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Abstract: Local fatigue assessment approaches have drawn engineers’ attention since their 

advent. However, up to now, none of the available fatigue assessment codes has explicitly 

given instructions for assessing details with weld terminations using these approaches. In the 

present paper, the structural hot spot stress concept, according to different suggestions, as well 

as the effective notch stress method are reviewed and applied to cover-plate details, with and 

without transverse end weld. The predicted fatigue lives according to these methods are com-

pared with each other and with a large set of fatigue test results. Eventually, based on the 

comparisons, recommendations for the assessment of weld terminations are given. 

 

 

1 Introduction 
 

The profound developments of the computer technologies in the past few decades have led to 

the increasing application of computer based numerical methods. As a result, procedures for 

the application of new FE methods for fatigue assessment of welded details have been pro-

posed in the literature [1-4]. Moreover, the advancements of welding techniques have resulted 

in more complex welded details, to which neither a nominal stress nor a design category can 

be assigned [5]. Therefore, local fatigue assessment approaches, which are based on the local 

characteristics of fatigue phenomenon, have increasingly adopted by fatigue design associa-

tions [6,7]. As these methods are generally based on numerical methods such as the finite el-

ement method, the modelling and calculation instructions have been progressively updated.  

However, up to now, none of the fatigue related codes and guidelines have explicitly given 

instructions for assessing the weld terminations using the local concepts. 

The stress distribution over the plate thickness in the vicinity of a weld toe is non-linear. 

This peculiarity of stress distribution in welded components is primarily attributed to two dis-

tinct stress raising factors; macro-geometric stress raisers and weld notch effect. The Structur-

al Hot Spot Stress (SHSS) disregards the notch effect caused by the weld profile and compris-

es all other geometric variations at the crack initiation area (hot spot) [1,8]. The hot spot 
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stress, by definition, is a fictitious value. Nevertheless, as demonstrated in [1], in plate and 

shell structures it corresponds to the sum of membrane and bending stresses at the weld toe. 

The conventional method for the SHSS determination is to extrapolate the perpendicular 

surface stress component at certain reference points to the weld toe [7]. The utilized stress can 

be obtained either from experiment or appropriate finite element modelling. In addition to 

that, over the last few years, by further advancements of computational possibilities, other var-

iants of the structural hot spot stress method have been developed. Among these methods, par-

ticularly the approaches proposed by Dong et al. [9] and Xiao and Yamada [10] have drawn 

more attention. Fig. 1 shows a summary of the most common structural stress determination 

approaches. 

A relatively more advanced local fatigue assessment approach is known as the effective 

notch stress method. This method, that does not consider the elastic-plastic material behaviour 

at the crack tip, is based on the highest computed elastic stress (notch stress) at the critical 

points, i.e. weld toe and weld root. The notch stress is consisted of the sum of geometrical 

stress and non-linear stress peak and consequently includes all the stress raisers effects at the 

local notch. The effective notch stress method was first introduced by Radaj and Sonsino [3], 

by considering stress averaging in the micro-support theory according to Neuber Rule with a 

fictitious radius of 1mm for plates thicker than 5mm [7]. 

 In order to investigate the credibility of the abovementioned fatigue assessment methods in 

case of weld terminations, partial length cover-plate details with and without transverse end 

weld are studied. Partial-length cover-plates are usually welded to the flanges of steel bridge 

girders in order to increase the moment capacity and consequently the allowable traffic load 

and span of the bridge. Numerous studies [6-8] have shown that the cover-plate end zones 

have a very low fatigue resistance, see Fig. 2. According to the most well-known fatigue de-

sign codes and guidelines, the cover-plate end is the most severe of all details. The availability 

of fatigue test results for this detail, with various end zone configurations, has made it suitable 

for this case study.  

   

   
a) Surface stress extrapolation b) Dong method c) Xiao and Yamada method 

Fig. 1: Structural stress according to different approaches 

 

  
a) With transverse end weld b)  Without transverse end weld 

 

Fig. 2: Fatigue cracks in cover-plate ends with different end weld configurations  
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2 Structural hot spot stress determination methods 
 

2.1 Surface stress extrapolation 

 

The surface stress extrapolation is the conventional method to exclude the non-linear stress 

peak from the surface stress and determine the SHSS. In this method the SHSS can be 

achieved by extrapolating the surface stress towards the weld toe at certain reference points. 

These points are located within a reasonable distance from the weld toe where the stress is not 

influenced by the weld geometry. Comparative investigations have shown that for the fatigue 

cracks initiating from the main-plate surface, the reference points are located at distances from 

weld toe which are fractions of the plate thickness. It is generally accepted that at a distance of 

0.4t from the weld toe, the stress is not anymore affected by the weld geometry. An assump-

tion of linear stress distribution is normally sufficient. In such a case, the second extrapolation 

reference point is placed at 1.0t from the weld toe. However, in cases of pronounced non-

linear structural increase towards the weld toe (e.g. welded cover-plate on a beam flange), lin-

ear extrapolation might underestimate the actual SHSS. Alternatively, a quadratic extrapola-

tion of the stresses at 0.4t, 0.9t and 1.4t is suggested. 

