified to:

(εr(λ)+2n2) = 0 (5)

At this stage, the equation linkingλ and the refractive indexn can be further simplified by

substituting into eq. 5, the relation betweenεr andλ valid in the Drude model:[41]

εr(λ) = 1− (
λ
λp

)2 (6)

whereλp is the plasma wavelength. Thus, eq. 5 becomes:

λpeak α
√

2n2−1 (7)

This simple equation illustrates the foundation of nanoplasmonic sensing. In fact, the reso-

nance peak,λpeak, is directly related to the refractive index,n, of the medium surrounding the

nanosphere. This means that any binding onto the nanospherethat will change locally the refrac-

tive index will be detectable in the far field by monitoring a shift of λpeak.

At this stage, it is convenient to introduce a parameter which represents how the resonance peak

responds to changes in refractive index, the bulk sensitivity S. Thus, the bulk sensitivity can be

defined as the derivative of the resonance peak with respect to the refractive index:

S=
∂λp

∂n
α

4n√
2n2−1

(8)

The bulk sensitivity S depends on the refractive index, but weaker if compared withλpeak, eq. 7.

In addition, the shifts of refractive index due to biomolecular binding events are usual of modest

magnitude. For this reason, the induced change in sensitivity is negligible in most of the biosens-

ing experiment and the sensitivity is generally approximated as constant.[42]

So far, the set of equations for spherical small nanoparticles were used to give a picture of the

main variables involved in nanoplasmonics, being the size,the dielectric function and the sur-
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2.2 Probing nanoplasmonics 2 NANOPLASMONICS

rounding refractive index. However, recent advances in nanotechnology allows for fabrication of

much more complex shapes, for example nanorods,[43] nanorings,[44,45] and nanocrescents.[46,47]

The development of this complexity in size and shapes was driven not only by the will of increas-

ing the understanding of the physical principles, but also by the intense search for the optimal

shape in sensing applications. While the main concepts presented in the simple case described

above are still valid, the description gets mathematicallymore elaborate. However, in some cases,

qualitative predictions of the resonance of complex structures can be obtained by just introducing

a shape factorχ into eq. 5:

(εr(λ)+χn2) = 0 (9)

The shape factorχ varies with spatial conformations and contains all the shape related informa-

tion. Briefly, χ is 2 for a sphere and increases with the aspect ratio of the nanoparticle.

Several models and simulation tools have been developed to further improve quantitative pre-

dictions of complex shapes. The two most widely used are based on brute-force computational

solution of Maxwell’s equations namely, finite-differencetime domain (FDTD)[48] and discrete

dipole approximation (DDA).[49] These simulations tools provide detailed far and near field pre-

dictions at the price of computational time and model complexity. Worth mentioning is also the

more intuitive approach introduced with the plasmon hybridization theory which decomposes

complex structures in simple elemental shapes that interact with each other.[50]

2.2 Probing nanoplasmonics

As mentioned previously in this chapter, nanostructures extensively scatter and absorb light when

their plasmonic mode is excited. While the human eye is sensitive enough to detect effects of

artistic relevance, the resolution needed for sensing requires in most cases more sophisticated

electronic devices.

A schematic of a setup designed to probe extinction caused byan LSPR-active substrate is shown

in Figure 3.

10



2.2 Probing nanoplasmonics 2 NANOPLASMONICS

Light source

Spectrometer

Flow cell

Figure 3: Schematic illustration of an extinction LSPR setup. The light is focused on the flow cell by a
lens and collected by a spectrometer.

The minimum set of components needed in a typical setup for monitoring nanoplasmonics

consists of a light source, a measurement cell and a detector. The light source and the detector

ensure changes in the transmitted light to be transduced into a detectable output and the mea-

surement cell permits the exposure of the sample to a controllable atmosphere.

Briefly, in the setup used in this work, white light is generated using a tungsten-halogen source

and coupled to an optical fiber. A lens then focuses it on the sample where it interacts with the

nanoplasmonic structures. In this setup, the probed area ismainly determined by the fiber diame-

ter;[51] but it can be reduced to less than hundreds ofµm2 by using a microscope.[51] Afterwards,

the transmitted light is collected through a lens and coupled into a detector, a spectrometer in

most of the cases. In this configuration, the light transmitted through the flow cell will interfere

with the nanostructures and lose intensity due to scattering and absorption at the wavelengths at

which the plasmonic resonance occurs. Therefore by detecting the transmitted light, it is possible

to monitor the shift of the plasmonic peak induced by local refractive index changes caused by,

e.g. biomolecular binding events.

