
Improving landfill monitoring programs
with the aid of geoelectrical - imaging techniques
and geographical information systems
Master’s Thesis in the Master Degree Programme, Civil Engineering

KEVIN HINE

Department of Civil and Environmental Engineering
Division of GeoEngineering
Engineering Geology Research Group
CHALMERS UNIVERSITY OF TECHNOLOGY
Göteborg, Sweden 2005
Master’s Thesis 2005:22

One axle light weight truck
Dynamical modeling and implementation of a one axle vehicle

Master of Science Thesis by

ADNAN KLEMPIC
ANDREAS JANSSON

Department of Signals & Systems
Systems, Control & Mechatronics
Chalmers University of Technology
Gothenburg, Sweden 2012
Report Number EX022/2012

Abstract

The cities of tomorrow impose higher demands on flexibility and low pollution on vehicles
distributing goods within city borders. Vehicles that have high maneuverability, light
weight and zero emission are needed. In this master thesis a first assessment of the
feasibility of a single axle truck concept is made.

A mathematical model based on Lagrangian mechanics is derived for this single axle
truck concept. The model has five degrees of freedom including suspension. It is assumed
that the modeled vehicle always has contact with the ground and no slip occurs. An LQG
controller is used to balance and control the vehicle. Models of sensors and electrical
motors are implemented in order to better simulate reality. It is possible to adjust all
parameters and perform simulations of different driving scenarios due to the modular
design of the model.

The LQG controller is able to control the vehicle sufficiently. As long as the wheels
have full traction and the motors can deliver enough torque within a certain time, the
truck can handle most normal situations. Simulations show that the vehicle can ma-
neuver on an incline as well as hit a curb without falling over. Noisier sensor readings
and longer sampling times impairs the performance of the vehicle and increases energy
consumption due to higher torque fluctuations.

Acknowledgements

We would like to thank our three supervisors Stefan Pettersson (Viktoria Institute),
Niklas Thulin (Volvo Technology) and Torsten Wik (Chalmers). A special thanks goes
to the Viktoria Institute for letting us use their locales and resources.

Adnan Klempic and Andreas Jansson,
Gothenburg April 9, 2012

Contents

Contents i

List of Figures iv

List of Tables vi

1 Introduction 1
1.1 Lightweight mobile truck . 1
1.2 Purpose . 2
1.3 Limitations . 3

2 Theory 4
2.1 Mathematical modeling . 4

2.1.1 Lagrangian mechanics . 4
2.1.2 Inverted pendulum . 5
2.1.3 Suspension . 7
2.1.4 Air resistance . 8
2.1.5 Rolling resistance . 9

2.2 Controlling the truck . 9
2.2.1 Linear Quadratic Regulator (LQR) 9
2.2.2 Kalman filter . 10
2.2.3 Linear Quadratic Gaussian (LQG) Controller 11

3 Implementation 13
3.1 System description . 13
3.2 Lagrange Modeling . 13

3.2.1 New coordinate system . 13
3.2.2 Lagrangian formulation . 15
3.2.3 Inserting the coordinates into the Lagrangian formulation 16
3.2.4 Equations of motion . 17
3.2.5 Implementation in Simulink . 17

i

CONTENTS

3.2.6 External and non-conservative forces 19
3.3 Electric motor model . 20

3.3.1 Energy consumption of the motors 20
3.4 Sensor models . 21

3.4.1 Which states need to be measured? 21
3.4.2 Noise modeling . 22
3.4.3 Implementation . 23

3.5 Controller Design . 23
3.5.1 Linearisation . 23
3.5.2 Discretization . 25
3.5.3 Kalman Filter . 25
3.5.4 Controller . 28

3.6 Visualization . 29
3.6.1 Building the model . 29
3.6.2 Implementation in Simulink . 29

3.7 System Summary . 31

4 Results 33
4.1 Torque requirement . 33

4.1.1 Moving forward at constant speeds 33
4.1.2 Turning at different rates . 33
4.1.3 Standing still on a slope . 35

4.2 Disturbances . 35
4.2.1 Effects from process disturbances 35
4.2.2 Effects from measurement disturbances 36

4.3 Vary the mass of the vehicle . 40
4.4 Vary the distance to the center of mass of the vehicle 40

4.4.1 Accelerating and then driving up a slope 40
4.4.2 How weight affects the center of mass 42

4.5 Influence of controller update frequency 44
4.6 Motor delay . 44

5 Discussion and Conclusion 48
5.1 Achieved goals . 48
5.2 Safety . 49

5.2.1 Hardware failure . 49
5.3 Further improvements . 49

5.3.1 Include slip . 49
5.3.2 Improve and add new hardware models 49

ii

CONTENTS

Bibliography 50

Appendices:

A Equations of motion 51

B Matlab scripts 53
B.1 Lagrange equation . 53
B.2 Parameters . 57
B.3 Linearization . 58
B.4 init simulation . 59

iii

List of Figures

1.1 Sketch of the one axle truck . 2

2.1 Inverted pendulum on a cart . 7
2.2 The suspension model used for the truck 8
2.3 LQG control of a system . 12

3.1 Vehicle overview . 14
3.2 Function blocks in Simulink that calculates the equations of motion . . . 18
3.3 Simulink model of the motors . 20
3.4 Motor energy calculation implemented in Simulink 21
3.5 Overview of the sensor models . 22
3.6 Poles and zeros of the linearized system 26
3.7 Implementation of the Kalman filter in Simulink 28
3.8 Implementation of the LQG controller in Simulink 29
3.9 VRML model of the truck in V-Realm . 30
3.10 Visualization blocks . 30
3.11 Overview of the Simulink model . 32

4.1 Turning 90◦ and 180◦ while standing still. 34
4.2 Running over a curb . 37
4.3 Running on a slope . 38
4.4 Influence of three different noise variance values for the measurement sen-

sors. 39
4.5 Sensor noise influencing torque output from the motor. 39
4.6 Varying the mass . 41
4.7 Deviating the position of center of mass. 42
4.8 Influence of three different noise variance values for the measurement sen-

sors. 43
4.9 Sensor noise influencing torque output from the motor for four different

sensor variance values . 44

iv

LIST OF FIGURES

4.10 Influence of controller update frequency 45
4.11 Influence of controller update frequency 46
4.12 Motor delay . 47

v

List of Tables

3.1 System parameters . 15
3.2 Generalized coordinates . 15
3.3 External and non-conservative forces . 19

4.1 Torque requirement during constant speeds 35
4.2 Torque requirement when standing still on a slope 35
4.3 Energy requirement for different sensor noise to balance the truck upright

while standing still. 40

vi

1
Introduction

The cities of tomorrow impose higher demands on flexibility and low pollution on vehi-
cles distributing goods within city borders. Inner city areas are particularly vulnerable
to emissions caused by fossil fueled vehicles. Emission induced health problems and
congestion are becoming bigger and bigger problems for many cities to deal with.

To battle these problems, governments around the world are looking into the pos-
sibility of banning fossil fueled vehicles in city centers. Today, there are already bans
against heavy trucks in cities and the future advances towards ever more restrictions
against fossil fueled vehicles [1]. However, there is still a demand for distributing goods
within city borders. To fill that demand new types of vehicles have to be constructed.
Vehicles that have high maneuverability, light weight and zero emissions are needed.
Such new types of vehicles could possibly be used in warehouses, logistics centers and
depots.

1.1 Lightweight mobile truck

A one axle lightweight truck that operates on the principle of an inverted pendulum (see
Figure 1.1) could be the answer to future city demands. To put it in a layman’s words,
itcan be seen as a bigger version of the known Segway�personal transporter. Since the
truck will be electrically driven it will produce no emissions and it will have extremely
good maneuverability since it has only one axis.

A mathematical model of the truck has to be derived in order to do simulations and
to construct a controller. Simulations can then prove or disprove if the concept vehicle
is plausible to apply in the real world. There are no limits on how advanced a mathe-
matical model can be. Generally, a more advanced model gives a better mathematical
representation of reality while a less advanced model is easier to work with and requires
less computational effort to simulate. Among the variables that can be included or var-
ied in the model is the number of degrees of freedom, air resistance, wheel resistance,

1

CHAPTER 1. INTRODUCTION

Figure 1.1: Sketch of the one axle truck

suspension etc.

1.2 Purpose

The purpose of this thesis can be divided into smaller sub goals that all together enable
simulation of different driving cases and parameter variation. The sub goals are:

� Make a sufficiently good mathematical model over the truck.

� Design a controller that can balance the truck in upright position. It should also
be able to move and turn the truck without it falling over and crashing.

� Add sensor noise and a motor model.

� Do a parameter study where noise level, weight, center of mass and sampling time
are changed and the effects studied.

� Simulate what happens when the truck drives on a slope and when the truck hits
a curb.

� Examine if it is a viable option to build and use in reality.

Note that these goals have to be fulfilled in order after each other since this model
is only implemented in a simulation environment and not built in reality. For example,
it is necessary to have a mathematical model before designing the controller. Also, it is
required that the mathematical models and the controller are set up and designed before
any simulations and calculations on the performance of the truck can be made.

2

CHAPTER 1. INTRODUCTION

1.3 Limitations

Avoiding a model with too much complexity means that certain assumptions have to be
made. These assumptions leads to limitations in the model which cause some phenomena
that occur in reality but not in the simulations. The most important limitations are:

� No slip between the wheels and the ground.

� The wheels are always in contact with the ground.

� Simplified models of:

– Sensors.

– Measurement noise.

– Electrical motors.

It would be possible to include or improve these properties in the model. However,
the focus of this thesis is on a parameter study to see if the concept is feasible and not
on handling aspects. However, it would present an interesting topic for somebody else
to research.

3

2
Theory

In this chapter some background theory is given so that the reader may better understand
some of the elements in this report. It is assumed that the reader has some understanding
of basic physical systems and notions such as Newton’s laws of motion.

2.1 Mathematical modeling

A mathematical model of the truck has to be derived. This is important because it will
enable simulations to be done on the truck. To make a sufficiently detailed model several
approaches can be used.

In this report Langrange’s equations is used to derive a model of the truck. Some of
the basic theory behind the inverted pendulum, air resistance dynamics and a suspension
model is presented in this section to improve the understanding of the implementation
in Chapter 3.

2.1.1 Lagrangian mechanics

Lagrangian mechanics is a reformulation of classical mechanics and belongs to the branch
of analytical mechanics. The equations of motion in Lagrangian mechanics are called
Lagrange’s equations and they are a mathematical approach for deriving equations of
motion for mechanical systems [2].

When deriving the equations of motion for complex systems it is in many cases
considerably simpler to use the Lagrange’s equations compared to using the classical
mechanics approach with Newton’s laws. However, both approaches, Newton’s Law and
Lagrange’s equations, are completely compatible with each other.

To derive the equations of motion with Lagrange’s equations it is important to look
at the existing energies in the system [3]. There are two types of energies for mechanical
systems:

4

CHAPTER 2. THEORY

1. Kinetic energy

� Translational energy

� Rotational energy

2. Potential energy

The Lagrange function (L) denotes the difference between the total kinetic energy
and the total potential energy of the system

L = T − V, (2.1)

where T is the total kinetic energy and V is the total potential energy in the system.

Once the Lagrange function is derived it is possible to derive the equations of motion
using Lagrange’s equations

Qj =
d

dt

(
∂L
∂q̇j

)
− ∂L
∂qj

, (2.2)

where:

Qj - Sum of applied forces projected on direction of generalised coordinates.

qj - Generalised coordinates or displacement variables (x, y, z, θ, φ, etc.).

j - The number of generalized coordinate/displacement variable.

L - Lagrange function.

If Qj equals zero then there is no external influence on the system. However, in
reality there are always non-conservative forces, such as friction or torque from a motor,
that affects the system. In those cases simply let Qj equal the external forces and a
complete model of the dynamical system is derived.

An example of how Lagrange’s equations can be used to derive the equations of
motion are found in Section 2.1.2.

2.1.2 Inverted pendulum

A vehicle where the chassis is connected to one axle has the same dynamic as an inverted
pendulum.

A pendulum that can rotate 360◦ has two equilibrium points. One point is at the
bottom where the pendulum has the least potential energy. The second point is at the
top where the pendulum will remain assuming that the string is stiff and not affected by
any horizontal force at all. Seeing the pendulum from a control point of view, the lower
point is a stable point and the upper point is unstable. It means in reality that if one
wants the pendulum to remain in the upper point then the entire pendulum must have
the ability to be moved and the movement has to be controlled.

5

CHAPTER 2. THEORY

One way of moving the pendulum could be by having a cart attached to the pendulum
as Figure 2.1 illustrates. The cart should be moved forward or backwards depending on
the direction in which the pendulum is falling. This is the way the classical controlled
inverted pendulum problem is defined and it corresponds well with the mathematical
model of the truck presented in this thesis. However, the truck has one very important
difference. Instead of having a cart attached to the pendulum, a wheel axis is attached
in its place. The difference will be that the axis will not only give a motion forward
and backwards but also a torque at the point where it is attached to the stick of the
pendulum.

The equation of motion for the cart controlled pendulum in Figure 2.1 can be derived
using Lagrange’s equations. A overview of the Lagrange mechanics is found in Section
2.1.1.

Let x represent the movement of the cart in the horizontal direction and α the
angle the pendulum is leaning from its upright position (see Figure 2.1). Summing the
translational and potential energy of the pendulum gives the Lagrangian:

L =
1

2
Mv2

1 +
1

2
mv2

2 −mg` cos(α).

where:

(1/2)Mv2
1 - Kinetic energy of the cart.