The surface stress profile in front of the weld toe can be obtained by means of finite ele-

ment analysis. Nevertheless, systematic stress analysis of various details with different ele-

ment types and mesh qualities have confirmed that certain rules for the finite element model-

ling and stress evaluation have to be essentially followed to obtain comparable results 

[2,8,11,12]. IIW recommendations [7], proposes two meshing densities for shell and solid el-

ements; fine and coarse mesh. In this study, quadratic extrapolation of the stresses obtained 

from 3D solid element models with fine meshes is used. 

 

2.2 Dong method 

 

Dong [9] has proposed another method for the structural stress calculation based on trough 

thickness stress linearization at a distance δ from the weld toe. As approaching the weld toe, 

the obtained stress values become affected by the asymptotic singularity caused by the notch. 

Consequently, the local stresses near the notch are mesh size sensitive. The Dong method is 

claimed to be mesh insensitive as it makes use of the stresses at a distance δ from the weld 

toe. In this method, the structural stress can be derived by establishing the equilibrium condi-

tions at the weld toe for the normal and shear stresses acting in the distance δ (see Fig. 3). As 

illustrated in Fig. 3c, for the case of non-monotonic through thickness stress distribution, such 

as symmetric fillet welded attachments or thick sections, the linearization is performed to a 

finite depth t1≤t. Subsequently by imposing equilibrium conditions between sections A-A´ and 

B-B´, it can be concluded that the structural stress components must satisfy the following 

conditions: 
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Although the Dong method is claimed to be mesh insensitive, investigations reported in 

[11,12] have shown a considerable mesh sensitivity in case of solid elements. Disregarding 

the influence of the shear stresses acting in the lateral faces of the elements has been found to 

be the reason for this observation. Nevertheless, according to [12], at δ= 0.4t, the influence of 

the side shear stresses is negligible. 
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2.3 Xiao and Yamada method 

 

Xiao and Yamada [10] have proposed an unconventional structural stress concept based on 

the calculated stress at depth 1mm below the weld toe. In order to obtain the structural stress 

according to this procedure, the finite element model has to be constructed with a necessarily 

fine mesh that is capable of providing the stress at 1mm in depth with an acceptable accuracy.  

This method has been evaluated in various investigations [13,14]. The results are generally 

reported to be in good agreement with experimental evaluations. Fricke and Kahl [13] have 

recommended using only elements without mid-side nodes in case of shell elements of 1mm 

length. Furthermore, based on assessments of partially load-carrying cover-plates and fully 

load-carrying lap joints, Feltz and Fricke [14] suggested utilizing maximum principal stress 

component of the finite element analysis results. 

 

 

3 Effective Notch Stress (ENS) method  
 

The fatigue life, irrespective of the joint geometry, can be correlated to the effective notch 

stress range using a single design class. The notch stress can only be computed using numeri-

cal methods such as the finite element method. For plates thicker than 5mm, weld toe or root 

is rounded with the reference radius of 1mm. However, in order for the numerical methods 

such as the finite element method to be capable of calculating the total stress at the critical 

sections, a sufficient element density has to be maintained. Thus, in order to get accurate re-

sults, it is principally important in this method to model the anticipated crack initiation area 

with an extremely fine mesh. This can be achieved by using 3D solid elements as well as 2D 

planar elements as long as a certain mesh size is generated.  

Fricke [15] has given the practical information for analysis according to this method. It 

should be noted that, although the approach can be applied to complex details, it requires con-

siderably more modelling and analysis work effort than the SHSS approach. Despite the fact 

that the practical application of the ENS method is generally well-defined, it is devoid of any 

instructions regarding the assessment of weld terminations. Aiming to obtain valid weld end’s 

representative modelling and assessment procedures, Kaffenberger et al. [16] conducted a 

comparative experimental and numerical study. The study was primarily aimed to obtain rec-

ommendations for thin sheet structures. Therefore, in order to avoid modelling incompatibili-

ties for thicker structures, a standardised model is proposed for t=2.24 mm and r=0.2 mm. The 

proposed model can be scaled up linearly for other plate thicknesses as shown in Fig. 4. The 

authors have demonstrated the applicability of this model to plates up to 20 mm thick. 

   
a)  Trough thickness stress dis-

tribution  

b) Monotonic stress distribution c)  Non-monotonic stress dis-

tribution 

Fig. 3: The structural stress according to Dong 
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4 Fatigue life assessment of cover-plate details 
 

4.1 Existing fatigue test data 

 

I-beams with welded cover-plates are among the most fatigue tested details. This is, on the 

one hand, due to the frequent application of this detail in the bridge industry, and on the other 

hand, as a consequence of its very poor exhibited fatigue strength. In this study, a total number 

of 260 fatigue test data of square-ended cover-plate details, with and without transverse end 

welds, are collected [17,18] (see Fig. 2). Table 1 presents a summary of the collected test se-

ries, while all the test data are plotted in Fig. 5. It should be mentioned that, the crack initia-

tion location was reported similarly depending on the end weld configuration, in all cases. For 

the case of welded end cover-plates (W), the fatigue crack initiated from the weld toe in the 

flange mid-section, whereas fatigue cracking initiated from the weld end in the side-section of 

the flange for not-welded end cover-plates (NW), see Fig. 2. 