In order to isolate the contribution to the signal from the plasmonic nanostructure, a reference is

usually acquired and used in the evaluation of the optical extinction, E(λ), caused by the struc-

ture. Thus, the amount of light that is prohibited to be transmitted due to the plasmonic response

11



2.3 Nanoplasmonics for sensing 2 NANOPLASMONICS

is obtained from:

E(λ) =−log
Isample(λ)

Ire f erence(λ)
(10)

An illustration of a shift in the extinction spectrum causedby a biomolecular binding event is

shown in Figure 4. Upon a change in refractive index, the bluespectrum recorded before the

event turns into the red one. Since the entire spectrum red shifts, multiple parameters can be

used to analyze a binding reaction: the shift of the peak or ofits centroid,[52] or the magnitude

of the extinction at a specific wavelength can be used to analyze a binding reaction. The latter

approach has the advantage of excluding the need of a spectro-photometer as detector. In this

case, a simple light emitting diode (LED) and a photosensitive p-n junction is enough to detect

the biorecognition reaction, as we show in paper I.

1

2

Wavelength

E
x
ti
n

c
ti
o

n

Shi in peak

posi"on

Shi in 

ex"nc"on

Figure 4: The graph illustrate how a redshift (1-2) of the extinction peak results in both a change in peak
position and a change in the extinction at a given wavelength.

2.3 Nanoplasmonics for sensing

The physical principles behind nanoplasmonics open up for biosensing applications. To start

with, the nanoplasmonic field generated at the interface between the metal nanoparticle and the

dielectric medium is localized to the nanostructure with a decay length in the order of tens of

nanometers for gold.[53] This localization of the field to the nanoscale implies that the nanos-

tructures are responding to events in proximity of their surface only, and not to the same extent

to changes in the bulk. The low sensitivity to changes in bulkleads to a simplification of the

sensing setup, for example temperature control can be excluded.
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2.3 Nanoplasmonics for sensing 2 NANOPLASMONICS

The experimental setup can be further simplified compared with setup based on different optical

transducer principles, for example surface plasmon resonance[54] (SPR) and waveguide spec-

troscopy.[55] This is so because measurements based on nanoplasmonic resonance do not put

any demand on the coupling of light,[56] for example angle of incidence. Thus, the number and

complexity of optical components in such setups could be significantly reduced, keeping in mind

only eventual specifics on signal-to-noise and probed area.The combination of non-stringent re-

quirements of the experimental setup and the small size of the particles have resulted in a recent

explosion of miniaturized sensor concepts based on nanoplasmonics.[39]

The potential for miniaturization implies that the sensor is also well suited to exploit all the ad-

vantages deriving from nanofluidics. As described previously, an efficient transport of molecules

to the sensor surface plays an important role in the detection of low-abundant analytes. In this

framework, we explored in Paper II the possibilities of integrating nanoplasmonic particles onto

the inner wall of nanochannels in a parallel network.

However, the miniaturization of the sensor element in nanometer-sized objects leads also to

challenges regarding the uniformity of the sensitivity with respect to other surface-based sensors

exploiting larger planar sensing surfaces, for example SPR[54] and quartz crystal microbalance

(QCM).[13] While in the latter cases the sensitivity is homogeneous overthe entire substrate,

in the case of nanosized sensors, it is only the binding occurring onto the sensor surface which

generates a signal. This is so because the sensing field decays within tens of nanometers from

the interface between the nanoparticle and the surroundingmedium.[53] Hence, material specific

chemistries are needed to enable binding only on the sensitive components of the device while

at the same time inhibiting reactions to occur onto the remaining areas using passivating films.

The material contrast between the noble metal nanosensors,for example gold and silver, and the

substrate, for example silicon nitride, silicon oxide and titanium dioxide, allows for orthogonal

surface chemistry schemes to be adoptable for these purposes.[27,31]

In conclusion, nanoplasmonic biosensors have the potential to effectively tackle a broad vari-

ety of sensing challenges. On the one hand, the simplicity ofthe experimental setup and the

potential for miniaturization is an important asset in the development of cheap and portable com-

mercial biosensor for point-of-care diagnostic. On the other hand, the integration of a sensor

into nanofluidic networks combined with material specific surface modifications preserving high

selectivity could play a vital role in the search for concepts capable of detecting low-abundant

analytes.
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3 Nanofabrication as a toolbox

The behavior of materials changes dramatically at the nanoscale. Nature presents plenty of ex-

amples were nanoscale modifications of surfaces lead to extraordinary material properties. Take

as an example the capability of geckos to adhere to a wide range of surfaces in arbitrary orienta-

tions. This enhanced attachment force is ensured by hundreds of projections presented on their

feet. These projections terminate in 200-500nm spatula-shaped structures which allow them to

efficiently exploit capillary and van der Walls forces.[57] Another popular example is the lotus

flower. In fact, the leaves of lotus flowers are efficiently self-cleaning thanks to their ability

to spontaneously form water droplets that move in response to gravity at their interfaces. The

nanostructures that are naturally present on those surfaces yield a high contact angle for water

which in turn ensures a very low roll-off angle.[58]

Nanofabrication gives mankind a toolbox to recreate these extraordinary material properties al-

ready present in nature, e.g. by creating a gecko-inspired tape,[59] or even entirely new materials

or metamaterials, e.g. superhydrophobic structures[18] or materials with negative refractive in-

dex.[60] In this chapter, the toolbox of nanofabrication techniquesused throughout this thesis is

presented. For simplicity, the chapter is divided in two main sections with focus on characteri-

zation and fabrication techniques, respectively. An introduction paragraph puts emphasis on the

advantages and disadvantages of the main techniques and their use in the presented work. The

techniques are afterwards described in separate sections.