(1/2)mv2
2 - Kinetic energy of the pendulum.

mg` cos(α) - Potential energy of the pendulum.

v2
1 = ẋ2 - Velocity of the cart

v2
2 = ẋ2 − 2`ẋα̇ cos(α) + `2α̇2 - Velocity of the pendulum

M - Mass of the cart.

m - Mass of the pendulum.

l - Length of the pendulum.

Rewriting the Lagrangian gives:

L =
1

2
(M +m) ẋ2 −m`ẋα̇ cosα+

1

2
m`2α̇2 −mg` cosα.

Using Lagranges equations below, the equations of motion can be derived:

d

dt

(
∂L

∂ẋ

)
− ∂L

∂x
= F,

d

dt

(
∂L

∂α̇

)
− ∂L

∂α
= 0,

where F is the non-conservative forces i the system. And x and α represent the two
degrees of freedom of the cart. That means that the cart and pendulum cannot move or

6

CHAPTER 2. THEORY

Figure 2.1: Inverted pendulum on a cart

rotate in any other direction.

Solving the derivatives of the equations of motion gives:

(M +m) ẍ−m`α̈ cosα+m`α̇2 sinα = F,

`α̈− g sinα− ẍ cosα = 0.

These equations can now be used in Simulink to describe the motion of the inverted
pendulum. It is also possible to linearize the equation and then use the linearization to
design a controller.

2.1.3 Suspension

Since the truck is intended to be driven by a human, it is important to equip it with
a suspension system. This adds complexity to the dynamic model and there exists (to
our knowledge) no documentation about an inverted pendulum model resting on two
wheels with suspension. In this section, the dynamics of a simple suspension model
(see Figure 2.2) that will be used in the complete model of the truck in Chapter 3 is
presented [4].

The distance between the two points Z1 and Z2 can be expressed as ∆Z = Z1 −Z2.
The force in the suspension can then be described by

Fspring = −k ·∆Z + ∆Ż · b, (2.3)

7

CHAPTER 2. THEORY

Z1

Z2

kb

Figure 2.2: The suspension model used for the truck

where

k - The spring constant.

b - The damping constant.

2.1.4 Air resistance

An air resistance force affects the truck when it is moving forward or backwards. It is
necessary to include the effect of that force in the mathematical model since it influences
the dynamics of the truck. Obviously, the air resistance is dependent on how fast the
truck is moving [4]. It is assumed that the drag is described by

Fdrag =
1

2
ρv2CdA, (2.4)

where

ρ - Density of the air (ρair ≈ 1,2).

v - Speed of the object relative to the air.

Cd - Drag coefficient.

A - Area of the plane perpendicular to the direction of motion.

Some additional assumptions are made for the air resistance model when applying it
to the final truck model in Chapter 3:

1. The frontal area of the truck is considered to be rectangular and of the same size
as the back area.

2. When the truck is moving it will lean forward or backward. The vertical cross
sectional area A will then slightly differ from when the truck is upright. In reality
the area A should be a function of ψ (see Figure 3.1(a)). However, in this report,
A is assumed to be constant.

8

CHAPTER 2. THEORY

2.1.5 Rolling resistance

When a vehicle is moving there is a rolling resistance caused by deformations of the tire
as it rolls [4]. The rolling resistance increases with the rotational speed of the wheel. It
is described as a torque working in the opposite direction of the wheel spin.

Mrol.fr. = kfrictionω (2.5)

where,

Mrol.fr. - Rolling resistance.

kfriction - Rolling resistance constant depending mostly on the tire and road type.

ω - Rotational speed of the wheel.

2.2 Controlling the truck

A controller has to be able to keep the truck upright while moving or remaining still.
The cabin of the truck must under no circumstances hit the ground by falling over. This
poses some challenges and there are numerous different controllers that can be used for
the same purpose. Here, a Linear Quadratic Gaussian controller, commonly abbreviated
as the LQG controller, will be used to stabilize the truck. The LQG controller consists
of a Kalman filter combined with a Linear Quadratic Regulator (LQR) [5].

2.2.1 Linear Quadratic Regulator (LQR)

An LQR is an optimal control regulator which minimizes a cost function J, described by

J =

∞∫
0

(
xTQx+ uTRu+ 2xTNu

)
dt (2.6)

Note: x is here a vector of all state variables.

The cost function is weighted with weighting factors (Q, R and N) which are tuned
by the control engineer. These weighting factors decide how much the deviation from
the reference signal from the different states of the system should influence the size of
the control signal [6].

Consider an LTI 1 system described by

ẋ = Ax+Bu (2.7)

The minimal solution of the cost function gives the state feedback law u = −Lx,
where L is derived by solving S in the Riccati Equation discribed by

ATS + SA− (SB +N)R−1(BTS +NT) +Q = 0. (2.8)

1Linear time-invariant

9

CHAPTER 2. THEORY

The optimal gain matrix L is then calculated by using S in equation described by

L = R−1(BTS +NT). (2.9)

In Matlab the optimal gain matrix L can easily be obtained by using the command
[L,S,e] = lqr(SY S,Q,R,N). Note that Q, R and N are tuning parameters and they
have to be tweaked by a control engineer until the desired performance is obtained. This
is usually done in a simulation environment where the parameters are tuned until the
performance specifications are satisfied.

Integral action

One of the drawbacks with the standard LQR is that there is no integral action. Practi-
cally, this means that if the controlled system is subjected to a constant force there will
always be a constant error where the output deviates from the reference signal. In order
to remove this error it is possible to include integral action in the LQR. This is simply
done by adding an extra state of the tracking error r− y, where r is the reference signal
and y is the measured feed back signal. This will add one extra state per signal y having
integral action to the model, and the tuning matrices Q, R and N have to be adjusted
accordingly. In the complete model of the truck in Chapter 3, integral action is needed
since the truck must be able to stand still on slopes.

2.2.2 Kalman filter

Often it is not possible to measure all states of a system and therefore some states have
to be estimated. In reality there is also always noise affecting the system, creating new
problems that have to be handled. The Kalman filter tries to solve both problems by
filtering away the process and measurement noise while also estimating the unmeasured
states[7]. It is estimating the states by using the known inputs u and the measurement
y to generate the state estimates x̂ and ŷ [5].

Assume that a system is described by

ẋ = Ax+Bu+Gw (2.10)

y = Cx+Du+Hw + v (2.11)

where,

10

CHAPTER 2. THEORY

A,B,C,D - System state matrices

G - Process noise gain matrix relating the process noise

to the state variables

H - A gain matrix relating the disturbances directly to

the measurements

w - White noise disturbance vector (process noise)

v - White noise disturbance vector (measurement noise)

The estimate error covariance, where x̂(t) is the state estimator, is described by

P = lim
t→∞

E({x(t)− x̂(t)}{x(t)− x̂(t)}T) (2.12)

The state estimator x̂ is derived from

˙̂x = Ax̂+Bu+K(y − Cx̂−Du) (2.13)

where the Kalman gain K is obtain by solving

K = PCT (CPCT +R)−1, (2.14)

where P is obtained by solving the differential Riccati equation described by

Ṗ = −PCTR−1CP +AP + PAT +Q, (2.15)

where R is the covariance matrix.
The Kalman gain can be tuned for improved performance. With a high gain, the

filter follows the observations more closely. With a low gain, the filter follows the model
predictions more closely. Note that the model prediction are based on a linearized model
of the true system. Hence, the model prediction will only be as good as the linearized
model. Using a Kalman filter produces estimates that are closer to the true unknown
values than those that would be based on a single measurement alone or the model
predictions alone.

2.2.3 Linear Quadratic Gaussian (LQG) Controller

The separation principle states that, under some assumptions, it is possible to design an
optimal feedback controller by designing an optimal observer that feeds into an optimal
controller for the system [8]. Practically it means that it is possible to separate the
problem of designing an optimal feedback controller into two smaller problems. Figure
2.3 illustrates how an LQG controller is connected to a plant.

11

CHAPTER 2. THEORY

Process
Noise

Measurment
Noise

Kalman
Filter

Plant

-L

LQG Controller

+

+
x̂

u

y

u

Figure 2.3: LQG control of a system

12

3
Implementation

3.1 System description

The vehicle is an inverted pendulum attached on an axle that is connected to two wheels.
There is a suspension system located between the upper body and the wheel axle (see
Figure 3.1(a)). The suspension is modeled as a linear spring in parallel connection with
a damper. Equations that describe the dynamics can be found in Section 2.1.3.

The system is considered to have three mass centers of gravity located at left wheel,
right wheel and upper body. They are given the coordinates (xl, yl, zl), (xr, yr, zr) and
(xb, yb, zb) (see Figure 3.1).

3.2 Lagrange Modeling

Lagrange’s method has been used to create a mathematical model of the system (see
Section 2.1.1). Formulating Lagrange’s equations of motions requires a few steps that
are described in this section. [9]

3.2.1 New coordinate system

The first step is to minimize the number of coordinates used to describe the system. This
new set of coordinates is called the generalized coordinates. All of the other coordinates
for the different mass centers have to be related to these new coordinates.

Since the vehicle is considered as a three mass system, three coordinates for each
mass center needs to be described by the generalized coordinate system. One approach
to do this is to start from the middle point of the vehicle and describe each mass center
relative to this point. To do so requires that the position and orientation of the middle
point of the vehicle (xm,ym,zm) is known. The position of the wheels can be described
from this point by knowing the width of the vehicle.

13

CHAPTER 3. IMPLEMENTATION

Ψ

R

Zg

Zm

Zb

L

M, JΨ

m, Jw

Θl,r

X

Z

τ

(a) Side view

Yr

X

Y

Ym

Yb

Yl

Xl XbXm Xr

W

φ

(b) Plane view

Figure 3.1: Vehicle overview

Five generalized coordinates were selected (see Table 3.2). θ, Φ and zg are used to
calculate the position and orientation of the middle point. Pitch angle ψ and the state
of the suspension τ are used to describe the position of the upper body mass center
(xb,yb,zb).

The coordinates of the three mass centers are expressed relative to the middle point
of the vehicle by

[xl, yl, zl] =

[
xm −

W

2
sin(φ), ym +

W

2
cos(φ), zm

]
, (3.1)

[xr, yr, zr] =

[
xm +

W

2
sin(φ), ym −

W

2
cos(φ), zm

]
, (3.2)

[xb, yb, zb] =

[
xm + (τ + L) sin(ψ) cos(φ),

ym + (τ + L) sin(ψ) sin(φ), zm + (τ + L) cos(ψ)

]
, (3.3)

where the position of the middle point is

[xm, ym, zm] =

[∫
ẋmdt,

∫
ẏmdt, zg +R

]
. (3.4)

14

CHAPTER 3. IMPLEMENTATION

Table 3.1: System parameters

Terminology Description Value Unit

g Gravity 9,82 m/s2

m Mass of left and right wheel 15 kg

R Wheel Radius 0,4 m

Jw Wheel inertia moment 1,2 kgm2

n gear ratio 1

M Body weight 870 kg

W Body width 1,6 m

D Body depth 1,4 m

H Body height 2 m

L Distance between wheel axle

and center of gravity 0,67 m

Jψ Body pitch inertia moment 128,9 kgm2

Jφ Body jaw inertia moment 327,7 kgm2

Jm Motor inertia moment 1 · 10−5 kgm2

A Front area of the body 3,2 m2

k Linear spring constant 100000 N/m

b Linear damping constant 10000 Ns/m

Table 3.2: Generalized coordinates

θ - Average angle of the two wheels, θl and θr

ψ - Pitch angle of the body

φ - Yaw angle of the body

zg - The height position on the wheel axle

τ - Extension of the suspension

3.2.2 Lagrangian formulation

Formulating the Lagrangian equations requires a closer look at the existing energies in
the system (see Section 2.1.1).

