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Abstract 
The purpose of this project was to investigate if participatory design is suitable when 

designing for expert users. The project was executed at Findwise, a company that works in 

the field of enterprise search. The design for an administrator interface for Hydra, a tool that 

manages document processing pipelines intended for in-house usage, was developed. 

The future users of Hydra were highly involved in the design process to take advantage of 

their knowledge and experience. At first their current work situation was analyzed by 

interviews and observations. Then ideas for the new interface were generated during 

participatory workshops. The best ideas were then translated in to sketches and prototypes 

that were tested and evaluated through paper prototyping and discussions in iterations. The 

work resulted in a list of requirements for the interface and a design proposal in the shape of 

wireframes that was intended to meet these requirements. It turned out that the design 

ideas the users liked the most were transparent and very close to the implementation model 

of Hydra, which follows the guidelines for design for experts. 

During the development the users expressed valuable ideas and gave input that a person 

without their experience would not have been able to provide. Most of the users found it 

hard to discuss innovative ideas since they tended to focus on implementation matters, 

which sometimes inhibited the creativity. This indicates that a participatory design approach 

did contribute to a good design, but the structure of the participatory activities must 

encourage the creativity if more innovative solutions should be developed by expert users. 

Based on the feedback from the users and stakeholders regarding the final design, they are 

satisfied with the result. To establish this, the interface has to be further developed into a 

prototype that handles real data and then be tested in an actual work situation. 
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1 Introduction 
This chapter describes the goals and focus areas of this project. 

1.1 Aim 
The goal of this project was to design an administrator interface for a pipeline administrator 
tool named Hydra, using user centered and participatory design methods. 

In order to create a design suitable for the users, pipeline administrators at the company 
Findwise, their needs and desires were captured. The interface was then designed with the 
goal to satisfy the users by fulfilling these requirements. 

1.2 Research Question 
 Is participatory design a suitable design method when working with expert users? 

1.3 Limitations 

1.3.1 Focus on the Design Process 

This work did not result in any functional implementation of the interface. Instead the focus 
was set on the design process and exploration of how it can be adapted to design for expert 
users. The reason for this was that the actual users of the system were available to 
participate in the design process, which created an opportunity to examine if participatory 
design was a suitable method when working with expert users. 

1.3.2 Solid Concept Rather Than Details 

The goal of this work was not to create a detailed description of the interface design but 
instead work out a solid concept in cooperation with the future users. The design was 
supposed to include the main layout, a good way to visualize the non-linear pipelines, an 
efficient way to interact with the interface as well as new functionality to help the users 
perform their work in a more effective way.  

Since the result of this work from Findwise’s point of view will be seen as a suggestion for 
how to solve problems discovered, a well-defined concept with motivations would be of 
higher value than detailed descriptions of every element of the interface and every possible 
interaction put together without any deeper reflection. 

1.3.3 Innovation versus a Realizable Solution 

At the beginning of this project the Hydra system was not entirely implemented. The 
foundations of the system, possibility to set up a pipeline with stages and modify their 
configuration, was there but other functionality such as how to set up the domain model 
(see section 2.3) was not yet set. A problem with this was that it could have been the case 
that the parts of the design were going to be incompatible with the final version of Hydra. 
On the other hand there was an opening for exploring different design ideas without being 
restricted by the underlying technology. Therefore the choice was made not to think about 
implementation related problems and design an interface that followed the foundational 
concept of Hydra, but without further restrictions. 
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2 Background 
This chapter describes the company where this project was executed, their field of work, 
technical information about Hydra and its functionality and the administrator interfaces of 
tools used today by the future users of Hydra. 

2.1 Enterprise Search 
This project has been executed at Findwise, a company that works in the field of enterprise 
search. Their aim is to make their customer’s information easily accessible for both 
employees and customers (Findwise.com, 2012). The practice enterprise search can be 
described as making different resources within a company or organization searchable 
(Aiim.org, 2012). Resources can here be databases, intranets, webpages or other digital 
repositories. The following section contains a brief description of the process of making data 
searchable within enterprise search. 

First a content index is created by crawling directories and webpages or extracting 
information from databases and other repositories. The index then contains copies of all the 
documents in the source. Documents can here be e.g. web pages, data base entries, persons, 
events in a calendar or text documents. The content index must be updated when changes 
are made to the resources. When a search engine is connected the content index the 
information within it becomes searchable. A user can then enter a search query into the 
graphical search interface, and the matching results will be presented (see figure 1). 

 

Figure 1: The structure of enterprise search solutions. 

2.2 Document Processing Pipelines 
One way to increase the quality of a search solution is to make it possible for the users to 
narrow their search and use facets for filtering the result. In order to do this metadata has to 
be extracted from the documents of the content index. Metadata can for example be the 
author of a document, the date when it was produced, where it was fetched from or entities 
mentioned in texts like locations, persons or phone numbers.  

The metadata is extracted by running the documents in a content index through something 
called a document processing pipeline. A pipeline consists of a set of stages. Every stage has 
a specific task, for example this can be to extract which section of a web page that a 
document belongs to or to transform the formatting of a text. 

The metadata is written to fields connected to a document. These fields are then used by the 
search engine that matches them to the user’s entered search query. After a document has 
passed through the pipeline the content of the fields are written to the content index. 
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2.3 Hydra 
Findwise is developing a new administrator tool for document processing pipelines called 
Hydra, in order to providing their employees with a customized and more powerful system. 
A fundamental idea behind Hydra, which differs from other tools, is that the development of 
pipelines should be test driven. The users will set up something called a domain model, 
which is a set of rules of how they want their output data to look. Then stages can be added 
to the pipeline and configured in order to make the output match the model. The rules of 
the domain model have to be fulfilled in order to send the documents to the search index. If 
there are documents that don’t fit the model, they will stay in the pipeline until the user has 
fixed the problems. The idea is that this will help to ensure the quality of the indexed data.  

Another thing that is different from existing tools is that the stages of the pipelines don’t 
have to be placed linearly. Instead all stages are running independently and relations 
between stages can be created by adding conditions of what previous actions that are 
required in order for a step to start processing (see figure 2). A document can be processed 
by different stages simultaneously if they are editing different fields. This will make the 
system more powerful since stages can be running on different servers.  

Two types of conditions can be set up to determine if a document should be processed by a 
stage. One is which other stages that must have been processing the document before. The 
other type of condition checks if the document is suitable for the stage. This can be if some 
field in the document exists or not, or if a field contains a specific value or not. 

The stages in a pipeline are independent and have no knowledge of each other. When a 
document has been processed by a stage, that document will be flagged that it has been 
processed by that specific stage. Other stages can then look at the flags of documents to 
determine if they can process them. This means that later stages can have conditions that 
say that another stage must have processed the document before it will run, but a stage 
cannot send a document to another stage. 

 

Figure 2: A linearly structured pipeline to the left, and the pipeline structure of Hydra to the right.  
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2.4 Interfaces of Existing Pipeline Administrator Tools 
This section contains descriptions of the interfaces of two pipeline administrator tools, which 
are the most frequently used ones for building and maintaining pipelines at Findwise today. 

2.4.1 OpenPipeline 

OpenPipeline is an open source tool developed by Dieselpoint Inc (Dieselpoint Inc, 2010). It 
provides functionality for crawling, parsing and analyzing documents for solutions in 
enterprise search. The document processing pipelines are in this tool administrated through 
a web based interface.  

 

Figure 3: The setup view of the OpenPipeline interface. 

When the user wants to create a pipeline he opens the setup view where all available stages 
are shown in the “available” list to the left, and the stages included in the current are shown 
in the “in use” list to the right (see figure 3). Stages are included in or excluded from the 
pipeline by selecting the stage to include or remove and then clicking the arrows in the 
middle of the screen. The stages in the pipeline can be reordered by selecting a stage and 
then press “up” or ”dn”. If the users wants to configure the stages he clicks “next” in the 
bottom right corner of the screen and another view appears (see figure 4), this also saves 
changes made to the pipeline. 
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Figure 4: The configuration view of the OpenPipeline interface. 

