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High Efficiency Heavy Duty Truck Engine 
Master’s Thesis in the Solid and Fluid Mechanics 
PAYAM BIGHAL 
Department of Applied Mechanics 
Division of Dynamics 
Chalmers University of Technology 

 

ABSTRACT 
The aim of this thesis work is to analyse the torsional vibration of a newly developed 
heavy duty truck engine to decrease the engine speed both at the idle speed and the 
cruising speed. New demands on fuel consumptions and CO2 emissions force the 
manufacturers to develop engines operating at lower speeds. Down-speeding may 
result in several problems such as torsional vibration, increased engine speed 
fluctuation, difficulties to maintain boost pressure and high journal bearing loads. 
Dynamic characteristics of the mounting system have been optimized to avoid 
excessive deflection and bouncing of the engine. Stiffness and damping characteristics 
of mountings assumed to be linear and the system is considered to be one degree of 
freedom with harmonic excitation along the crankshaft axis. Moreover, the dynamic 
characteristics of flywheel and input shaft have been modified to prevent excessive 
torsional vibration and gear rattle in the powertrain system. Also conventional 
flywheel has been compared with dual-mass flywheel in down-speeding. The results 
showed that from torsional vibration point of view, downs-speeding was feasible. 
Furthermore dual-mass flywheels can significantly reduce the powertrain`s deflection 
up to 43%.    

 

Key words:     Down-speeding, Torsional vibration, Mounting system, Dual-mass 
flywheel 
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1 Introduction 
High efficient internal combustion engines can be reached by applying different 
possible routes. Down-speeding is one of those routes that has been investigated and 
presented in this thesis work.  
Down-speeding means operating the engine at lower speeds by means of changes 
through transmission and/or final drive ratio. It plays an important role in raising the 
efficiency since the engine friction and relative heat transfer will be reduced and also 
gas exchange losses will become smaller. Down-speeding is to achieve the same 
power needed to run the vehicle while the engine speed is being lowered. This can be 
achieved through two different ways: 

First approach is to augment the boost power of the engine and second is through 
changing the dynamic configuration of the engine. 

The latter procedure is more complicated and demands more changes in the 
configuration of the engine. Changes can be done to the slider-crank mechanism of 
the engine, i.e. piston and crank. Enlarging the piston area to have a bigger surface for 
combustible material to react, therefore obtain more pressure and consequently more 
force acting on the piston. Eventually more torque acting on the crankshaft, also 
extending crank to make the force at the crankpin have a bigger lever (moment arm) 
thus making bigger torque applied to the crankshaft. The first method is accomplished 
by rising up the engine torque by means of turbo chargers. 

Conversely, down-speeding results in several problems such as torsional vibrations, 
problems with the powertrain mounting system, high journal bearing load, and 
increased engine speed fluctuation, difficulties to maintain boost pressure and NVH 
(Noise, Vibration and Harshness) problems.  
For a given vehicle, a reduced engine speed means that the engine is operating at 
higher specific load; BMEP-Brake Mean Effective Pressure, which results in higher 
efficiency and thus reduced fuel consumption. The reasons for the increased 
efficiency are found in reduced engine friction, reduced relative heat transfer, less gas 
exchange losses and faster combustion (in crank angle degrees). 

In this thesis work vibrations as a consequence of down-speeding have been 
investigated and verified to get the least noise and disturbances. Vibration abatement 
and controlling the oscillations have been studied and applied through modification of 
the engine mounting system characteristics and developing the transmission parts. 
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2 Methodology 
2.1 Engine Dynamics 
Internal combustion engines use two common combustion cycles; Clerk two-stroke 
cycle and Otto four-stroke cycle. The second, which is the most common in trucks 
and automobiles, takes four strokes of the piston to complete one cycle, that is, it 
takes 720o of a crankshaft to complete one four-stroke cycle.  

To study engine dynamics the kinematics of a typical slider-crank must first be 
considered, because each piston and its cylinder along with the connecting rod and the 
crank resemble a slider-crank mechanism except that the engine is “back-driven” 
compared to the common slider-crank linkage which is usually driven through the 
crank part by a rotary machine. 

This slider-crank has motion aligned with the axis (X) which is perpendicular to the 
crankshaft and passes through the main pin thus called “non-offset” slider-crank. 
Assume the following parameters for the various parts according to figure 1.1:  ∶             ℎ  ∶               ∶           ℎ         ∶                           −       ∶                               
 

For constant angular velocity of the crank, the angle can be given as  =   . From 
geometry the following equations for position, velocity and acceleration of the piston 
can be deduced respectively:  =  cos  +   1 − (  sin  )                                               (2.1)  ̇ = −  [sin  +  2 sin 2   1 −    sin    ]                                        (2.2) 

 ̈ = −   {cos  −  [  (1 − 2 cos   ) −   sin   ][  − ( sin  ) ]  }                     (2.3) 

(Velocity and acceleration are obtained by differentiating position with respect to time 
and also assuming that   is constant for steady-state analysis) [3, 4]. 
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Figure 2.1 Four-bar slider-crank mechanism 

 

Figure 1.1 shows a single cylinder as a fourbar slider-crank mechanism. Numbers in 
the figure depict each part in a way that 1 refers to the ground plane of a slider-crank 
mechanism which in an engine represents the cylinder and engine shell, 2 shows the 
crank, 3 illustrates the connecting rod and 4 represents the piston. Also the position of 
the main pin is shown by   .  