The translational kinetic energy is

Ttr =
1

2
m(ẋ2

l + ẏ2
l + ż2

l) +
1

2
m(ẋ2

r + ẏ2
r + ż2

r) +
1

2
M(ẋ2

b + ẏ2
b + ż2

b). (3.5)

15

CHAPTER 3. IMPLEMENTATION

The rotational kinetic energy is

Trot =
1

2
Jwθ̇

2
l +

1

2
Jwθ̇

2
r +

1

2
Jψψ̇

2 +
1

2
Jφφ̇

2 +
1

2
n2Jm(θ̇l − ψ̇)2 +

1

2
n2Jm(θ̇r − ψ̇)2. (3.6)

The potential energy is

U = mgzl +mgzr +Mgzb +
1

2
kτ2. (3.7)

3.2.3 Inserting the coordinates into the Lagrangian formulation

Taking the derivative of the coordinates in Equations (3.1)-(3.3) yields

[ẋl, ẏl, żl] =

[
ẋm −

W

2
φ̇ cos(φ), ẏm −

W

2
φ̇ sin(φ), żm

]
, (3.8)

[ẋr, ẏr, żr] =

[
ẋm +

W

2
φ̇ cos(φ), ẏm +

W

2
φ̇ sin(φ), żm

]
, (3.9)

[ẋb, ẏb, żb] =

[
ẋm + (τ + L)

(
ψ̇ cos(ψ) cos(φ)− φ̇ sin(φ) sin(ψ)

)
+

τ̇ sin(ψ) cos(φ), ẏm + (τ + L)
(
ψ̇ cos(ψ)cos(φ)−

φ̇ sin(φ) sin(ψ)
)

+ τ̇ sin(ψ) cos(φ),

żm + τ̇ cos(ψ)− (τ + L)ψ̇ sin(ψ)

]
, (3.10)

where

[ẋm, ẏm, żm] =

[
Rθ̇ cos(φ), Rθ̇ sin(φ), żg

]
. (3.11)

An expression for how the rotations of the left and right wheel affect the vehicle is
needed. This motion has to be expressed in the generalized coordinate system. The
average wheel angle and the jaw angle can be determined by

θ =
1

2
(θr + θl), (3.12)

φ =
R

W
(θr − θl), (3.13)

which can be rewritten as

θr = θ +
Wφ

2R
, (3.14)

θl = θ − Wφ

2R
. (3.15)

16

CHAPTER 3. IMPLEMENTATION

The derivative is then [
θ̇r, θ̇l

]
=

[
θ̇ +

Wφ̇

2R
, θ̇ − Wφ̇

2R

]
. (3.16)

The Lagrangian is derived by inserting Equation (3.16) in Equation (3.6) which gives
the final formulation

L = Ttr + Trot − U (3.17)

3.2.4 Equations of motion

The last step is to set up and solve Lagrange’s equations of motion. The equations to
be solved are

d

dt

(
∂L
∂θ̇

)
− ∂L
∂θ

= Fθ, (3.18)

d

dt

(
∂L
∂ψ̇

)
− ∂L
∂ψ

= Fψ, (3.19)

d

dt

(
∂L
∂φ̇

)
− ∂L
∂φ

= Fφ, (3.20)

d

dt

(
∂L
∂τ̇

)
− ∂L
∂τ

= Fτ . (3.21)

Solving these equations by hand is not very hard but very time consuming. To save
time and to minimize the risk of making errors a Matlab script was used to derive the
equations (see Appendix B.1). Solving the equations yields four equations, where each
equation is describing the motion in the specified coordinate. Note that the script is also
generating a fifth equation which corresponds the the motion at Zg. It is necessary to
include Zg in the calculations to get the dynamics of Zg in the other equations. But since
the motion of Zg will be controlled by the environment the equation itself is unused.

3.2.5 Implementation in Simulink

To be able to implement the dynamics in Simulink some modifications to the derived
Lagrange’s equations of motion are needed.

Solving Equations (3.18), (3.19), (3.20) and (3.21) yields

θ̈ =
A1− τ̈ ·A2 + ψ̈ ·A3

A4
, (3.22)

ψ̈ =
B1 + Z̈g ·B2 + θ̈ ·B3

B4
, (3.23)

φ̈ = C1, (3.24)

17

CHAPTER 3. IMPLEMENTATION

τ̈ =
D1− Z̈g ·D2− θ̈ ·D3

D4
, (3.25)

where the expressions A1, A2, A3, A4, B1, B2, B3, B4, C1, D1, D2, D3 and D4 are
dependent on ψ̇, ψ, φ̇, φ, τ̇ , τ , Żg and Zg. Note that Equations (3.22), (3.24) and (3.25)
are interdependent while Equation (3.24) is not dependent on any of the other equations.
The interdependency causes algebraic loops when implemented in Simulink. By doing
multiple algebraic operations the interdependency between θ̈, ψ̈ and τ̈ can be broken.

The final result is four equations describing the motions of the vehicle. The complete
equations can be found in Appendix A. Figure 3.2 illustrates how these equations were
implemented in Simulink. Each one of the function blocks in Figure 3.2 contains an
algebraic expression that calculates the equation of motion for a specific generalized
coordinate.

dd tau
4

dd phi

3

dd psi
2

dd theta

1

ddZg2
10

ddZg1
10

dd Theta

F_Theta

F_Psi

F_Tau

Psi

dPsi

dPhi

Tau

dTau

ddZg

ddTheta
fcn

dd Tau

F_Theta

F_Psi

F_Tau

Psi

dPsi

dPhi

Tau

dTau

ddZg

ddTau
fcn

dd Psi

F_Theta

F_Psi

F_Tau

Psi

dPsi

dPhi

Tau

dTau

ddZg

ddPsi
fcn

dd Phi

F_Phi

Psi

dPsi

dPhi

Tau

dTau

ddPhi
fcn

dTau3
8

dTau2

8

dTau1
8

dPsi3
6

dPsi2

6

dPsi1
6

dPhi3

9

dPhi2
9

dPhi1

9

Tau3

7

Tau2
7

Tau1

7

Psi3
5

Psi2
5

Psi1
5

F_Theta2

1

F_Theta1

1

F_Tau2
4

F_Tau1
4

F_Psi2

2

F_Psi1
2

ddZg
10

dPhi
9

dTau
8

Tau
7

dPsi

6

Psi

5

F_Tau
4

F_Phi

3

F_Psi

2

F_Theta

1

Figure 3.2: Function blocks in Simulink that calculates the equations of motion

18

CHAPTER 3. IMPLEMENTATION

3.2.6 External and non-conservative forces

External and non-conservative forces in the system are not included in the Lagrangian
formulation and have to be modeled and implemented separately. External forces in the
system can for example be torque from the motors and forces due to road inclination.
Non-conservative forces are forces that do not transfer into potential or kinetic energy.
Any friction-type like air resistance and frictions in the wheels are non-conservative forces
[10]. Forces that are being taken into account are described in Table 3.3 (notation can
be found in Table 3.1).

Table 3.3: External and non-conservative forces

External Forces

Torque from the motors nMl,r

Turning force
W

2R
(Fr − Fl)

Forces due to inclination Fξ

Non-conservative Forces

Friction between wheel and motor fm(θ̇l,r − ψ̇)

Friction in the wheel fwθ̇l,r

Drag resistance
1

2
ρACẋ2

b

Damping force in the damper −bτ̇

The external and non-conservative forces are implemented as[
Fθ, Fψ, Fφ, Fτ

]
=

[
Fl + Fr − Fξ, Fψ,

W

2R
(Fr − Fl), Fτ

]
, (3.26)

where

Fl =nMl − fm(θ̇l − ψ̇)− fwθ̇l, (3.27)

Fr =nMr − fm(θ̇r − ψ̇)− fwθ̇r, (3.28)

Fξ =(Mw +Mb)(g + Z̈g)sin(ξ)R, (3.29)

Fψ =− n(Ml +Mr)− fm(ψ̇ − θ̇l)− fm(ψ̇ − θ̇r)− Fdrag, (3.30)

Fdrag =
1

2
ρACẋb

2, (3.31)

Fτ =− bτ̇ . (3.32)

19

CHAPTER 3. IMPLEMENTATION

Inserting Equation (3.27)-(3.32) in (3.26) yields

Fθ =n(Ml +Mr) + 2fmψ̇ − 2θ̇(fm + fw), (3.33)

Fψ =− n(Ml +Mr) + 2fmθ̇ − 2fmψ̇ −
H

4
ρAC...(

ẋm + (τ + L)(ψ̇ cos(ψ) cos(φ)...

− φ̇ sin(φ) sin(ψ)) + τ̇ sin(ψ) cos(φ)
)2
, (3.34)

Fφ =
Wn

2R
(Mr −Ml)−

W 2

2R2
(fm + fw)φ̇, (3.35)

Fτ =− bτ̇ . (3.36)

3.3 Electric motor model

The motor dynamics are approximated by a first order transfer function with a time
constant motor delay = 20ms. The time constant corresponds to the amount of time
it takes for the motor’s step response to reach 63% of its final value. The input torques
are the desired torques while the output torques are the actual torques the motors are
producing (see Figure 3.3).

Right Torque out
2

Left Torque out

1

Transfer Fcn1

1

motor_delay.s+1

Transfer Fcn

1

motor_delay.s+1

Right Torque
2

Left Torque

1

Figure 3.3: Simulink model of the motors

3.3.1 Energy consumption of the motors

The instant power output from the motors is calculated by

P (t) = τ(t) · ω(t) (3.37)

where

τ(t) = Instantaneous torque for time t,

ω(t) = Instantaneous angular speed for time t,

P (t) = Instantaneous power for time t.

20

CHAPTER 3. IMPLEMENTATION

When integrating instant power output over time, the total amount of energy con-
sumed is obtained

Wtotal =

∫ t

0
P (t) dt (3.38)

This principle of calculating energy has been implemented in Simulink with the block
diagram in Figure 3.4.

Energy Right Motor

2

Energy Left Motor
1

Ws −> Wh1

−K−

Ws −> Wh

−K−

Product1

Product

Integrator1

1
s

Integrator

1
s

Gain1

st.W/(2*st.R)

Add2

Add1 Abs3

|u|

Abs2

|u|

Abs1

|u|

Abs

|u|

dPhi
4

Angular velocity

3

Torque Right
2

Torque Left

1

dTheta_R

dTheta_L

Figure 3.4: Motor energy calculation implemented in Simulink

3.4 Sensor models

Sensor models are implemented to better simulate real life conditions for the vehicle. In
order to do that, some questions need to be answered:

� What states need to be measured and which sensors are needed to do that?

� What kind of noise do the sensors add?

� Which sensor resolution is required to achieve a good control and behavior of the
vehicle?

3.4.1 Which states need to be measured?

This section describes which states that should be measured in order to control the
vehicle. Note that some states could be estimated by the Kalman filter instead of mea-
sured. However, since there exists sensors that can accurately measure these states it is
preferable to use them instead.

Pitch angle and pitch angle rate

The pitch angle ψ has to be measured in order to balance the vehicle in an upright
position. There are different ways to measure ψ but the most common one is to use
an accelerometer in combination with a gyroscope. This fusion of sensors is called an
Inertial sensor and it will be able to measure both ψ and ψ̇ with good resolution and
small error.

21

CHAPTER 3. IMPLEMENTATION

Yaw angle rate

Since the vehicle controller should also be able to handle turning, the jaw angle rate φ̇
has to be measured. This can be measured with a simple gyroscope which is included in
the Inertial sensor.

Speed

θ̇ has to be measured to enable control of the movement of the truck. The speed can easily
be measured by using tachometers on the wheels. Since the tachometers are connected
to the vehicle body, the position of the body has to be known to calculate the rotation
of the wheels. Else, it would be impossible to say if it is the wheels that are rotating or
if it is the body. Note that this will cause the errors from ψ measurement to also affect
the speed measurement calculations.

Measured states

The four states that are being measured are (ψ, ψ̇, φ̇ and θ̇). Measuring these four states
enables balancing, speed and steering control of the vehicle.

dPhi_noise
4

dPsi_noise
3

Psi_noise
2

dTheta_noise
1

Tachometer noise

Gaussian

Inertial sensor noise

Gaussian

Analog
Filter Design5

butter

Analog
Filter Design3

butter

Analog
Filter Design2

butter

Analog
Filter Design1

butter

Add4

Add3

Add2

Add1

dPhi_real
4

dPsi_real

3

Psi_real

2

dTheta_real
1

Figure 3.5: Overview of the sensor models

3.4.2 Noise modeling

Every state except the speed (θ̇) is measured by an inertial sensor. The inertial sensor
will add noise to the measured states ψ, ψ̇ and φ̇. There will also be quantization errors
due to sensor resolution.

22

CHAPTER 3. IMPLEMENTATION

The noise level for the tachometer will be very small. But since the noise from the
Inertial sensor also affects the speed measurement calculation, there will be a lot of noise
from those readings as well. However, this correlation between the noises will not be
accounted for in the design of the Kalman filter in Section 3.5.3. A Gaussian distributed
noise with the same variance is therefore added to all the states in the sensor model.
The variance chosen is 0.003, which is a common value for many of the Inertial sensor
manufacturers.

3.4.3 Implementation

The sensor models are simply implemented in the Simulink model by creating a block
”Sensors” where the noise of each sensor is added to the measured state (see Figure 3.5).
Anti-aliasing filter are also added to avoid aliasing effects when the measured signals are
sampled.

3.5 Controller Design

The main task for the control system is to balance the vehicle in upright position and
follow the reference signals. The Controller has two input reference signals. The first
one is the requested speed of the vehicle θ̇, and the second one is the requested turning
speed φ̇. The controller selected to perform these tasks is a linear LQG-controller. An
LQG controller is basically an LQR controller linked with a Kalman filter (see Section
2.2.3).

