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Abstract

In earlier work we have studied a method for discretization in time of a parabolic
problem, which consists of representing the exact solution as an integral in the complex
plane and then applying a quadrature formula to this integral. In application to a spatially
semidiscrete finite-element version of the parabolic problem, at each quadrature point
one then needs to solve a linear algebraic system having a positive-definite matrix with
a complex shift. We study iterative methods for such systems, considering the basic and
preconditioned versions of first the Richardson algorithm and then a conjugate gradient
method.
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1. Introduction

Let V be a complex finite-dimensional inner product space, and let A be a positive-
definite Hermitian linear operator in V . We consider iterative methods for linear
equations of the form

zw + Aw = g with |arg z| < π. (1.1)

Such equations, with a complex shift z of the positive-definite operator A, need to
be solved in a method for discretization in time of parabolic equations, based on
Laplace transformation and quadrature, which has been studied recently, as is made
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more specific below. We consider a basic Richardson iteration and a conjugate gradient
(CG) method for (1.1), as well as preconditioned versions of these methods. An earlier
eprint [13] is a preliminary, somewhat more extensive and complete version of the
present work, and is sometimes referred to here for additional details.

We now sketch the numerical approximation method [9] for the heat equation that
leads to (1.1). Given a spatial domain Ω ⊂ Rd, an elliptic operator Lu = −∇ · (a∇u),
initial data u0 = u0(x) and an inhomogeneous term f = f (x, t), let u = u(x, t) be the
solution of the parabolic initial boundary-value problem

∂tu + Lu = f in Ω with u = 0 on ∂Ω for t > 0,

u = u0 in Ω when t = 0,
(1.2)

where ∂tu = ∂u/∂t. For simplicity, we assume that the diffusivity a is a positive
constant, and that Ω is a convex polygonal (if d = 2) or polyhedral (if d ≥ 3) domain.
In the usual weak formulation, we view the solution u as a function of t taking values
in the Sobolev space H1

0(Ω) and satisfying

(∂tu, v) + a(∇u, ∇v) = ( f , v) for all v ∈ H1
0(Ω) and t > 0,

with u(0) = u0, where (v, w) =
∫

Ω
vw̄ dx is the inner product in L2(Ω). To discretize

in space, let {Vh} ⊂ H1
0(Ω) be a family of continuous, piecewise linear finite-element

spaces, based on a family of regular partitions Th = {τ} of Ω. The standard Galerkin
spatially semidiscrete solution uh : [0,∞)→ Vh satisfies

(∂tuh, χ) + a(∇uh, ∇χ) = ( f , χ) for all χ ∈ Vh and t > 0,

with uh(0) = u0h, where u0h ∈ Vh is a suitable approximation of the initial data.
Introducing the discrete elliptic operator Lh : Vh→ Vh defined by

(Lhψ, χ) = a(∇ψ, ∇χ) for all ψ, χ ∈ Vh,

the spatially semidiscrete initial-value problem may also be written

∂tuh + Lhuh = Ph f for t > 0 with uh(0) = u0h, (1.3)

where Ph is the L2-projection onto Vh, and we may choose, for instance, u0h = Phu0.
We denote the Laplace transform of a function v(t) by

v̂(z) =Lv(z) :=
∫ ∞

0
e−ztv(t) dt,

and recall the inversion formula

v(t) =L−1v̂(t) =
1

2πi

∫
Γ

eztv̂(z) dz,

where Γ is any contour homotopic to the imaginary axis and to the right of all
singularities of v̂. Putting wh := ûh and g(z) := u0h + f̂ (z), we find by application of
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the Laplace transform to (1.3) that

(zI + Lh)wh(z) = Phg(z) for z ∈ Γ, (1.4)

or, in weak form,

z(wh(z), χ) + a(∇wh(z), ∇χ) = (g(z), χ) for all χ ∈ Vh. (1.5)

By the inversion formula above, the solution of (1.3) may now be represented by

uh(t) =
1

2πi

∫
Γ

eztwh(z) dz where wh(z) = (zI + Lh)−1Phg(z).

In our presentation, we use for Γ the curve parameterized by

z(ξ) := 1 − cosh ξ + i sinh ξ for −∞ < ξ <∞,

which is the left branch of the hyperbola (x − 1)2 − y2 = 1, for z = x + iy, and thereby
represent uh(t) as an integral along the real axis,

uh(t) =
1

2πi

∫ ∞

−∞

ez(ξ)twh(z(ξ))z′(ξ) dξ.

