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Abstract

In multi-target tracking (MTT), the problem of assigning

labels to tracks (track labelling) is vastly covered in liter-

ature, but its exact mathematical formulation, in terms of

Bayesian statistics, has not been yet looked at in detail. Do-

ing so, however, may help us to understand how Bayes-

optimal track labelling should be performed or numerically

approximated. Moreover, it can help us to better understand

and tackle some practical difficulties associated with the

MTT problem, in particular the so-called “mixed labelling”

phenomenon that has been observed in MTT algorithms.

In this paper, we rigorously formulate the optimal track

labelling problem using Finite Set Statistics (FISST), and

look in detail at the mixed labeling phenomenon. As practi-

cal contributions of the paper, we derive a new track extrac-

tion formulation with some nice properties and a statistic

associated with track labelling with clear physical mean-

ing. Additionally, we show how to calculate this statistic

for two well-known MTT algorithms.

1 Introduction

The track labelling problem is perhaps just as old as the

multi-target tracking problem itself. In the display of a

radar operator, it is often necessary not only to display the

estimated position of the multiple objects (i.e. the tracks),

but also attribute a unique label to each track. Ideally, this

track label should consistently be associated with the same

real-world object, enhancing thus the situational awareness

of the operator.

In practice, the feasibility of maintaining this label-to-

true target consistency depends on observability conditions.

One situation where this consistency is frequently lost is af-

ter targets move in close proximity to each other. In this

case, the measurements and initial information may not al-

low us to precisely determine which target is which after the

separation. Therefore, if required to make a hard decision

to assign labels to tracks, the tracker will frequently make

wrong choices. This situation is illustrated in Fig. 1.

This situation where the available information allows more

than one labelling possibility is referred as “mixed la-

belling” by Boers, Sviestins and Driessen [4]. Track ex-

traction methods based on the mean (or, equivalently, on the

Minimum Mean Square Error (MMSE) estimate) will result

in track coalescence (in exact posterior sense), as observed

by Blom et al. [3]. However, even if the chosen track ex-

Figure 1: Situation where assignment of labels to tracks is

ambiguous

traction method avoids coalescence, two questions – which

form the main motivation of this work – remain to be an-

swered:

• Question 1: How does one optimally assign labels T1

and T2 to the two tracks?

• Question 2: What is the probability that the assign-

ment is incorrect, i.e. that track swap has occurred?

This probability may be useful to the operator; for in-

stance, our decision of shooting down or not an aircraft

may be influenced if we know that the aircraft has a

considerable probability (say, 40%) of corresponding

to someone else!

Some statistics associated with labelling uncertainty are

proposed in recent works [2, 5, 7], but the physical inter-

pretation of these quantities is not clear from their descrip-

tion, making it difficult for us to assess whether they are the

answer to the proposed questions.

In reality, the questions are also not perfectly clear. What

do we exactly mean by probability of incorrect labelling?

After all, the tracks will almost never correspond exactly to

the true target locations. If the tracks are themselves not

“correct”, what shall we understand by “correct labelling”?

The difficulty to find both intuitive answers and questions

about the track labelling problem urges us to look at it

from a more fundamental perspective. This requires a rigor-

ous formulation and analysis of the problem of multi-target

tracking and labelling (MTTL) in a Bayesian framework.

This idea of jointly estimating target identities together with

states is known for some time in the literature, e.g. in an



early work of Salmond, Fisher and Gordon [12]. However,

to rigorously handle general multi-target scenarios with tar-

get birth and death, plus unknown number of targets, a more

sophisticated mathematical basis is required, such as Finite

Set Statistics (FISST) [10]. The idea of using FISST to per-

form joint multi-object tracking and labelling appears in a

number of works, e.g. [9, 14]. In our work, however, we

will look at the general track labelling problem rather than

a specific algorithm or application.