3.5.1 Linearisation

The equations of motion are linearized around the upright operating point of the vehicle
by applying θ → 0,ψ → 0, φ → 0, Zg → 0 and τ → 0. Since linearizing by hand is a
tedious task and it is also very easy to make mistakes, a Matlab script was developed to
do that (see Appendix B.3). The resulting linearized system is present in a state space
formulation. It is described by

ẋ = Ax+Bu, (3.39)

y = Cx, (3.40)

where x and u are considered to be states and inputs,

x = [θ, θ̇, ψ, ψ̇, φ, φ̇]T , u = [Tl, Tr], (3.41)

23

CHAPTER 3. IMPLEMENTATION

and the system matrices are

A =



0 1 0 0 0 0

0 a22 a23 a24 0 0

0 0 0 1 0 0

0 a42 a43 a44 0 0

0 0 0 0 0 1

0 0 0 0 0 0


, (3.42)

B =



0 0

b2 b2

0 0

b4 b4

0 0

−b6 b6


, C =


0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1

 , (3.43)

where

a22 =
−(2fm + 2fw)

(E − (2Jmn
2B)

A
+

(LMRB)

A
)

, (3.44)

a23 =
(MRg − (L2M2Rg)

A
+

(2JmLMgn2)

A
)

(E − (2Jmn
2B)

A
+

(LMRB)

A
)

, (3.45)

a24 =
2fm +

4Jmfmn
2

A
− 2LMRfm

A

E − 2Jmn
2B

A
+
LMRB

A

, (3.46)

a42 =− 4(2Jmn
2 − LMR)(fm + fw)

C +D
, (3.47)

a43 =
4Mg(LmR2 + JmRn

2 + JmLn
2 + JwL)

C +D
, (3.48)

24

CHAPTER 3. IMPLEMENTATION

a44 =
4fm(2Jw +MR2 + 4Jmn

2 + 2R2m− LMR)

C +D
, (3.49)

b2 =
n− 2Jmn

3

A
+
LMRn

A

E − 2Jmn
2B

A
+
LMRB

A

, (3.50)

b4 =− 4Jwn+ 2MR2n+ 4R2mn+ 2LMRn

C +D
, (3.51)

b6 =
Wn

2R(JΦ +
W 2m

2
+
JwW

2

2R2
+
JmW

2n2

2R2
)

, (3.52)

and A,B,C,D,E are given by

A =ML2 + 2Jmn
2 + JΨ), (3.53)

B =2Jmn
2 − LMR, (3.54)

C =n2(4JΨJm + 8JmJw + 4JmL
2M + 4JmMR2 + 8JmR

2m+ 8JmLMR), (3.55)

D =4JΨJw + 4JwL
2M + 2JΨMR2 + 4JΨR

2m+ 4L2MR2m, (3.56)

E =2Jw +MR2 + 2Jmn
2 + 2R2m. (3.57)

Poles and Zeros

By studying the poles of the linearized system the basic dynamics of the system can
be observed. It is known that the inverted pendulum have two equilibrium points. One
point is stable, which corresponds to when the pendulum is in a downright position. The
other point is unstable and corresponds to when the pendulum is in an upright position.
In Figure 3.6 the unstable and the stable poles for the reference model (see Table 3.1)
can be observed. Note that the system also contains four other poles which are related
to the other coordinates in the system.

The numerical values of the poles are −1.1991, −0.3526, 1.4930 and 0.

3.5.2 Discretization

It is assumed that the LQG-controller is implemented on a microprocessor (in reality).
Therefore the entire system needs to be discretized. In Matlab this is easily done by
running the command SY SD = c2d(SY S,TS), where SY S is the continuous time rep-
resentation of the system and TS is the sampling period. The sampling time is selected
to 1ms.

3.5.3 Kalman Filter

The Kalman filter is a part of the LQG-controller which filters noise and estimates
unknown states (see Section 2.2.2).

25

CHAPTER 3. IMPLEMENTATION

−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Pole−Zero Map

Real Axis (seconds−1)

Im
ag

in
ar

y
A

xi
s

(s
ec

on
ds

−
1)

Linearized system

Figure 3.6: Poles and zeros of the linearized system

Observability

One necessary requirement for the Kalman filter to work is that the system is observable.
This means that unmeasured states in the system need to be able to be estimated by an
observer. To determine if the system is observable the rank of the observability matrix
is calculated

O =



C

CA

CA2

...

CAn−1


(3.58)

The rank of the observability matrix is calculated to 4, which is not full rank and
therefore implies that the system is not fully observable. This means that some states
cannot be determined through the sensor outputs and their value will be unknown for
the controller.

By studying the properties of the system it can be seen that the non-observable states
are θ and φ. Since these states are not necessary for controlling the vehicle, they can

26

CHAPTER 3. IMPLEMENTATION

simply be discarded. Removing θ and φ results in a new state space representation

ẋ = Aminx+Bminu, (3.59)

y = Cminx, (3.60)

where the state vector x and the input vector u are

x = [θ̇, ψ, ψ̇, φ̇]T , u = [Ml, Mr]. (3.61)

The new system matrices are then

Amin =


a22 a23 a24 0

0 0 1 0

a42 a43 a44 0

0 0 0 0

 , Bmin =


b2 b2

0 0

b4 b4

−b6 b6

 (3.62)

Cmin =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 (3.63)

Calculation of the Kalman gain

The Kalman gain K is calculated in Matlab by using the command [KEST,K,P] =
kalman(SY SD,R1,R2,R12). SY SD is the discrete representation of the minimal lin-
earized system and R1, R2 and R12 are design parameters (see Section 2.2.2).

The filter is tuned by adjusting R1, R2 and R12. R12 is the covariance between
measurement noise and process noise. It is assumed that the measurement noise and
process noise are independent and, thus, R12 = 0. R2 is the matrix that describes
the variance of the measurement noise. Since the measurement noise is equal for all
outputs and the noise is assumed to be independent from the other measurements (see
Section 3.4.2), R2 set to a diagonal matrix with a value of 0.001. The parameters of
R1 can now be tuned until the result is satisfying. Increasing the values in R1 means
relying more on the measurements and less on the model. Decreasing R1 means that
the estimate will depend more on the model and less on the measurements.

It is desirable to have a Kalman filter that removes as much noise as possible without
being too slow to adapt to changes. That means that a compromise has to be found
between noise reduction and system adaptation. After trial and error the tuning matrices
were set to

R1 =


0.5 0 0 0

0 0.5 0 0

0 0 0.5 0

0 0 0 0.5

 (3.64)

27

CHAPTER 3. IMPLEMENTATION

R2 =


0.001 0 0 0

0 0.001 0 0

0 0 0.001 0

0 0 0 0.001

 (3.65)

R12 =

[
0 0

0 0

]
(3.66)

Figure 3.7 illustrates how the Kalman filter was implemented in Simulink.

y_est

x_esty − y_est

x_est
1

Unit Delay

z

1

Kalman gain

K*uvec

C

K*uvec

B

K*uvec

A

K*uvec

meas
2

u
1

Figure 3.7: Implementation of the Kalman filter in Simulink

3.5.4 Controller

The Kalman filter feeds into a LQR controller with integral action (see Section 2.2.1).
The integral action is necessary for good reference tracking when running or standing
still on a slope. The optimal gain matrix is calculated in Matlab by using the command
[K;S;e] = lqi(SYSD;Q;R;N), where SY SD is the discretized and linearized minimal
realization (see Equations 3.62 and 3.63) and Q, R and N are the design parameters.
To simplify N is set to 0. R is set to a 2x2 unit matrix since the two control signals are
scaled equally. Q is the weighting matrix for each state in the state vector [θ̇, ψ, ψ̇, φ̇, θ].
The selected matrices are

Q =



2e4 0 0 0 0

0 1e7 0 0 0

0 0 1e− 7 0 0

0 0 0 1e4 0

0 0 0 0 1e2


, R =

[
1 0

0 1

]
, N = 0. (3.67)

28

CHAPTER 3. IMPLEMENTATION

The optimal feedback gain is calculated to

K = 103 ·

[
−0.1073 −2.9260 −0.6633 −0.0707 0.0070

−0.1073 −2.9260 −0.6633 0.0707 0.0070

]
(3.68)

Figure 3.8 illustrates how the controller is implemented in Matlab.

u

x_est
3

Torque Right Motor
2

Torque Left Motor
1

State feedback

K*uvec

Kalman filter

u

meas

x_est

Discrete−Time
Integrator

K Ts

z−1

dPhi_ref
3

dTheta_ref
2

meas
1

y

Figure 3.8: Implementation of the LQG controller in Simulink

3.6 Visualization

A visualization model is created to make it easier to observe and actually see how the
vehicle behaves in different scenarios. The visualization will also give a good understand-
ing for the dynamics in the vehicle without having any underlying knowledge about the
system. It is therefore suitable to use as a presentation model for people that are not
involved in this project.

3.6.1 Building the model

A VRML model (Virtual Reality Modeling Language) is built in the editor V-Realm
Builder in order to represent the truck. The visualization is created within the Matlab
Simulink 3D Animation toolbox [11]. The vehicle is only consisting of three objects.
Two cylinders are used as wheels and one box represents the chassis (see Figure 3.9).

3.6.2 Implementation in Simulink

The visualization is implemented in Simulink as a separate model (see the ”3D Visual-
isation” block in Figure 3.11). Inputs to the block are the signals that are necessary to
calculate position and rotation of the objects in the VRML model. Figure 3.10 illustrates
how this was implemented in Simulink.

29

CHAPTER 3. IMPLEMENTATION

Figure 3.9: VRML model of the truck in V-Realm

VR Sink

Wheels.rotation

Wheels.translation

Wheel_right.rotation

Wheel_left.rotation

Chassi.rotation

Chassi.translation

Subsystem

dTheta

dPhi

Angle Right

Angle Left

Rotation Matrix
to VRML Rotation3

VR

Rotation Matrix
to VRML Rotation2

VR

Rotation Matrix
to VRML Rotation1

VR

Rotation Matrix
to VRML Rotation

VR

Rotation Angles to
Direction Cosine Matrix3

Rotation Order: ZYX

[R
1
,R

2
,R

3
] DCM

be

Rotation Angles to
Direction Cosine Matrix2

Rotation Order: ZYX

[R
1
,R

2
,R

3
] DCM

be

Rotation Angles to
Direction Cosine Matrix1

Rotation Order: ZYX

[R
1
,R

2
,R

3
] DCM

be

Rotation Angles to
Direction Cosine Matrix

Rotation Order: ZYX

[R
1
,R

2
,R

3
] DCM

be

Constant3

0

Constant2

0

Constant1

pi/2

x,y,z
6

dPhi
5

Tau
4

Phi

3

Psi

2

dTheta
1

Figure 3.10: Visualization blocks

30

CHAPTER 3. IMPLEMENTATION

3.7 System Summary

Every part of the system is implemented in a Simulink model as a separate block (see
Figure 3.11). This modularity makes it simple to make adjustments to or to replace any
block. It also gives a good overview of all the parts included in the model. To tie all
parts together a data bus is created. A data bus is a good way to keep track of all the
signals included in the system and makes it easier to work with the model.

All subsystems in the model are operating in continuous time except the LQG-
controller block (see Figure 3.11). Therefore A/D and D/A converters are included in
the model to handle the time difference between these two systems.

31

CHAPTER 3. IMPLEMENTATION

xy
z

x_
es

t −
K

−
to

 d
eg

re
es

1

−
K

−

to
 d

eg
re

es

18
0/

pi−
K

−

−
K

−

ra
d/

s
−

>
 k

m
/h

−
K

−

km
/h

 −
>

 r
ad

/s

−
K

−

de
gr

/s
 −

>
 r

ad
/s

pi
/1

80

X
i

T
or

qu
e

le
ft&

R
ig

ht

T
o

W
or

ks
pa

ce

si
m

ou
t

T
he

ta
, P

hi
,

dd
Z

g,
 T

au
S

pe
ed

, j
aw

an

d
P

si

S
en

so
rs

dT
he

ta
_r

ea
l

P
si

_r
ea

l

dP
si

_r
ea

l

dP
hi

_r
ea

l

dT
he

ta
_n

oi
se

P
si

_n
oi

se

dP
si

_n
oi

se

dP
hi

_n
oi

se

R
oa

d
pr

of
ile

xy
z

X
i

R
ef

er
en

ce
 s

pe
ed

 fo
rw

ar
d

V
A

R

S
ig

na
l 2

G
ro

up
 1

R
ef

er
en

ce
 s

pe
ed

 fo
rw

ar
d

R
E

F

S
ig

na
l 2

G
ro

up
 1

R
ef

er
en

ce
 ja

w
 R

E
F

S
ig

na
l 2

G
ro

up
 1

M
ot

or

Le
ft

T
or

qu
e

R
ig

ht
 T

or
qu

e

Le
ft

T
or

qu
e

ou
t

R
ig

ht
 T

or
qu

e
ou

t

M
od

el

pl
an

t

T
or

qu
e

Le
ft

T
or

qu
e

R
ig

ht

X
i

st
at

es

M
an

ua
l S

w
itc

h

LQ
G

 c
on

tr
ol

le
r

LQ
G

_c
on

tr
ol

le
r

m
ea

s

dT
he

ta
_r

ef

dP
hi

_r
ef

T
or

qu
e

Le
ft

M
ot

or

T
or

qu
e

R
ig

ht
 M

ot
or

x_
es

t

−
K

−

E
ne

rg
y

ca
lc

ul
at

io
ns

T
or

qu
e

Le
ft

T
or

qu
e

R
ig

ht

A
ng

ul
ar

 v
el

oc
ity dP

hi

E
ne

rg
y

Le
ft

M
ot

or

E
ne

rg
y

R
ig

ht
 M

ot
or

E
ne

rg
y

D
2C

C
2D

3D
 V

is
ua

liz
at

io
n

vi
su

al
iz

at
io

n
dT

he
ta

P
si

P
hi

T
au

dP
hi

x,
y,

z

P
si

 d
eg

re
es

re
q_

to
rq

ue
_L

ef
t

re
q_

to
rq

ue
_R

ig
ht

to
rq

ue
_R

ig
ht

to
rq

ue
_L

ef
t

<
dT

he
ta

>

<
P

si
>

<
dP

si
>

<
dP

hi
>

<
dT

he
ta

>

<
P

si
>

<
P

hi
>

<
T

au
>

<
dP

hi
>

<
xy

z>

dT
he

ta
_r

ef

st
at

es
+

re
f

<
dT

he
ta

_r
ef

>

<
P

si
>

dT
he

ta
_n

oi
se

P
si

_n
oi

se

dP
si

_n
oi

se

dP
hi

_n
oi

se

<
no

is
y

si
gn

al
s>

<
dT

he
ta

_r
ef

>

<
dP

hi
_r

ef
>

<
dP

hi
_r

ef
>

<
dP

hi
>

<
xy

z>

<
dT

he
ta

>

F
or

w
ar

d
sp

ee
d

Le
ft

m
ot

or

R
ig

ht
 m

ot
or

<
re

q_
to

rq
ue

_L
ef

t>

<
to

rq
ue

_L
ef

t>

<
re

q_
to

rq
ue

_R
ig

ht
>

<
to

rq
ue

_R
ig

ht
>

Le
ft

m
ot

or

R
ig

ht
 m

ot
or

<
re

q_
to

rq
ue

_L
ef

t>
<

to
rq

ue
_L

ef
t>

<
re

q_
to

rq
ue

_R
ig

ht
>

<
to

rq
ue

_R
ig

ht
>

<
no

is
y

si
gn

al
s>

<
T

he
ta

>
<

dT
he

ta
>

<
P

si
>

<
dP

si
>

<
P

hi
>

<
dP

hi
>

<
T

au
>

<
dT

au
>

<
dd

T
au

>
<

dd
Z

g>
<

xy
z>

<
dP

hi
_r

ef
>

<
dT

he
ta

_r
ef

>

no
is

y
si

gn
al

s
M

ot
or

+
no

is
e+

st
at

es

<
to

rq
ue

_L
ef

t>

<
to

rq
ue

_R
ig

ht
>

M
ot

or
 to

rq
ue

<
T

he
ta

>

<
P

hi
>

<
dd

Z
g>

<
T

au
>

<
to

rq
ue

_L
ef

t>

<
to

rq
ue

_R
ig

ht
>

<
dT

he
ta

>

E
ne

rg
y

Le
ft

M
ot

or
 (

W
h)