3.1 Characterization at the nanoscale

In this section, the main characterization techniques usedin this thesis are presented. Scanning

electron microscope (SEM) was the instrument of choice for imaging at resolutions well below

the diffraction limit of light. This versatile instrument was used to resolve nanostructures, e.g.

gold nanodisks (Paper I) or nanopores (Paper II). SEM also provided efficient feedback on the

success of separate fabrication steps used throughout the processes. The reason for this is due to

a suitable combination of imaging resolution in the nm range, simple sample preparation, imag-

ing in few seconds and depth of focus in the order of hundreds of µm.

Atomic force microscope (AFM) was exploited for imaging at higher resolutions with respect to

SEM and to get information about material properties, e.g. surface roughness, at the nanoscale.

This technique provides three dimensional information of an interface without requiring ad-

vanced sample preparations or low pressure environment. However, the imaging area is restricted

to tens of micrometers and the image acquisition is slow; several minutes are required per image.
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Furthermore, due to the nature of AFM, a careful image analysis is required in order to extrapo-

late relevant data.

Ellipsometry was mainly exploited to obtain thickness and optical properties of dielectric films,

e.g. silicon nitride membranes (Paper II). This technique allows for quick data acquisition over

large areas, up to several inches, and relatively easy data analysis for homogeneous single di-

electric layers.

3.1.1 Scanning electron microscope (SEM)

SEM is broadly employed for imaging of features in a dynamic range going from hundreds of

µm to a few nm. A schematic illustration of the working principle of SEM is shown in Figure 5.

Condenser lens

Aperture

Objective lens

Scanning coils

Specimen

Electron gun

Se2 detector

In-lens detector

Figure 5

Briefly, an electron beam is generated either by thermionic emission (tungsten and lanthanum

hexaboride tips) or by field emission (sharp tungsten tip) atthe electron gun. The generated beam

is accelerated at a specific acceleration voltage applied between the electron gun and the speci-

men and focused using a first stage of condenser lenses. A trade-off between high probe current,

which is linked to high contrast, and small beam size, which is linked to high resolution, is deter-

mined by the dimensions of the circular aperture located after the condenser lenses, ranging from

7,5 µm to 120 µm in diameter. Objective lenses focus the beam onto the sample and scanning

coils are used to deflect the beam in order to enable scanning over a selected area.

The electron beam interacts with the specimen and generatessecondary products according to its

energy and penetration depth. The inelastic scattering of the incoming electrons with the atomic
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core or shell of the specimen’s atoms in an interaction volume of a few nanometers from the

surface generates secondary electrons (SE). The elastic scattering with atoms located in much

deeper regions of the sample generates backscattered electrons (BSE). The first category of elec-

trons, SE, carries information about the topography of the sample due to the interaction volume

being limited to within few nm. The latter category, BSE, conveys information on the mate-

rial properties of the sample being dependent on the atomic number of the interacting atom.

Dedicated detectors acquire the different electronic signals and allow for image generation on a

monitor.

Two different types of detectors were available for detection of SE in the instrument used in

this thesis, namely the SE2 detector and the In-lens detector. These two detectors are placed at

different locations in the instrument. The SE2 detector is placed just outside the column that

guides the electron beam, while the In-lens detector is placed in the electron beam path. Such

placement allows the In-lens detector to be used at lower voltages, allowing it to collect signals

from electrons generated at a smaller penetration depth compared with the SE2 detector. This

leads to a smaller focus depth but higher resolution of surface properties for the In-lens detector

compared with the SE2 detector, see Figure 6, while in contrast higher topographic contrasts can

be obtained using the SE2 detector, operated at higher voltages.

Figure 6: Micrograph of nanoholes in a gold film acquired with the InLens detector. The grain size of the
gold film is visible while the depth of the hole is not clearly recognizable due to flattening of the image.
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3.1.2 Atomic force microscope (AFM)

The atomic force microscope (AFM) is a valuable microscopy tool for high resolution imaging

and local acquisition of material properties at the nanoscale. In this setup, a sharp probe scans

the sample surface, thus monitoring the intermolecular andsurface forces between the sample

and the probe. The nature of the interaction allows measurements in the sub-nanometer range on

any type of specimen, also in liquid environment.[61] A simplified schematic of a typical AFM is

shown in Figure 7.