Now the stages in the pipeline are shown in a numbered list to the left, which represents the 
order in which they will process the incoming documents (here also called “items”). The 
stages are represented by the name of the class they are instances of, which means that 
stages have the same name if they are the same type of objects. 

The configuration of a stage is opened by pressing “(config)” to the right of the stage in the 
list. It then opens up to the right on the screen and the configuration can be typed into the 
textboxes. To the right of the boxes there are descriptions of what to write in them. Here the 
configuration of “International date normalizer” is open. To save the configuration the user 
clicks “next” in the lower left corner (not visible in this screenshot). 
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2.4.2 FAST ESP 

FAST ESP (Enterprise Search Platform) is developed by FAST, a Microsoft Subsidary 
(Microsoft, 2011). ESP is a development platform for creating indexes of searchable content. 
It contains a web based interface for administrating document processing pipelines.  

 

Figure 5: The setup view of the FAST ESP interface. 

The setup view of ESP is very similar to the one of OpenPipeline (see figure 5). In the column 
to the left all available stages are listed and the right list contains the stages included in the 
current pipeline. The user can add or remove stages from the pipeline by pressing the arrow 
buttons between the columns. The stages in the pipeline can be reordered by selecting a 
stage and move it up or down by using the arrows to the right on the screen. Changes are 
saved by pressing “submit” in the lower right corner of the screen. 
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Figure 6: Lists of stages in the FAST ESP interface. 

In ESP the stages cannot be configured inside the pipeline. Instead the stages are configured 
in a different view containing all available stages. This means that if more than one pipeline 
contains an instance of the same stage, all of them will be affected to changes made to the 
configuration of that stage. 

The list of stages are divided into two sections (see figure 6). The one on top displays all 
preconfigured stages (custom stages) and the lower one contains stages that have not been 
configured (default stages). By pressing the “+” sign to the right of a stage name the user can 
create a new instance of that stage. If an instance of a default stage is created, it will be 
placed among the custom stages. By pressing the icon with a document to the right of the 
names of the custom stages, next to the one with the magnifying glass, the configuration of 
that stage can be changed. 



 8 

 

Figure 7: Configuration view of the FAST ESP interface. 

The configuration will be displayed in another view (see figure 7). Here the configuration of 
an instance of the class “Matcher” is displayed. The user can fill in the desired configuration 
in the text boxes, and also give the instance a specific name. Changes are saved by pressign 
“submit”, or discarded by pressing “cancel”. 
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2.5 Tools 
This section describes the tool used for sketching and prototype development in this project. 

2.5.1 Pencil Project 

Pencil Project is an open source product for creating GUI prototypes (Evolus, 2010). The tool 
makes it possible to create sketches of interfaces quickly, by providing common interface 
elements that can be included and transformed. It is also possible to create custom shapes 
and save them in a special library, which saves a lot of time. Elements can be linked to other 
sketches and exported as html, which provides a very simple way of creating low-fidelity 
prototypes. Figure 8 shows a screenshot of the program. 

 

 Figure 8: The interface of the Pencil GUI prototyping tool.  

2.5.2 Microsoft Lync 

Microsoft Lync is a tool for instant messaging adapted for usage in corporate environments 
(Microsoft, 2010). The tool provides functionality for chats, audio and video conferences for 
a pair or groups of people. Lync is used for internal communication at Findwise. 
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3 Literature Review 
This chapter explains design theories and methodologies as well as related research 
performed on user participation in development processes. 

3.1 Cognitive Frameworks 
When designing an interface it is important to adapt it to the users’ level of experience and 
knowledge. This section describes theoretical frameworks related to this topic. 

3.1.1 Mental Models 

The functionality of a system and how it is interpreted by a user can be described with 
different types of models. The implementation (or target) model of a system describes how it 
actually works, while a mental model is the user’s internal representation of how a system 
works based on previous experience and knowledge (Staggers & Norcio, 1993). A conceptual 
model can also be developed as a tool for helping the user to understand a system. 

In the field of interaction design, one of the tasks assigned to the designer is to create a 
conceptual model that the user can understand (Interaction-Design.org, 2009). If it is well 
executed it should support the development of a correct mental model when the user 
interacts with a system.  

Research has shown that the correctness of a user’s mental model and performance have a 
correlation, especially when it comes to more complex tasks (Staggers & Norcio, 1993). 
Users with a well-developed mental model are more likely to be better problem solvers than 
users with a weaker model, since they can associate symptoms with causes according to 
their model. 

3.1.2 Transparency 

In the field of software design the concept transparency can be described as in what extent 
the user can see, understand and make use of the underlying mechanisms of a system 
(Löwgren & Stolteman, 1998). A system with a low level of transparency can be described as 
a black box, where the user gives the system some kind of input and receives an output 
without knowing what functionality that is hidden within the box. The user must then create 
an own mental model of the relation between input and output. Systems on the other end 
of the transparency scale can instead be seen as boxes of glass, which allows the user to see 
the underlying functionality. The user can then see the actual relationship between input 
and output, and can therefore understand the underlying process. 

For a designer it is important to set a correct level of transparency. A non-transparent design 
is secure and controllable but limits the user’s freedom, while a transparent solution 
provides flexibility but limits the designer’s power of controlling the usage of the design. In 
general a less transparent design is suitable for novice users, who want to learn and get 
quick results, while a more transparent design is better for expert users who demand a 
higher level of precision and level of freedom. 
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3.2 Design Methodologies 

3.2.1 User Centered Design 

In design processes with a user centered approach the users and their goals should be the 
driving force instead of just technology (Sharp, Rogers & Preece, 2007): p 425-429). A design 
should support the users in their activities instead of putting up constraints. 

During the beginning of a process it is important for the designer to develop an 
understanding of the users by exploring their characteristics and how they perform their 
tasks. Usability and user experience goals should be documented and the design should then 
be built to meet the needs of the users. During the development process the design ideas 
should be tested with users in order to measure the goals and to get important feedback.  

The design is often developed in iterations which mean that the result of an evaluation of a 
prototype and new problems discovered during the evaluation are taken into the next 
version of the design. In this way the quality of the design is improved in every iteration, and 
it is assured that it meets the needs of the users. 

3.2.2 Participatory Design 

Design processes can have different levels of user involvement (Sharp, Rogers & Preece, 
2007: p 419-424). In some projects users are included in the design team to work full time as 
a representative for the users, in other processes the user participates through workshops 
and continuous exchange of information. Participatory design is an approach where the 
users are highly involved in the design process. The main idea of the methodology is to let 
the people that are going to use a system to take part of the process of designing it (Schuler 
& Namioka 1993). 

Participatory design has its roots in the late 1960’s Scandinavia (Sharp, Rogers & Preece, 
2007). There were two main factors that lead to development of the methodology. First, 
there was a need for communicating complex system information. Second, the labor union 
movement fought for the worker’s right to democracy and control over their own work 
situation. 

An advantage of including the users in the design development is that the users can provide 
valuable knowledge and experience in a field that can be unfamiliar to the designer 
(Faulkner, 2000). Another benefit is that the users are more likely to feel involved and realize 
that a system is designed for them they are therefore more likely to care about the end 
result (Sharp, Rogers & Preece, 2007). Participation creates a sense of ownership so that the 
users are more likely to accept a new design when it is released. It also keeps the users’ 
expectations at a realistic level, since they can follow the development from an early stage. 

An objection against user involvement, especially in projects with shorter time-scales, is that 
it takes time to organize and manage it (Sharp, Rogers & Preece, 2007). This time could 
instead have been spent on development. Another risk is that a user that has been involved 
in the process for too long is being accustomed to the situation and loses the ability to be 
representative for the other users. This can be avoided by alternating between different user 
representatives. 
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3.3 Design Methods 
These design methods were used in order to collect information about users, their activities, 
similar existing systems and the implementation of Hydra as well as during the development 
and evaluation of the interface.  