 
Table 1: The collected fatigue test series of square-ended cover-plate details; statistical evaluation 

of the data is performed according to EC 3 and with a fixed slope of 3. 

Detail Data End weld Main plate [mm]  Cover plate [mm] tc/tm ∆σmean ∆σC St.D. 

 Thickness Width  Thickness Width [MPa] [MPa]  

CT W 30 W 9.5 171  19 114 2 62.7 54.3 0.103 

CT U 18 NW 9.5 171  19 114 2 64.9 56.2 0.100 

CR W 102 W 9.5 171  14.3 114 1.5 62.0 54.4 0.099 

CR U 99 NW 9.5 171  14.3 114 1.5 68.4 58.5 0.121 

CS W 5 W 19 127  12.7 101 0.7 79.6 72.0 0.056 

CS U 6 NW 19 127  12.7 101 0.7 89.6 72.1 0.116 

All tests 260 W&NW - -  - - - 65.4 54.8 0.136 

 

As it is apparent in Table 1, cover-plates without end welds exhibit negligibly higher fa-

tigue strength than those with transverse end welds. Therefore, it can be concluded that, the 

fatigue life of cover-plate details is practically independent of the end weld configuration. 

This observation, which is consistent with the previous studies [17,19], implies that the stress 

concentration severity of cover-plates with and without transverse end welds has to be identi-

cal. Furthermore, the fatigue assessment of seam welds according to local approaches is well 

established and verified. Hence, a comparative study of cover-plates with and without end 

welds can be performed to evaluate the validity of the applied approach for fatigue assessment 

of weld ends.  

  
a)  Construction of idealised weld end  b)  Meshing recommendations 

Fig. 4: Modelling of weld terminations according to the ENS method as proposed in [16] 
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4.2 Fatigue life assessment according to the SHSS approach 

 

As discussed before, the structural hot spot stress can be obtained in different ways. The basis 

of all these methods is to exclude the notch effect from the total stress value. Thus, as long as 

the same weld stiffness is provided, the hot spot stress would be independent of the weld 

shape. This characteristic of the SHSS approach makes it less affected by a correct representa-

tion of the weld profile compared to other local fatigue assessment methods. The effect of 

modelling the shape of weld ends is investigated in this study by computing the hot spot stress 

for different weld end models as depicted in Fig. 6. The results confirm the insignificant varia-

tion of the structural hot spot stress value for the investigated details. 

For the Dong stress calculation, the cover-plates with transverse end welds were treated ac-

cording to the non-monotonic through thickness stress distribution with t1 equal to the flange 

thickness. This was due to the presence of web plate underneath the crack initiation location 

in these details. For the case of cover-plates without transverse end welds, a monotonic stress 

distribution through the flange thickness was assumed.   

Calculation of the hot-spot stress according to the Dong method requires a determination of 

the section at which equilibrium is to be satisfied. There is thus a need to study how the calcu-

lated hot spot stress varies as a function of the distance δ. As shown in Fig. 7a, the structural 

stress obtained from the Dong method deviates as δ changes. This finding supports the notion 

raised in other studies that disregarding the shear stresses on the element sides, makes the 

Dong method δ-dependent. However, as proposed in [12], this effect is minimized by choos-

ing δ=0.4t. 

 
Fig. 5: Fatigue test results of square-ended cover-plate details 

 

 

 

   
a)  Type a  b) Type b c)  Type c 

Fig. 6: Different methods to model the weld end 
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The structural stress calculation results obtained from different methods for CR cover-plate 

test series are plotted in Fig. 7b. As it was shown in Table 1 for this test series, cover-plates 

without transverse end weld (CR U) have exhibited slightly higher fatigue lives than those 

with transverse end weld (CR W). Nevertheless, as it is apparent in Fig. 7b, a higher stress 

concentration factor is obtained for cover-plates without transverse end weld, irrespective of 

the SHSS derivation method. This observation, which is inconsistent with the experimental 

results, is significantly reduced when the hot spot stress is calculated according to the Dong 

method, where the two derived stress concentration factors are almost identical.  