To get more tangible effects of changes in parameters    and   it is better to derive 
simpler expressions, however, they become approximate. Using the binomial theorem 
to expand the radical in equation (2.1), equations for position, velocity and 
acceleration become respectively as follows:  ≅  −   4 +   cos  +  4 cos 2                                      (2.4)  ̇ ≅ −   sin  +  2 sin 2                                            (2.5)  ̈ ≅ −    cos  +   cos 2                                           (2.6) 

Note that   is assumed to be constant in deriving the velocity and acceleration 
formulas, therefore there is no angular acceleration ( ) in the system. In this 
particular case the binomial expansion process leads to Fourier series expansion for 
the exact expressions of displacement, velocity and acceleration. Here we dropped the 
fourth, sixth and subsequent power terms of the binomial expansion because the error 
is less than one percent (for detailed information refer to [3, 4]). 

There are several sources of dynamic excitation in the engine, namely forces and 
torques that ensue from explosive gas forces in the cylinder and inertia forces and 
torques which are due to the high speed motion of elements in the engine, specifically 



CHALMERS, Applied Mechanics, Master’s Thesis 2012:39 
8

pistons, cranks and conrods. Superposition of these forces and torques result in total 
force and torque of the engine. Here each of the components is analysed separately. 

 

2.2 Gas Force and Gas Torque 
2.2.1 Single Cylinder 
The gas pressure which results from the exploding air-fuel mixture on top of the 
piston surface results in gas force. Considering piston area as   ,    gas pressure and 
bore of cylinder as  , the gas pressure in the direction of the X-axis in figure 2.2 
becomes:   = − 4                                                                      (2.7) 

The gas torque which is due to the gas force acting at a moment arm about the crank 
center (main pin)    in figure 2.2 finally after some manipulations becomes:   ≅    sin   1 +   cos                                                 (2.8) 

Note that the equation above is an approximation and is obtained by neglecting terms 
of crank/conrod ratio (  ) higher than one. Consider that the friction is neglected also. 
For more detailed equations refer to [3]. 

 

 
Figure 2.2 Four-bar slider-crank linkage as a schematic design of a single 
cylinder 
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2.2.2 Multi-cylinder Engine 
By summing the contributions of   cylinders and every single phase-shifted by its 
power stroke angle we have the gas force for all cylinders as:      ≅      sin(  −  )  1 +   cos(  −   )   

                        (2.9) 

Where    is the power stroke angle for cylinder   and   is the number of cylinders. 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 shows forces acting on the ground plane associated with the gas force. The 
force    is the gas force which acts on the cylinder and      is the force of the gas 
pressure acting on the surface of the piston perpendicular to the cylinder. Also the 
forces        and        are reaction forces on the main pin resulted from the gas 
pressure in the cylinder acting on the surface of the piston. (For more details refer to 
[3]).   

 

 

Figure 2.3 Gas force analysis of a single cylinder at ground plane 
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2.3 Inertia Force and Shaking Force 
2.3.1 Single Cylinder 
In order to develop expressions for the inertia forces and torques which are due to the 
accelerations of elements in the engine, the slider-crank mechanism is simplified as a 
lumped mass model. The mentioned lumped mass model is as below: 

 

 
Figure 2.4 Lumped mass dynamic model of a single cylinder 

             . ∶          ℎ                               ℎ                               . ∶           ℎ                               ℎ                          .  ∶                              ℎ                
 

 

(In order to understand how these lumped masses are created refer to [3]). 
Presumptively 1 3  of the mass of connecting rod plus the mass of piston, piston pin 
and piston rings constitute reciprocating mass (  ) while 2 3  of connecting rod plus 
crankpin form the rotational mass (  ). 
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By using this lumped mass model the sum of inertia forces at points   and   construct 
the total inertia force as:    = −    −                                                         (2.10) 
Using equation (2.6) and considering that the acceleration of the piston is only in the 
X-direction this total force can be broken up into X and Y components (see figure 2.5):     ≅ −  (−   cos   )   −   [−   (cos   +   cos 2  )]              (2.11)    ≅ −  (−   sin   )                                             (2.12) 

Note that the equations above are derived based on steady-state conditions so that 
there is no angular acceleration in the system, in other words the crank velocity   is 
held constant. 

 
Figure 2.5 Analysis of inertia forces at ground plane for a single cylinder 

 

Equations (2.11) and (2.12) are also defined as shaking forces with opposite sign 
(see figure 2.5) which are the sum of all forces acting on the ground plane which is 
here the engine compartment. It is noteworthy that the gas force does not contribute to 
shaking forces, because it will cancel within the mechanism according to figure 2.3; 
put differently only external and inertia forces contribute to shaking forces [3]. 

Consider that the inertia force      which is the force of piston acting on the cylinder 
wall is cancelled within the mechanism; therefore it is not included in shaking forces. 
This inertia force always exists except at TDC (Top Dead Centre) and BDC (Bottom 
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Dead Centre) positions of the piston. Again friction has been ignored in the above 
considerations. 