Cantilever and tip

Specimen

Detector Laser

Feedback

and

control

Figure 7: Simplified schematic of an AFM setup.

A sharp tip is located onto a soft cantilever which is controlled to move with high precision in

the plane of the specimen. The deflections of the cantilever due to the interaction forces with the

specimen are monitored by a laser-detector system. A laser beam is shone on the back side of the

cantilever and the reflection is monitored by a four-quadrant photodiode detector. The variation

in the position/oscillation of the cantilever along the axis perpendicular to the sample surface is

tracked by the change in the position of the reflected laser beam onto the detector.

Different working modes can be used, depending on the natureof the interaction between the

tip and the substrate: dynamic, such as non-contact mode andtapping mode; and static, such

as constant-force contact mode and constant-height contact mode. The difference between the

static and the dynamic modes is defined based on contact or lack of contact with the sample.

In static modes, the cantilever is always in contact with thesubstrate. Thus, the topography of

the surface is acquired by measurements of the deflection of the cantilever. In dynamic modes,

the cantilever oscillates near its resonance frequency, intermittently contacting the surface of the

sample in tapping mode. In both non-contact and tapping modethe variations in amplitude,

phase and frequency of the oscillations are recorded in order to map the surface of the sample.
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3.1.3 Ellipsometry

Ellipsometry is based on measuring the change in state of polarization of polarized light beams

reflected at an interface. Reflection of plane-polarized light at an interface leads to changes in

both the amplitude and the phase of the incoming electromagnetic wave. For incident plane-

polarized light, the reflected light will become elliptically polarized and attenuated. The magni-

tude of changes in phase and amplitude depends on wavelength, the angle of incidence, the film

thickness and its refractive index. A typical ellipsometrysetup is proposed in Figure 8.

Light source Detector

Polarizer Analyzer

Figure 8: Schematic representation of a simple ellipsometry setup.

The light source is linearly polarized and shone on the sample. The reflected light is transmit-

ted through a second polarizer, called analyzer, and detected by a photodetector. By measuring

at known wavelengths and angles, film thickness and index of refraction can be determined with

high precision. In order to further improve the quality of the measurement, multiple independent

measurements can be made by varying angle and wavelengths ofthe incoming light beam.

3.2 Fabrication at the nanoscale

In this section, a brief overview of the main techniques usedfor the nanofabrication of nanoplas-

monic sensor substrates is presented. Two main moments of a fabrication process can be identi-

fied, such as pattern transfer and deposition of thin films. The patterning methods can be grouped

into two main categories, such as lithography and etching techniques. While the first category

comprises processes forming patterns on the surface of a substrate, the latter comprises the ones

transferring it into the underlying layer by removal of material, i.e. etching. Many lithographic

patterning methods have been developed in the recent years differing from each other because
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of the different mean used to transfer the pattern, for example light (phos- in greek) in pho-

tolithography or electrons in electron beam lithography. The two lithographic methods used

throughout this work were photolithography and colloidal lithography. These techniques were

chosen keeping in mind the possibility to develop process with high potential for translation to

industrial contexts. In fact, both photolithography and colloidal lithography enable patterning

large areas, up to several inches, while simultaneously preserving the possibility to fabricate

devices in a fast, cheap and scalable manner. Photolithography was used to pattern in the mil-

limeter to micrometer range, e.g. to define the outer dimensions of the chips and silicon nitride

membranes used as a sensor element in Paper I and II, while colloidal lithography was used for

the nanoscale fabrication, e.g. plasmonic nanodisks (Paper I) and nanopores (Paper II). Colloidal

lithography was chosen instead of electron beam lithography, which is today considered the most

established nanofabrication method, because self-organization of colloidal nanoparticles allows

for faster and less-expensive processing. In fact, colloidal lithography enables the fabrication

of nanostructures on large regions, up to several inches, without losing control on dimensions

and distribution. The main limitation, however, concerns the limited choice of geometries[56]

in comparison with more flexible techniques like electron beam lithography[62] and focused ion

beam lithography.[63]

After pattern definition, a combination of dry etching processes, such as ion milling and reactive

ion etching (RIE), and wet etching processes was used to transfer the pattern into the substrate.

This combination allows for fine tuning process parameters with respect to the desired need.

The main etching parameters are: etching speed, i.e. how fast the material is removed; mate-

rial selectivity, i.e. how the etching speed varies depending on the etched material; and etch

rate anisotropy, i.e. how directional is the etch, where a high anisotropy corresponds to a high

directionality. Ion milling was primarily employed to achieve anisotropic etches, without ma-

terial specificity, for example shaping of the gold nanosensors (Paper II). RIE was the choice

for anisotropic etches with good material selectivity, forexample nanopatterning of photoresist

(Paper I) and fabrication of nanopores (Paper II). Wet etching was mainly used thanks to high se-

lectivity and speed, for example removal of the silicon underneath the silicon nitride membranes

(Paper II).