Fig. 8 demonstrates the fatigue lives for the cover-plate details derived from fatigue tests 

and predicted by different fatigue assessment approaches according to Eurocode3 [6]. As can 

be seen, when using the SHSS approach, the predicted fatigue lives for cover-plate details 

without transverse end weld are significantly more conservative than those for cover-plate de-

tails with transverse end weld. However, the fatigue life predicted by the Dong method is in a 

better agreement with the test results. For the case of cover-plates with transverse end weld, 

both the conventional extrapolation [7], and Xiao and Yamada [10] methods are capable of 

predicting the fatigue life with an acceptable accuracy, provided that 20node quadratic ele-

ments are used. The nominal stress method, on the other hand, considers a single fatigue de-

sign class for cover-plate details irrespective of the end weld condition, and accordingly yields 

  
a)  Structural stress concentration factor as a func-

tion of distance from weld toe (δ) 
b)  Structural stress concentration factors obtained 

from different methods for cover-plates 
Fig. 7: Variations of the structural stress concentration factor  

 

 

 
Fig. 8: Fatigue lives for the cover-plate details derived from fatigue tests and predicted by different 

fatigue assessment approaches 
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the same fatigue life prediction for both test series. When using the nominal stress method, the 

predicted fatigue life for the CR U test series is very close to the test results, whereas it is only 

slightly overestimated for the CR W test series. Having mentioned that, the nominal stress 

classifications have been directly obtained from experimental results, the acceptable con-

sistency of fatigue life predictions can be justified.  

As discussed before, the structural stress derived according to the Dong method is depend-

ent on the distance from weld toe (δ). As a result, as shown in Fig. 9, different fatigue lives are 

predicted as δ varies. It is apparent from this chart that, for this particular detail more precise 

fatigue life estimations are derived when δ is chosen between 0.9t and 1.4t. In addition, the 

predicted fatigue lives are consistent with the test results in which slightly higher fatigue lives 

are reported for not welded end cover-plate details.   

 

4.3 Fatigue life assessment according to the effective notch stress method 

 

In contrast to the SHSS approach, the effective notch stress method is highly dependent on the 

local weld geometry as it comprises all the stress raising effects including those caused by the 

notch at the weld. Therefore, it is vital to model the weld geometry at the critical location in 

an appropriate way.  

In this study, for the case of cover-plate details with transverse end welds, the fatigue as-

sessment according to the ENS method is performed as recommended in [15]. However, for 

cover-plate details without transverse end welds, several modelling techniques are investigat-

ed. Fig. 6 and Fig. 10 demonstrate these models in which fatigue assessments have been con-

ducted separately according to the recommendations given by Fricke [15] and Kaffenberger 

et al. [16], respectively. For the latter case, two rounding radiuses equal to 0.5mm and 1mm 

are investigated. 

As it can be seen from Fig. 10, the calculated maximum stress location is exactly at the 

crack initiation location reported in the fatigue tests. On the contrary, when the weld end is 

modelled as shown in Fig. 6, the maximum stress is obtained at the junction of weld end and 

cover-plate. However, if some of the elements at this area are excluded, the maximum stress 

location would be found at the correct location as reported in the tests. 

The effective notch stress concentration factors obtained from the investigated models are 

plotted in Fig. 11. It is apparent that, on the one hand, all of the investigated models yield con-

 

 
Fig. 9:  Fatigue lives for the cover-plate details derived from fatigue tests and predicted by the 

Dong method with varying  δ 
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servative results with stress concentration factors higher than that for CR W series. On the 

other hand, the FE model constructed as shown in Fig. 6a appears to result in the closest stress 

concentration factor. It should be also noted that, the proposed model in [16] seems also to 

produces relatively acceptable results if the correct rounding radius is exercised.  

 

 

5 Conclusions 
 

The following main conclusions can be drawn from this study: 

1. Similar to the case of weld toe cracking, the SHSS for details with weld end termina-

tions is quite insensitive to the shape of the weld end and the way the latter is modelled.  

2. For cover-plate details with transverse end weld, quadratic extrapolation and Xiao -

Yamada methods yield appropriate results if 20node quadratic elements are used. How-

ever, when 8node elements are used, the Xiao and Yamada method predicted highly 

conservative fatigue lives and is supposed as the least appropriate method. 

3. For cover-plate details without transverse end weld, the Dong method seems to give the 

most accurate results. For this particular detail, the Dong stress calculation with δ vary-

ing between 0.9t and 1.4t revealed more experimentally-verified results. 

4. In order to obtain accurate results according to the effective notch stress method, the ex-

act weld geometry has to be modelled. The analysis results confirm a better agreement 

 

 
Fig. 11:The effective notch stress concentration factor obtained from several modelling techniques  

   
a) Modelled weld end geometry b) Meshed geometry c) Maximum principal stress plot 

Fig. 10: Modelled weld end for a cover-plate detail fatigue analysis according to the ENS method [16]
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with the test results when the weld termination is modelled as shown in Fig.6a. 