E
ne

rg
y

R
ig

ht
 M

ot
or

 (
W

h)

<
E

ne
rg

y
Le

ft
M

ot
or

 (
W

h)
>

<
E

ne
rg

y
R

ig
ht

 M
ot

or
 (

W
h)

>

<
dP

hi
>

<
E

ne
rg

y
Le

ft
M

ot
or

 (
W

h)
>

<
E

ne
rg

y
R

ig
ht

 M
ot

or
 (

W
h)

>

dP
hi

_r
ef

Y
aw

 a
ng

le
 r

at
e

de
g/

s
<

P
hi

>

F
ig

u
re

3
.1

1
:

O
ve

rv
ie

w
o
f

th
e

S
im

u
li
n
k

m
o
d
el

32

4
Results

A parameter study was made by varying noise levels, weight, center of mass, sampling
time and motor time constant of the truck model in Simulink. Simulations were done
with the truck driving with different speeds, on slopes and over curbs. All results from
those simulations are presented under different sections in this chapter. Every time a
parameter was changed a new linearized model was derived with a script in Matlab.
This new linearized model was then used in the LQG controller to stabilize and control
the vehicle. Unless otherwise specified every simulation was done this way.

4.1 Torque requirement

A number of simulations have been carried out to show how much torque that is required
to perform several actions.

4.1.1 Moving forward at constant speeds

These simulations show how much torque is required to maintain different speeds. Due to
air drag and frictions in the wheels, higher torque and body angle is needed to maintain
higher speeds (see Table 4.1).

4.1.2 Turning at different rates

The truck is standing still and turning left until it reaches either 90◦ or 180◦ (see Figure
4.1). There is no horizontal movement except for the small corrections back and forward
to balance the truck. Whenever the truck turns, one motor will give a torque in the
opposite direction of the other motor. For example if the truck turns right while standing
still, the left motor will give a positive torque while the right motor torque will be
negative. Note that the sensor noise is disabled in these simulations.

33

CHAPTER 4. RESULTS

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

45

90

135

180

Yaw angle

A
ng

le
 d

eg

90 deg turn
180 deg turn

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

50

100

150

200

250
Yaw angle rate

A
ng

le
 r

at
e

de
g/

s

90 deg turn
180 deg turn

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−600

−400

−200

0

200

400

600

Motor torques

Time (s)

T
or

qu
e

(N
m

)

90 deg turn (Left Motor)
90 deg turn (Right Motor)
180 deg turn (Left Motor)
180 deg turn (Right Motor)

Figure 4.1: Turning 90◦ and 180◦ while standing still.

34

CHAPTER 4. RESULTS

Table 4.1: Torque requirement during constant speeds

Speed (km/h) Total torque from both motors (Nm) Body angle (degrees)

10 14,4 0,24◦

20 31,0 0,76◦

30 47,0 1,5◦

40 63,8 2,5◦

50 81,2 3,8◦

60 99,4 5,3◦

4.1.3 Standing still on a slope

In many real life scenarios a vehicle will have to stop on a slope. A four wheeled
vehicle can simply brake to avoid rolling backwards while the single axle truck has to
continuously produce torque to balance upright while standing still. If one would try
only to brake, the one axle truck would simply fall over. The results in Table 4.2 shows
that steeper slopes require more torque for the vehicle to stand still. Sensor noise is
disabled in these simulations.

Table 4.2: Torque requirement when standing still on a slope

Slope grade Torque required (Nm)

3◦(3,33%) 92

5◦(5,56%) 153

7◦(7,78%) 214

9◦(10%) 275

12◦(13,3%) 365

4.2 Disturbances

Process disturbances will be simulated by driving in a slope and over a curb. Measure-
ment disturbances will be observed by varying the sensor noise in the sensor models.

4.2.1 Effects from process disturbances

Driving over a curb

A common scenario that may occur in real life is that the vehicle has to drive over a
curb. To examine how the vehicle will behave in such a scenario simulations were done
by running the vehicle onto an edge at three different speeds (10 km/h, 20 km/h and

35

CHAPTER 4. RESULTS

30 km/h). The edge has a height of 10 cm (see Figure 4.2). It was implemented as a
small slope with a big gradient but small traveling distance.

The simulations show that the controller has no problem to maintain stability of
the vehicle. However, hitting the curb will give rapid change in the pitch angle of the
body. This rapid change of Ψ will be measured by the sensors and the controller will
compensate for this by quickly requesting a high torque from the motors. This is seen
as high torque peaks in the second graph in Figure 4.2.

The third graph in Figure 4.2 shows the behavior of the suspension system. It can
be seen how the suspension is compressed when the vehicle hits the edge and how it is
extended when driving off the edge. The dotted line in Graph 3 is not in scale but just
implemented as a guide line to see when the vehicle hits the curb.

Slope

This simulation was performed to observe how the vehicle would handle driving up a
slope as well as stand still on a slope. The vehicle is accelerated to a speed of 25 km/h
and after 6 seconds it hits a slope with a gradient of 9◦ (10%). The vehicle then stops
on the slope before it start accelerating again (see Figure 4.3).

The simulation shows that the vehicle has no problem to maintain stability while
driving on the slope. It is also shown how the vehicle gets a constant torque applied to
the wheels and the body gets a constant angle while standing still on the slope (earlier
discussed in Section 4.1.3).

4.2.2 Effects from measurement disturbances

In this simulation gaussian white noise with different variances are added to the measured
signals as explained in Section 3.4. Even with the highest noise variance (0,3) the truck
will perform similarly as with almost no noise at all (0,0003) (see Figure 4.4). For
the variance values (0,03), (0,003) and (0,0003) there are almost no difference in the
performance.

Torque fluctuation with noisy signals

The performance of the truck might still be good with higher sensor noise. However,
as Figure 4.5 illustrates, the torque required to balance and move the vehicle fluctuates
more with noisier measurements.

These simulations were done with the truck standing still and balancing upright.
There is no movement of the truck besides the small corrections back and forward in
order to balance. Each simulation took 30 s from start to finish.

Table 4.3 shows that there is a linear relation between sensor noise and the amount
of energy required to balance which is natural since the system it self is linearized. More
energy is required because the motor torques will fluctuate much more while basically
doing the same job (standing upright).

36

CHAPTER 4. RESULTS

0 2 4 6 8 10 12 14 16 18 20
−40

−20

0

20

40
Angle of the body

A
ng

le
 (

de
gr

ee
s)

0 2 4 6 8 10 12 14 16 18 20
−1000

−500

0

500

1000

1500
Torque from the motors

T
or

qu
e

(N
m

)

0 2 4 6 8 10 12 14 16 18 20

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

State of the suspension system

Time (s)

C
om

pr
es

si
on

 (
m

)

10 km/h
20 km/h
30 km/h

Figure 4.2: Running over a curb

37

CHAPTER 4. RESULTS

0 5 10 15 20 25
−10

0

10

20

30
Speed of the vehicle

S
pe

ed
 (

K
m

/h
)

Reference
600kg
900kg
1200kg

0 5 10 15 20 25
−20

−10

0

10

20

30
Angle of the body

A
ng

le
 (

de
gr

ee
s)

600kg
900kg
1200kg

0 5 10 15 20 25
−500

0

500

1000
Torque from the motor

Time (s)

T
or

qu
e

(N
m

)

600kg
900kg
1200kg

Figure 4.3: Running on a slope

38

CHAPTER 4. RESULTS

0 5 10 15 20 25
−20

0

20

40

60
Speed of the vehicle

S
pe

ed
 (

K
m

/h
)

Reference
0,3
0,03
0,003
0,0003

0 5 10 15 20 25
−40

−20

0

20

40
Angle of the body

Time (s)

A
ng

le
 (

de
gr

ee
s)

Figure 4.4: Influence of three different noise variance values for the measurement sensors.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−600

−400

−200

0

200

400

600

Torque from the motor

Time (s)

T
or

qu
e

(N
m

)

0,3
0,03
0,003
0,0003

Figure 4.5: Sensor noise influencing torque output from the motor.

39

CHAPTER 4. RESULTS

Table 4.3: Energy requirement for different sensor noise to balance the truck upright while
standing still.

Sensor variance Energy consumed (Wh)

0,3 0,982

0,03 0,0982

0,003 0,00983

0,0003 0,000983

4.3 Vary the mass of the vehicle

Since the vehicle is supposed to be used as a distribution vehicle, the weight may change
during operation. A related question is if the control system can handle a varying weight
or if the control algorithm has to be updated with a new linearized model (with different
parameters) during operation. In this simulation the weight of the vehicle will be changed
but the controller will remain the same. The controller used in these simulations will be
tuned for 900kg and the mass will be deviating with ±150kg and ±300kg.

The simulations shows that the behavior is affected by a deviating weight (see Figure
4.6). Decreasing the weight will give a slower system response to changes at the reference
signal. However, the vehicle will remain stable and the body angle will deviate less than
in the reference model.

Increasing the weight will give a bigger response to changes in the reference signal.
This leads to poorer performance, with larger fluctuations of the body angle which results
in overshoots and instability (see Figure 4.6).

4.4 Vary the distance to the center of mass of the vehicle

Changing the center of mass vertically means that the dynamics of the vehicle also
changes. It is possible to vary the distance to the center of mass by changing parameter
L in Table 3.1. Figure 4.7 illustrates how the distance is changed.

4.4.1 Accelerating and then driving up a slope

At time t = 15 the truck starts to climb a 9% incline after accelerating to a speed of
50 km/h. Figure 4.8 shows that with a lower center of mass a higher angle of body is
needed in order to accelerate and maintain speed. In the case of the smallest distance
0,4 · ref , the truck could not even reach 50 km/h. Furthermore, when the truck hits the
slope at t = 15 the trucks with lower center of mass can tilt the chassis faster in order to
absorb the hit. Hence, there is a clear relation between the height of the center of mass
and the performance of the truck.

Figure 4.9 shows that the poles of systems with lower center of mass tend to move
further to the right and to the left. The pole on the right side of the map is the unstable

40

CHAPTER 4. RESULTS

0 5 10 15 20 25
−10

0

10

20

30

40

50

60
Speed of the vehicle

S
pe

ed
 (

K
m

/h
)

0 5 10 15 20 25
−60

−50

−40

−30

−20

−10

0

10

20
Angle of the body

A
ng

le
 (

de
gr

ee
s)

Reference
600kg
750kg
900kg
1050kg
1200kg

600kg
750kg
900kg
1050kg
1200kg

Figure 4.6: Varying the mass

41

CHAPTER 4. RESULTS

R
ef

er
en

ce
 le

ng
th

D
ev

ia
ti

on
 fr

om
 r

ef
er

en
ce

 le
ng

th

0,4*ref

0,7*ref

1,6*ref

1,3*ref

Figure 4.7: Deviating the position of center of mass.

pole (upright position) that has to be stabilized with the controller. The left side pole
is the stable pole (downright position). When these two poles move closer to ∞ and
−∞ it means that the system becomes faster. In reality it means that when going from
acceleration to retardation the truck with lower center of mass will tilt faster to the other
side. The downside is that it will be harder to control and requires more body angle
leaning for movement

4.4.2 How weight affects the center of mass

The distance to the center of gravity is also varying with how much the suspension
is compressed on the truck. For example, if the truck is loaded with a weight then
the suspension will lower the center of gravity by a couple of centimeters. Also if the
road is bumpy then the suspension will vary. However, having the same controller for
small deviation of the position of center of gravity gives the same performance and
it is not necessary to change controller (derive a new linearized model in the LQG
controller). Note that this only applies for small deviations of at most a few decimeters.
Any larger deviation makes the system unstable and a new linearized model is needed
in the controller.