Fabrication at the nanoscale also requires design processes which can transfer atoms onto the

substrate, in other words growth of thin films. The wide rangeof existing thin-film deposition

processes can be categorized according to the underlying physical principle being utilized. In this

work, physical vapor deposition (PVD), mainly electron-beam assisted evaporation, was used for

deposition of metallic films, while chemical vapor deposition (CVD), mainly plasma enhanced
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CVD and low pressure CVD, was used for dielectric films. In PVD, thermal energy is transferred

to atoms, for example by means of an electron beam, which in turn evaporate or sublimate from

the source. This vapor then diffuses and deposits onto a substrate, thus creating a thin film in a

controllable manner. In CVD processes, a compound in gaseousphase reacts with other gases

inserted in a chamber, leading to a chemical reaction, the solid product of which becomes de-

posited on a substrate. PVD was chosen because of its directionality, cleanliness and flexibility

in the choice of materials, for example deposition of gold nanodisks (Paper I) and of chromium

masks and gold nanosensors (Paper II). CVD was employed for growth of high quality dielectrics

with low stress, few defects and with good step coverage, forexample silicon nitride coatings for

insulation (Paper I) and silicon nitride membranes (Paper II).

3.2.1 Photolithography

Photolithography is a process to pattern substrates over large areas, being widely used both in

industrial and academic settings. The working principle isillustrated in Figure 9.

Optical source

Aperture

Shutter

Mask

Resist

Wafer

Positive resist

Negative resist

Figure 9: Schematic of a basic photolithography process.

An optical light source is used to expose a wafer coated with aphotosensitive material, i.e. a

photoresist. The length of the exposure is determined by a shutter and the area exposed is deter-

mined by a mask. The mask is usually a highly polished opticaltransparent glass coated with a

patterned opaque layer, typically chromium. The light shone through the non-opaque areas of the

mask reaches the resist and activates chemical (resist specific) reactions in the polymer. In the

case of positive photoresists, the exposed areas dissolve faster than the unexposed ones, leading

to a pattern which resembles the one present on the mask. The response of negative resists is the

opposite, i.e. the exposed areas are more resistant than theunexposed ones.
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The size of the patterned area can easily reach 6 inch. The resolution is determined by a com-

bination of wavelength of the optical source, usually in theUV range, and quality of the mask,

determined by the resolution of the pattern and pin hole density. The precision in the alignment

of the pattern to preexisting features on the substrate is mainly determined by the quality of the

mask aligner, i.e. precision of the stage movement and of theoptics. Resolution reaching on the

order of 100 nm can be achieved with common resists under optimal conditions.[64] However, in

conventional settings, photolithography is used for features down to around 1 µm.

3.2.2 Colloidal lithography and Hole-mask Colloidal lithography (HCL)

Colloidal lithography exploits the self-assemble of nanometer-size colloids on a surface to de-

fine masks for nanopatterning of substrates. Negatively charged polystyrene colloids are first dis-

persed in a solution which is exposed to the surface to be patterned. The negatively charged beads

absorb electrostatically on positively charged surfaces.For this reason, a monolayer of positively

charged electrolyte (Aluminum Chlorohydrate or Polydiallyldimethylammonium chloride) is ad-

sorbed onto the surface prior to exposure to the colloidal suspension. Electrostatic repulsion

forces between the negatively charge polystyrene colloidsdetermines the average distance be-

tween the adsorbed particles.[56] This distance can be controlled by varying the concentration

of screening charges in the solution, i.e. by increasing or decreasing the salt concentration. Af-

ter saturated binding, the substrate, which can have macroscopic dimensions, becomes patterned

with a monolayer of randomly adsorbed nanometer-sized polystyrene colloids displaying a short-

range order determined by the distance between the nearest neighbors.

This monolayer can be used as an evaporation mask for transfer of the pattern into a metal film.

Fter metal evaporation, a continuous metallic thin film withshort-range ordered nanoholes is

obtained by lift-off of the colloids, by e.g. tape stripping. The shape of the nanoholes is defined

by the angle of evaporation, as shown in Figure 10. However, the thickness of the metal film

is limited by the size of the colloids since films thicker thanthe radius of the beads will lead

to a difficult lift-off process. This metal film can be used as amask itself, e.g. for milling of

nanopores in the suspended membrane presented in Paper II.
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Figure 10: Micrograph of a thin film of chromium evaporated onto a monolayer of colloids. Elliptical
nanoholes are created thanks to the shadowing provided by the colloids.

Colloidal lithography is also useful not only in order to fabricate porous films, but also for

fabrication of discrete nanoscale structures. In particular, the metal nanodisks presented in Paper

I were all fabricated by Hole-Mask Colloidal Lithography (HCL).[65] A brief summary of the

main steps involved in the process adopted for the fabrication of gold nanodisks is presented in

Fig. 11.