This integrand decays rapidly if t > 0, and the time discretization is effected by
applying an equal-weight quadrature rule to obtain our fully discrete numerical
solution

Uq,h(t) :=
k

2πi

q∑
j=−q

ez jtwh(z j)z′j, (1.6)

where, for an appropriate k > 0 that depends on the time scale of interest,

ξ j := jk, z j := z(ξ j), z′j := z′(ξ j) for | j| ≤ q. (1.7)

Here we choose k = q−1 log q, which is suitable for t of order 1, implying that

z±q = 1 −
q + q−1

2
± i

q − q−1

2
≈
−1 ± i

2
q.

In this approach, the main computational task is to solve, at z = z j for each j, the
discrete elliptic equation (1.4), which is of the form (1.1) with z = z j, with V = Vh

equipped with the L2 inner product, and A = Lh. Fortunately, these linear systems are
independent for different j, so the solutions wh(z j) may be computed in parallel.

Employing a standard nodal basis, the weak form (1.5) leads to a linear
system zMw + Sw = g, where M and S are the mass and stiffness matrices, w
is the vector of nodal values of wh(z), and g is the load vector for the source
term g(z). Equivalently, zw +M−1Sw =M−1 g, which again has the form (1.1), and
the operator A =M−1S is Hermitian and positive definite with respect to the inner
product induced byM, which corresponds to the L2 inner product in S h.
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Applying an iterative solver to (1.1) yields an approximate finite-element
solution w̃h. Replacing wh with w̃h in the quadrature sum (1.6), we arrive at the
computed approximation Ũq,h, and using the triangle inequality we can estimate the
overall error in L2(Ω) as the sum of the solver error, the quadrature error and the finite-
element error:

‖Ũq,h(t) − u(t)‖ ≤ ‖Ũq,h(t) − Uq,h(t)‖ + ‖Uq,h(t) − uh(t)‖ + ‖uh(t) − u(t)‖.

Under appropriate assumptions on the data [9], there is a positive constant c such that

‖Uq,h(t) − uh(t)‖ = O(e−cq/ log q) and ‖uh(t) − u(t)‖ = O(h2), (1.8)

for 0 < t0 ≤ t ≤ T <∞, and if ‖w̃h(z j) − wh(z j)‖ ≤ ε j then

E(t) := ‖Ũq,h(t) − Uq,h(t)‖ ≤
k

2π

q∑
j=−q

ε je
Re(z j)t |z′j|. (1.9)

We may use these estimates as the basis for a stopping criterion: in view of (1.8), it is
desirable to choose the solver tolerance ε j in such a way that E(t) ≤C(h2 + e−cq/ log q)
for some constant C. The presence of the factor eRe(z j)t |z′j| allows ε j to increase with | j|;
see (4.1) below and remember that Re(z j) < 0.

The program for time discretization of parabolic equations sketched above was
initiated by Sheen et al. [16, 17], and continued by Gavrilyuk and Makarov [5],
McLean et al. [9] and McLean and Thomée [10–12], and the error in (1.6) was
analysed in both L2(Ω) and L∞(Ω), under various assumptions on the data of the
problem. In the latter papers [10–12], fractional-order diffusion equations were also
treated.

In our earlier papers [9–12], the analysis was illustrated by numerical examples.
These were carried out in simple cases, in one space dimension and also in the case
of a square spatial domain in two dimensions, and direct solvers were used for the
linear system (1.5). However, even though powerful direct solvers are available,
for large-size problems in more complicated geometries, particularly if the spatial
dimension d = 3, it becomes natural to apply iterative methods, and our purpose in
this paper is therefore to study such methods for equations of the form (1.1), with
application to our above method for the heat equation in mind. Some preliminary
results on this problem were sketched by Sheen et al. [17] using the Richardson
iteration algorithm, and also for a preconditioned form of this method.

Equations of the form (1.1) have been widely studied in the numerical linear
algebra literature. For instance, in connection with the spatial discretization of the
Helmholtz equation, Freund [4] analysed Krylov methods for (1.1) that generalize
some iterative techniques for real and symmetric, but indefinite, systems. The GAL
method from Freund’s paper is a generalization of the SYMMLQ method of Paige and
Saunders [15], and computes in a different way the same sequence of iterates as our
basic CG method. Our algorithm is somewhat simpler and cheaper, but we require
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that arg z is bounded away from ±π, a restriction that holds for our application but not
typically for the Helmholtz equation.