42

CHAPTER 4. RESULTS

0 5 10 15 20 25
−20

0

20

40

60
Speed of the vehicle

S
pe

ed
 (

K
m

/h
)

Reference
0,4*ref
0,7*ref
1,0*ref
1,3*ref
1,6*ref

0 5 10 15 20 25
−40

−20

0

20

40
Angle of the body

A
ng

le
 (

de
gr

ee
s)

0 5 10 15 20 25
−1000

−500

0

500

1000
Torque from the motor

T
or

qu
e

(N
m

)

0 5 10 15 20 25
0

5

10

15

20
Height increase of the vehicle. 9% slope starts at t = 15

Time (s)

H
ig

ht
 o

f v
eh

ic
le

 (
m

)

Figure 4.8: Influence of three different noise variance values for the measurement sensors.

43

CHAPTER 4. RESULTS

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Pole−Zero Map

Real Axis (seconds−1)

Im
ag

in
ar

y
A

xi
s

(s
ec

on
ds

−
1)

0,4*ref

0,7*ref

1,0*ref

1,3*ref

1,6*ref

Figure 4.9: Sensor noise influencing torque output from the motor for four different sensor
variance values

4.5 Influence of controller update frequency

Several simulations were made to investigate the effects of different update frequencies
of the controller. In this simulation the reference vehicle tries to follow a specific track
while the sampling rate of the controller and the sensors (Tctrl) were varied. Note that
the linearized model in the controller stays the same, it is only the update frequency
that is varied.

Update rates simulated are Tctrl = 1, 10, 20, 30, 40 and 50 ms and the results are
shown in Figure 4.10. Figure 4.11 is a zoomed version of the same plot.

The figures show that the update frequency of the controller and the sampling time
of the sensors have a huge impact on the system. Already at an update rate of 10 ms
will result in worse performance in terms of balancing. An update rate of 40 ms or above
results in increasing fluctuations which cause the system to fail.

4.6 Motor delay

In this simulation the effects of the time it takes before a requested torque is applied
to the wheels are investigated. As described in Section 3.3, the torque response is
approximated with a first order transfer function. By varying the time constant of the
transfer function, the response time of the motor can be changed. Response times that

44

CHAPTER 4. RESULTS

0 5 10 15 20 25

0

20

40

60
Speed of the vehicle

S
pe

ed
 (

K
m

/h
)

Reference
0.5ms
1ms
10ms
25ms
50ms

0 5 10 15 20 25

−40

−20

0

20

Angle of the vehicle

A
ng

le

0 5 10 15 20 25

−1000

−500

0

500

Torque from the motors

T
or

qu
e

Figure 4.10: Influence of controller update frequency

45

CHAPTER 4. RESULTS

14 14.5 15 15.5 16 16.5 17
47

48

49

50

51

52
Speed of the vehicle

S
pe

ed
 (

K
m

/h
)

Reference
0.5ms
1ms
10ms
25ms
50ms

14 14.5 15 15.5 16 16.5 17

−2

0

2

4

6

Angle of the vehicle

A
ng

le

14 14.5 15 15.5 16 16.5 17
−400

−200

0

200

400

Torque from the motors

T
or

qu
e

Figure 4.11: Influence of controller update frequency

46

CHAPTER 4. RESULTS

have been simulated are Tmotor = 10, 20, 50, 100 and 125 tms.
The simulations show that the time constant of the motor dynamics is very important

to the system performance. In Figure 4.12 it can be seen that a time constant of 10,
20 and 50 ms will give a similar performance, while 100 ms and especially 125 ms will
cause instability of the vehicle.

0 5 10 15 20 25

0

20

40

60
Speed of the vehicle

S
pe

ed
 (

K
m

/h
)

Reference
10ms
20ms
50ms
100ms
125ms

0 5 10 15 20 25

−40

−20

0

20

Angle of the vehicle

A
ng

le

0 5 10 15 20 25

−500

0

500
Torque from the motors

T
or

qu
e

Figure 4.12: Motor delay

47

5
Discussion and Conclusion

Simulations in Chapter 4 show that as long as the wheels have traction and enough
torque the single axle concept is working well in terms of controllability and robust-
ness. However, large noise and long system delays impair the performance and might
even make the truck fall over. It is also shown that small deviations of the center of
mass have a very limited affect to the performance of the system. Therefore, the small
deviations caused by the suspension system can be neglected from a control point of
view. Practically that means that it is not necessary to include the dynamics of τ in the
linearized model used when designing the LQG-controller.

5.1 Achieved goals

The goals listed can be found in Section 1.2. A model of the truck was successfully
implemented. The controller was able to balance the truck in upright position and also
move it around. Sensor and motor models were implemented and they performed as
expected. However, the motor model was quite simplified. The parameter study showed
that the system could handle common scenarios such as driving on a slope and over a
curb, as long as is has enough torque. Since the model does not include slip it is hard
to answer the question if it is a viable option to use in reality. Outside a controlled
environment the road traction may vary a lot which may lead to problems. For example,
if it starts to snow or rain the traction may become poor with serious consequences
when driving the vehicle. The truck can definitely be built in reality since all critical
components are available today (motor, sensors, battery). The cost of building the truck
has not been considered.

48

CHAPTER 5. DISCUSSION AND CONCLUSION

5.2 Safety

The safety regarding the usage of this type of vehicle has not been regarded at all.
Everything is assumed to work at all times and no simulations were done to show what
happens when the truck crashes. However, it is an important topic to discuss and think
about before building a vehicle of this type.

5.2.1 Hardware failure

A vehicle of this type is particularly sensitive to hardware failures since it is not in a
stable position when operating. Thus, if a sensor stops working the vehicle might fall
over. It should also be investigated if any kind of emergency brake system could be
implemented. One solution could be to have support wheels that are lowered down and
brake the vehicle in case of an emergency.

5.3 Further improvements

To achieve a better and more accurate model of the vehicle some improvements need to
be done.

5.3.1 Include slip

Since traction is critical to the behavior of the vehicle it is important that slip is included
in the model. With a model of the slip, improvements can be done in order to control
and avoid slip. Since the slip is highly related to the torque applied by the motors, it
will limit the maneuverability of the vehicle and make it harder to control.

5.3.2 Improve and add new hardware models

The hardware models that are implemented in the model are based on simplifications
and approximations. Since delays in the propulsion system is critical to the stability of
the vehicle more advanced motor model would be preferable. The new motor models
should also include delays in gearboxes etc.

49

Bibliography

[1] Brussels wants no oil-fuelled cars in cities by 2050, [ONLINE: 25 10 2011.]
[CITED: 25 10 2011.] www.euractiv.com/transport/brussels-wants-oil-

fuelled-cars-cities-2050-news-503404 (March 2011).

[2] Lagrangian mechanics, [ONLINE: 08 11 2011.] [CITED: 08 11 2011.] http://en.
wikipedia.org/wiki/Lagrangian_mechanics (November 2011).

[3] M. Levi, The mathematical mechanic: using physical reasoning to solve problems,
Princeton University Press, 2009.

[4] BOSCH, Automotive Handbook, 5th Edition, Robert Bosch GmbH, 2000.

[5] W. S. Levine, The Control Handbook, 1st Edition, CRC-Press, 1996.

[6] Linear-quadratic regulator, [ONLINE: 02 02 2012.] [CITED: 02 02 2012.] http:

//en.wikipedia.org/wiki/Linear-quadratic_regulator (February 2012).

[7] L. L. T. Glad, Control Theory - Multivariable and nonlinear methods, Taylor and
Francis, 2000.

[8] B. W. K. J. Åström, Computer Controlled Systems, 3rd Edition, Prentice Hall,
1997.

[9] Y. Yamamoto, Nxtway-gs model-based design - control of self-balancing two-
wheeled robot built with lego mindstorms nxt (May 2009).

[10] Conservative forces, [ONLINE: 03 28 2012.] [CITED: 03 28 2012.] http://en.

wikipedia.org/wiki/Conservative_force (March 2012).

[11] 3d simulation toolbox, [ONLINE: 03 18 2012.] [CITED: 03 18 2012.] http://www.
mathworks.se/products/3d-animation/ (March 2012).

[12] J. Brody, P. Yager, R. Goldstein, R. Austin, Biotechnology at low Reynolds num-
bers, Biophysical Journal 71 (6) (1996) 3430–3441.
URL http://linkinghub.elsevier.com/retrieve/pii/S0006349596795383

50

www.euractiv.com/transport/brussels-wants-oil-fuelled-cars-cities-2050-news-503404
www.euractiv.com/transport/brussels-wants-oil-fuelled-cars-cities-2050-news-503404
http://en.wikipedia.org/wiki/Lagrangian_mechanics
http://en.wikipedia.org/wiki/Lagrangian_mechanics
http://en.wikipedia.org/wiki/Linear-quadratic_regulator
http://en.wikipedia.org/wiki/Linear-quadratic_regulator
http://en.wikipedia.org/wiki/Conservative_force
http://en.wikipedia.org/wiki/Conservative_force
http://www.mathworks.se/products/3d-animation/
http://www.mathworks.se/products/3d-animation/
http://linkinghub.elsevier.com/retrieve/pii/S0006349596795383

A
Equations of motion

The equations of motion for the generalized coordinates.
Θ - coordinate:

Θ̈ = (FΘ−Rsin(Ψ)(Fτ−τk+LMΨ̇2+MτΨ̇2−MZ̈gcos(Ψ)−Mgcos(Ψ)+LM Φ̇2sin(Ψ)2+
Mτ Φ̇2sin(Ψ)2)+(2Jmn

2(FΨ+LMZ̈gsin(Ψ)+LMgsin(Ψ)+MτZ̈gsin(Ψ)+Mτgsin(Ψ)+
(L2M Φ̇2sin(2Ψ))/2+(Mτ2Φ̇2sin(2Ψ))/2−2LMΨ̇τ̇−2MτΨ̇τ̇+LMτ Φ̇2sin(2Ψ)))/(ML2+
2MLτ + Mτ2 + 2Jmn

2 + JΨ) − 2MRΨ̇τ̇ cos(Ψ) + LMRΨ̇2sin(Ψ) + MRτΨ̇2sin(Ψ) −
(LMRcos(Ψ)(FΨ+LMZ̈gsin(Ψ)+LMgsin(Ψ)+MτZ̈gsin(Ψ)+Mτgsin(Ψ)+(L2M Φ̇2sin(2Ψ))/2+
(Mτ2Φ̇2sin(2Ψ))/2− 2LMΨ̇τ̇ − 2MτΨ̇τ̇ + LMτ Φ̇2sin(2Ψ)))/(ML2 + 2MLτ +Mτ2 +
2Jmn

2+JΨ)−(MRτcos(Ψ)(FΨ+LMZ̈gsin(Ψ)+LMgsin(Ψ)+MτZ̈gsin(Ψ)+Mτgsin(Ψ)+
(L2M Φ̇2sin(2Ψ))/2+(Mτ2Φ̇2sin(2Ψ))/2−2LMΨ̇τ̇−2MτΨ̇τ̇+LMτ Φ̇2sin(2Ψ)))/(ML2+
2MLτ+Mτ2+2Jmn

2+JΨ))/(2Jw+MR2+2Jmn
2+2R2m−MR2sin(Ψ)2+(2Jmn

2(−2Jmn
2+

MRτcos(Ψ)+LMRcos(Ψ)))/(ML2+2MLτ+Mτ2+2Jmn
2+JΨ)−(LMRcos(Ψ)(−2Jmn

2+
MRτcos(Ψ)+LMRcos(Ψ)))/(ML2+2MLτ+Mτ2+2Jmn

2+JΨ)−(MRτcos(Ψ)(−2Jmn
2+

MRτcos(Ψ) + LMRcos(Ψ)))/(ML2 + 2MLτ +Mτ2 + 2Jmn
2 + JΨ))

Φ - coordinate:
Φ̈ = (FΦ − (M Φ̇Ψ̇sin(2Ψ)L2 + M Φ̇Ψ̇sin(2Ψ)τ2 + 2M Φ̇τ̇Lsin(Ψ)2 + 2M Φ̇τ̇ τsin(Ψ)2 +
2M Φ̇Ψ̇sin(2Ψ)Lτ))/(JΦ + (W 2m)/2 + (JwW

2)/(2R2) +L2Msin(Ψ)2 +Mτ2sin(Ψ)2 +
2LMτsin(Ψ)2 + (JmW

2n2)/(2R2))

Ψ - coordinate:
Ψ̈ = ((4FΨJm+4FΘJm−4FτJmRsin(Ψ)−8JmLMΨ̇τ̇−8JmMτΨ̇τ̇+4JmLMZ̈gsin(Ψ)+
4JmLMgsin(Ψ)+4JmMτZ̈gsin(Ψ)+4JmMτgsin(Ψ)+4JmRτksin(Ψ)+2JmL

2M Φ̇2sin(2Ψ)+
2JmMτ2Φ̇2sin(2Ψ) + 2JmMRZ̈gsin(2Ψ) + 2JmMRgsin(2Ψ) − 3JmLMRΦ̇2sin(Ψ) −
3JmMRτ Φ̇2sin(Ψ) + JmLMRΦ̇2sin(3Ψ) + 4JmLMτ Φ̇2sin(2Ψ) + JmMRτ Φ̇2sin(3Ψ)−
8JmMRΨ̇τ̇ cos(Ψ))n2 + 4FΨJw +FΨMR2 + 4FΨR