In brief, a thin layer of around 100 nm of polymethyl methacrylate (PMMA) positive resist is first

deposited on the substrate [Fig. 11b]. This layer will act asa sacrificial layer for the fabrication

of discrete disks on the substrate. As in colloidal lithography, the surface is then modified with

an electrolyte (Aluminum Chlorohydrate) in order to improvethe adhesion of the colloids to the

substrate [Fig. 11c].

A metal mask is then deposited [Fig. 11d] and patterned by removal of the short-range ordered

colloidal particles by tape-stripping [Fig. 11e]. As described above, a metal mask with a uniform

distribution of short-range ordered nanoholes is thus created. Subsequently, the parts of PMMA

not covered with a metal mask are removed through plasma ashing [Fig. 11f], allowing for

deposition of material, e.g. gold, directly onto the substrate [Fig. 11g]. Gold nanodisks are

thereby created and the remaining material removed throughlift-off [Fig. 11h] of the PMMA.

This results in a short-range ordered distribution of gold nanodisks onto the substrate.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 11: Schematic procedure of hole-mask colloidal lithography.
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3.2.3 Ion milling

Ion milling is a purely mechanical process where heavy ions collide at high energy onto the

substrate causing mechanical damage. Argon gas is preferably employed thanks to the inert

nature of noble gasses, which guarantees a purely mechanical etch, and the high atomic weight.

The most common configuration for ion milling sources is the Kauffman source. A schematic of

such a source and the working principle of the process are presented in Figure 12.

Ar gas

inlet

Electron �lament

Substrate

Electrons

Ar ions

Figure 12: Schematics of a Kauffman source integrated in an ion milling process.

Electrons are generated by a heated filament and acceleratedtowards an anode by a constant

potential difference. These high energy electrons travel through the chamber and ionize the

Argon molecules injected in the system. The newly generatedArgon ions are directed at high

energy towards the substrate by a potential difference between the cage of the source and the

substrate holder. Variation of parameters like gas flux and potential difference between the cage

and the holder determines ion flux and impact energy. This leads to a process characterized by

a high directionality of the etching with no chemical reactions at the specimen. However, the

material selectivity is typically low; therefore thin resists or long etching times are typically not

suitable for this process.

3.2.4 Reactive Ion Etching (RIE)

RIE is a combination of physical and chemical etching, where the latter plays a fundamental

role in reaching high material selectivity. Briefly, a gas, called precursor gas, is exposed to

low-pressure plasma in order to generate chemical species capable of reacting with the substrate.

These reactive species diffuse to the surface of the substrate and adsorb. Chemical reactions occur

at this interface and by-products containing substrate atoms are generated. These new chemical
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compound are volatile and desorb from the surface, being pumped out from the chamber. The

etching rate for this process is typically quite low becauseof the interfacial nature of the chemical

reactions. For this reason, heavy ions are produced in the chamber and accelerated towards the

substrate to increase the desorption rate, as in ion milling. However, the ion flux is low enough

to not cause substantial physical damage to the substrate. Typically, fluorinated gasses, e.g. CF4

and NF3, are used for etching of silicon nitrides and oxides; while chlorine gasses, e.g. Cl2, are

particularly effective for etching of silicon.

3.2.5 Wet etching

Wet etching is at the opposite extreme in comparison with ionmilling with respect to etching

speed and material selectivity. In this process, the etching is purely chemical. The substrate is

immersed in an etchant solution containing reactive species. The etchant species diffuse to the

surface of the wafer and create soluble by-products at the interface. The by-products are trans-

ported away from the substrate to allow fresh etchant to reach the interface. The pure chemical

nature of this process guarantees high material selectivity, however the uniformity of the etch rate

depends heavily on the mechanisms used for transport of the etchant species and by-products to

and from the surface. In fact, the etching process usually produces gas bubbles at the film-etchant

interface, and efficient removal of these bubbles is necessary to allow for fresh etchant solution

to reach the substrate. For this reason, the etchant solution is often constantly agitated or contin-

uously supplied to the substrate by for example spraying it directly onto it. The dependence of

the etch rate on the removal of the waste hinders etching narrow features smaller than 2 µm due

to the difficulties in transporting fresh etchant to such an interface.

3.2.6 Electron beam assisted evaporation

Evaporation is a PVD technique which has been extensively used in the last decades for depo-

sition of metals. A schematic of a simple electron beam assisted evaporator is shown in Figure

13.
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Figure 13: Schematics of a simple electron beam assisted evaporator.