2.3.2 Multi-cylinder Engine 
For an inline multi-cylinder engine with balanced crank the shaking force is:    ≅        cos(  −   ) +   cos 2(  −   )  

                          (2.13) 

Where   is the number of cylinders and  is the phase angle which is zero for cylinder 
1, i.e.   = 0. 
Recall that the expression above is approximate in that all harmonics above the 
second are dropped. 
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2.4 Inertia Torque, Shaking Torque and Moment 
2.4.1 Single Cylinder 
2.4.1.1 Inertia and Shaking Torque 
Inertia forces acting at a moment arm contribute to the inertia torque. Again ignoring 
friction and assuming that   is constant, mass   in figure 2.4 will not result in an 
inertia torque; because of the two components which act at point , one is radial which 
has no moment arm and the other which is tangential includes angular acceleration 
that is zero in this case. On the contrary, the inertia force at point   creates a couple 
with a force equal but with opposite sign at point   , which their moment arm is the 
instantaneous position of the piston ( ) , according to figure 2.5 this inertia torque is:     =     .                                                                     (2.14) 
Finally after some manipulations it becomes:      ≅ 12       (  2 sin   − sin 2  − 3 2 sin 3  )                        (2.15)  
The inertia torque is equal to the shaking torque and its average value is always zero. 
Thus it does not affect the driving torque and the only thing it does is increasing the 
vibration in the system as it creates positive and negative oscillations in the total 
torque. The effects of the inertia torque or the shaking torque can be reduced or 
eliminated by proper arrangement of the cylinders in a multi-cylinder engine. 

 

2.4.2 Multi-cylinder Engine 
2.4.2.1 Inertia Torque 
For an inline multi-cylinder engine with balanced crank the inertia torque is:            ≅ 12          2 sin(  − ∅ )                                

   − sin 2(  − ∅ ) − 3 2 sin 3(  − ∅ )                                            (2.16) 

As is mentioned before this detrimental torque is not affecting the net driving torque 
and can be reduced or almost eliminated by proper choice of phase angle and with a 
sufficient flywheel; nevertheless it exists within the crankshaft and if the crankshaft is 
not designed properly it can lead to fatigue failure. [3] 

2.4.2.2 Shaking Moment 
 Contrary to the single cylinder which is located in a single plane and is statically 
balanced, in multi-cylinder engines due to three dimension system and having several 
cylinders in different planes along the crankshaft and perpendicular to it, we cannot 
have static balance. Although we may have shaking forces cancelled, there is 
unbalanced moments in the engine block`s plane. These harmful moments together 
can be cancelled to some extend by proper phase angle; however, changing phase 
angle may influence the effect of shaking torques and shaking forces. Therefore a 
good trend must be implemented to have the least effect of them; in other words there 
should be compensation to have the best design. Reader may refer to [3, 4] for further 
information.  
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2.5 Total Engine Torque 
The sum of the inertia torque and the gas torque constitutes the total engine torque. 
Consider that the contribution of each of these depends on the speed of the engine, so 
that the gas torque comparing to inertia torque is less sensitive to speed and is 
dominant at low speed. Therefore at low engine speeds, the inertia torque, which is 
the dominating portion of the total engine torque at high speeds, can be neglected. 

2.6 Flywheel 
Flywheels are parts which can store rotational energy. They display big inertia that is 
resistance against any change in its state of motion. These rotational mechanical 
devices are used mainly in reciprocating engines. Because the energy source is not 
continuous in time, therefore utilizing these mechanical devices can significantly 
reduce large oscillations in the torque-time function thereby provide continuous 
energy. [3, 13]   

Nowadays two types of flywheels are used in the industry: 

• Conventional Flywheel 
• Dual Mass Flywheel 

 A conventional flywheel (CF) usually consists of a single flat disk and a Dual-Mass 
Flywheel (DMF) consists of two sections, primary mass and secondary mass. These 
masses are connected to each other in a way so that they can move with respect to 
other to a certain degree. Each type is bolted at one side to the crankshaft; in DMF the 
primary mass, and the other side is bolted to the clutch; in DMF the secondary mass. 

2.6.1 Advantages of DMF over CF 
1. Having two different masses; two different sections, isolates vibration in the 

crankshaft from passing on to the second mass to some extent. Thereby 
preventing undesirable vibrations in the gear box, thereupon preventing gear 
rattle 

2. Immediate react to increased load amplitude 
3. Due to the existence of a medium in DMF, between primary and secondary 

mass; and configuration of throttle geometry DMF can be adapted to different 
requirements better than CFs 

Important effects of DMFs can be stated as: 

1. Reduce booming noise and gear rattle by introducing torsion damper  
2. Lower fuel consumption by allowing lower engine idle speed 
3. Avoid engine and transmission vibration system`s resonance speed by 

shifting it to below the idle speed  
4. Protect transmission components by reducing engine irregularity and 

reduction of primary mass compared to one integrated flywheel 

Note that such a DMF with maximum effect is highly non-linear. [7, 8, 9] 

 



CHALMERS, Applied Mechanics, Master’s Thesis 2012:39 15 

2.7 Multi-cylinder Engine Designs 
There are several configurations for multi-cylinder engines, namely “INLINE 
Engines”, “VEE Engines”, “ROTARY Engines”, “OPPOSED Engines” and 
“RADIAL Engines”. From all these arrangements “INLINE Engines” is the most 
common and simplest; the engine under consideration in this thesis is also of this type. 
In this arrangement as can be deduced from its name all cylinders are in a common 
plane. This arrangement gives the simplest way to alleviate unbalancing and shaking 
forces in the engine. [9] 
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3 Analysis of powertrain mounting system 
In the current approach on behalf of simplicity, the mounting system is considered as 
a one degree of freedom rotational system, consisting of one torsional spring and an 
inertia representing the mounting and the engine, respectively. However, the original 
system is comprised of five mounts with three in front and two at the rear of the 
engine, the mentioned approach can satisfy our goal with nearly the same precision as 
the original system.  