2m+FΨMR2cos(2Ψ)− 8JwLMΨ̇τ̇ +
FτLMR2sin(2Ψ)−8JwMτΨ̇τ̇+FτMR2τsin(2Ψ)−2FΘLMRcos(Ψ)−2FΘMRτcos(Ψ)+

51

APPENDIX A. EQUATIONS OF MOTION

L2M2R2Φ̇2sin(2Ψ)+M2R2τ2Φ̇2sin(2Ψ)+4JwLMZ̈gsin(Ψ)+4JwLMgsin(Ψ)+4JwMτZ̈gsin(Ψ)+
4JwMτgsin(Ψ)+2JwL

2M Φ̇2sin(2Ψ)+2JwMτ2Φ̇2sin(2Ψ)−MR2τ2ksin(2Ψ)+4LMR2Z̈gmsin(Ψ)+
4LMR2gmsin(Ψ) + 2LM2R2τ Φ̇2sin(2Ψ) + 4MR2τZ̈gmsin(Ψ) + 4MR2τgmsin(Ψ) +
2L2MR2Φ̇2msin(2Ψ)+2MR2τ2Φ̇2msin(2Ψ)+4JwLMτ Φ̇2sin(2Ψ)−LMR2τksin(2Ψ)−
8LMR2Ψ̇τ̇m− 8MR2τΨ̇τ̇m+ 4LMR2τ Φ̇2msin(2Ψ))/((4JΨJm + 8JmJw + 4JmL

2M +
2JmMR2 + 4JmMτ2 + 8JmR

2m + 8JmLMτ + 2JmMR2cos(2Ψ) + 8JmLMRcos(Ψ) +
8JmMRτcos(Ψ))n2 +4JΨJw+4JwL

2M +JΨMR2 +4JwMτ2 +4JΨR
2m+4L2MR2m+

4MR2τ2m+ 8JwLMτ + JΨMR2cos(2Ψ) + 8LMR2τm)

τ - coordinate:
τ̈ = 2Z̈gsin(Ψ/2)2 − g − Z̈g + 2gsin(Ψ/2)2 + Fτ/M + LΨ̇2 + τΨ̇2 + LΦ̇2sin(Ψ)2 +
τ Φ̇2sin(Ψ)2−(τk)/M−(Rsin(Ψ)(FΘ−Rsin(Ψ)(Fτ−τk+LMΨ̇2+MτΨ̇2−MZ̈gcos(Ψ)−
Mgcos(Ψ)+LM Φ̇2sin(Ψ)2+Mτ Φ̇2sin(Ψ)2)+(2Jmn

2(FΨ+LMZ̈gsin(Ψ)+LMgsin(Ψ)+
MτZ̈gsin(Ψ) + Mτgsin(Ψ) + (L2M Φ̇2sin(2Ψ))/2 + (Mτ2Φ̇2sin(2Ψ))/2 − 2LMΨ̇τ̇ −
2MτΨ̇τ̇ +LMτ Φ̇2sin(2Ψ)))/(ML2 + 2MLτ +Mτ2 + 2Jmn

2 + JΨ)− 2MRΨ̇τ̇ cos(Ψ) +
LMRΨ̇2sin(Ψ) + MRτΨ̇2sin(Ψ) − (LMRcos(Ψ)(FΨ + LMZ̈gsin(Ψ) + LMgsin(Ψ) +
MτZ̈gsin(Ψ) + Mτgsin(Ψ) + (L2M Φ̇2sin(2Ψ))/2 + (Mτ2Φ̇2sin(2Ψ))/2 − 2LMΨ̇τ̇ −
2MτΨ̇τ̇ +LMτ Φ̇2sin(2Ψ)))/(ML2 + 2MLτ +Mτ2 + 2Jmn

2 +JΨ)− (MRτcos(Ψ)(FΨ +
LMZ̈gsin(Ψ)+LMgsin(Ψ)+MτZ̈gsin(Ψ)+Mτgsin(Ψ)+(L2M Φ̇2sin(2Ψ))/2+(Mτ2Φ̇2sin(2Ψ))/2−
2LMΨ̇τ̇ − 2MτΨ̇τ̇ +LMτ Φ̇2sin(2Ψ)))/(ML2 + 2MLτ +Mτ2 + 2Jmn

2 + JΨ)))/(2Jw +
MR2+2Jmn

2+2R2m−MR2sin(Ψ)2+(2Jmn
2(−2Jmn

2+MRτcos(Ψ)+LMRcos(Ψ)))/(ML2+
2MLτ+Mτ2+2Jmn2+JΨ)−(LMRcos(Ψ)(−2Jmn

2+MRτcos(Ψ)+LMRcos(Ψ)))/(ML2+
2MLτ+Mτ2+2Jmn

2+JΨ)−(MRτcos(Ψ)(−2Jmn
2+MRτcos(Ψ)+LMRcos(Ψ)))/(ML2+

2MLτ +Mτ2 + 2Jmn
2 + JΨ))

52

B
Matlab scripts

The Matlab script that have been used for modeling and simulations.

B.1 Lagrange equation

Lagrange modeling

Matlab script that uses the function in B.1 to calculate the equations of motion.

1 %% Symbols
2 % Create symbols
3 clear;
4 clc;
5 syms Theta_r Theta_l dTheta_r dTheta_l;
6 syms g m R Jw M W D H L JPsi JPhi Jm Rm Kb Kt n fm fw k;
7

8 syms Xm Ym Zm dXm dYm dZm;
9 syms Xl Yl Zl dXl dYl dZl;

10 syms Xr Yr Zr dXr dYr dZr;
11 syms Xb Yb Zb dXb dYb dZb;
12

13 syms Tau dTau ddTau;
14 syms Zg dZg ddZg;
15

16 syms Theta dTheta ddTheta;
17 syms Phi dPhi ddPhi;
18 syms Psi dPsi ddPsi;
19

20 syms F_Theta F_Phi F_Psi F_Tau;
21

22 % Describe the mass centres in the new coordinate system
23 Theta_r = (W*Phi)/(2*R) + Theta;

53

APPENDIX B. MATLAB SCRIPTS

24 Theta_l = Theta − (W*Phi)/(2*R);
25

26 Zm = R + Zg;
27

28 Zl = Zm; %Z position of the left wheel
29 Zr = Zm; %Zl and Zr are equal since we dont have any tilt
30 Zb = Zm + (L+Tau)*cos(Psi); %Z position of the upper body mass
31

32 %Describe the differential equations
33 %Wheels
34 dTheta_r = ((W*dPhi)/(2*R)) + dTheta;
35 dTheta_l = dTheta − (W*dPhi/(2*R));
36 %Middle point
37 dXm = R*dTheta*cos(Phi);
38 dYm = R*dTheta*sin(Phi);
39 dZm = dZg;
40 %Left wheel
41 dXl = dXm − W/2 * dPhi*cos(Phi);
42 dYl = dYm − W/2 * dPhi*sin(Phi);
43 dZl = dZm;
44 %Right wheel
45 dXr = dXm + W/2 * dPhi*cos(Phi);
46 dYr = dYm + W/2 * dPhi*sin(Phi);
47 dZr = dZm;
48 %Upper body
49 dXb = dXm + (L+Tau)*(dPsi*cos(Psi)*cos(Phi)−dPhi*sin(Phi)*sin(Psi)) + ...

dTau*sin(Psi)*cos(Phi);
50 dYb = dYm + (L+Tau)*(dPsi*cos(Psi)*sin(Phi)+dPhi*cos(Phi)*sin(Psi)) + ...

dTau*sin(Psi)*sin(Phi);
51 dZb = dZm − (L+Tau)*dPsi*sin(Psi) + dTau*cos(Psi);
52

53 %%%%%%%% The Lagrangian equations %%%%%%%%
54 % T1 − Translational kinetic energy
55 T1 = (1/2)*(m*(dXl^2+dYl^2+dZl^2) + m*(dXr^2+dYr^2+dZr^2) + ...

M*(dXb^2+dYb^2+dZb^2));
56 % T2 − rotational kinetic energy
57 T2 = (1/2)*(Jw*dTheta_l^2 + Jw*dTheta_r^2 + JPsi*dPsi^2 ...
58 + JPhi*dPhi^2 + (n^2)*Jm*(dTheta_l−dPsi)^2 + (n^2)*Jm*(dTheta_r − ...

dPsi)^2);
59 % Potential energy
60 U = m*g*Zl + m*g*Zr + M*g*Zb + 1/2*k*Tau^2;
61

62 %Calculate the Lagrangian
63 Lag = T1 + T2 − U;
64

65 %Use Lagrange.m to calculate the equations of motion
66 eqs=Lagrange(Lag,[Theta,dTheta,ddTheta, Psi,dPsi,ddPsi, ...

Phi,dPhi,ddPhi, Tau,dTau,ddTau, Zg,dZg,ddZg])
67 %Rearange the algebraic equations
68 var = {'ddTheta' 'ddPsi' 'ddPhi' 'ddTau' 'ddZg'};
69 Fvar = {'F_Theta' 'F_Psi' 'F_Phi' 'F_Tau' 'F_Zg'};
70 temp = [];
71 answ = {};

54

APPENDIX B. MATLAB SCRIPTS

72 for i= 1:length(var)
73 eq = collect(eqs(i),char(var(i)));
74 eq_cof = coeffs(eq,char(var(i)));
75 answ(i) = {[char(var(i)), ' = (' char(Fvar(i)), ' − (' ...

char(eq_cof(1)), ')) / (' char(eq_cof(2)),');']};
76 char(answ(i))
77 end
78 %%%%%% Solving the algebraic loops %%%%%%
79 eq1 = F_Theta − eqs(1);
80 eq2 = F_Psi − eqs(2);
81 eq3 = F_Tau − eqs(4);
82

83 % EQUATION 1
84 % substitute all ddTau in first equation from the third (eqs(4))
85 eq3_cof_ddTau = coeffs(eq3,'ddTau');
86 eq1 = subs(eq1, ddTau, (−eq3_cof_ddTau(1)/eq3_cof_ddTau(2)));
87 % substitute all ddPsi in first equation from the second equation
88 eq2_cof_ddPsi = coeffs(eq2,'ddPsi');
89 eq1 = subs(eq1, ddPsi, (−eq2_cof_ddPsi(1)/eq2_cof_ddPsi(2)));
90 % collect ddTheta terms and rest
91 eq1_cof = coeffs(eq1,'ddTheta');
92 ddTheta_lonely = −eq1_cof(1)/eq1_cof(2);
93 % write result
94 ['ddTheta = ' char(−eq1_cof(1)) ' / ', char(eq1_cof(2)) ';']
95

96 % EQUATION 2
97 % substitute all ddTheta in second equation with ddTheta_lonely
98 eq2 = subs(eq2, ddTheta, ddTheta_lonely);
99 % collect ddPsi terms and rest

100 eq2_simple = simple(eq2);
101 eq2_cof = coeffs(eq2_simple,'ddPsi');
102 ddPsi_lonely = −eq2_cof(1)/eq2_cof(2);
103 % write result
104 ['ddPsi = ' char(−eq2_cof(1)) ' / ', char(eq2_cof(2)) ';']
105

106 % EQUATION 3
107 % substitute all ddTheta in third equation with ddTheta_lonely
108 eq3 = subs(eq3, ddTheta, ddTheta_lonely);
109 % collect ddTau terms and rest
110 eq3_cof = coeffs(eq3,'ddTau');
111 ddTau_lonely = −eq3_cof(1)/eq3_cof(2);
112 % write result
113 ['ddTau = ' char(−eq3_cof(1)) ' / ', char(eq3_cof(2)) ';']

The Lagrange function file

This function solves the equations of motion. It can be found on Mathworks file exchange

1 % Lagrange is a function that calculate equations of motion (Lagrange's
2 % equations) d/dt(dL/d(dq))− dL/dq=0. It Uses the Lagrangian that is ...

a function that summarizes the

55

http://www.mathworks.com/matlabcentral/fileexchange/23037-lagranges-equations

APPENDIX B. MATLAB SCRIPTS

3 % dynamics of the system. Symbolic Math Toolbox is required.
4 %
5 % Equations=Lagrange(Lag,V)
6 %
7 % Lag = Lagrange of the system (symbolic).
8 % V = System Variables (symbolic) [q1 dq1 ddq1 q2 dq2 ddq2... qn dqn
9 % ddqn].