3.3.1 User Interviews 

An interview is a form of qualitative research that can help the designer to understand 
otherwise complex situations (Cooper et al, 2007). Interviewing users can provide valuable 
information about their attitudes, behavior and skills as well as information about their 
relation to existing systems. In a development process it can help the designer to identify the 
users’ goals and problems encountered in their current way of solving the tasks as well as 
understanding their mental model of the activities. This will help the designer to make 
informed decisions and develop a design based on research results instead of personal 
preferences. 

3.3.2 Stakeholder Interviews 

When developing a design solution it is important to understand the material there is to 
work with, its limitations and opportunities (Cooper et al, 2007). The research for a new 
product should start by defining the goal for why it is developed. A stakeholder is here 
someone with authority who is responsible for the product. 

Interviews with stakeholders are held to capture the vision of a product, which must be 
incorporated with the vision of users and customers. The budget and schedule must be 
explained in order to choose a feasible design method and to set the bar at a reasonable 
level. An understanding of the technical constraints and opportunities helps to steer the 
design in the right direction. It is also important to specify the business goals, why the 
product is being developed. 

These interviews helps the designer to create a product that is not only adapted for the 
users, but also meets the expectations and demands of the company. It is important that all 
people involved believes in a developed solution. They should preferably be asked for their 
opinions early in the process, otherwise there is a risk that the input arrives as critique later 
on in the process. 

3.3.3 Unstructured Interviews 

In unstructured interviews the questions asked are open ended, which means that the 
interviewer cannot expect answers on a certain form (Sharp, Rogers & Preece, 2007). The 
benefit of this method is that the interview is more likely to go into the depth of a topic, 
since the interviewee have more room for explanatory answers. The interviewer can choose 
to ask follow up questions on topics that are especially interesting. A drawback is that it can 
be hard to compare results from different interviews, and keep the focus straight within one. 

3.3.4 Contextual Inquiries 

The users of a system sometimes find it hard to describe an activity they perform, especially 
when it is taken out of context (Cooper et al, 2007). Therefore it is good to observe the users 
when they are in a normal work situation. A contextual inquiry is a form of user observation 
with a more collaborative approach. The designer and the user then works in a more 
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collaborative way and are encouraged to discuss features and problems in the system. It is 
important that the designer understands what the user is saying and does not make 
assumptions without verifying them with the user. The designer must also keep the focus on 
areas of interest without interrupting the user or be too controlling. 

3.3.5 Workshops 

A workshop can take many different shapes. In participatory design workshops are often 
used to help different parties in a process to communicate and commit to the same goals 
(Muller & Druin, 2010).  Participants in a workshop are often introduced to activities that are 
normally not part of their work assignments. It is therefore important to give them a way to 
express their opinions and thoughts to be able to share their knowledge. 

There are many methods for how to perform a workshop session. Some of them are focusing 
on defining problems and other on generating ideas and finding solutions. A benefit of 
holding a workshop is that it often produces some kind of artifact. This will serve as part of 
the documentation and can be a stepping stone for the next iteration. 

A workshop can bring people from different backgrounds and with different levels of 
experience together, which will help to create well thought-out ideas that have been seen 
and evaluated from different points of view. When new ideas and concepts are participatory 
developed by the users they will probably be valuable and practically useful since the people 
that have an interest in the result has been given a chance to provide their input.  

3.3.6 Paper Prototyping 

When designing a product it is important to define a framework for the design before going 
into detail (Cooper et al, 2007). This will help to create a stable foundation that a design that 
needs of the users can be built upon. Paper prototyping is a suitable method for testing early 
design concepts of user interfaces. A prototype here consists of a set of cut out pieces of 
paper or post-it notes that represents the elements of the interface. During a test session 
the user typically receives a task to perform and the moderator’s assignment is to act as the 
computer and control the interface. 

The benefit of this kind of low-fidelity prototypes is that they can be made quite quickly; 
different ideas can be tested and thrown away without losing very time consuming work. It 
is also easier to get honest feedback from the users if they see that the prototype is simple, 
with a more refined prototype they may think that it is too late to make major changes to 
the design and feel obligated to say good things in order to make the designer happy. 

3.3.7 Evaluation with Users 

It is important to consider the feedback from all users regarding a design, but every 
suggested change cannot be realized at the same time. The designer must determine which 
ideas that are suitable and which are not. It is important that the designer then 
communicates back to the users and explains why certain changes are unfeasible (Gulliksen 
& Göransson, 2002). Otherwise there is a risk that the users feel that their opinions do not 
matter and becomes less motivated to continue to participate in the design development. 
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3.4 Related Work 
This section describes articles on research performed on user involvement in software 
design and development processes. 

3.4.1 Problems of User Centeredness 

The authors of the article Don’t Underestimate the Problems of User Centeredness in 
Software Development Projects – There are Many! have done research on how user 
centeredness affects software development processes, in different domains and for different 
user groups (Heinbokel et al, 1996). They focus on two types of processes; some with user 
participation and some with user orientation. User participation here means that at least one 
user have been part of the development team, while user orientation means that the 
developers had the user in focus and produced software adapted for the needs of the user. 
29 software development projects in Germany and Switzerland participated in the study. 

The results of the study show that projects with a high level of user centeredness were less 
successful both regarding the process and the quality of the developed product. Projects 
with user participation showed problems with innovation, flexibility and effectiveness. The 
user oriented ones led to low effectiveness and had problems with team interaction. 
Problems with participation affected the whole outcome of a project, while problems with 
user orientation were more centered on ongoing activities. These results were based on data 
collected from the developers, not the users. 

The authors discuss the reason for these results and suppose that the problem can be in the 
relationship between developer and user. If the users express new ideas late in the design 
process it is hard for the developers to realize their desires. The developers could also have 
found it stressful to incorporate the users’ demands, especially if they had limited 
knowledge of how to put the user centeredness into action. 

3.4.2 Perceptions of User Involvement 

In the article User Involvement During Information Systems Development: a Comparison of 
Analyst and user Perceptions of System Acceptance the authors investigates if there is a 
difference between what users and system analysts think about how user involvement 
affects the outcome of  information system development processes (Foster & Franz, 1999). 

They studied 87 cases, development of software systems that included both system analysts 
and users. The analysts answered a questionnaire about their perceptions of the user’s 
involvement and the system acceptance. The users evaluated their own contributions to 
both the design and implementation phases as well as the usefulness of the system. 

The results of the study show that there was a strong connection between the users’ rating 
of their own involvement and their perceived usefulness of the systems. The same 
connection was there between the analysts’ rating of the users’ involvement and the 
analysts’ perceived usefulness of the system. However there was no relationship between 
the two groups. If the participation of the users was ranked high by one group, the 
usefulness of the system was not considered to be that high by the other group. The authors 
state that the reason for this probably is that there is a difference in how user perception is 
perceived by analysts and by the users themselves. They also stress this does not matter for 
the overall success, user involvement still helps to create more usable systems. 
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4 Method 

4.1 The Users of Hydra 
The end users of the Hydra administrator user interface will be people working with pipeline 
configuration at Findwise. By the definitions of user groups in (Faulkner, 2000) they are 
direct users, since they sit in front of the screen and apply transformations to the pipeline 
directly. They are mandatory users because using the system is necessary in order to carry 
out their job assignments. They will also soon become expert users since, when it is 
implemented; they will use the software in their everyday work. 

Most of the users have a computer science or software engineering background, which also 
makes them experts in computer oriented areas. By some means they are not only expert 
users, but also experts in the medium in which the design will be built. The statement “Users 
don’t understand Boolean Logic” (Faulkner, 2000) is certainly not true in this case. 

During the design process a group of users were highly involved to take advantage of their 
experience and knowledge of pipeline development. Every employee working with pipelines 
at the Findwise Gothenburg was invited to participate. At first their needs and opinions were 
captured and later they participated in the development and evaluation of the design. 

4.1 Information Collection 

4.1.1 Interviews 

Unstructured interviews were held with twelve of the future users of Hydra. Ten were 
interview at their worksite at the Findwise office in Gothenburg and two were interviewed 
from the office in Stockholm through the video conference tool Lync. 