The objective which is laid out in this approach is to find appropriate stiffness for 
mounts that can assure the following requirements: 

• Avoid resonance at low speeds 
• Stand engine weight 
• Avoid engine bouncing     

 

It is noteworthy that noise and vibration, which are adverse phenomena in the engine 
system, enforce mounts to have conflicting characteristics for their best isolation 
performance [1]. So that to isolate noise and forces transmitted by the engine to the 
vehicle structure, lower stiffness and damping is desired; on the contrary at lower 
speeds, typically idle speed, to isolate road induced vibrations, higher stiffness and 
damping is required. Care should be taken that reducing the mounting stiffness below 
a certain value will lead to rigid body motion in the model. This means that the 
mounts cannot fulfil their very first task that is to carry the engine load and restrict the 
relative motion of it, particularly bouncing [6]. 

In this thesis due to considering down-speeding effects on engine compartment, only 
vibration is taken into account which is the dominant consequence of this approach. 
The system under consideration consists of only one mount and the engine, which is 
assumed that behaviour of the mount dynamic characteristics, stiffness and damping, 
are linear; also presumed that the mount is massless.  

As was mentioned the system under consideration is a 1 DOF system; therefore the 
governing equation for motion is as follows:  

   ̈ +   ̇ +   =  ( )                                                    (3.1) 

 

Where: 

 I ∶                   (    )  

 C ∶                     (   /   )  K ∶           (  /   )  T ∶                      ℎ        (  )  φ ∶                 ℎ        (   )  

In this case "I" is the inertia of the engine which is 103 kgm  and the external torque 
is the engine torque which is sum of a static torque and a harmonic one:  ( ) =     +    sin(3  )                                              (3.2) 
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Notice that however the engine angular speed is   but in equation (3.2) "3 " is used 
which is called 3rd order of sinusoidal term, this is because of the number of cylinders 
that have power stroke at each revolute of the crankshaft i.e. frequency of the 
excitation depends on half of the number of cylinders of the engine. By this definition 
an engine with 4 cylinders has an excitation frequency of 2nd order and an 8 cylinder 
engine has an excitation of 4th order. 

Solution of (3.1) comprises two parts: Complementary function which is the solution 
of homogenous equation and particular integral.   =      +                                                               (3.3) 
 In this case complementary function is free damped vibration:   ̈ +   ̇ +   = 0                                                             (3) 
General solution to equation (3) is given by:     =               (   )    +       (   )                                 (3.4) " " and " " are constants which are defined by initial conditions. 
Statements under the radical can be positive, zero or negative. Based on mentioned 
cases three dynamic situations will happen: over-damped, critical damped or under-
damped, respectively. 

In this approach the under-damped case is studied which is the case where  < 1 then 
the equation (3.4) can be written in the form:     =                (    +          (                             (3.5) 

Since    = 2                                                                 (3.6)    =                                                                     (3.7) 

This finally after some manipulations leads to the following equation including initial 
conditions:     =          ̇(0) +     (0)   1 −    +  sin      1 −    

+    (0)cos      1 −                                                                       (3.8) 

 

This equation shows that the damped oscillation frequency is:    =  2   =     1 −                                                (3.9) 

(The reader may refer to [1, 2] for detailed information). 

The particular solution of equation (3.1) with harmonic excitation, T, is a steady-state 
oscillation with frequency   equal to the excitation frequency. It can be assumed that 
the solution is: 
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     =   sin (  −  )                                                 (3.10)   is the amplitude of oscillation and   is the phase angle with respect to the excitation 
torque. 

Amplitude and phase angle in the previous equation can be derived by inserting 
equation (3.10) into (9):  =     ( −     ) + (  )                                          (3.11) 

and  =  tan     −                                                  (3.12) 

 

 

Using equations (3.6) and (3.7) the amplitude and phase angle may be written in the 
form below: 

      =  1  1 −          +  2         
                               (3.13) 

and 

tan = 2      1 −                                                   (3.14) 

Equations (3.13) and (3.14) are called the non-dimensional amplitude and phase 
angle, respectively. 

Finally by inserting (3.11) in form of (3.13) into (3.10) the particular solution of (3.1) 
can be written: 

      =    sin (  −  )  1 −          +  2         
                         (3.15) 

 

Thus the total solution becomes: 
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 =    sin(  −  )  1 −          +  2         +         ̇(0) +     (0)   1 −    +  sin      1 −    
+    (0)cos      1 −                                                                     (3.16) 

 

According to vibration analysis principles when the natural frequency of the system is 
equivalent to the excitation frequency we will have resonance in our system [1, 2] 
which is undesirable. Therefore avoiding this destructive phenomenon is our priority 
in this section of the thesis work. 