5. Providing that an appropriate rounding radius is applied, acceptable results can be ex-

pected from the method proposed by Kaffenberger et al. [16] for weld end assessments. 

A radius of 1mm seems to yield the best results for the details studied in this paper. 
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1 Introduction 
 

The profound developments of the computer technologies in the past few decades have led to 

the increasing application of computer based numerical methods. As a result, procedures for 

the application of new FE methods for fatigue assessment of welded details have been pro-

posed in the literature [1-4]. Moreover, the advancements of welding techniques have resulted 

in more complex welded details, to which neither a nominal stress nor a design category can 

be assigned [5]. Therefore, local fatigue assessment approaches, which are based on the local 

characteristics of fatigue phenomenon, have increasingly adopted by fatigue design associa-

tions [6,7]. As these methods are generally based on numerical methods such as the finite el-

ement method, the modelling and calculation instructions have been progressively updated.  

However, up to now, none of the fatigue related codes and guidelines have explicitly given 

instructions for assessing the weld terminations using the local concepts. 

The stress distribution over the plate thickness in the vicinity of a weld toe is non-linear. 

This peculiarity of stress distribution in welded components is primarily attributed to two dis-

tinct stress raising factors; macro-geometric stress raisers and weld notch effect. The Structur-

al Hot Spot Stress (SHSS) disregards the notch effect caused by the weld profile and compris-

es all other geometric variations at the crack initiation area (hot spot) [1,8]. The hot spot 
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stress, by definition, is a fictitious value. Nevertheless, as demonstrated in [1], in plate and 

shell structures it corresponds to the sum of membrane and bending stresses at the weld toe. 

The conventional method for the SHSS determination is to extrapolate the perpendicular 

surface stress component at certain reference points to the weld toe [7]. The utilized stress can 

be obtained either from experiment or appropriate finite element modelling. In addition to 

that, over the last few years, by further advancements of computational possibilities, other var-

iants of the structural hot spot stress method have been developed. Among these methods, par-

ticularly the approaches proposed by Dong et al. [9] and Xiao and Yamada [10] have drawn 

more attention. Fig. 1 shows a summary of the most common structural stress determination 

approaches. 

A relatively more advanced local fatigue assessment approach is known as the effective 

notch stress method. This method, that does not consider the elastic-plastic material behaviour 

at the crack tip, is based on the highest computed elastic stress (notch stress) at the critical 

points, i.e. weld toe and weld root. The notch stress is consisted of the sum of geometrical 

stress and non-linear stress peak and consequently includes all the stress raisers effects at the 

local notch. The effective notch stress method was first introduced by Radaj and Sonsino [3], 

by considering stress averaging in the micro-support theory according to Neuber Rule with a 

fictitious radius of 1mm for plates thicker than 5mm [7]. 

 In order to investigate the credibility of the abovementioned fatigue assessment methods in 

case of weld terminations, partial length cover-plate details with and without transverse end 

weld are studied. Partial-length cover-plates are usually welded to the flanges of steel bridge 

girders in order to increase the moment capacity and consequently the allowable traffic load 

and span of the bridge. Numerous studies [6-8] have shown that the cover-plate end zones 

have a very low fatigue resistance, see Fig. 2. According to the most well-known fatigue de-

sign codes and guidelines, the cover-plate end is the most severe of all details. The availability 

of fatigue test results for this detail, with various end zone configurations, has made it suitable 

for this case study.  

   

   
a) Surface stress extrapolation b) Dong method c) Xiao and Yamada method 

Fig. 1: Structural stress according to different approaches 

 

  
a) With transverse end weld b)  Without transverse end weld 

 

Fig. 2: Fatigue cracks in cover-plate ends with different end weld configurations  
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2 Structural hot spot stress determination methods 
 

2.1 Surface stress extrapolation 

 

The surface stress extrapolation is the conventional method to exclude the non-linear stress 

peak from the surface stress and determine the SHSS. In this method the SHSS can be 

achieved by extrapolating the surface stress towards the weld toe at certain reference points. 

These points are located within a reasonable distance from the weld toe where the stress is not 

influenced by the weld geometry. Comparative investigations have shown that for the fatigue 

cracks initiating from the main-plate surface, the reference points are located at distances from 

weld toe which are fractions of the plate thickness. It is generally accepted that at a distance of 

0.4t from the weld toe, the stress is not anymore affected by the weld geometry. An assump-

tion of linear stress distribution is normally sufficient. In such a case, the second extrapolation 

reference point is placed at 1.0t from the weld toe. However, in cases of pronounced non-

linear structural increase towards the weld toe (e.g. welded cover-plate on a beam flange), lin-

ear extrapolation might underestimate the actual SHSS. Alternatively, a quadratic extrapola-

tion of the stresses at 0.4t, 0.9t and 1.4t is suggested. 