The users were asked questions about their work process and if they encountered any 
problems when carrying out these tasks in existing pipeline administrator interfaces. They 
were also asked to describe what functionality that could make their work easier or more 
pleasant. The open ended questions made it possible to steer the interviews in different 
directions and focus on areas where the user gave extra interesting input, since the users 
were more or less interested in different areas. 

Some of the users were very new to the concept behind Hydra so it had to be explained to 
them during the interviews. These users found it hard to express their desires of the new 
interface. Others were more engaged and had many ideas of how the new interface could 
make it easier for the users to accomplish their tasks. 

4.1.2 Stakeholder Interview 

The lead developer of Hydra was also interviewed. He was asked to explain the architectural 
structure of the system and the functionality it provided. 

4.1.3 Contextual Inquiry 

A user was asked to explain the process of setting up a pipeline while sitting by his desk in 
front of his computer screen. He showed the structure of the interface and talked about his 
own opinions of the functionality. He also showed problems with the interface and pointed 
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out things that were complicated and hard to accomplish. The sound was captured for later 
listening and analysis. 

4.2 Idea Generation 
To generate ideas to the new design participatory workshops were held in conference rooms 
at the Findwise office in Gothenburg. They were each focusing of one of the following topics; 
concept and workflow, pipeline visualization and functionality for testing. The number of 
participants differed and depended on how many developers that was available at the time. 

4.2.1 Workshop 1: Concept and Workflow 

This workshop focused on defining a concept for the interface to create a framework for the 
rest of the design development. Areas covered were the structure of the interface and how 
to interact with objects on the screen. The workshop also had the purpose to start up the 
design work and develop a contact with the users. 

The workshop was held on two occasions with three participants each time. A sketch of a 
design where the whole interface was represented within one view was brought to the 
workshop, together with colored pens and papers. The idea was presented to the 
participants and they were encouraged to give their opinions and concerns. They were also 
given the material to show their own ideas of how the interface could look, without going 
into detail. 

4.2.2 Workshop 2: Pipeline Visualization 

This workshop focused on visualization of the non-linear pipeline and how to present 
conditions and relations between stages. Five users participated in this workshop. 

The users were handed papers and asked to draw their own ideas of how the pipeline could 
be visualized. The idea was that they then should give the sketch to the person next to them 
to improve the design. When the next person received it there was a problem since he did 
not understand the idea behind the drawing. Instead the creator had to explain the idea. All 
ideas were discussed in the group, to capture their strengths and weaknesses. The users 
were also encouraged to draw and write down new ideas that arose. 

4.2.3 Workshop 3: Functionality for Testing 

The last workshop focused on functionality for testing the pipeline and ways of displaying its 
performance. Five users attended this workshop. 

At first the users got some time to think of functionality that would help to make their work 
easier. The participants were then divided into two groups that each developed one design 
suggestion. They then presented the suggestion for the other group followed by a discussion 
around the advantages and drawbacks of the ideas. 

4.3 Usage Tests 

4.3.1 Discussions around Sketches and Wireframes 

The ideas that the users developed during the workshop sessions were translated into 
sketches. The users then had opportunities to leave their comments on the ideas during 
discussions with one participant at the time. They were also encouraged to present their 
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own ideas of how the design could be made better. The feedback and ideas that the users 
provided were taken into consideration and the sketches were refined and evaluated again. 
These discussions started after the first workshop when the sketches were very simple, and 
continued until the end of the project when the users were shown the final design in the 
shape of wireframes. 

4.3.2 Paper Prototyping 

Paper prototyping was used to test the workflow and interactions. Some of the sketches 
were printed out and graphical elements in different states were cut out. The user received a 
smaller task to accomplish. He then tried to execute the task in the way he thought was the 
right way. Sometimes the user was corrected if he went in a totally wrong direction. Then it 
was explained to the user how the assignment was intended to be carried out. He was asked 
if he thought the design idea was a good, and had then opportunity to suggest how he would 
have wanted the interface to behave. 
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5 Design Development 
In this chapter the development of the interface design is described, in terms of how the 
findings from the interviews and observation have been combined with the ideas developed 
during the workshops. 

5.1 Concept and Workflow 
This section focuses on the overall concept for the interface and how it was developed from 
requirements from Hydra and the users’ expectations. 

5.1.1 Required Core Functionality 

In order to design an interface that is adapted for Hydra, the concept must support its 
functionality. Even though this work focuses more on innovation than creating a realizable 
solution, a framework that was compatible with Hydra had to be developed. 

The main goal of building document processing pipelines is to extract the necessary 
metadata from the documents in the content index. To do this the interface must provide 
two basic functions. First, the user must be able to create a pipeline and include stages to it. 
In order to do this he must be able to find the desired stages and add them to the pipeline. 
Second, in order to make the stages behave correctly the interface must also provide a way 
to configure them.  

5.1.2 Problems with Existing Interfaces  

During the interview and observation the users expressed their concerns of other interfaces 
regarding the workflow and navigation. They managed to carry out their work assignments, 
but in a sometimes slow and unnecessarily complex way. (For descriptions of the interfaces 
of the tools used today, see section 2.4). 

When the user wants to include a new stage to a pipeline there are no functions for 
searching for a stage, either by its name or certain functionality. Instead the user has to 
scroll through a list to find the desired stage, and sometimes also read their descriptions, 
which takes a lot of time. 

To reorder a stage in the setup views the user has to select a stage and then press a button 
causing it to move one step up or down, this becomes very repetitive if the user wants to 
make big changes to the structure of the pipeline. 

In both tools the setup view where the user can manage the pipeline by reordering, adding 
or removing stages is separated from the configuration view.  This means that the users have 
to navigate back and forth to reach fundamental functionality, which they find tiresome. 

5.1.3 Expectations from the Users 

The users agreed that they wanted to spend their time making the document processing 
work properly, instead of extensive clicking or unnecessarily complex navigating between 
views that breaks the workflow. They would appreciate a more flexible solution that could 
be adapted to fit their current task better. 

The users agreed that innovation is cool but made it clear that new solutions must provide 
something good in terms of functionality; they should not be included just because it looks 
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good. They also stated that the interface must be clear and reliable, since they have to have 
control over what they are doing.  

5.1.4 Structure 

The evaluated interfaces are very static, which can be a reason for why the users find the 
navigation and interaction tiresome and time consuming. To solve this problem an idea with 
a more dynamic interface was presented during the first workshop. The idea was to divide 
the interface into two areas; a workspace and a toolbox. In this way the interface would feel 
more like a coherent stand-alone application than of a series of different views. This would 
help to create a better workflow since the user can choose what information and 
functionality that will be visible on the screen depending on the situation. 

It turned out that the users were positive to the idea of presenting the interface within one 
flexible view. They agreed that a space for presenting the pipeline in a more visual way was 
necessary to be able to understand how the stages were related to each other, but 
emphasized that it had to be clear and understandable. 

A concern was if there would be enough space to show both the representation of the 
pipeline and the tools in one view An idea of having tabs for different types of functionality 
was expressed, which would make it possible to use the same space for many purposes. 

5.1.5 Helpfulness 

One of the desires from the users was that the interface should be efficient and help them to 
accomplish their assignments in a quicker and smoother way. Many of them thought that 
the problems with finding stages could be solved easily just by adding a search function. 
Some of them would be happy if would be possible to select a stage in the list of available 
ones and start typing which would cause the list to scroll to the desired position. Others had 
more complex ideas and wanted search functions with filtering for finding stages. 

The solution that everybody agreed on was one with a free text search and possibility to 
filter the search results by the categories of stages. It was important that the search results 
were updated immediately so that it was quick to work with. Some of the users wanted to 
search the description of the stages of they were unsure of their names. They also wanted a 
possibility to search and clone configured stages in both the current and other pipelines. 