Based on criteria when the natural frequency is lower than the excitation frequency 
divided by the square root of two, that zone is safe and far from the resonance as 
follows [1, 2]: 3   >  √2                                                              (3.17) 

   =                                                                (3.18) 

In other words equations (3.17) and (3.18) guarantee that the non-dimensional 
amplitude (3.13) is smaller than 1. 

Here natural frequency is the undamped natural frequency which makes the analysis 
conservative according to following relation between damped and undamped natural 
frequency:    =     1 −          →          <           →    3   >  √2                   (3.19) 

The above criteria together with the limitation for damping factor which is 10% of 
critical damping are constructing our strategy to gain mounting system applicable for 
down-speeding.  
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4 Solving Strategy 
Equation (3.1) can be written in the following form:  

   ̈ + 2    ̇ +     =  ( )/                                               (4.1) 

This form of the momentum equation shows its dependency on the natural frequency. 

A starting value for the stiffness is obtained at 600 rpm engine speed which is 
equivalent to 10 Hz engine frequency and consequently 30 Hz of excitation 
frequency. At this speed the stiffness is “1.830×106 Nm/rad”.  

Thus the analysis is performed by lowering the stiffness from its starting value and 
verifying whether the corresponding natural frequency is bounded within our safe 
zone or not. Each safe zone is defined regarding the designated engine speed to the 
system, in other words at each speed the frequency of excitation torque will change, 
accordingly care should be taken to always have equation (3.17) true. 

Five different engine speeds is considered according to the following table: 

 

Table 4.1 Engine speed range under consideration for analysis of the mounting 
system 

Engine speed (Rpm) 480 540 600 800 1000 

Engine Frequency (Hz) 8 9 10 13.333 16.666 

Safe zone’s lower bound (Hz) 16.97 19.09 21.21 28.28 35.35 

 
Again notice that the engine frequency is different from the excitation frequency 
which is three times the engine frequency. 
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4.1 Bouncing 
Another criterion in decreasing mounting stiffness is bouncing which particular care 
must be taken to avoid. If the stiffness of the mounts becomes too low, the engine 
could hit the cabin or may even bounce, hence static displacement must be measured 
to guarantee dynamic characteristic of the mounts. Static displacement is the ratio of 
static torque to stiffness.   =                                                                       (4.2) 

Table 4.2 ensures that the designated stiffness is in-bound and acceptable.  
 

Table 4.2 Static displacement, stiffness and natural frequency of the mounting 
system 

Natural Frequency    (Hz) 

Stiffness 

K (Nm/rad) 

Static Displacement 
(Degree) 

21.213 1.830×106 3.860×10-2 

20.676 1.740×106 3.955×10-2 

20.125 1.647×106 4.175×10-2 

19.558 1.555×106 4.420×10-2 

18.974 1.464×106 4.697×10-2 

18.371 1.372×106 5.010×10-2 

17.748 1.281×106 5.368×10-2 

17.103 1.190×106 5.781×10-2 

16.432 1.098×106 6.262×10-2 

15.732 1.006×106 6.832×10-2 

15.000 9.150×105 7.515×10-2 

14.230 8.234×105 8.350×10-2 

 

 

Considering the mentioned criteria, the engine span and based on the table 4.1 results 
was obtained for engine deflection at each speed and related stiffness and natural 
frequency of the system which is tabulated below: 
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Table 4.3 Deflection of the mounting system at different engine speed and 
stiffness 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The boxes marked by “x” in table (4.3) indicate that the designated stiffness for the 
mounting system at those speeds is unacceptable and out-of-bound. 

 

Radial 
Frequency ω  (rad/s) 

Natural 
Frequency    (Hz) 

Stiffness 

K 
(Nm/rad) 

Engine Speed Spam under Consideration 
(Hz) 

8 9 10 13.333 16.666 

 Deflection (Degree) 

1.333×102 21.213 1.830×106 x x x 0.0138 0.0082 

1.299×102 20.676 1.740×106 x x 0.0346 0.0136 0.0081 

1.264×102 20.125 1.647×106 x x 0.0331 0.0133 0.008 

1.229×102 19.558 1.555×106 x x 0.0317 0.0131 0.008 

1.192×102 18.974 1.464×106 x 0.0442 0.0305 0.0129 0.0079 

1.154×102 18.371 1.372×106 x 0.0419 0.0293 0.0127 0.0078 

1.115×102 17.748 1.281×106 x 0.0398 0.0282 0.0124 0.0077 

1.075×102 17.103 1.190×106 x 0.0379 0.0272 0.0122 0.0076 

1.032×102 16.432 1.098×106 0.0534 0.0362 0.0262 0.012 0.0076 

9.885×101 15.732 1.006×106 0.0501 0.0346 0.0254 0.0119 0.0075 

9.425×101 15.000 9.150×105 0.0471 0.0331 0.0246 0.0117 0.0074 

8.941×102 14.230 8.234×105 0.0444 0.0318 0.0239 0.0115 0.0073 
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5 Torsional vibrations analysis of powertrain 
The purpose of analysing torsional vibrations of the powertrain is to get the least noise 
transferred to the cabin, protect transmission components by reducing engine 
irregularity and prevent gear rattle in the gear box.  