In a number of applications, one wants to solve (1.1) for many values of z with
the same right-hand side g. For instance, in our problem (1.5), g is independent of z
when f ≡ 0 in (1.2). Several iterative methods take advantage of the fact that in this
case the Krylov subspaces are independent of z [14, 18, 19]. Recently, in ’t Hout and
Weideman [7] used a Laplace transform technique, similar to the one considered here,
for the time discretization of the Black–Scholes and Heston equations, in combination
with a spatial discretization by finite differences. They described an iterative method
for (1.1) with a real, nonsymmetric A, in which the Arnoldi algorithm is applied once
to an operator of the form (µI + A)−1 for a suitable µ > 0. The solution w for each z can
then be found by solving a small, upper-Hessenberg system. This approach is efficient
provided the cost of obtaining a sparse factorization of µI + A is acceptable.

Another approach, not discussed here, is to reformulate the complex linear system
as an equivalent real one with twice as many equations and unknowns. See, for
example, the paper by Benzi and Bertaccini [2] and the list of references therein.

We study Richardson iteration with a complex acceleration parameter α in
Section 2, extending and improving upon the results of Sheen et al. [17]. Let λ j denote
the jth eigenvalue of A, labelled so that 0 < λ1 ≤ λ2 ≤ · · · ≤ λN . From a knowledge
of the extremal eigenvalues λ1 and λN , we can determine the optimal α, in the sense
of minimizing the associated error reduction factor. For the finite-element problem
on quasiuniform partitions with maximal mesh size h, recall that λ1 is bounded
below by the minimum eigenvalue of the continuous elliptic operator L, whereas
λN = O(h−2). As a consequence, the basic Richardson method converges slowly, with
an error reduction factor 1 − ch2, for c > 0, depending on z and growing with |z|.
We extend the analysis to a preconditioned Richardson iteration, using the special
preconditioner Bz = (µzI + A)−1, where µz > −λ1, and show that the error reduction
factor is now bounded away from 1 as λN →∞. We also determine the optimal µz, and
find that µz ≈ |z + λ1| − λ1 for large λN . In the case of a more general preconditioner Bz,
we quote a result from our aforementioned eprint [13] showing geometric convergence
in the norm |[v]| := (B−1

z v, v)1/2, where the acceleration parameter is defined in terms
of bounds for the spectrum of Bz(µzI + A).

In Section 3 we analyse a CG method, which does not involve choosing an
acceleration parameter. Generalizing the usual convergence analysis to allow the
complex shift of A in (1.1), we show geometric convergence of the iterates wn, which
follows from the error bound

|||wn − w||| ≤
sec( 1

2 arg z)

|Tn(−sz)|
|||w0 − w||| with sz :=

λ1 + λN + 2z
λN − λ1

, (1.10)

where |||v|||2 := |z| ‖v‖2 + (Av, v) and Tn is the Chebyshev polynomial of degree n.
Since Tn(−sz) = (ηn

z + η−n
z )/2 with |ηz| < 1, this indicates geometric convergence with

rate |ηz|
n. For the finite-element problem discussed above, we find that |ηz| ≤ 1 − ch,

with c > 0 depending on z, giving a better convergence rate than Richardson iteration.
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In the case of the special preconditioner Bz = (µzI + A)−1, by letting z̃ := (z − µz)−1

we can write the preconditioned equation as z̃w + Bzw = z̃Bzg, which has the same
form as the original equation (1.1). The error reduction factor is again bounded away
from 1 as λN →∞, and is now smaller than for the corresponding preconditioned
Richardson iteration. The optimal choice of µz turns out to be the same for both of
these methods.

It is natural to also consider more general preconditioners for the CG iteration. The
preconditioned equation zBzw + BzAw = Bzg is again equivalent to an equation of the
form (1.1), namely zv + B1/2

z AB−1/2
z v = B1/2

z g, where v = B1/2
z w, and the transformed

operator B1/2
z AB−1/2

z is Hermitian and positive definite with respect to the inner product
[v, w] = (B−1

z v, w). However, computing the action of B±1/2
z is usually costly, so we

instead work with the preconditioned equation in its original form. Although the error
is still optimal in a certain sense, we are not able to show a precise error bound of the
type (1.10).

Section 3 concludes with a short discussion of the algorithmic implementation
of the CG method. Both the basic method and the method using the special
preconditioner Bz = (µzI + A)−1 admit a simple and inexpensive recursion for the
successive iterates. However, for a more general preconditioner Bz, the nth step of
the iteration requires us to compute a sum of n vectors, which becomes expensive for
large n. For this reason, we recommend choosing a high-quality preconditioner that
leads to convergence after only a few iterations.