The surface stress profile in front of the weld toe can be obtained by means of finite ele-

ment analysis. Nevertheless, systematic stress analysis of various details with different ele-

ment types and mesh qualities have confirmed that certain rules for the finite element model-

ling and stress evaluation have to be essentially followed to obtain comparable results 

[2,8,11,12]. IIW recommendations [7], proposes two meshing densities for shell and solid el-

ements; fine and coarse mesh. In this study, quadratic extrapolation of the stresses obtained 

from 3D solid element models with fine meshes is used. 

 

2.2 Dong method 

 

Dong [9] has proposed another method for the structural stress calculation based on trough 

thickness stress linearization at a distance δ from the weld toe. As approaching the weld toe, 

the obtained stress values become affected by the asymptotic singularity caused by the notch. 

Consequently, the local stresses near the notch are mesh size sensitive. The Dong method is 

claimed to be mesh insensitive as it makes use of the stresses at a distance δ from the weld 

toe. In this method, the structural stress can be derived by establishing the equilibrium condi-

tions at the weld toe for the normal and shear stresses acting in the distance δ (see Fig. 3). As 

illustrated in Fig. 3c, for the case of non-monotonic through thickness stress distribution, such 

as symmetric fillet welded attachments or thick sections, the linearization is performed to a 

finite depth t1≤t. Subsequently by imposing equilibrium conditions between sections A-A´ and 

B-B´, it can be concluded that the structural stress components must satisfy the following 

conditions: 
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Although the Dong method is claimed to be mesh insensitive, investigations reported in 

[11,12] have shown a considerable mesh sensitivity in case of solid elements. Disregarding 

the influence of the shear stresses acting in the lateral faces of the elements has been found to 

be the reason for this observation. Nevertheless, according to [12], at δ= 0.4t, the influence of 

the side shear stresses is negligible. 
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2.3 Xiao and Yamada method 

 

Xiao and Yamada [10] have proposed an unconventional structural stress concept based on 

the calculated stress at depth 1mm below the weld toe. In order to obtain the structural stress 

according to this procedure, the finite element model has to be constructed with a necessarily 

fine mesh that is capable of providing the stress at 1mm in depth with an acceptable accuracy.  

This method has been evaluated in various investigations [13,14]. The results are generally 

reported to be in good agreement with experimental evaluations. Fricke and Kahl [13] have 

recommended using only elements without mid-side nodes in case of shell elements of 1mm 

length. Furthermore, based on assessments of partially load-carrying cover-plates and fully 

load-carrying lap joints, Feltz and Fricke [14] suggested utilizing maximum principal stress 

component of the finite element analysis results. 

 

 

3 Effective Notch Stress (ENS) method  
 

The fatigue life, irrespective of the joint geometry, can be correlated to the effective notch 

stress range using a single design class. The notch stress can only be computed using numeri-

cal methods such as the finite element method. For plates thicker than 5mm, weld toe or root 

is rounded with the reference radius of 1mm. However, in order for the numerical methods 

such as the finite element method to be capable of calculating the total stress at the critical 

sections, a sufficient element density has to be maintained. Thus, in order to get accurate re-

sults, it is principally important in this method to model the anticipated crack initiation area 

with an extremely fine mesh. This can be achieved by using 3D solid elements as well as 2D 

planar elements as long as a certain mesh size is generated.  

Fricke [15] has given the practical information for analysis according to this method. It 

should be noted that, although the approach can be applied to complex details, it requires con-

siderably more modelling and analysis work effort than the SHSS approach. Despite the fact 

that the practical application of the ENS method is generally well-defined, it is devoid of any 

instructions regarding the assessment of weld terminations. Aiming to obtain valid weld end’s 

representative modelling and assessment procedures, Kaffenberger et al. [16] conducted a 

comparative experimental and numerical study. The study was primarily aimed to obtain rec-

ommendations for thin sheet structures. Therefore, in order to avoid modelling incompatibili-

ties for thicker structures, a standardised model is proposed for t=2.24 mm and r=0.2 mm. The 

proposed model can be scaled up linearly for other plate thicknesses as shown in Fig. 4. The 

authors have demonstrated the applicability of this model to plates up to 20 mm thick. 

   
a)  Trough thickness stress dis-

tribution  

b) Monotonic stress distribution c)  Non-monotonic stress dis-

tribution 

Fig. 3: The structural stress according to Dong 
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4 Fatigue life assessment of cover-plate details 
 

4.1 Existing fatigue test data 

 

I-beams with welded cover-plates are among the most fatigue tested details. This is, on the 

one hand, due to the frequent application of this detail in the bridge industry, and on the other 

hand, as a consequence of its very poor exhibited fatigue strength. In this study, a total number 

of 260 fatigue test data of square-ended cover-plate details, with and without transverse end 

welds, are collected [17,18] (see Fig. 2). Table 1 presents a summary of the collected test se-

ries, while all the test data are plotted in Fig. 5. It should be mentioned that, the crack initia-

tion location was reported similarly depending on the end weld configuration, in all cases. For 

the case of welded end cover-plates (W), the fatigue crack initiated from the weld toe in the 

flange mid-section, whereas fatigue cracking initiated from the weld end in the side-section of 

the flange for not-welded end cover-plates (NW), see Fig. 2. 