The organization and contributions of this paper are as fol-

lows. In Section 2, we provide a mathematical description

of the general MTTL problem using FISST. In Section 3,

we provide a mathematical characterization of the “mixed

labelling” phenomenon. In Section 4.1, we provide a sta-

tistical description of the labelling error with clear phys-

ical interpretation: the labelling probability (i.e. we give

a proper formulation for Question 2). In Section 4.2, we

propose a conceptual track extraction scheme for MTT al-

gorithms which has a number of nice properties, including

being applicable to scenarios with target birth and death

and giving a proper formulation for Question 1. In Sec-

tion 5, we provide methods to calculate the labelling prob-

ability for two well-known MTT algorithms: the Multiple

Hypothesis Tracking (MHT) and the Multi-target Sequen-

cial Monte Carlo (M-SMC) filter. This means that we also

give answers to Questions 1 and 2. Section 6 draws con-

clusions.

2 Bayes formulation of the multi-target
tracking and labelling (MTTL) problem

Before we describe the formulation, we will present a few

notation conventions that will be used throughout this work.

An upper-case letter (like X) will denote a vector-valued

random variable, and its lower-case counterpart (like x)

will, as usual, denote a particular realization. An upper-

case bold-faced letter (like X) will denote a finite set-valued

random variable, and its lower-case counterpart will denote

the corresponding realization. The probability density of a

vector-valued random variable X will be denoted as p(x);
the multi-object density of a RFS variable (that we refer to

simply as RFS density) will be denoted as f(x).

In the FISST formulation, the multi-target state, rather than

being represented by a random vector, is represented by a

random finite set (RFS) of form Xk =
{

X
(1)
k , . . . , X

(Tk)
k

}

,

where k denotes the time index, X
(i)
k is a random vector

denoting the state of a single target i, and Tk, the number of

targets, is also a random variable. A detailed description of

FISST and its application to the multi-target tracking prob-

lem can be found in [10].

In order to perform labelling jointly with tracking, we need

to explicitly add labels to the multi-target state. In other

words, the single-target state X
(i)
k should have the form

X
(i)
k =

[

S
(i)
k

L
(i)
k

]

, where L
(i)
k denotes the target’s assigned

label, and S
(i)
k denotes all other state components (position,

velocity, etc.). In FISST, the statistical information about

this RFS state is represented by the RFS density

f(xk|Z
k) = f

({

[

s
′(1)
k , l

(1)
k

]′

, . . . ,
[

s
′(tk)
k , l

(tk)
k

]′
}
∣

∣

∣

∣

Zk

)

where Zk denotes the collection of observations up to and

including time k.

With appropriate Markov assumptions, the Bayesian recur-

sion for the RFS density has the form

f(xk|Z
k) =

f(zk|xk)f(xk|Z
k−1)

f(zk|Zk−1)
(1)

where zk denotes the most recent set of observations,

f(zk|xk) is the multi-object likelihood function and

f(xk|Z
k−1) =

∫

f(xk|xk−1)f(xk−1|Z
k−1)δxk−1 (2)

f(zk|Z
k−1) =

∫

f(zk|xk)f(xk|Z
k−1)δxk (3)

where
∫

. . . δx denotes a set integral (see definition in [10,

pp. 361–362]). In order to implement (1), we need to cal-

culate f(zk|xk) and f(xk|xk−1). We will hence have a sep-

arate look into these densities.

2.1 The likelihood f(zk|xk)

Let Sk =
{

S
(1)
k , . . . , S

(Tk)
k

}

correspond to the unlabelled

multi-target state. We assume that observations are inde-

pendent of labels, conditioned on the rest of the state, i.e.

f(zk|xk) = f(zk|sk). (4)

We can then construct f(zk|sk), for various types of obser-

vations, using the guidelines in [10, chap. 12]. Note that

assumption (4) is not restrictive; we can ensure that it al-

ways holds by proper modeling. For instance, if we have

observations of “identity-like” information (such as iden-

tification friend-or-foe (IFF) messages), this “identity-like”

information (in our example, the IFF code) can be explicitly

modeled as a state component of S
(i)
k .