5.1.6 Interaction  

With a structure where the interface has a workspace with the pipeline represented by 
graphical elements it was not feasible to relocate the stages with buttons or arrows since 
they are not placed linearly. Drag and drop is appropriate for rearranging objects when the 
relations can be shown visually (Scott & Neil, 2009). This would provide a quick way to 
rearrange objects that would have been very hard to accomplish in another way when the 
objects are not structured in a list. Therefore it was explored if this could be a good way to 
handle the interaction within the workspace. 

Some of the users liked the idea, while other would have preferred the possibility to control 
the interface only by using the keyboard. No solution to how this could be carried out with 
keyboard only was found. Instead it was decided that the drag and drop actions should be 
simple and quick to execute since the users wanted to avoid interaction that required fine 
motor skills that would take a lot of time. 
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5.2 Pipeline Visualization 
This section describes the development of the model for visualizing the pipeline with the 
stages and relations between stages in form of conditions. 

5.2.1 The Non-Linear Pipeline of Hydra 

One thing that separates Hydra from other interfaces is that the stages are not arranged in a 
linear list but instead placed in a cloud with no knowledge of each other. To design a visual 
representation of the pipeline that will support the user in his work he must be able to 
understand how the stages are related to each other and in which order the stages are 
processing the documents. 

There are two types of conditions; stage related and document related conditions. The stage 
conditions describes which stages that have to have processed a document before, and the 
document conditions describes what properties a document must have for a stage to 
process it. 

5.2.2 Visualization of Stages 

A problem that the users expressed regarding the interface of OpenPipeline was that there is 
no way to give custom names to the stage instances. This becomes a problem when the user 
has more than one stage of the same type in a pipeline. In order to separate the stages the 
user has to enter another view and read the configurations of the stages, which takes extra 
time and breaks the workflow. In Hydra all stages will have unique names which will solve 
that problem. The names of the stages are important to the users, and they agreed that this 
information should be visible in the representation of a stage. The users also agreed that the 
visualization should display the name of the stage type, since this would help the user to 
remember the functionality of the stage. 

5.2.3 Conditions and Dependencies 

During the second workshop the users discussed how the pipeline with stages and 
dependencies could be visualized. Most of the users imagined the visualization like a graph 
or flowchart, where the stages were represented by some sort of boxes connected by lines 
representing their relations. 

In some ideas the conditions were separated from the stages and represented by graphical 
elements (See figure 9). A problem with this representation is that it is based on the 
documents way through the pipeline. It works well for that purpose, but since many 
different types of documents are processed simultaneously through the same pipeline it can 
be confusing. The only conditions that exist are included in the configuration of a stage and 
determine whether a document is ready for processing or not based on if it has been 
processed by some other stage or contains fields with specific values. If this condition is not 
fulfilled, that stage cannot tell another stage to process the document instead, since stages 
are unaware of each other. Because of this, many users found this type of stand-alone 
conditions to be a bad idea since it would make them feel less in control. 
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Figure 9: A sketch of a pipeline from the second workshop.  

It was hard for the users to determine how big and complex the pipelines in Hydra would be, 
and they were afraid that very big graphs would be hard to overview. Therefore they 
expressed a desire to be able to group the stages in some way. They drew sketches of 
different idea of how to accomplish this with different kinds of barriers clusters and sub-
pipelines. 

 

Figure 10: A sketch of a pipeline visualization with groups of stages.  

One idea was to divide the stages of the pipeline into groups that had a common condition 
to start processing documents (see figure 10). Stages in a group (row) could either be 
required or not, the required ones had to do their processing before stages in the next group 
could start. A problem was that there was no way to create branches; the pipeline could just 
grow in one direction. There would be cases where the users wanted to process documents 
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by different stages depending on their properties and then continue the processing 
differently depending on what stage that got the document. This was impossible to solve 
with this type of visualization. 

The next idea was similar to a flowchart but focused on the relations between stages rather 
than the documents route through the pipeline. Here a pipeline is built starting at the top of 
the screen and grows downwards, the same direction as in the lists of the other tools (see 
figure 11). The stages are connected with lines representing the order in which they could 
process a document. Stages with their top connected to a line must wait for the stage in 
connected to the upper end of the line to run before they can start processing. 

 

Figure 11: A pipeline visualization where conditions are represented by lines.  

Document conditions are set up in the configuration of the stages, and the number of them 
is displayed on the boxes representing the stages. Stages that can process a document 
concurrently are placed inside a surrounding grey box. This limits the number of connections 
and makes it easier to overview the pipeline. 

The design allows the user to create branches of stages for different types of documents and 
provides possibility to set up logical expressions of what should happen if two branches are 
connected; either the next stage after the merge will have to wait for all branches or just 
one of them. 

The users appreciated this solution since it was clear and easy to follow; no major problems 
were discovered regarding the logic and conditions. The only concern was that some users 
found it hard to understand where the documents entered the pipeline since there is no 
visual element representing the input.  
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Pipelines with few parallel branches could be fit to the workspace with this representation, 
but a pipeline with many branches would force the user to horizontal scrolling which they 
wanted to avoid. A real pipeline with around forty stages was constructed using this model, 
and it showed that it did not scale well. It was discovered that it had many parallel branches 
and that most of them were only two stages deep (see figure 12). Each branch had the 
purpose of setting one or a few specific fields of the documents, and two branches were 
never merged together once separated. 

 

 

 

 

 

Figure 12: Structure of the test pipeline.  

Since the pipeline turned out to be wide and quite shallow, it was tested to turn the 
structure it 90 degrees (see figure 13). The dependencies are still displayed using lines, but 
here they are connected to the left and right side of the stages instead of their top and 
bottom. A bar representing the input was introduced together with the possibility to break a 
line and continue the pipeline construction on the next row in order to fit the whole width of 
the pipeline on the workspace and avoid horizontal scrolling. Document conditions are 
marked out with a box attached to the left side of the stages that have any. 

 

Figure 13: The final representation of the pipeline. 
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The users said that they often focused on a few stages at once in order to develop a specific 
function. In this representation it becomes easier to focus on one group since they are 
placed next to each other. The users were satisfied with this design and said that it was 
clearer than the previous ones. 

5.3 Functionality for Testing 

5.3.1 Test Driven Pipeline Development 

When the users are about to create a pipeline they usually start by examining the data that 
should be indexed to see what metadata and information that is provided and should be 
searchable. The idea in Hydra is that the user then should configure a Domain Model which 
is a model of what properties the processed documents should have. The documents will 
then be matched against this model after they have passed through the pipeline to 
determine if the processing has been successful. In this way the user defines the desired 
result before he starts to extract and adapt the data. The domain model works like a filter 
that only lets the high quality documents through, so that the user can configure the 
pipeline until every document have passed. 

How this would be implemented and used in the interface was not decided by the 
developers. Therefore the users were asked about their ideas and opinions of how the test 
driven development could be supported and used to make their work easier. 

5.3.2 The Users Needs 

The users explained that they missed functionality for helping them making the pipelines 
behave as intended in existing interfaces. They thought it was circumstantial to find 
documents that were processed incorrectly as well as the reason for the problems. Typically 
the user first tries to find errors then he locates documents that are affected by that error. 
He then examines the configuration of the stages in the pipeline to find the reason why the 
problem occurs so that it can be solved. He then re-indexes the document previously 
affected by the error and looks in its fields if the problem was solved correctly. 

The users expressed that they wanted to have an overview of the documents in the pipeline 
to be able to see how many that had been processed and how many of them that had been 
accepted by the domain model in Hydra. This would help them to see what errors that are 
common so that they can focus on solving the problems that have the biggest effect on the 
output. They also wanted functionality for displaying the contents of a document’s fields 
directly in the interface, without having to leave for another system. 