We illustrate our error analysis in Section 4 by numerical calculations in a concrete
case of (1.2), and discuss how to choose the parameters to balance the contributions to
the error from the discretizations in space and time and in the iterative procedure.

2. Iteration algorithms of Richardson type

We now assume, as in (1.1), that A is a positive-definite Hermitian operator in a
finite-dimensional complex inner product space V , with extremal eigenvalues λ1 and
λN , and for brevity put Az := zI + A. In this section, following Sheen et al. [17], we
consider first the basic Richardson iteration with acceleration parameter α ∈ C, applied
to Azw = g:

wn+1 = (I − αAz)wn + αg for n ≥ 0 with w0 given. (2.1)

The error reduction in each time step is then described by the inequality

‖wn+1 − w‖ ≤ ‖I − αAz‖ ‖w
n − w‖,

and since Az is a normal operator in V ,

‖I − αAz‖ = max
1≤ j≤N

|1 − α(z + λ j)|. (2.2)

In (2.1), in addition to choosing w0, the issue is to select α ∈ C so that the norm
in (2.2) is as small as possible. For z = 0, as is well known, the optimal choice of α
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is 2/(λ1 + λN), which gives

‖I − αA‖ =
κ(A) − 1
κ(A) + 1

where κ(A) :=
λN

λ1
. (2.3)

Recall that in the case of the finite-element equations (1.5) based on a quasiuniform
family of triangulations Th, we have A = Lh and κ(A) = O(λN) = O(h−2), so

‖I − αA‖ ≤ 1 − ch2 with c > 0. (2.4)

The following was shown by Sheen et al. [17]; a proof is included for completeness.

T 2.1. Let |arg z| < π. Then the optimal error reduction factor in (2.1) satisfies

εz := min
α
‖I − αAz‖ ≤ 1 − cλ−1

N with c = c(z, λ1) > 0.

P. We begin by demonstrating that, for λN ≤ Λ <∞, there exists an α such that
‖I − αAz‖ ≤ c(z, λ1, Λ) < 1. In fact, we first rotate the line segment [z + λ1, z + λN]
by ±π so that it becomes parallel and to the right of the imaginary axis, and then
multiply by a suitable number ρ > 0 so that the resulting line segment is inside the
disk |z − 1| < 1. In view of (2.2), this shows our initial claim with α = ±iρ.

To handle the case when λN is large, write z = x + iy and put

σ := x +
λ1 + λN

2
and τ := (x + λ1)(x + λN) − y2.

Using (2.2), we find that

εz = max{|1 − α(z + λ1)|, |1 − α(z + λN)|},

and this expression is minimized when the two terms in the “max” are equal, implying
that 1/α = σ + is. Since

ε2
z =

∣∣∣∣∣1 − z + λ1

σ + is

∣∣∣∣∣2 = 1 − R(s) where R(s) :=
2sy + τ

s2 + σ2
,

we seek s ∈ R such that the rational function R(s) is as large as possible. For y = 0 and
x > 0, the maximum occurs when s = 0, giving

εx =
κx − 1
κx + 1

, κx =
x + λN

x + λ1
, αx =

2
(x + λN) + (x + λ1)

,

consistent with (2.3). If y , 0 then R′(s) = 0 at the roots

s± :=
−τ ±

√
τ2 + 4y2σ2

2y

of the quadratic equation ys2 + τs − yσ2 = 0. Since R(s)→ 0 as |s| → ∞, by
considering the sign of R(s) for s→∞ and s→−∞, we find that the maximum
occurs at s = s+ (and the minimum at s−), both when y > 0 and when y < 0,
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T 1. Error reduction by Theorems 2.1 and 2.2.

j x j y j ρz ϕz εz ρ̃z ϕ̃z µz ε̃z

0 0.00 0.00 4.99 × 10−4 0.00 0.9995 1.000 0.00 0.00 0.000
2 −0.05 0.30 4.93 × 10−4 0.15 0.9995 0.988 0.15 0.00 0.152
4 −0.18 0.64 4.73 × 10−4 0.33 0.9995 0.947 0.33 0.03 0.321
6 −0.43 1.02 4.31 × 10−4 0.53 0.9996 0.864 0.53 0.16 0.503
8 −0.81 1.51 3.76 × 10−4 0.72 0.9996 0.754 0.72 0.51 0.658