2.2 The state transition density f(xk|xk−1)

2.2.1 No target births or deaths

Let p
(

s
(i)
k

∣

∣

∣
s
(j)
k−1

)

be the single-target state transition den-

sity, i.e. the motion model that describes the transition from

the single-target state s
(j)
k−1 to s

(i)
k . Assuming that single-

target dynamics are decoupled, i.e., f(xk|xk−1) can be fac-

torized into single-target densities, from [10, chap. 13], we

have

f(xk|xk−1)

=
∑

θ∈Θtk

p
(

x
(1)
k

∣

∣

∣
x
(θ(1))
k−1

)

. . . p
(

x
(tk)
k

∣

∣

∣
x
(θ(tk))
k−1

)

(5)



where Θtk is the set of all permutations on {1, . . . , tk}. Ob-

serve now that

p
(

s
(i)
k , l

(i)
k

∣

∣

∣
s
(j)
k−1, l

(j)
k−1

)

=

{

p
(

s
(i)
k

∣

∣

∣
s
(j)
k−1

)

, l
(i)
k = l

(j)
k−1

0, l
(i)
k 6= l

(j)
k−1

(6)

since a target cannot change its label. Therefore, (5) can be

simplied to

f(xk|xk−1)

= p
(

s
(1)
k

∣

∣

∣
s
(θ̃(1))
k−1

)

. . . p
(

s
(tk)
k

∣

∣

∣
s
(θ̃(tk))
k−1

)

(7)

where

θ̃ ∈ Θtk , s.t. l
(1)
k = l

(θ̃(1))
k−1 , . . . , l

(tk)
k = l

(θ̃(tk))
k−1 .

2.2.2 With target births and deaths

Let p
(

s
(i)
k

∣

∣

∣
s
(j)
k−1

)

denote again the single-target state tran-

sition density and pS

(

s
(i)
k−1

)

denote the survival probabil-

ity, i.e. the probability that target survives from time step

k − 1 to time k, which may depend on s
(i)
k−1 (it is not a

density on s
(i)
k−1!). Let us additionally assume that

• the birth process is a multi-object Poisson process (see

[10, p. 366]), i.e. the state distributions of appearing

targets are mutually independent and the rate that new

targets are born is Poisson-distributed with mean µ;

• the state distributions of appearing targets are indepen-

dent from the state of existing targets.

Using similar derivations to those made for the scenario

without target births/deaths (with details omitted here for

the sake of brevity), it is possible to show that f(xk|xk−1)
is given by

f(xk|xk−1)

= e−µ
∏

m∈Γb

µpB

(

x
(m)
k

)

∏

n∈Φ
θ̃

(

1− pS

(

s
(n)
k−1

))

×
∏

i∈Φ
θ̃

pS

(

s
(i)
k−1

)

p
(

s
(θ̃(i))
k

∣

∣

∣
s
(i)
k−1

)

(8)

where, for i ∈ {1, . . . , tk−1}:

θ̃(i) =

{

j, if l
(i)
k−1 = l

(j)
k for some j ∈ {1, . . . , tk}

0, otherwise
,

Φθ̃ = {i|i ∈ {1, . . . , tk−1}, θ̃(i) > 0},

Φθ̃ , {i|i ∈ {1, . . . , tk−1}, i /∈ Φθ̃},

Γb ,

{

j
∣

∣

∣
j ∈ {1, . . . , tk}, l

(j)
k /∈

{

l
(1)
k−1, . . . , l

(tk−1)
k−1

}}

and pB

(

x
(m)
k

)

is the single-target labelled state density of

an appearing target. Its exact form of depends on how we

decide to assign labels to appearing states.