5.3.3 Troubleshooting 

During the third workshop the users had opportunity to develop ideas for how to provide an 
overview of the pipeline’s performance and for functionality for troubleshooting. Some of 
the users had doubts regarding the idea with a domain model. They found it unlikely that 
they would know exactly how the output was supposed to look in the beginning of the 
development process of a pipeline, and therefore thought it would be hard for them to set 
up the model before configuring the pipeline. Everybody though agreed that the concept of 
test driven development was a good thing, if it could make their work easier. They were 
encouraged to think of the test driven development while developing their ideas. 
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In the beginning of the project the only way that Hydra could tell that there was an error was 
if a document had been in the pipeline for too long. The users agreed that this was too little 
information to help them with their troubleshooting. A notation for errors was discussed 
and it was decided that there were two kinds of errors; documents that failed to fulfill the 
conditions of the domain model and exceptions where a stage for some reason had crashed. 

The users were very interested in being able to see what part of the domain model a 
document failed to fulfill. This would help them to find the reason for the failure by locating 
the stage that affected the specific field. They also wanted a possibility to follow a document 
through the pipeline in order to see what changes every stage did to the document. 

During the workshop the users developed ideas and solution regarding these issues. Some of 
them showed different forms of tables displaying the contents of the fields of a document 
that changed when the user was stepping through the pipeline (see figure 14). The most 
important thing was to find errors and the reason for them in a quick and simple way. 

 

Figure 14: A sketch displaying different versions of a document and its fields. 

It was also discussed whether there should be different modes for constructing and testing 
the pipeline. At last it was decided that there should only be one mode. The reason for this 
was that different modes would break the workflow. It was impossible to tell what the user’s 
next action would be after inspecting a document. Either he has then found the solution for 
the problem and wants to enter the configuration of a stage to solve the problem, or he did 
not find the reason and wants to examine another document. 

Hydra does not save every version of a document when it is processed by a pipeline, only the 
initial and the final version. To save every version of every document would have required a 
huge amount of data storage. The ideas of working with a set of documents instead of 
everyone started to emerge. To save every version of a few documents would not take up 
that much space. Then the user could add interesting or representative documents to the 
set and use them for locating and solving errors. 
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6 Result 

6.1 Requirements 
The following requirements are based on the analysis of existing pipeline administrator 
interfaces and the opinions of the users regarding sketches and prototypes. 

6.1.1 Functional Requirements 

The user must be able to set up a pipeline. 

The interface must provide functionality to add stages to the pipeline, remove stages from 
the pipeline and to reorder the stages of the pipeline. 

The user must be able to configure the contents of the pipeline. 

The interface must provide functionality for giving names to the stages, configure the 
behavior of the stages and to set up conditions for when a stage can process a document, 
both regarding properties of the document and which stages that have processed the 
document before. 

6.1.2 Usability Goals 

The interface should be efficient to work with. 

Time consuming activities that do not add to the performance of the pipeline, such as 
interaction that requires fine motor skills or extensive clicking should be avoided. There 
must for example be a smooth way of constructing the pipeline and setting up relations 
between stages. 

Navigation must be easy. 

The interface must be well structured so that it is easy to navigate between its different 
parts. Different modes and completely different views that break the workflow should be 
avoided. The organization of the functionality should support the workflow so that the user 
easily can reach the desired functionality, which can be different depending on the situation.  

The visualization of the non-linear pipeline must be clear. 

The user must be able to see in which order the stages will process a document. It is 
important that both the relations between stages and the direction of the pipeline are clear 
and consistent. Stage and document conditions should preferably be separated in order to 
avoid confusion.  It is desirable that the user can affect the organization of the stages in the 
visual representation of the pipeline in some kind of clusters to make it easier for him to get 
an overview. The user should be encouraged to keep the relations between stages simple.  

6.1.3 User Experience Goals 

The interface should be transparent. 

The way that the user sets up conditions should follow the model of the implementation. It 
is important that the interface does not fool the user by using another kind of logic. The 
relations should be built up by simple conditions; stages that has to process before and 
conditions regarding fields of the document, in combination with simple Boolean logic. 
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The interface should be helpful. 

It should provide functionality to help the user in his work and provide the right kind of 
information on the right time. Search functions and other tools that contribute to a better 
workflow are desirable. The interface should provide visual hints of the outcome of drag and 
drop actions so the users can avoid errors. The users would also like to have modeless 
feedback of how well the pipeline performs. 

The interface should be discrete. 

Even though the users want a helpful interface, the help should be provided in a discrete 
way. The interface should “trust” that the user knows what he is doing and only break the 
workflow by notifications when a very critical action, that will cause work to be deleted, is to 
be executed. 

The interface should support test driven pipeline development. 

The interface should provide an overview of the performance of the pipeline so that the user 
can see what kind of errors that appears frequently. It should also be possible to see which 
stages and documents that causes or holds the error, which makes it easier for the user to 
figure out the reason for it. A function for tracking documents through the pipeline to see 
what changes every stage has made to it is desirable. For documents that do not match the 
domain model, it should be possible to see on which part of the model that they fail. The 
users would also like to have a possibility to run custom made test documents through the 
pipeline.  

6.1.4 Environmental Requirements 

The interface should work on both large and small screens. 

The interface should be optimized for large (≈24”) desktop screens, but it should still be 
possible to work with on smaller laptop screens (≈13-15”). Therefore the visualization of the 
pipeline must me relatively simple, clean and clear so it can be displayed on a small screen. 

6.1.5 Data Requirements from Hydra 

Model errors and exceptions must be separated. 

There must be a way to separate errors that occur because a document does not match the 
domain error and errors that are caused by failing stages. It should also be possible to get 
more detailed information about errors from the two categories. 

It should be possible to determine if a stage has made changes to a document. 

It should be possible to see if a stage has written any changes to a document during the 
processing of it. There should also be a possibility to save every state of a document, after 
every stage, so that the user can trace it through the pipeline and see exactly what changes 
every stage has made to it. 
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6.2 Design Solution 
In this section the final design of the interface is presented in the form of wireframes, 
describing its elements, functionality and how to interact with it. 

6.2.1 Structure 

 

Figure 15: Structure of the interface. 

Workspace 

The space to the left is the workspace where the stages in the pipeline and their relations to 
each other are displayed (see figure 15:1). In this figure no stages have been included to the 
pipeline yet. The grey bar in the upper left corner represents the input node. 

Toolbox Tabs 

All functionality can be reach from the tabs to the right (se figure 15:2). The size of the tab 
panel stays the same regardless of what functionality that is chosen. The open tab, here Add 
Stage, displays the name and a representative icon. Closed tabs only display an icon, due to 
the limited amount of space. The functionality that can be reached from the tabs is from left 
to right Add stage, Configuration, Documents, Debug Set and Domain Model. 

Controls 

Above the workspace there is place for buttons for controlling the pipeline (see figure 15:3). 
A suggestion is that there should be functionality to (from left to right) leave the pipeline 
view, start the document processing, stop the processing, re-index all documents and save 
the pipeline configuration in its current state. The progress bar to the right of the buttons 
shows how many of the incoming documents that have been processed by the pipeline and 
passed the domain model. 

1 
2 

3 
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6.2.2 Pipeline Visualization 

Stages 

Stages are represented by boxes displaying the name of the stage, here “Map Transform”, 
on the upper line and the name of its type after which collection it belongs to, here “Basic: 
Regexp Map Transform”, on the lower line (see figure 16). To save space and avoid scrolling 
sideways, the width of the box is adapted to the length of the text. 

 

Figure 16: Visual representation of a pipeline stage. 

Document Conditions 

Stages that have a condition regarding which documents they should process have a marking 
on their left side (see figure 17). This just reminds the user that a stage has a document 
condition, not of what type it is or if there is more than one. 

  

Figure 17: Stage with document condition(s). 

Stage Conditions 

Stages connected directly to the input node do not have any stage conditions (a condition 
that says that another stage must have processed a document before that document can be 
processed by the current stage) (see figure 18). 

 

Figure 18: Stage with no document or stage conditions. 

Stages that have a connection to their left side can only process documents that have passed 
the stage connected to the left end of that connection (see figure 19). 

 

Figure 19: Stage with a condition that the stage to the left must process first. 

Stages that are attached to a connection from a box with an ”&“ (and) sign must wait for all 
stages that are connected to the box from the left (see figure 20). The same thing goes for 
boxes with an “≥1“ (or) sign, but in this case the stage only have to wait for one of the stages 
connected to the left side of the box (see figure 21). 