10 −1.35 2.12 3.24 × 10−4 0.86 0.9995 0.650 0.86 1.14 0.760
12 −2.10 2.93 2.85 × 10−4 0.96 0.9995 0.572 0.96 2.12 0.821
14 −3.13 4.01 2.58 × 10−4 1.03 0.9994 0.517 1.03 3.53 0.856
16 −4.54 5.45 2.39 × 10−4 1.07 0.9993 0.478 1.07 5.49 0.878
18 −6.45 7.38 2.25 × 10−4 1.10 0.9991 0.452 1.10 8.18 0.892
20 −9.02 9.97 2.16 × 10−4 1.12 0.9988 0.433 1.12 11.85 0.902

giving α = αz := 1/(σ + is+). If λN is large then 2s+y ≈ bλN , where

b =

√
(x + λ1)2 + y2 − (x + λ1) = |z + λ1| − (x + λ1) > 0,

and hence

ε2
z = 1 − R(s+) ≈ 1 −

|z + λ1|

b2 + y2

4y2

λN
. �

When, as above, A = Lh and λN = O(h−2), the error bound has the same form as
in (2.4), except that now the constant c depends on z.

The rate of convergence shown in Theorem 2.1 is too slow for the iteration (2.1)
to be of practical use. On the left-hand side of Table 1, we show the values of ρz and
ϕz for the optimal parameter αz = ρze−iϕz , computed as in the proof of Theorem 2.1,
and the error reduction factor εz = ‖I − αzA‖ with z = z j = x j + iy j ∈ Γ as in (1.7)
and k = q−1 log q, for even j in the range 0 ≤ j ≤ q = 20. Here, the operator A = Lh

is from the model problem described in Section 4, for which λ1 ≈ 1 and λN ≈ 4000.
One way to improve the convergence of the iterative method (2.1), considered

briefly by Sheen et al. [17], is to precondition the linear system by multiplication by a
positive-definite Hermitian operator Bz, which, in contrast to the choice in that paper,
we here allow to depend on z. Rewriting (1.1) as

Gzw = g̃z := Bzg, where Gz := BzAz, (2.5)

the Richardson iteration algorithm becomes

wn+1 = (I − αGz)wn + αg̃z. (2.6)
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We first consider the special preconditioner Bz = (µzI + A)−1, where µz > −λ1; for
µz = 0 we have Bz = A−1, independently of z. Since

Gz = Gz(A, µz) = (µzI + A)−1(zI + A)

is a normal operator, the error reduction is now measured by

‖I − αGz(A, µz)‖ = max
1≤ j≤N

|1 − αGz(λ j, µz)| where Gz(λ, µz) =
z + λ

µz + λ
,

and we want to choose α and µz so that this quantity is as small as possible. In
practice we are interested only in z = z j with Re z j ≥ Re zq ≈ −q/2 and q� λN , so
the assumption |z + λN | > |z + λ1| is not restrictive. We show the following.

T 2.2. Let |arg z| < π and |z + λN | > |z + λ1|. Then, for the optimal error
reduction factor in (2.6), uniformly in λN ,

ε̃z = ε̃z(µz) := min
α∈C
‖I − αGz(A, µz)‖ < 1. (2.7)

This quantity is minimized in µz when |Gz(λ1, µz)| = |Gz(λN , µz)|, or for

µz = −λ1 +
λN − λ1

|κz| − 1
> −λ1 where κz :=

z + λN

z + λ1
. (2.8)

For this choice of µz,

ε̃z = sin |ϕ̃z| where ϕ̃z =
ϕz,1 − ϕz,N

2
and ϕz, j = arg (z + λ j).

P. For µz given, let a j = Gz(λ j, µz). We note that, since Gz(∞, µz) = 1 and
(µz + λ)−1 is positive and decreasing in λ,

Gz(λ, µz) = 1 + (µz + λ)−1(z − µz) ∈ [a1, aN] ⊆ [a1, 1] for λ ∈ [λ1, λN],

and
F(α) := ‖I − αGz(A, µz)‖ = max{|1 − αa1|, |1 − αaN |}.

We first show that α may be chosen so that the line segment α[a1, 1] is inside the
disk |z − 1| < 1. For this, we first determine arg α by rotating the line segment [a1, 1]
around the origin so that it becomes parallel to and to the right of the imaginary axis.
We then shrink the line segment thus obtained so that it comes inside the indicated
disk, which gives |α|. With this choice of α, F(α) < 1 uniformly in λN , and thus (2.7)
holds uniformly in λN .