 
Table 1: The collected fatigue test series of square-ended cover-plate details; statistical evaluation 

of the data is performed according to EC 3 and with a fixed slope of 3. 

Detail Data End weld Main plate [mm]  Cover plate [mm] tc/tm ∆σmean ∆σC St.D. 

 Thickness Width  Thickness Width [MPa] [MPa]  

CT W 30 W 9.5 171  19 114 2 62.7 54.3 0.103 

CT U 18 NW 9.5 171  19 114 2 64.9 56.2 0.100 

CR W 102 W 9.5 171  14.3 114 1.5 62.0 54.4 0.099 

CR U 99 NW 9.5 171  14.3 114 1.5 68.4 58.5 0.121 

CS W 5 W 19 127  12.7 101 0.7 79.6 72.0 0.056 

CS U 6 NW 19 127  12.7 101 0.7 89.6 72.1 0.116 

All tests 260 W&NW - -  - - - 65.4 54.8 0.136 

 

As it is apparent in Table 1, cover-plates without end welds exhibit negligibly higher fa-

tigue strength than those with transverse end welds. Therefore, it can be concluded that, the 

fatigue life of cover-plate details is practically independent of the end weld configuration. 

This observation, which is consistent with the previous studies [17,19], implies that the stress 

concentration severity of cover-plates with and without transverse end welds has to be identi-

cal. Furthermore, the fatigue assessment of seam welds according to local approaches is well 

established and verified. Hence, a comparative study of cover-plates with and without end 

welds can be performed to evaluate the validity of the applied approach for fatigue assessment 

of weld ends.  

  
a)  Construction of idealised weld end  b)  Meshing recommendations 

Fig. 4: Modelling of weld terminations according to the ENS method as proposed in [16] 
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4.2 Fatigue life assessment according to the SHSS approach 

 

As discussed before, the structural hot spot stress can be obtained in different ways. The basis 

of all these methods is to exclude the notch effect from the total stress value. Thus, as long as 

the same weld stiffness is provided, the hot spot stress would be independent of the weld 

shape. This characteristic of the SHSS approach makes it less affected by a correct representa-

tion of the weld profile compared to other local fatigue assessment methods. The effect of 

modelling the shape of weld ends is investigated in this study by computing the hot spot stress 

for different weld end models as depicted in Fig. 6. The results confirm the insignificant varia-

tion of the structural hot spot stress value for the investigated details. 

For the Dong stress calculation, the cover-plates with transverse end welds were treated ac-

cording to the non-monotonic through thickness stress distribution with t1 equal to the flange 

thickness. This was due to the presence of web plate underneath the crack initiation location 

in these details. For the case of cover-plates without transverse end welds, a monotonic stress 

distribution through the flange thickness was assumed.   

Calculation of the hot-spot stress according to the Dong method requires a determination of 

the section at which equilibrium is to be satisfied. There is thus a need to study how the calcu-

lated hot spot stress varies as a function of the distance δ. As shown in Fig. 7a, the structural 

stress obtained from the Dong method deviates as δ changes. This finding supports the notion 

raised in other studies that disregarding the shear stresses on the element sides, makes the 

Dong method δ-dependent. However, as proposed in [12], this effect is minimized by choos-

ing δ=0.4t. 

 
Fig. 5: Fatigue test results of square-ended cover-plate details 

 

 

 

   
a)  Type a  b) Type b c)  Type c 

Fig. 6: Different methods to model the weld end 
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The structural stress calculation results obtained from different methods for CR cover-plate 

test series are plotted in Fig. 7b. As it was shown in Table 1 for this test series, cover-plates 

without transverse end weld (CR U) have exhibited slightly higher fatigue lives than those 

with transverse end weld (CR W). Nevertheless, as it is apparent in Fig. 7b, a higher stress 

concentration factor is obtained for cover-plates without transverse end weld, irrespective of 

the SHSS derivation method. This observation, which is inconsistent with the experimental 

results, is significantly reduced when the hot spot stress is calculated according to the Dong 

method, where the two derived stress concentration factors are almost identical.  