Attempting to specify pB

(

x
(m)
k

)

leads, however, to a prob-

lem. To derive (8), we have assumed that the labelled state

distributions of appearing targets are mutually independent,

and that they are also independent from the labelled states

of existing targets. Strictly speaking, however, we cannot

assume this independence since we must ensure that the

labels are at least mutually different. One possible “turn-

around” to this problem is to draw the label l
(m)
k of an ap-

pearing target from a continuous distribution (like a simple

uniform distribution), which would at least ensure that the

label almost never corresponds to the label of any other tar-

get.

3 The mixed labelling phenomenon

3.1 Mathematical characterization

Mixed labelling corresponds to a situation where there is

ambiguity in labelling, i.e. in the assignment of labels (l
(i)
k )

to locations (where a “location” here means simply an un-

labelled single-target state s
(i)
k ). We will now describe the

phenomenon mathematically1, using the Bayesian formula-

tion of the MTTL problem from Section 2.

Given a set of locations sk =
{

s
(1)
k , . . . , s

(t)
k

}

, let

Πk(sk)

=

{

xk

∣

∣

∣

∣

∣

xk =

{[

s
(1)
k

l
(1)
k

]

, . . . ,

[

s
(t)
k

l
(t)
k

]}

, f(xk|Z
k) > 0

}

.

(9)

For a given sk, a situation of “no mixed labelling” would be

when, for some x̂k ∈ Πk(sk), we have

f(x̂k|Z
k) � f(xk|Z

k), ∀xk ∈ Πk(sk) \ x̂k, (10)

which means that for a set of unlabelled states
{

s
(1)
k , . . . , s

(t)
k

}

, there is only one logical choice of labels

to be assigned to these states. Note that two elements xk, x̂k

of Πk(sk) have always the same number of dimensions, so

their RFS densities are always comparable.

Conversely, a “total mixed labelling” (for a given sk) would

be when

f(x̂k|Z
k) ≈ f(xk|Z

k), ∀xk, x̂k ∈ Πk(sk) (11)

i.e. all possible labellings are equally probable. In this sit-

uation, we can say that there is not a single “correct la-

belling” for the set of locations
{

s
(1)
k , . . . , s

(t)
k

}

.

Naturally, any situation that corresponds to neither (10), nor

(11) can be referred to as “partial mixed labelling”.

Remark 3.1 Mixed labelling, as have we described it, is a

characteristic of a set of locations sk given the multi-target

posterior, i.e. a local property. In practice, for labelling

purposes, we are typically only interested in a subset of the

elements of the state space of sk. For instance, we may

just be interested in labelling the estimated locations, i.e.

1We remark that the provided description is intended to give
intuition to problem and not to be strictly rigorous, as we are re-
sorting to operators �, ≈.



the tracks ŝk =
{

ŝ
(1)
k , . . . , ŝ

(t)
k

}

displayed to the opera-

tor. Therefore, although it may be possible to describe the

phenomenon in a “non-local” manner, we believe that this

description suffices for most practical purposes.

3.2 Mixed labelling due to closely spaced targets

The occurrence of mixed labelling when targets separate af-

ter moving in close proximity to each other has been empir-

ically observed, as in [4]. When the multi-target Bayes re-

cursion is implemented by a particle filter, mixed labelling

manifests itself by particle clouds corresponding to each

target intersecting each other, as shown in Fig. 2.

Figure 2: Particle representation of the multi-target distri-

bution in a situation where mixed labelling occurs ( [5])

We also verified the occurrence of mixed labelling in such

situation (for the two-target case) by performing a theoret-

ical analysis on the exact multi-target Bayes recursion (see

details of this analysis in tech. rep. [1, sect. III]).

3.3 “Natural” vs. ”artificial” elimination of mixed

labelling

Since Questions 1 and 2 proposed in Section 1 exist be-

cause of mixed labelling, one may then ask: instead of both-

ering ourselves with these questions, why not simply use an

algorithm that “eliminates” mixed labelling?

It is very important, however, to remark that mixed la-

belling, being associated with the exact multi-target pos-

terior, is a property of the physical problem, not of any par-

ticular algorithm!