For µz given, the optimal α satisfies |1 − αa1| = |1 − αaN |, and thus also |1/α − a1| =

|1/α − aN |. Therefore, 1/α has to be chosen on the line in C through the midpoint c =

(a1 + aN)/2 which is perpendicular to aN − a1, or has the direction of d = i(aN − a1),
so that α = α(s) = 1/(c + sd). Then for α to be optimal, s ∈ R has to minimize the
rational function F(α(s))2.
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Let α = ρe−iϕ be the optimal α, and let `(φ) be the line through the origin and eiφ.
Then α, a j ∈ `(ϕz, j − ϕ), and hence

F(α) ≥max
{
dist

(
1, `(ϕz,1 − ϕ)

)
, dist

(
1, `(ϕz,N − ϕ)

)}
.

The latter quantity is smallest when ϕz,N − ϕ = −(ϕz,1 − ϕ), or when ϕ = (ϕz,1 + ϕz,N)/2,
in which case ϕz,1 − ϕ = ϕ̃z and so

ε̃z ≥ dist(1, `(ϕ̃z)) = sin |ϕ̃z|.

Let a± = e±iϕ̃z cos ϕ̃z be the points on `(ϕ̃z) and `(−ϕ̃z) closest to 1. Thus |a± − 1| =
sin ϕ̃z. Now choose µz so that |a1| = |aN |, or in other words so that (µz + λN)/(µz + λ1) =

|κz|, which is equivalent to (2.8), and set α̃z = ρ̃ze−iϕ̃z , where ρ̃z = cos ϕ̃z/|a1|. We find
that α̃z a1 = a+ and α̃z aN = a−, so

ε̃z ≤max{|1 − a+|, |1 − a−|} = sin |ϕ̃z|

and hence this µz minimizes ε̃z(µz), which completes the proof. �

Note that µz defined in (2.8) tends to |z + λ1| − λ1 as λN →∞. Also, since

|ϕz,1 − ϕz,N | ≤ 3π/4 for z ∈ Γ,

we then have ε̃z ≤ sin(3π/8) ≈ 0.9239.
On the right-hand side of Table 1, we see the dramatic effect of the

preconditioner Bz = (µzI + A)−1 on the error reduction factor, in the case of the model
problem from Section 4, with z = z j. Here we denote the optimal choice of the
acceleration parameter by α̃z = ρ̃ze−iϕ̃z , computed as in the proof above. Notice that
ε̃z = ‖zI − α̃zA‖ increases with j, whereas εz decreases.

Since computing the action of (µzI + A)−1 is expensive, we now want to consider a
more general preconditioner Bz (still assumed to be positive definite and Hermitian).
We then write Gz in (2.6) in the form

Gz = BzAz = ẑ Bz + Bz(µzI + A) where ẑ := z − µz. (2.9)

We take B−1
z to be spectrally equivalent to µzI + A, or

mz(B−1
z v, v) ≤ ((µzI + A)v, v) ≤ Mz(B−1

z v, v) for all v ∈ V,

and define the associated z-dependent inner product and norm,

[v, w] := (B−1
z v, w), |[v]| := [v, v]1/2.

The operator Hz := Bz(µzI + A) is then Hermitian with respect to [·, ·], and the largest
and smallest choices of mz and Mz are the minimum and maximum eigenvalues of Hz,
respectively.

Sheen et al. [17] briefly discussed the preconditioning of (2.1) by using an
operator B independent of z, corresponding to µz = 0, and this turned out to be
advantageous for small |z|. In our general case we have the following theorem, in
which, for simplicity, we assume that Im z ≥ 0.
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T 2.3. Assume that ζ := arg ẑ ∈ [0, π), define ϕ̂z as the number in the
interval J := (ζ − π/2, π/2) that minimizes

ν̂z(ϕ) :=
mz cos2 ϕ cos(ζ − ϕ)

Mz cos(ζ − ϕ) + Λz cos ϕ
where Λz := |ẑ| ‖Bz‖,

and set ρ̂z := ν̂z(ϕ̂z)/(mz cos ϕ̂z). Then

|[I − α̂zGz]| ≤ ε̂z := (1 − ν̂z(ϕ̂z))1/2 where α̂z := ρ̂ze
−iϕ̂z . (2.10)