Both substrate and the material to be deposited, called charge, are loaded into a vacuum

chamber which is pumped down to low pressure. The charge is placed in a crucible, i.e. a

container able to withstand high temperatures, and is heated by an electron beam. The electron-

beam source is usually located beneath the crucible. The produced high-energy beam is tilted

by a magnetic field to be directed against the charge. In orderto melt uniformly the charge,

the electron beam is scanned across the charge. Above certain material-specific temperatures,

the molten charge releases vapor containing atoms which travel in a straight line through the

chamber. That is because the mean free path of the atoms is much longer than the physical

dimensions of the vacuum chamber thanks to a pressure in the range of 10−7 torr. Once a shutter

between the charge and the substrate opens, these released atoms will deposit on the substrate and

create a thin film. The thickness of the film can be monitored using a thickness monitor, usually

a quartz crystal microbalance, placed in the chamber. The relation between the deposition rate

on the substrate and on the balance depends mainly on their positions with respect to the source.

It is worth notice that the thickness of the deposited layer will also depend on the orientation of

the wafer and therefore on its geometrical dimension of it. The deposition obtained by electron-

beam assisted evaporation is characterized by high directionality and poor step coverage. The

main advantages of using an electron beam as a heating element are the fact that the charge is

heated directly, allowing the crucible to be kept cold, and the minimal contamination deriving

26



3.2 Fabrication at the nanoscale 3 NANOFABRICATION AS A TOOLBOX

from the source thanks to its positioning beneath the crucible.

3.2.7 Low pressure chemical vapor deposition (LPCVD) and Plasma enhanced chemical

vapor deposition (PECVD)

These two deposition methods are variants of CVD processes. In contrast to PVD processes,

CVD processes are purely based on chemical reactions. Typically, chemicals in gaseous form,

called precursors, are fed into a chamber where the substrate is placed. These gases react in

proximity to the substrate generating a set of chemical products. In heterogeneous processes,

the products will undergo a set of subsequent reactions at the surface of the substrate only, thus

leading to deposition of the selected material. Finally, the by-products are flushed out from the

chamber. The deposited films, mostly dielectrics, are characterized by a conformal coverage of

the substrate, which makes CVD popular for deposition of insulator materials.

There are numerous systems utilizing CVD principles, characterized by different pressures and

temperatures used in the process. Throughout the thesis, two CVD systems were widely used,

namely LPCVD and PECVD. In LPCVD processes, the energy for the activation of the chemical

reactions is supplied by a high process temperature, typically above 500◦C, and the deposition

of dielectrics occurs at low pressure, typically in the 0.1 torr range. Keeping the substrate at a

high temperature leads also to a longer diffusion length forthe compounds adsorbed at the inter-

face. A long diffusion length translates into a higher chance for the adsorbed species to find a

vacancy prior to bonding. For this reason, film uniformity isalso improved by processing at high

temperatures. However, some applications require the deposition to undergo at low temperatures

to avoid damaging of the substrate. For this purposes, PECVD processes are preferred over the

other CVD ones. In such systems, the energy is supplied by non-thermal sources like radio fre-

quency (RF) plasma and the process temperature can be loweredto 300◦C instead than 700-1000
◦C for deposition of nitrides. The drawback of this techniqueresides in the generation of films

with poorer stoichiometry and density with respect to the ones generated by LPCVD processes.

This difference in chemical quality of the films translates into a higher etch rate for the PECVD

films, quality which has been used to selectively remove the protective PECVD silicon nitride

layer while preserving the LPCVD silicon nitride constituting the membrane in Paper II.

Summarizing, in this thesis, LPCVD and PECVD were mainly used for growth of silicon ni-

tride films. LPCVD was used when stoichiometry, uniformity and minimal internal stress were

crucial, e.g. silicon nitride suspended membranes (Paper II). PECVD was preferred for low tem-

peratures applications, insulation of chips (Paper I) or poor stoichiometry films, e.g. protection

layer for the processing of the membranes (Paper II)
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4 Summary and outlook

4.1 Summary of Papers

Paper I explores the possibility of combining LSPR based sensors and photodiodes for a novel

biosensor with integrated detection. A typical nanoplasmonic biosensor setup consists of three

separate components: a white light source, a sensor embedded in a flow cell and a spectrometer

used to detect color changes induced upon biomolecular binding events at the sensor element. In

this work, a high-intensity commercial LED was used as a light source, while the sensor chips

had four integrated photosensitive regions as detectors. Gold nanoplasmonic structures were fab-

ricated directly onto the photodiodes, thus integrating the sensor and the detector into the same

chip. The nanoplasmonic structures were characterized andoptimized for sensing. Shifts in light

extinction at a single wavelength induced upon biorecognition events were transduced into elec-

trical signals by the creation of electron-hole pairs in thedetector. The generated photocurrent

was acquired and tracked in real-time. The sensor was testedby detection of specific protein

binding in a custom made flow cell.