We have identified some situations where mixed labelling

may “naturally” be eliminated, i.e. be eliminated from the

exact posterior. These situations are described in detail in

tech. rep. [1, sect. III]. An obvious situation of “natu-

ral elimination” of mixed labelling is when measurements

carry information about the target identities, for instance,

the IFF code. Another situation is when one of the state

components corresponds to the target classification (e.g.

helicopter, fighter aircraft, commercial aircraft), and each

target was precisely classified before mixed labelling hap-

pened. In this case, mixed labelling may disappear if each

target starts exhibiting dynamics unique to their classifica-

tion.

On the other hand, what may also happen is that mixed la-

belling still exists in the exact multi-target posterior, but it

is not visible in the output of the chosen multi-target track-

ing algorithm. This “artificial elimination” of mixed la-

belling, also referred as self-resolving, is typical of parti-

cle filter and multiple hypotheses implementations of the

multi-target Bayes recursion, and has been identified in [4].

“Self-resolving” should be generally treated as a prob-

lem, not as a “solution”, because it causes a true ambiguity

in the posterior to be underestimated by the filter. Some ap-

proaches to deal with self-resolving are described in recent

works [2, 5, 7].

3.4 Initial mixed labelling

The phenomenon of “initial mixed labelling”, that we de-

scribe as mixed labelling affecting tracks originated by ap-

pearing targets, to the best of our knowledge, has not been

yet discussed in previous literature. We will provide here

only a preliminary discussion about the phenomenon.

In Section 2.2.2, we discussed the multi-target state transi-

tion density f(xk|xk−1) for states containing labels. How-

ever, alongside the support of this density, we may have

different labels assigned to the same single-states (associ-

ated with appearing targets). How that precisely happens

depends on the scheme for assigning labels to appearing

targets.

What are the practical consequences of initial mixed la-

belling? The usefulness of labels is to identify, at some time

step k, which tracks correspond to which tracks at some

previous time step, say j. But if a target has just appeared,

it did not originate a track at time j; hence, which exact

label is displayed for this track (and hence any mixed la-

belling that may be associated with it) is irrelevant. There-

fore, it may be reasonable to devise a scheme to perform

“artificial” (i.e. at implementation level) elimination of ini-

tial mixed labelling.

4 Statistics for optimal track labelling

4.1 The labelling probability

On basis of the Bayesian formulation of the MTTL prob-

lem, and the mathematical characterization of the mixed

labelling phenomenon, we are ready to propose a mathe-

matical formulation for Question 2 of Section 1, i.e. for

the probability of labelling error. We will do that through a

sequence of statements.

Definition 4.1 Let M be a random vector. We say that M
is a partial state of another random vector X , if all entries

of M are also entries of X .

Definition 4.2 Let
{

X(1), . . . , X(T )
}

be a RFS variable,

such that each single-state state is given by X(i) =
[

M ′(i), N ′(i)
]′

(or, alternatively, X(i) =
[

N ′(i),M ′(i)
]′

),

i.e. M (i) and N (i) are partial states of X(i). We then

define the M (·)|N (·)-split density of the RFS variable
{

X(1), . . . , X(t)
}

as

fM(·)|N(·)

({

x(1), . . . , x(t)
})

,
f
({

x(1), . . . , x(t)
})

f
({

n(1), . . . , n(t)
}) .

(12)

where x(i) =
[

m′(i), n′(i)
]′

(or x(i) =
[

n′(i),m′(i)
]′

as

appropriate).



Remark 4.3 If M (i) assumes values in a discrete space, it

is possible to show (details omitted here; see tech. rep. [1,

sect. II.B.1]) that fM(·)|N(·) (x) is the probability mass as-

sociated with the finite set x =
{

x(1), . . . , x(t)
}

, condi-

tioned on the finite set n = {n(1), . . . , n(t)}, with each

element of n being a partial state of a distinct element of

x. It may sound counterintuitive that x, not being a dis-

crete variable, is associated with a probability mass. The

key point is that the conditioning on n causes x to only be

able to assume discrete values, specifically, the possible as-

signments of the partial states m(1), . . . ,m(t) to the partial

states n(1), . . . , n(t).