Analysis of the powertrain is performed for two configurations: 

1. Conventional Flywheel (CF) 
2. Dual Mass Flywheel (DMF) 

For the sake of simplicity the modelling system is considered as 2-DOF and 3-DOF, 
respectively. However the complete powertrain model is more complicated than the 
considered types; due to insignificant difference, it is acceptable to use the mentioned 
models. The complete model can be shown as below:  

 

 

 
 

 
Notice that due to gear ratios in the gear box and differential it is difficult to solve the 
system of equations in this model. Therefore to solve such a model one should 
transform inertia and dynamic characteristics to the prior side of the gear sets. The 
schematic model which is shown below helps to accomplish this target: 

 

 

 

Figure 5.1 Schematic design of full powertrain torsional model 
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According to above the inertia model, springs and dampers after the gear set 1 and 2 
transformed based on the gear ratio" ". It means that in order to have them at the left 
side of the gear set, they should be multiplied by the squared inverse of gear ratio. 
Eventually the simplified model without gear ratios is obtained: 

 

 

 
It is obvious that with the gear ratio higher than one, inertia, spring and dampers 
become smaller compared to the previous quantity and with a gear ratio lower than 1, 
they become greater than the original quantity.  

In all the following approaches, analyses are done based on the assumption that the 
crankshaft is sufficiently rigid so that all the torque is transformed to its subsequent 
component; thus no loss occurs. 

 

 

 

 

Figure 5.3 Schematic design of full powertrain model with integrating gear sets 

Figure 5.2 Transferring methods for inertia, springs and dampers 
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5.1 Conventional Flywheel 
In this approach the engine, flywheel and clutch are considered as a single inertia 
(rotational mass) and also the gear box and its housing. The scheme of this approach 
is as below: 

 

 

 
In figure 4.4   and    are the stiffness and damping characteristics of the clutch and    and    are the stiffness and damping characteristics of the driveshaft (prop-shaft). 

In such a system we have two eigenvalues and therefore two natural frequencies. Here 
in contrary to the mounting system avoiding resonance is only the objective at the first 
vibration mode of the system, so that with adequate damping we can diminish 
negative effects of the resonance at the second mode. The reason to avoid only the 
fundamental mode can be described by the amplitude of the deflection and 
infeasibility; i.e. at higher modes which can be stated as higher frequencies the 
amplitude of the deflection is lower, therefore neutralizing resonance becomes 
possible by means of appropriate damping. Also the latter indicates that avoiding the 
second resonance is almost impossible since the dynamic characteristics of inertia are 
coupled. That is, changing stiffness properties of inertia will affect each natural 
frequency so the system is restricted to have one natural frequency out of excitation 
domain at the same time. Thus according to the above statements preventing first 
resonance is prior to the second one. 

 

In this section the inertia of the system (inertia 1 as overall inertia of the engine, 
flywheel and clutch and inertia 2 as inertia of the gear box) with three configurations 
for dynamic characteristics in a wider range of engine speed has been considered. The 
damping ratios ( ) for this system are 15.7 and 3.03 percent of critical damping. At 
each table damping and stiffness characteristics of the clutch and prop-shaft and 
natural frequency of the system are shown. Data for all configurations are tabulated in 
tables 5.1, 5.2 and 5.3: 

 

 

 

Figure 5.4 Schematic design of 2DOF powertrain torsional model 
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Table 5.1 First configuration of the torsional system with CF  

Object Number 1 2 

Inertia (kgm2)  3.97 1.06 

Damping (Nms/rad) 0 36.8 

Stiffness (Nm/rad) 1.70×104 8.20×104 

Natural Frequency (Hz) 9.440 48.838 

 

Table 5.2 Second configuration of the torsional system with CF 

Object Number 1 2 

Inertia (kgm2) 3.97 1.06 

Damping (Nms/rad) 0 36.8 

Stiffness (Nm/rad) 1.70×104 9.00×104 

Natural Frequency (Hz) 9.519 50.742 

 

In this configuration inertia and damping is the same as configuration 1, only prop-
shaft stiffness has changed and is increased to 9.00×104 Nm/rad.  

 

Table 5.3 Third configuration of the torsional system with CF 

Object Number 1 2 

Inertia (kgm2) 3.8 0.4 

Damping (Nms/rad) 0 36.8 

Stiffness (Nm/rad) 1.65×104 1.50×104 

Natural Frequency (Hz) 7.132 45.320 

 

With the data available steady state amplitudes has been obtained with the help of 
MATLAB. Notice that the dimension is in degrees. 

The results for inertia i.e. the engine, flywheel and clutch as inertia 1 and the gear box 
as inertia 2 have been plotted at different configurations for comparison at figures 5.5 
and 5.6.  
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Figure 5.5 Steady state amplitude of deflection at inertia 1 

 
Figure 5.6 Steady state amplitude of deflection at inertia 2 

The horizontal axis in the figures shows the engine speed at different levels in (Hertz) 
and vertical axis is the amplitude of the deflection in (degrees) at steady state. The 
table under each figure depicts the steady state deflection amplitude of the engine at 
each engine speed. 
 