Paper II presents the fabrication of a sensor chip designed to tacklethe challenge of detection

of analytes present at low concentrations in small volumes.For this purpose, a high-throughput

fabrication process was developed for integration of gold nanoplasmonic structures in a nanoflu-

idic network. A parallel network of nanofluidic pores was created into a thin silicon nitride

membrane. Nanoplasmonic particles of different dimensionand shape were fabricated simul-

taneously onto the inner surface of each pore. Their plasmonic resonances were proved to be

tunable in the visible range by varying a single process parameter, and matched such that the

overlap with the interference pattern of the silicon nitride membrane was minimized. The plas-

monic properties of the nanoparticles were optimized for optical sensing, demonstrating a bulk

sensitivity similar to that of conventional nanoplasmonicsensors.

4.2 Conclusions and outlook

There is an increasing interest in the development of novel biosensors in the foreseeable future.

The impact on society of diseases connected to the aging of population, for example infectious

diseases, cancer and Alzheimer’s disease, has the potential of increasing the running costs of

welfare over a sustainable threshold within few years. Early diagnostics and point-of-care test-

ing will play a fundamental role in achieving a cost-effective health-care capable to satisfy the

increasing needs. This translates into a drive towards further improved diagnostic devices where
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miniaturization and enhanced performances enabling detection of low-abundant biomarkers is

expected a key component. It is in this framework that engineering and science at the nanoscale

could help delivering a new wave of cheaper, smaller, fasterand better performing devices.

In this thesis work, the aim has been to translate advanced nanotechnology fabrication processes

to novel biosensors platforms. The combination of novel nanofabrication schemes and nano

transducer principles, i.e. nanoplasmonics, was exploited for challenging the performance of

state-of-the-art sensors. The integration of sensor and detector elements onto the same chip

resulted into a small and cheap biosensor with potential forthe development into hand-held in-

struments (Paper I). The precise localization of the transducer element to the nanoscale enables

the integration with nanofluidic schemes, which could play an important role in the detection

of low-abundant analytes. A novel fully parallel nanofabrication protocol was developed for a

scalable, reproducible and reliable production of such chips. A first benchmarking of the per-

formances of such a sensor was carried out leading to comparable performances with current

devices using the same transducer principle, but less efficient liquid handling.

Future work will focus on continuing the exploration of the potential of nanoscience in biosens-

ing applications, aiming for either cheaper, smaller, faster and / or better performing biosensors.

It is in this context important to keep in mind that certain challenges, e.g. the detection of minute

concentration differences of low-abundant biomolecules in complex body fluids, are so demand-

ing that also technically advanced and thus expensive solutions might turn out useful, while other

challenges, such as translation of diagnostics from clinical settings to point-of-care diagnostics,

put higher demands on low cost and high throughput. It is therefore of importance to early on

in the process identify the actual application one bears in mind. In the first paper, the aim was

clear: we aimed for a simpler and cheaper device. In the second paper, we were attracted by the

potential advantage of directing the molecules to be detected through a fluidic channel with a di-

mension only an order of magnitude or so larger than the biomolecular targets itself and similar to

the actual sensor element. However, the added value remainsto be proven, and to do so, several

steps remains to be taken and carefully analyzed. First, thenanofluidic chips presented in Paper

II will be integrated with a fully functional microfluidic network for coupling the nanochannels to

external liquid reservoirs. Second, material specific chemistry schemes, exploiting the material

contrast between the silicon nitride nanochannels and the gold nanosensors, will be designed to

ensure high selectivity. Third, theoretical modeling of this sensor will be carried out with focus

on optimization of the device for sensing; parameters such as dimension of the sensor elements

and of the nanochannels will be correlated to flow profiles andbiomolecular kinetics. In addi-

tion, it might also be interesting to look into the possibility to locally enhance the concentration
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of target molecules using electrophoretic concentration in the pore regions.[66] This study will

constitute the backbone for the identification of the most suitable biorecognition reaction to test

the performances of this device. At this stage, the performances of such a sensor with respect to

detection limit, rate of binding and sample consumption must then be investigated and correlated

to competing technologies, such as surface plasmon resonance, quartz-crystal microbalance. It

is also worth noting that the combination of the chips with cell-derived membranes that span

the nanoscale apertures[67] could provide novel information in the study of membrane-protein

controlled transport-mediated processes, potentially applicable as a drug-screening assay. Fur-

thermore, the miniaturization potential of sensors based on nano-components could be explored

with the aim to produce fully operational devices on a chip, e.g. by integrating both a light

source and the detection element in the sensor presented in Paper I. A further extension of the

work could include the integration of nanoplasmonics sensors with transducer principles based

on impedance.[68–70] While nanoplasmonic-based signals derive from local changes in refractive

index, impedance readout is based on the electrical properties of the surrounding media. This

enables for simultaneous tracking of different phenomena in the same experiment. Moreover, the

combination of optical and electrical readout is also suitable from a design point of view since

the principles do not interfere significantly with each other.
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