Definition 4.4 Consider a RFS Xk described as in Sec-

tion 2. We define the labelling probability as the proba-

bility mass of a finite set of labelled target states xk =
{

[

s
′(1)
k , l

(1)
k

]′

, . . . ,
[

s
′(t)
k , l

(tk)
k

]′
}

, conditioned on the fi-

nite set of unlabelled states sk =
{

s
(1)
k , . . . , s

(tk)
k

}

and

observations Zk. The quantity is given by

pl(xk|sk) , fL(·)|S(·)(xk|Z
k). (13)

Remark 4.5 From Remark 4.3, the labelling probability

may be interpreted as the posterior probability of an as-

signment of labels to unlabelled states, in the assumption

that these unlabelled states match the true target locations2.

Definition 4.4 can then be readily used to mathematically

formulate Question 2 of Section 1. For a set of labelled

tracks x̂k =
{

x̂
(1)
k , . . . , x̂

(t)
k

}

and the corresponding un-

labelled tracks ŝk =
{

ŝ
(1)
k , . . . , ŝ

(t)
k

}

, the probability of

error in label-to-track assignment can be described by

1− pl(x̂k |̂sk).

4.2 The MMOSPA-MLP estimate

We are now ready to propose a conceptual track extraction

scheme specially suited for the optimal tracking problem.

Let Sk =
{

S
(1)
k , . . . , S

(tk)
k

}

denote the RFS corresponding

to the unlabelled states. In our proposed scheme, the set of

labelled tracks x̂k is the solution of the problem given by

ŝk = arg inf
sk

∫

(

ε(c)p (sk, sk)
)p

f(sk|Z
k)δsk (14)

x̂k = argmax
xk

pl(xk |̂sk) (15)

where ε
(c)
p is the Optimal Subpattern Assignment (OSPA)

metric defined by Schuhmacher, Vo and Vo [13] and c and

p are parameters discussed in the same work.

The rationale of the estimate given by (14)–(15) is quite

simple. In the first step (14), we obtain the unlabelled

tracks, according to the Minimum Mean OSPA (MMOSPA)

estimate defined by Guerriero et al. [8]. This corresponds,

hence, to an optimal choice (in Mean OSPA sense) of unla-

belled tracks, which additionally avoids track coalescence.

2Obviously this assumption is almost never true, but the same
often holds for conditional probabilities in general.

In the second step (15), the labelled tracks are obtained

by using the previously obtained MMOSPA estimate and

choosing the assignment of labels that maximizes the la-

belling probability according to Definition 4.4. We refer to

this two-step scheme as MMOSPA-MLP estimate (where

MLP stands for Maximum Labelling Probability).

Note that second step (15) also gives, for Question 1 pro-

posed in Section 1, a proper formulation (in the sense of

being mathematically rigorous and having clear physical in-

tepretation).

5 Calculating the labelling probabilities for
existing MTT algorithms

We will show how to approximate the labelling probabil-

ities described in Section 4.1 for two existing MTT algo-

rithms. This corresponds to answering Question 2 pro-

posed in Section 1, and using the MLP step (15), it also

corresponds to answering Question 1. Calculation of the

MMOSPA estimate (14) is not discussed here. Note, how-

ever, that the MLP step can be combined with any other

method (i.e. other than the MMOSPA step) to obtain a set

of unlabelled tracks.

The following relationship, that holds for the labelling

probability (derivation omitted here), will be particularly

useful:

pl(xk|sk) =

∫

f(xk|xk−1)f(xk−1|Z
k−1)δxk−1

f(sk|Zk−1)
(16)

where we remind that sk also occurs implicitly in xk.