 

Figure 20: Stage connected to an & condition. 
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Figure 21: Stage connected to an ≥1 condition.  

Connection Nodes 

Stages that are connected to another bar than the one representing the input must wait for 
stages connected to the numbered circle, with the same number as the bar, before they can 
start processing a document (see figure 22). 

 

Figure 22: A node connected to a stage and two stages connected to a bar. 

6.2.3 Tools 

Add Stage 

Under the tab Add Stage the user can choose a 
new stage to include in the pipeline (see figure 
23). All stages that are avaliable are displayed in a 
scrollable list. Here the checkbox “show all 
descriptions” is unchecked. The list displays the 
name of the stages available and if the user clicks 
a stage, the description of that stage is displayed 
on the area under the list. If the checkbox is 
checked both the names and descriptions will be 
shown in the list. The list will then be longer since 
the description area under it will dissappear. 

The user can click the list and start writing the first 
letters in the name of the desired stage, which will 
cause the list to scroll to the position of the stages 
beginning with that letters. 

At the top there are radiobuttons that works like a 
facet. The different choices represents the 
collections of stages that are available. If a 
collection is chosen the list will only display the 
stages of that collection. The user can add more 
collections by pressing “Add Repository”.  

Figure 23: The Add Stage tab panel. 
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The user can also search for a stage by using the free search text box. If the checkbox 
“Search descriptions” is selected the query will be matched against both the names and 
descriptions of the stages. If it is not, the search will only match against the names. The 
query can be deleted by pressing the red cross. 

All filtering will cause the list to be updated in real time. If the user uses both the facets and 
the free text search, only stages matching both will be displayed. 

To include a stage in the pipeline, the user selects the desired stage and drags it out to the 
workspace area. 

Configuration 

When the user clicks on the visual 
representation of a stage, the configuration of 
that stage will be opened under the 
configuration tab (see figure 24). If the user 
clicks the configuration tab when another tab 
panel is open, the configuration that was last 
opened will be shown. 

At the top of the tab panel, the user can give 
the stage a name by entering it in the textbox. 
Under that is the name of the type of the stage, 
which cannot be edited. 

Under that there are three expandable text 
boxes: Custom description, Stage description 
and Dependencies. 

Custom description holds a textbox where the 
user can enter a specific description of the 
behavior of the stage instance.  

The Stage description is the built in description 
of a stage of the specific type, which will be 
shown when the user expands it. This 

description cannot be edited by the user. If it is 
too long it will be scrollable, so it does not cover 
the whole tab panel.  

Under Dependencies the user can add conditions regarding what documents the stage 
should process. These will preferably be written on the same form as the conditions in the 
domain model. 

The lowest section contains the configuration of the behavior of the stage. How this will look 
depends on the implementation of stages in Hydra. Probably the size of it will differ a lot 
between different types of stages. The behavioral configuration has a separate scroll bar to 
make it possible for the user to look at part of it at the same time as the description or 
dependencies. 

Figure 24: The Configuration tab panel. 
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Documents 

Under the Documents tab the user can get 
information about the performance of the 
pipeline (see figure 25).  

A set of the documents that have entered the 
pipeline will be shown in the list. The intention is 
not that the user should look for documents in 
this list but instead using the filters to find 
documents with certain properties. 

There are different filters that the user can 
choose from, some of them can be combined 
which will narrow down the search results. The 
filters are divided into collapsable sections 
containing different choices. The numbers next 
to the labels tells the user how many documents 
there are in the category. 

Filters under Model Errors is used for filtering 
out documents that do not match the domain 
model. The radio buttons represents different 
types of errors, which should be specified in the 
domain model. 

Filters under Exceptions are used for filtering out 
documents that have been processed by a stage 
which then has caused an exception. Further 
filtering in this category will be names of the 
stages that caused the exceptions or more detailed error information, if it can be provided 
by the stage classes. 

Under Field Values the user can filter out documents depending on field properties. The 
combobox in middle should contain different choices such as “has value”, “is empty” or 
“exists”. These choices should preferrably follow the syntax user for constructing the domain 
model in order to make the interface consistent. In the left textbox the user enters the name 
of the field and in the right one the desired value, if applicable. 

If a filtering category is minimized and a choice other than “All” have been made, that choice 
will be displayed beside the label so that it is remembered. The filtering can be removed by 
clicking the red cross and “All” will be selected instead. 

By selecting the checkbox “show indexed only” only documents that have passed the 
domain model will be displayed. This will cause any filtering regarding errors to be 
inactivated, since these to categories are each other’s opposites. 

There is also a free text search where the user can enter a name or id of a document. 

In the bottom of the panel there are three buttons where the user can choose what to do 
with a selected document in the list. The first two “Show original” and “Show final” will 
display the document with its original and final values in the fields in a pop up window that 
the user can move around. 

Figure 25: The Documents tab panel. 
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Figure 26: Information about a selected document shown by coloring the pipeline stages. 

If a document in the list is selected information of what stages that document has been 
processed by will be displayed in the visual representation of the pipeline. Stages that have 
processed the documents and written to it will be in one color, stages that has just 
processed a document and that has caused exceptions will be other colors (see figure 26).  

The button “Generate debug data” will place the selected document in a debug set. The 
document will then be processed by the pipeline again and this time it will be recorded what 
changes every stage does to the fields of that document. 

Debug Set 

Under the tab panel ”Debug Set” the documents that user 
has added to the set are shown in a list (see figure 27). To 
the left of the name of the document there is a green 
checkmark or a red cross depending on if that document 
has passed the pipeline or not. 

In the bottom of the panel there are buttons with different 
choices that the user can choose for selected documents. 
The three right ones acts like it sounds “Remove selected” 
removes the selected documents from the list, “Re-index 
selected” reruns the selected documents through the 
pipeline and “Re-index all” reruns all documents in the list. 

If the button “Inspect” is pressed the user gets an 
opportunity to see what changes every stage has done to 
the selected document. The document will be opened in a 
pop up window displaying the original version. The user can 
then step through the pipeline (in the order that the 
document was processed) and all changes will be 
highlighted. 

Figure 27: The Debug Set tab panel. 
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Domain Model 

Under the tab panel “Domain Model” the user 
imports or builds up the logic for the domain 
model of the pipeline, that is, the conditions 
that the fields of the documents have to pass in 
order to be indexed (see figure 28). 

A condition is added by pressing the “+”-sign in 
the upper left corner. It can then be given a 
name and the field conditions are built up by 
selecting fields and logical operations. The “+” 
sign next to the name adds another row for 
field logic within the condition. 

6.2.4 Interaction 

Drag and Drop 

Stages are placed on, and relocated within, the workspace by drag and drop actions. If the 
user clicks a stage and holds the button the stage will change its representation to a smaller 
box displaying its name so that it only covers a smaller part of the screen. If the user drags 
the stage close to an area where it can be placed, visual feedback will be provided to display 
the outcome if the stage is released. 

If a stage is held on an empty area to the right of the input node or another stage the 
interface will highlight the area where it will be placed if dropped and what connections that 
will be created (see figure 29). If the stage is held to the right of a stage that already is 
connected to another stage on its right side, the new stage will be placed in between the 
stages and the previous connection will be moved to the right side of the new stage. 

 

Figure 29: Visual feedback for drag and drop actions. 

I the user holds the stage above or below a stage the interface also provides feedback (see 
figure 30). If the stage is dropped the connection to the old stage is divided and the new 
stage will share the connection.  

 

Figure 30: Visual feedback for drag and drop actions. 

Figure 28: The Domain Model tab panel. 
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Context Menus 

When the user clicks the visual representation of a stage the stage will be selected and 
colored. If he holds a key (preferably Ctrl or Shift) he can select more than one stage. If the 
user then right clicks a context menu will open. There are four options to choose from; 
“Connect with OR”, “Connect with AND”, “Create node” and “Remove dependencies”.  The 
first two are used to create Boolean conditions. If the user chooses one of these when two 
or more stages are selected, they will be connected with a gate or the selected type (see 
figure 31).   