If, in addition, there is a γz ≥ 0 such that

Re(ẑ [Bzv, Bz(µzI + A)v]) ≤ −γz[Bzv, v] for all v ∈ V, (2.11)

define ϕ̆z as the value in J minimizing

ν̆z(ϕ) :=
mz cos2 ϕ cos(ζ − ϕ)

max{Mz cos(ζ − ϕ), Λ̆z cos ϕ}
where Λ̆z := Λz −

2γz

|ẑ|
,

and put ρ̆z := ν̆z(ϕ̆z)/(mz cos ϕ̆z). We then have the sharper estimate

|[I − ᾰzGz]| ≤ ε̆z := (1 − ν̆z(ϕ̆z))1/2 where ᾰz := ρ̆ze
−iϕ̆z . (2.12)

Since the operators involved are now not normal, the spectral characterization of
the norms used above does not apply, and the rather lengthy and technical proof is
based on energy methods. The argument begins by using standard estimates to show,
for appropriate values of ϕ := −arg α and ρ := |α|, that

|[(I − αGz)v]|2 = |[v]|2 − 2 Re(α[Gzv, v]) + |α|2|[Gzv]|2 ≤ (1 − ν̃z(ϕ))|[v]|2.

Here we have used (2.9) to obtain

Re(α[Gzv, v]) = Re(α)[Bz(µzI + A)v, v] + Re(αẑ)[Bzv, v],

where α is chosen so that Re(α) and Re(αẑ) are positive, and

|[Gzv]| ≤ |[Bz(µzI + A)v]| + |z̃| |[Bzv]|.

If instead of the latter inequality one uses

|[Gzv]|2 = |[Bz(µzI + A)v]|2 + |ẑ|2|[Bzv]|2 + 2 Re(ẑ[Bzv, Bz(µzI + A)v]),

then the estimate (2.11) makes it possible to replace ν̂z(ϕ) by the smaller quantity ν̆z(ϕ);
we refer to our aforementioned eprint [13] for details.

One example of a preconditioner Bz = Bz,k satisfying the assumptions of
Theorem 2.3 is obtained by applying k V-cycles of a symmetric algebraic multigrid
algorithm [1] to approximately invert the operator µzI + A. Since Bz,k→ (µzI + A)−1

as k→∞, it may be seen that (2.11) is valid for k sufficiently large. Table 2 shows
results obtained with such a Bz first, on the left, using (2.10), and second, on the right,
using (2.12), where, for each quadrature point z j, the value of k shown is the smallest
such that (2.11) holds. The choice of µz is the same as in Table 1.
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T 2. Error reduction by Theorem 2.3.

j ρ̂z ϕ̂z ε̂z k γz ρ̆z ϕ̆z ε̆z

0 1.000 0.00 0.643 1 0.000 1.000 0.00 0.643
2 0.517 0.54 0.767 3 0.003 0.919 0.41 0.464
4 0.341 0.73 0.873 3 0.086 0.811 0.63 0.623
6 0.238 0.88 0.934 2 0.043 0.541 1.00 0.869
8 0.166 1.02 0.962 2 0.301 0.429 1.13 0.918

10 0.125 1.12 0.976 2 0.738 0.341 1.22 0.947
12 0.102 1.19 0.983 2 1.351 0.277 1.27 0.963
14 0.093 1.23 0.989 1 0.387 0.185 1.30 0.983
16 0.083 1.26 0.991 1 1.112 0.175 1.32 0.985
18 0.077 1.28 0.992 1 2.388 0.169 1.34 0.985
20 0.072 1.29 0.992 1 3.426 0.158 1.35 0.987

3. The conjugate gradient method

Once again, assume that A is a positive-definite Hermitian operator in a finite-
dimensional complex inner product space V , and consider the equation

Azw = g where Az := zI + A and |arg z| < π. (3.1)

Given w0, a preliminary guess for the solution w, we define the residual r0 := g − Azw0

and the associated Krylov subspace of order n ≥ 1,

Vn := span{r0, Azr0, . . . , An−1
z r0} = span{r0, Ar0, . . . , An−1r0},

with V0 := {0}. Note that Vn depends on z through r0. The exact solution of (3.1)
satisfies

(Azw, ϕ) = (g, ϕ) for all ϕ ∈ V.

As in the classical CG method, we define the approximate solution wn = w0 + vn,
with vn ∈ Vn, by Galerkin’s method, or

(Azwn, ϕ) = (g, ϕ) for all ϕ ∈ Vn, (3.2)

and find that vn = wn − w0 satisfies

(Azvn, ϕ) =
(
Az(wn − w0), ϕ

)
= (g, ϕ) − (Azw0, ϕ) = (r0, ϕ) for all ϕ ∈ Vn.