We remark that both filtering algorithms suffer from the

self-resolving phenomenon described in Section 3.3. This

means that the calculated labelling probabilities will gradu-

ally lose accuracy after target separation.

5.1 Multi-target Sequential Monte Carlo (M-SMC)

filter

The M-SMC filter described in [10, pp. 551–564], with

labels treated as state components, as in [9], corresponds

to the particle filter implementation of the Bayesian recur-

sion (1). Note that the “Joint Multi-track Particle Filter”

described by Garcı́a-Fernández and Grajal [6] is a similar

algorithm, albeit with a different derivation.

The multi-target density f(xk|Zk) is represented by a set

of particles {xk(i), wk(i)}
NP

i=1, where xk(i) denotes a real-

ization of multi-target state, wk(i) the particle weight, and

NP the number of particles.

Labelling probabilities can then be calculated by straight-

forward particle approximation of (16), i.e.

pl(xk|sk) ∝
NP
∑

j=1

wk−1(j)f(xk|xk−1(j)). (17)

with proportionality turned into an equality by normaliza-

tion over all xk ∈ Πk(sk) (we can do that since pl(xk|sk)
corresponds to a conditional probability mass; see remark

4.3). Note that the true cardinality of Πk(sk) may be very

large when target births and deaths are considered, but the



considered values will be restricted by the particle approx-

imation. Even so, additional labelling pruning mechanisms

may be necessary.

5.2 Multiple Hypothesis Tracking (MHT)

In the MHT algorithm [11], the multi-target den-

sity f(xk|Zk) is represented by a set of hypotheses

{hk(i), wk(i)}
NH

i=1 where hk(i) denotes an hypothesis on

the multi-target state, wk(i) the hypothesis weight, and

NH the number of hypotheses. Each hypothesis has form

hk(i) =
{

h
(1)
k (i), . . . , h

(tk(i))
k (i)

}

, where the single-target

hypothesis h
(j)
k (i) is given by a triple:

(

ŝ
(j)
k (i), l

(j)
k (i), P

(j)
k (i)

)

(18)

where ŝ
(j)
k (i) and P

(j)
k (i) are respectively hypotheses on

the mean and the covariance of the unlabelled single-target

state S
(j)
k , and l

(j)
k (i) is an hypothesis on the corresponding

label.

We can use the following procedure to approximate the la-

belling probabilities for the MHT. At every time step, we

produce a number of samples, say NP , by sampling from

the set of hypotheses {hk(i), wk(i)}
NH

i=1. In other words, for

samples m = 1, . . . , NP , we do the following:

1. Choose an hypothesis index im using multinomial

sampling with probabilities {wk(i)}
NH

i=1

2. For j = 1, . . . , tk(im), sample

s
(j)
k (im) ∼ N

(

ŝ
(j)
k (im);P

(j)
k (im)

)

(19)

3. Make xk(m) =

{[

s
(1)
k (im)

l
(1)
k (im)

]

, . . . ,

[

s
(tk(im))
k (im)

l
(tk(im))
k (im)

]}

Labelling probabilities are then calculated using (17).

6 Conclusions

In this paper, we produced a detailed mathematical descrip-

tion of the optimal track labelling problem, with practical

aspects, such as how to perform labelling and how to char-

acterize the probability of labelling error, also being dis-

cussed. A recurring concern in this work was to ensure that

the proposed statistics for the problem have clear physical

interpretation – such that the user can decide whether they

are appropriate or not for his/her application, and interpret

their results in case he/she decides to use them.

In a future work, we will describe an algorithm that

avoids the self-resolving phenomenon described in Sec-

tion 3.3, and can also be applied to general scenarios with

unknown/time-varying number of targets. We will also plan

to look with more depth at the problem of track labelling

with target birth taken in consideration, which shall include

expanding our analysis on the “initial mixed labelling” phe-

nomenon mentioned in Section 3.4.
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