 

Figure 31: How to create an “&” condition. 

The third option is for creating connection nodes so 
that the pipeline can be continued on the next 
horizontal row. This option will work when one or 
more stages are selected. When the user selects this 
option a node with a number will be connected to 
the right end of the stage(s) (see figure 32).  Another 
bar will also show up under the input node 
displaying the same number as the node in a combo 
box. If more than node has been created, all their 
numbers will be selectable in the box. The user can 
also choose to create a new bar before the node by 
pressing the “+” sign to the left. 

The last option “Remove dependencies” simply removes all connections to the selected 
stage(s). If a stage in the pipeline is dragged to another position the old connections will also 
disappear. The old position will still be marked out as long as the user has not dropped the 
stage, so it is possible for the user to drop it back to its old position.  

  

Figure 32: Connection node and bar. 
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7 Discussion 

7.1 Participatory Design with Expert Users 

7.1.1 Experts are Providing Knowledge 

In a design project like this, defining the problem is part of the process since the 
specification of demands develops together with the solution (Löwgren & Stolteman, 1998). 
Pipeline development is something rather complex for a person without experience in the 
field. The only persons that know exactly how the process of developing pipelines works at 
Findwise are in fact the developers at Findwise. If the users had been left out during the 
development process, it would have been very hard both to define and solve the problems 
that were encountered. 

From the information collection during the initial discussions and interviews it was possible 
to say that the users had problems with existing interfaces, but it was first during the 
development of new ideas that it was possible to fully understand what the reasons for 
users’ problems were. During the workshops the users presented ideas of solutions that 
someone without their experience probably would not have thought of, which indicates that 
participatory design activities has made a contribution to the solution. 

As discussed in the article (Heinbokel et al, 1996) there are disadvantages of involving the 
users in development processes in terms of innovation, flexibility and effectiveness. The 
authors suggest that the problems arose because of problems in the communication 
between the users and developers, and because the users tended to come up with new 
ideas late in the process. In this case the users have the same technical knowledge as the 
developers, which mean that they probably managed to understand the system faster than 
they would have been able to without it.  This means that they were able to express their 
ideas early in the process which has limited this kind of problems. 

7.1.2 Expertise versus Innovation 

Since Hydra did not have any graphical interface before this work was done, it all had to be 
designed from scratch. By the start of this project the task was very open; the only thing that 
was specified was that the administrator interface should be adapted for people working 
with pipelines at Findwise. This means that there was no way of observing people working 
with the system. To find inspiration the interfaces of similar tools were analyzed and 
evaluated together with the users. This somewhat limited the framework since it focused on 
solving problems that occurred in other systems, but it  also gave an insight in how the 
interface solutions affected the work situation for the users. 

During the workshop the users found it hard to overlook technical constraints and tended to 
focus on how if it was feasible to implement. Here the expertise of the users was standing in 
the way for innovative solutions. It is possible that the users could have been more 
encouraged to think outside the box by using a different format for the workshops. Maybe it 
would have been a good idea to hold it outside of their workplace or to bring some kind of 
artifacts that were not related to their work in order to stimulate their creativity. On the 
other hand, the ideas that were developed are more likely to be realizable, which is a good 
result from the company’s point of view. 
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The user’s knowledge about Hydra’s functionality varied a lot. Some of them had been 
involved in the development themselves while other had just heard about it. Some of the 
involved persons have probably gained knowledge about Hydra by participating in this 
project. Sometimes the less experienced users expressed more innovative ideas than the 
more involved ones, which also indicated that too much knowledge can be an obstacle for 
creativity when it comes to highly educated persons. 

7.2 The Interface 

7.2.1 Reception 

Both the user and stakeholders of Hydra have expressed their satisfaction over the 
developed design, which indicates that a good solution has been produced using a 
participatory approach. 

A reason for the good reception could be that the users feel a sense of ownership of the 
design as described in literature (Sharp, Rogers & Preece, 2007). This could mean they are 
less likely to give critique since the design is based on their own ideas. They might also be 
more receptive of the design since they have been involved in the process and know why 
certain design decisions have been made. If the developed solution would have been 
presented to a group of people that have not been involved in the development process it is 
possible that would be more skeptical, since they do not know the reason for the design 
decisions. It is also possible they will find it harder to use the interface. 

7.2.2 Adaption for Experts 

Since the users are satisfied with the result and the design is based on their needs and ideas, 
the design is adapted for this group of experts that are also experts in computer oriented 
areas. The model for visualization of the pipeline and the troubleshooting functionality are 
very transparent and close to the implementation model, which follows the guidelines for 
design for expert users (Staggers & Norcio, 1993). In the beginning of the design 
development the ideas were further from the implementation model, but it turned out that 
another layer of made up functionality was more confusing than helpful to the users. It could 
be the case that it is extra important to have a transparent solution when designing an 
administrator interface, since the user must have control over what is actually happening. 

A surprise was that the user accepted the drag and drop solution, since design for expert 
otherwise promotes keyboard shortcuts and less graphical approaches (Cooper et al 2007). 
They though had their concerns about the drag and drop interactions, it had to be quick and 
smooth to work with. The solution where the dependencies are set up automatically when 
the user drops a stage at a specific location probably helps to speed up the work here. The 
amount of time the user spends on dragging objects he will save since he do not have to 
spend time on setting up the dependencies. 

7.2.3 New Ideas 

In some aspects Hydra is different from other administrator tools which meant that new 
functionality had to be included that did not exist in other interfaces. The developer 
explained that it was possible to add functionality to the system if the users expressed needs 
that were not possible to satisfy with the current functionality. 
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In some aspects the developed interface is very different from other systems. The biggest 
difference is the drag and drop interactions and the graphical visualization of the pipeline, 
but hopefully it also encourages the user to work with a test driven approach. The 
functionality for troubleshooting requires more data than Hydra provides today, this can be 
fixed if the developer finds the functionality useful. The fact that there have been a 
communication between the users and developers with exchange of information and ideas 
are another good outcome of the participatory approach. 

7.3 Future Work 
The next step in the design process would be to build a functional high fidelity prototype of 
the interface. It should test the drag and drop interaction to see if it is possible to set up the 
conditions by placing stages in different zones or if it requires too much fine motor skills. The 
error handling and troubleshooting functionality must also be tested with real data to see if 
the concept works in a real situation. A coherent syntax for describing document conditions 
and the domain model also needs to be developed. 

Preferably the participatory approach should be kept to assure that the users still feel 
involved in the development. They are also the ones at the company that have the best 
knowledge of the ideas that the design is based on. The interface should also be tested by 
users that have not been involved in the process. 
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8 Conclusion 
The goal of this work was to develop a design for an administrator interface for a pipeline 
development tool named Hydra. The interface should be adapted for expert users in form of 
pipeline developers at Findwise, who are also highly educated in computer science and 
engineering. The work was executed using user centered and participatory design methods 
to examine if this approach was suitable for expert users. 

There were both advantages and drawbacks of involving expert users. The users were 
engaged to participate in the activities and were very helpful. Their technical knowledge 
made it possible for them to express feasible ideas, but it also restricted the level of 
innovation in the design because of their focus on implementation matters. During the 
process they provided valuable information about their thoughts and needs regarding their 
tasks that would not be available for a designer through any other channel. 

The outcome of the work was an interface design in the shape of wireframes. The users and 
stakeholder were satisfied with the result, which indicates that the method used was 
suitable. A reason for the good reception could be that the users feel a sense of ownership 
of the developed interface. 

The design of the interface is transparent and very close to the implementation model of 
Hydra. This follows the guidelines for interface design for expert users, and is probably 
necessary for the users to be able to administrate the system which means that they must 
have control over the outcome of their actions. 

To establish the positive reception of the design and see if it works in real work situation, a 
high fidelity prototype must be developed so that the interface can be tested with real data, 
and by users that did not participate in the development. 
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