7 8 9 10 14 18 22 26 30
Configuration 1 1.2892 0.9503 0.7348 0.5947 0.3146 0.2101 0.1665 0.1389 0.1192
Configuration 2 1.3626 1.0062 0.7821 0.641 0.3634 0.2549 0.2011 0.1782 0.1623
Configuration 3 1.1387 0.8444 0.6517 0.5201 0.2659 0.1673 0.1089 0.0771 0.0575
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Configuration 1 0.2692 0.2124 0.1774 0.1582 0.1726 0.1124 0.032 0.0196 0.0165
Configuration 2 0.2576 0.201 0.1673 0.1478 0.1433 0.1538 0.0407 0.0267 0.0229
Configuration 3 0.7511 0.6036 0.5138 0.4605 0.4228 0.1442 0.0446 0.019 0.0096
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Figure 5.7 depicts steady state torque amplitude of the input shaft versus the engine 
speed. Also the table beneath this figure shows torque amplitude values at different 
configurations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7 8 9 10 14 18 22 26 30
Configuration 1 382.51 281.96 218.03 176.45 93.336 62.337 49.395 41.224 35.367
Configuration 2 404.29 298.55 232.06 190.2 107.82 75.644 59.672 52.884 48.143
Configuration 3 327.9 243.2 187.7 149.8 76.6 48.2 31.4 22.2 16.6
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Figure 5.7 Steady state amplitude of input shaft`s torque 
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5.2 Dual Mass Flywheel 
This approach is considered as a 3-DOF model in which the engine and primary 
flywheel construct the first inertia, the secondary flywheel and the clutch create the 
other inertia and the gear box and its housing is considered as the last inertia. The 
scheme of this approach is as below: 

 

 

 
In such a system we have three eigenvalues. Similar to the system with conventional 
flywheel, in this system only the first resonance is prevented and the other two must 
be damped, but unlike the previous system it is feasible to shift the second and third 
resonance outside the engine`s excitation frequency span, although the production 
costs may not be justified.   

 
In this section, as in section 5.1, the three configurations for dynamic characteristics 
in a wider range of the engine speed have been considered for all inertia. The damping 
factors for this system are 6.79, 12.95 and 3.16 percent of critical damping. Data for 
all configurations have been tabulated in tables 5.4, 5.5 and 5.6: 

 

Table 5.4 First configuration of the torsional system with DMF 

 

 
 

 

Object Number 1 2 3 

Inertia (kgm2) 1.8 0.6 0.5 

Damping (Nms/rad) 30 0 36.8 

Stiffness (Nm/rad) 2.00×104 1.10×104 3.50×104 

Natural Frequency (Hz) 8.370 35.970 50.564 

Figure 5.8 Schematic design of 3DOF powertrain torsional model 
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Table 5.5 Second configuration of the torsional system with DMF 

Object Number 1 2 3 

Inertia (kgm2) 1.8 0.6 1.1 

Damping (Nms/rad) 30 0 36.8 

Stiffness (Nm/rad) 1.50×104 1.90×104 7.50×104 

Natural Frequency (Hz) 9.835 34.705 50.099 

 

 

Table 5.6 Third configuration of the torsional system with DMF 

Object Number 1 2 3 

Inertia (kgm2) 2.2 0.5 0.9 

Damping (Nms/rad) 30 0 36.8 

Stiffness (Nm/rad) 1.50×104 2.50×104 7.00×104 

Natural Frequency (Hz) 9.499 37.690 57.984 

 

With the same procedure that has been taken for the conventional flywheel, section 
5.1; results were obtained for Dual Mass Flywheel. 

The results for all inertia i.e. engine and primary flywheel as inertia 1, secondary 
flywheel and clutch as inertia 2 and gear box as inertia 3 have been plotted at different 
configurations for comparison in figures 5.9 to 5.11. Again the horizontal axis shows 
the engine speed at different levels in Hertz and the vertical axis is the amplitude of 
deflection at steady state in degrees. The table under each figure depicts the steady 
state deflection amplitude of the engine at each engine speed. 
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Figure 5.9 Steady state amplitude of deflection at inertia 1 

 

 
Figure 5.10 Steady state amplitude of deflection at inertia 2 

 

7 8 9 10 14 18 22 26 30
Configuration 1 2.0034 1.3975 1.0001 0.7347 0.6475 0.3695 0.2381 0.1664 0.1235
Configuration 2 2.4264 1.6864 1.2102 0.8819 0.614 0.353 0.2326 0.1638 0.1224
Configuration 3 2.0922 1.4914 1.1117 0.8497 0.4777 0.2798 0.1875 0.1333 0.0994
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7 8 9 10 14 18 22 26 30
Configuration 1 2.2803 1.9297 1.7768 1.7507 0.6472 0.2264 0.0793 0.0367 0.0202
Configuration 2 1.9577 1.6571 1.5481 1.576 0.3601 0.221 0.0679 0.0316 0.0176
Configuration 3 1.3603 1.1151 0.9969 0.9628 0.4453 0.1138 0.0932 0.0366 0.0191
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Figure 5.11 Steady state amplitude of deflection at inertia 3 

 
Figure 5.12 Steady state amplitude of input shaft`s torque 

The steady state torque amplitude of the input shaft at the engine speed under 
consideration has been plotted in figure 5.12.  