Fig. 8 demonstrates the fatigue lives for the cover-plate details derived from fatigue tests 

and predicted by different fatigue assessment approaches according to Eurocode3 [6]. As can 

be seen, when using the SHSS approach, the predicted fatigue lives for cover-plate details 

without transverse end weld are significantly more conservative than those for cover-plate de-

tails with transverse end weld. However, the fatigue life predicted by the Dong method is in a 

better agreement with the test results. For the case of cover-plates with transverse end weld, 

both the conventional extrapolation [7], and Xiao and Yamada [10] methods are capable of 

predicting the fatigue life with an acceptable accuracy, provided that 20node quadratic ele-

ments are used. The nominal stress method, on the other hand, considers a single fatigue de-

sign class for cover-plate details irrespective of the end weld condition, and accordingly yields 

  
a)  Structural stress concentration factor as a func-

tion of distance from weld toe (δ) 
b)  Structural stress concentration factors obtained 

from different methods for cover-plates 
Fig. 7: Variations of the structural stress concentration factor  

 

 

 
Fig. 8: Fatigue lives for the cover-plate details derived from fatigue tests and predicted by different 

fatigue assessment approaches 
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the same fatigue life prediction for both test series. When using the nominal stress method, the 

predicted fatigue life for the CR U test series is very close to the test results, whereas it is only 

slightly overestimated for the CR W test series. Having mentioned that, the nominal stress 

classifications have been directly obtained from experimental results, the acceptable con-

sistency of fatigue life predictions can be justified.  

As discussed before, the structural stress derived according to the Dong method is depend-

ent on the distance from weld toe (δ). As a result, as shown in Fig. 9, different fatigue lives are 

predicted as δ varies. It is apparent from this chart that, for this particular detail more precise 

fatigue life estimations are derived when δ is chosen between 0.9t and 1.4t. In addition, the 

predicted fatigue lives are consistent with the test results in which slightly higher fatigue lives 

are reported for not welded end cover-plate details.   

 

4.3 Fatigue life assessment according to the effective notch stress method 

 

In contrast to the SHSS approach, the effective notch stress method is highly dependent on the 

local weld geometry as it comprises all the stress raising effects including those caused by the 

notch at the weld. Therefore, it is vital to model the weld geometry at the critical location in 

an appropriate way.  

In this study, for the case of cover-plate details with transverse end welds, the fatigue as-

sessment according to the ENS method is performed as recommended in [15]. However, for 

cover-plate details without transverse end welds, several modelling techniques are investigat-

ed. Fig. 6 and Fig. 10 demonstrate these models in which fatigue assessments have been con-

ducted separately according to the recommendations given by Fricke [15] and Kaffenberger 

et al. [16], respectively. For the latter case, two rounding radiuses equal to 0.5mm and 1mm 

are investigated. 

As it can be seen from Fig. 10, the calculated maximum stress location is exactly at the 

crack initiation location reported in the fatigue tests. On the contrary, when the weld end is 

modelled as shown in Fig. 6, the maximum stress is obtained at the junction of weld end and 

cover-plate. However, if some of the elements at this area are excluded, the maximum stress 

location would be found at the correct location as reported in the tests. 

The effective notch stress concentration factors obtained from the investigated models are 

plotted in Fig. 11. It is apparent that, on the one hand, all of the investigated models yield con-

 

 
Fig. 9:  Fatigue lives for the cover-plate details derived from fatigue tests and predicted by the 

Dong method with varying  δ 
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servative results with stress concentration factors higher than that for CR W series. On the 

other hand, the FE model constructed as shown in Fig. 6a appears to result in the closest stress 

concentration factor. It should be also noted that, the proposed model in [16] seems also to 

produces relatively acceptable results if the correct rounding radius is exercised.  

 

 

5 Conclusions 
 

The following main conclusions can be drawn from this study: 

1. Similar to the case of weld toe cracking, the SHSS for details with weld end termina-

tions is quite insensitive to the shape of the weld end and the way the latter is modelled.  

2. For cover-plate details with transverse end weld, quadratic extrapolation and Xiao -

Yamada methods yield appropriate results if 20node quadratic elements are used. How-

ever, when 8node elements are used, the Xiao and Yamada method predicted highly 

conservative fatigue lives and is supposed as the least appropriate method. 

3. For cover-plate details without transverse end weld, the Dong method seems to give the 

most accurate results. For this particular detail, the Dong stress calculation with δ vary-

ing between 0.9t and 1.4t revealed more experimentally-verified results. 

4. In order to obtain accurate results according to the effective notch stress method, the ex-

act weld geometry has to be modelled. The analysis results confirm a better agreement 

 

 
Fig. 11:The effective notch stress concentration factor obtained from several modelling techniques  

   
a) Modelled weld end geometry b) Meshed geometry c) Maximum principal stress plot 

Fig. 10: Modelled weld end for a cover-plate detail fatigue analysis according to the ENS method [16]
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with the test results when the weld termination is modelled as shown in Fig.6a. 

5. Providing that an appropriate rounding radius is applied, acceptable results can be ex-

pected from the method proposed by Kaffenberger et al. [16] for weld end assessments. 

A radius of 1mm seems to yield the best results for the details studied in this paper. 
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