10 % Equations = [1 X DOF] (Degrees of freedom of the system).
11 %
12 %
13 % *******Examples*********
14 % *Falling mass*
15 %
16 % syms x dx ddx t m %Define the symbolic variables.
17 % L=0.5*m*dx^2 + m*g*x; %Define the Lagragian.
18 % Equations=Lagrange(L,[x dx ddx]) %Calculate the equations
19 %
20 % returns m*ddx−g*m
21 %
22 % *Pendulum on a movable support*
23 %
24 % syms x dx ddx theta dtheta ddtheta t m M %Define the symbolic ...

variables.
25 %
26 % L=0.5*(M+m)+dx^2+ m*dx*l*dtheta*cos(theta)+ ...
27 % 0.5*m*l^2*dtheta^2+m*g*l*cos(theta) %Define the Lagragian.
28 % Equations=Lagrange(L,[theta,dtheta,ddtheta,x,dx,ddx]) %Calculate the
29 % equations
30 %
31 % returns [m*l*(ddx*cos(theta)+l*ddtheta+g*sin(theta)),
32 % 2*ddx+m*l*ddtheta*cos(theta)−m*l*dtheta^2*sin(theta)]
33

34 function [M]=Lagrange(Lag,V)
35 syms t;
36 Var=length(V)/3;
37 Vt=V;
38 for cont0=1:1:Var
39 Vt(cont0*3−2)=strcat('f',num2str(cont0),'(t)');
40 Vt(cont0*3−1)=diff(Vt((cont0*3)−2),t);
41 Vt(cont0*3)=diff(Vt((cont0*3)−2),t,2);
42 end
43 for cont0=1:1:Var
44 L1=simple(diff(Lag,V(cont0*3−1)));
45 L2=simple(diff(Lag,V(cont0*3−2)));
46 Dposx=L1;
47

48 for cont=1:1:Var*3
49 Dposx=subs(Dposx,V(cont),Vt(cont));
50 end
51 L1=diff(Dposx,t);
52

53 for cont=Var*3:−1:1 %
54 L1=subs(L1,Vt(cont),V(cont));

56

APPENDIX B. MATLAB SCRIPTS

55 end
56 L1F=L1−L2;
57 L1F=simple(expand(L1F));
58 L1F=collect(L1F,Vt(cont0*3));%*****************
59 M(cont0)=L1F;
60 end
61 end

B.2 Parameters

Parameters of the reference vehicle used in the simulations and calculations.

1 % Parameters
2 g = 9.82; % acceleration of gravity
3 m = 15; % wheel weight [kg]
4 R = 0.4; % wheel radius [m]
5 Jw = m * R^2 / 2; % wheel inertia moment [kgm^2]
6 M = 870; % body weight [kg]
7 W = 1.6; % body width [m]
8 D = 1.4; % body depth [m]
9 H = 2; % body height [m]

10 L = 1.0*(H/3); % distance to center of mass from the ...
wheel axle [m]

11 JPsi = M * L^2 / 3; % body pitch inertia moment [kgm^2]
12 JPhi = M * (W^2 + D^2) / 12; % body yaw inertia moment [kgm^2]
13 fm = 0.2; % friction coefficient between chassis ...

& motor
14 fw = 1; % friction coefficient between wheel & ...

floor
15 n = 1; % gear ratio
16 Jm = 1E−5; % motor inertia moment [kgm^2]
17 C = 0.7; % drag coefficient
18 p = 1.2; % density of air
19 A = H*W; % area of the body
20 k = 100000; % spring Constant for suspension
21 b = 10000; % damping constant for suspension
22

23 % struct to import constants in embedded matlab functions in simulink ...
model

24 st = struct('g', g, 'm', m, 'R', R, 'Jw', Jw, 'M', M, 'W', W, 'D', D, ...
'H', H, ...

25 'L', L, 'JPsi', JPsi, 'JPhi', JPhi, 'Jm', Jm, 'fm', fm, 'fw', fw, ...
'n', n, ...

26 'C', C, 'p', p, 'A', A, 'k', k, 'b', b);
27

28 save('parameters_real.mat', 'st')

57

APPENDIX B. MATLAB SCRIPTS

B.3 Linearization

Matlab sccript used for lineariaztion

1 clc
2 clear
3 parameters
4 syms Theta_r Theta_l dTheta_r dTheta_l;
5 syms g m R Jw M W D H L JPsi JPhi Jm n fm fw k b p A C;
6 syms M_l M_r;
7

8 syms Xm Ym Zm dXm dYm dZm;
9 syms Xl Yl Zl dXl dYl dZl;

10 syms Xr Yr Zr dXr dYr dZr;
11 syms Xb Yb Zb dXb dYb dZb;
12

13 syms Tau dTau ddTau;
14 syms Zg dZg ddZg;
15

16 syms Theta dTheta ddTheta;
17 syms Phi dPhi ddPhi;
18 syms Psi dPsi ddPsi;
19

20 syms F_Theta F_Phi F_Psi F_Tau Fdrag;
21

22 % Load equaitions (without loops)
23 load ddPhi_ddTau_ddTheta_ddPsi
24

25 % Drag model
26 Fdrag = ((H*p*A*C)/4)*(R*dTheta*cos(Phi)+ ...

(Tau+L)*(dPsi*cos(Psi)*cos(Phi)− ...
27 dPhi*sin(Phi)*sin(Psi))+dTau*sin(Psi)*cos(Phi))^2;
28

29 % Substitute the F_:s to other variables
30 ddTheta = subs(ddTheta, [F_Theta,F_Psi,F_Phi,F_Tau], ...
31 [n*(M_l+M_r)+2*fm*dPsi−2*dTheta*(fm+fw),−n*(M_l+M_r)+2*fm*dPsi−Fdrag ...

...
32 ,(W*n*(M_r−M_l))/(2*R)−(W^2*(fm+fw)*dPhi^2)/(2*R^2), −b*dTau]);
33 ddPsi = subs(ddPsi, [F_Theta,F_Psi,F_Phi,F_Tau], ...
34 [n*(M_l+M_r)+2*fm*dPsi−2*dTheta*(fm+fw),−n*(M_l+M_r)+2*fm*dPsi−Fdrag ...

...
35 ,(W*n*(M_r−M_l))/(2*R)−(W^2*(fm+fw)*dPhi^2)/(2*R^2), −b*dTau]);
36 ddPhi = subs(ddPhi, [F_Theta,F_Psi,F_Phi,F_Tau], ...
37 [n*(M_l+M_r)+2*fm*dPsi−2*dTheta*(fm+fw),−n*(M_l+M_r)+2*fm*dPsi−Fdrag ...

...
38 ,(W*n*(M_r−M_l))/(2*R)−(W^2*(fm+fw)*dPhi^2)/(2*R^2), −b*dTau]);
39 ddTau = subs(ddTau, [F_Theta,F_Psi,F_Phi,F_Tau], ...
40 [n*(M_l+M_r)+2*fm*dPsi−2*dTheta*(fm+fw),−n*(M_l+M_r)+2*fm*dPsi−Fdrag ...

...
41 ,(W*n*(M_r−M_l))/(2*R)−(W^2*(fm+fw)*dPhi^2)/(2*R^2), −b*dTau]);
42

43 sys = [ddTheta, ddPsi, ddPhi];

58

APPENDIX B. MATLAB SCRIPTS

44

45 % Find A matrix
46 v = [Theta, dTheta, Psi, dPsi, Phi, dPhi];
47 A_sys = jacobian(sys,v);
48 A_sys = subs(A_sys,[Theta, dTheta, Psi, dPsi, Phi, dPhi, Tau, dTau, ...

ddZg],[0, 0, 0, 0, 0, 0, 0, 0, 0]);
49

50 % Find B matrix
51 v = [M_l, M_r];
52 B_sys = jacobian(sys,v);
53 B_sys = subs(B_sys,[Theta, dTheta, Psi, dPsi, Phi, dPhi, Tau, dTau, ...

ddZg],[0, 0, 0, 0, 0, 0, 0, 0, 0]);
54

55 % replace with parameters
56 load parameters_real
57

58 B_sys = subs(B_sys, ...
[g,m,R,Jw,M,W,D,H,L,JPsi,JPhi,Jm,fm,fw,n,C,p,A,k,b], ...
[st.g,st.m,st.R,st.Jw,st.M,st.W,st.D,st.H,st.L,st.JPsi,st.JPhi,st.Jm,st.fm,st.fw,st.n,st.C,st.p,st.A,st.k,st.b]);

59 A_sys = subs(A_sys, ...
[g,m,R,Jw,M,W,D,H,L,JPsi,JPhi,Jm,fm,fw,n,C,p,A,k,b], ...
[st.g,st.m,st.R,st.Jw,st.M,st.W,st.D,st.H,st.L,st.JPsi,st.JPhi,st.Jm,st.fm,st.fw,st.n,st.C,st.p,st.A,st.k,st.b]);

60

61 % System with Theta, Psi, Phi
62 A_sys1 = [0 1 0 0 0 0; A_sys(1,:); 0 0 0 1 0 0; A_sys(2,:); 0 0 0 0 0 ...

1; A_sys(3,:)];
63 B_sys1 = [0 0; B_sys(1,:); 0 0; B_sys(2,:); 0 0; B_sys(3,:)];
64 C_sys1 = [0 1 0 0 0 0;
65 0 0 1 0 0 0;
66 0 0 0 1 0 0;
67 0 0 0 0 0 1];
68

69 sys = ss(A_sys1, B_sys1, C_sys1, 0);
70

71

72 save('linearized_system','sys');
73 clear

B.4 init simulation

This file initiate the simulation and it calculates the Kalman gain and the LQR feedback
gain.

1 % Initial conditions for integrator blocks in simulink model
2 Tau_init = −0.08;
3 Phi_init = 0;
4 Psi_init = 0.0;
5 Theta_init = 0;
6

7 % Sensor variance

59

APPENDIX B. MATLAB SCRIPTS

8 tachom_var = 0.003;
9 inertialsensor_var = 0.003;

10

11 % Motor parameters
12 motor_delay = 0.020;
13 motor_saturation = 1000*100;
14

15 % Sensor filters
16 sensor_passband_freq = 100*2*pi;
17

18 % Sensor sampling time
19 Ts_sensor = 0.001;
20

21 % Sampling time in controller block
22 Ts_controller = 0.001;
23

24 % Sampling time for the motor
25 Ts = 6e−5;
26

27 % Load parameters
28 load parameters_real
29 % Load states bus from the plant
30 load bus_from_plant
31 % Load linearized system
32 load linearized_system;
33

34 %%%% LQG controller without integration factor %%%%
35 % Remove the states we dont care about (dTheta, Psi, dPsi and dPhi left)
36 check_poles = sys;
37 sys = minreal(sys);
38 % Discretisize the system
39 sys_d = c2d(sys, Ts_sensor, 'zoh');
40

41 % Set LQR parameters
42 % dTheta Psi dPsi dPhi dTheta_integral
43 Q = [2e4 0 0 0 0;
44 0 1e7 0 0 0;
45 0 0 1e−7 0 0;
46 0 0 0 1e4 0;
47 0 0 0 0 1e2];
48

49 R = [1 0;
50 0 1];
51

52 sys_for_lqi = ss(sys.A, sys.B, [1 0 0 0], 0);
53 sys_for_lqi_d = c2d(sys_for_lqi, Ts_sensor, 'zoh');
54

55 [K_lqr,S_lqr,e_lqr] = lqi(sys_for_lqi_d, Q, R);
56

57 % Matrices describing the noise
58 % R1 = E[ww'], R2 =[vv'], R12 = E[wv']
59 % w − process disturbances
60 % v − measurement noise (on y)

60

APPENDIX B. MATLAB SCRIPTS

61

62 R1 = 0.5* [1 0 0 0;
63 0 1 0 0;
64 0 0 1 0;
65 0 0 0 1]; %QN
66

67 R2 = [0.0001 0 0 0;
68 0 0.0001 0 0;
69 0 0 0.0001 0;
70 0 0 0 0.0001]; %RN
71

72 R12 = []; %NN
73

74 % Rewrite the system to this form
75 % SYS=SS(A,[B G],C,[D H])
76 %sys_kalman = ss(sys.A, [sys.B eye(6)], sys.C, [sys.D zeros(4,6)]);
77 sys_kalman = ss(sys.A, [sys.B eye(4)], sys.C, [sys.D zeros(4,4)]);
78 sys_kalman_d = c2d(sys_kalman, Ts_sensor, 'zoh');
79

80 [kalmf,KalmanGain,P] = kalman(sys_kalman_d, R1, R2, R12);
81

82 % This system will be used in the simulink model of the Kalman filter
83 sys = sys_d;

61

	Contents
	List of Figures
	List of Tables
	Introduction
	Lightweight mobile truck
	Purpose
	Limitations

	Theory
	Mathematical modeling
	Lagrangian mechanics
	Inverted pendulum
	Suspension
	Air resistance
	Rolling resistance

	Controlling the truck
	Linear Quadratic Regulator (LQR)
	Kalman filter
	Linear Quadratic Gaussian (LQG) Controller

	Implementation
	System description
	Lagrange Modeling
	New coordinate system
	Lagrangian formulation
	Inserting the coordinates into the Lagrangian formulation
	Equations of motion
	Implementation in Simulink
	External and non-conservative forces

	Electric motor model
	Energy consumption of the motors

	Sensor models
	Which states need to be measured?
	Noise modeling
	Implementation

	Controller Design
	Linearisation
	Discretization
	Kalman Filter
	Controller

	Visualization
	Building the model
	Implementation in Simulink

	System Summary

	Results
	Torque requirement
	Moving forward at constant speeds
	Turning at different rates
	Standing still on a slope

	Disturbances
	Effects from process disturbances
	Effects from measurement disturbances

	Vary the mass of the vehicle
	Vary the distance to the center of mass of the vehicle
	Accelerating and then driving up a slope
	How weight affects the center of mass

	Influence of controller update frequency
	Motor delay

	Discussion and Conclusion
	Achieved goals
	Safety
	Hardware failure

	Further improvements
	Include slip
	Improve and add new hardware models

	 Bibliography
	Equations of motion
	Matlab scripts
	Lagrange equation
	Parameters
	Linearization
	init simulation