Similar to figure (5.7) in section 5.1, the vertical axis in figure 5.12 represents the 
torque amplitude in Nm and the vertical axis demonstrates the engine speed frequency 
from 7 Hz to 30 Hz equivalent to 420 rpm and 2100 rpm of the crankshaft speed, 
respectively. Also table beneath this figure shows torque amplitude values at different 
configurations for each speed.  

7 8 9 10 14 18 22 26 30
Configuration 1 0.6671 0.6058 0.6067 0.662 0.4804 0.1465 0.0204 0.0053 0.0019
Configuration 2 0.4959 0.4547 0.4686 0.5403 0.3432 0.1204 0.0133 0.0035 0.0013
Configuration 3 0.4278 0.3734 0.3592 0.3795 0.3292 0.1877 0.0379 0.0074 0.0025
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7 8 9 10 14 18 22 26 30
Configuration 1 311.3 256.7 228.1 214.3 81.5 65.9 18.9 8.1 4.2
Configuration 2 485.2 399.2 358 345.2 58.9 111.5 27 11.6 6.3
Configuration 3 407.3 324.8 279.3 256 69.8 117.4 57 19.2 9.4
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6 Comparison 
6.1 Conventional Flywheel 
6.1.1 Inertia 1 
Figure 4.5 demonstrates that configuration 3 has the lowest deflection among all 
configurations. It also shows that configuration 2 has the highest deflection. By 
studying the results one could deduce that the deflection at each configuration follow 
the same pattern and decrease with increasing engine speed (frequency). This is 
because the system stiffness and damping has been held constant during different 
engine frequencies. 

6.1.2 Inertia 2 
The deflection for the second inertia shows a completely different manner in 
comparison to the first inertia. Here configuration 3 has the highest deflection 
configurations 1 and 2 almost follow the same decreasing pattern with increasing 
engine frequency, but here configuration 2 has the lowest deflection till 18 Hz of the 
engine frequency. From 22 Hz to 30 Hz all configurations nearly have the same 
deflection and only differ by a few thousandth of a degree. 

6.1.3 Torque 
 The steady state amplitude of the input shaft`s torque has the same pattern as figure 
4.5. Again configuration 3 has the lowest torque and configuration 2 has the highest; 
and also the torque decrease by increasing the engine frequency. 

As mentioned because deflection of the second inertia (gear box) has the first priority 
in designing the torsional system under consideration; the goal is to reduce 
oscillations in the gear box and subsequently avoid gear rattle. Therefore 
configurations 1 and 2 are the best choices but considering the torque amplitude 
configuration 2 is the desired one overall. 

6.2 Dual-Mass Flywheel 
6.2.1 Inertia 1 
The steady state amplitude of deflection at inertia 1 in DMF system has quite the same 
pattern as inertia 1 in CF system. Here the second configuration has the highest 
deflection till 14 Hz. In this system, configuration 1 has the lowest deflection till 10 
Hz but from 14 Hz configuration 3 becomes the lowest.  

6.2.2 Inertia 2 
At the first 4 engine frequencies (7 to 10 Hz) configuration 3 is the one that have the 
lowest deflection. At this time a sudden decrease in the slope can be seen from 10 Hz 
to 14 Hz which is due to the existence of the damping. 

  

6.2.3 Inertia 3 
Similar to the second inertia configuration 3 has the lowest deflection but this time for 
the first 5 engine frequencies. Again a sudden decrease is visible in the deflection 
diagram at 10 Hz. 
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6.2.4 Torque 
In the DMF system steady state torque amplitude at configuration 1 has the lowest 
value and configuration 2 in the middle of configuration 1 and 3. Also a sudden 
decrease in amplitude is obvious similar to the change in deflection part of inertia 2 
and 3. 

Overall configuration 3 is the one chosen. However torque amplitude of the third 
configuration is not the lowest one but its amplitude of deflection is lower than the 
other configurations at inertia 2 and 3 and as was mentioned previously decreasing 
oscillations at the gear box is the utmost priority. 

Notice that all of the sudden decreases in the slope of the indicated diagrams and also 
irregularities in the decreasing pattern of the deflection and torque amplitude may be 
due to the linear assumption of dynamic characteristics in the system; clearly it shows 
that to get the best effect and higher efficiency non-linear characteristics should be 
taken for stiffness and damping. 
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7  Conclusion and further research 
recommendations 

 

This thesis investigates whether it is possible to lower the engine speed (down-
speeding) in order to reduce fuel consumption therefore less CO2 emissions. It is seen 
that DMF shows better results and facilitate the motion of inertia. The comparison of 
deflection at the gear box shows that there is a substantial improvement in DMFs, 
which are about 43% lower deflection and consequently less noise and gear rattle.  

The data is acquired by assuming the mounting system as 1-DOF system, which has 
only one cushion instead of 5. Furthermore the torsional system has been analysed 
only through the engine and the gear box and the rest of the powertrain has been 
neglected. These assumptions give satisfying results for studying torsional system due 
to the fact that practically the torque amplitude after gear box (prop-shaft) is zero. 
Thus it will not affect the vibration of the system significantly. In order to get more 
accurate results it may suggest using non-linear mounting characteristics and consider 
the complete model of both the powertrain and the engine mounts. 

As a final point it is concluded that the presented method gives satisfying results for 
studying the vibration of the powertrain system.  
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