The homogeneous equation, (Azv, ϕ) = 0 for all ϕ ∈ Vn, admits only the trivial
solution v = 0 in Vn, because taking ϕ = v gives z‖v‖2 + (Av, v) = 0. Hence there exists
a unique solution of the finite-dimensional problem (3.2). The error en := wn − w
satisfies

(Azen, ϕ) = 0 for all ϕ ∈ Vn. (3.3)
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To study the convergence of wn, we introduce the norm

|||v|||2 := |z| ‖v‖2 + (Av, v), (3.4)

and begin with the following lemma.

L 3.1. For all v, w ∈ V,

|(Azv, w)| ≤ |||v||| |||w||| and |(Azv, v)| ≥ cos(φ/2) |||v|||2 where φ = arg z.

P. The first part follows by the Cauchy–Schwarz inequality, since

|(Azv, w)| ≤ |z| |(v, w)| + |(Av, w)| ≤ (|z|1/2‖v‖)(|z|1/2‖w‖) + (Av, v)1/2(Aw, w)1/2

≤ (|z| ‖v‖2 + (Av, v))1/2(|z| ‖w‖2 + (Aw, w))1/2.

Setting β := e−iφ/2, the second part now results from

Re(β(Azv, v)) = Re(βz)‖v‖2 + Re β(Av, v)

≥ |z| cos(φ/2)‖v‖2 + cos(φ/2) (Av, v) = cos(φ/2)|||v|||2. �

Using this lemma, we obtain the following quasioptimality result.

P 3.2. With w and wn the solutions of (3.1) and (3.2),

|||wn − w||| ≤ sec(φ/2) inf
v∈w0+Vn

|||v − w||| with φ = arg z.

P. Lemma 3.1 and (3.3) show that, for any v ∈ w0 + Vn,

cos(φ/2)|||wn − w|||2 ≤ |(Az(wn − w), wn − w)| = |(Az(wn − w), v − w)|

≤ |||wn − w||| |||v − w|||,

which implies the stated result. �

We now proceed to generalize the classical convergence analysis of the CG method
by allowing for the complex shift in Az. Let Pn denote the space of polynomials of
degree at most n, with complex coefficients.

T 3.3. Let w and wn be the solutions of (3.1) and (3.2), and en := wn − w. If
Qn ∈ Pn and Qn(0) = 1 then

|||en||| ≤ sec(φ/2) max
1≤ j≤N

|Qn(z + λ j)| |||e0||| with φ = arg z.

P. Let v := w + Qn(Az)e0. Since

Qn(λ) = 1 + λPn−1(λ) with Pn−1 ∈ Pn−1

and
r0 = g − Azw0 = −Az(w0 − w) = −Aze0,
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we have Qn(Az)e0 = e0 − Pn−1(Az)r0. Hence v = w0 − Pn−1(Az)r0 ∈ w0 + Vn, and we
conclude by Proposition 3.2 that

cos(φ/2)|||en||| ≤ |||v − w||| = |||Qn(Az)e0|||.

Since Az is a normal operator,

‖Qn(Az)e0‖ ≤ max
1≤ j≤N

|Qn(z + λ j)| ‖e0‖.

Similarly,
(AQn(Az)e0, Qn(Az)e0) ≤ max

1≤ j≤N
|Qn(z + λ j)|2 (Ae0, e0),

and we conclude that

|||Qn(Az)e0||| ≤ max
1≤ j≤N

|Qn(z + λ j)| |||e0|||,

which completes the proof. �

With the Chebyshev polynomial Tn ∈ Pn defined by Tn(cos θ) = cos(nθ) for θ ∈ C, or
equivalently (since cos(iθ) = cosh θ) by Tn(cosh θ) = cosh(nθ), we show the following
consequence of Theorem 3.3.

T 3.4. With the above notation,

|||en||| ≤ sec(φ/2)|Tn(−sz)|−1|||e0||| where sz :=
λN + λ1 + 2z
λN − λ1

.

Here, with κz = (λN + z)/(λ1 + z),

Tn(−sz) =
ηn

z + η−n
z

2
where ηz := −

√
κz − 1
√
κz + 1

and |arg
√
κz| < π/2.

Furthermore, |ηz| ≤ 1 − cλ−1/2
N with c = c(z, λ1) > 0.

P. The affine change of variables s 7→ τ in the complex plane,

τ =
(1 − s)(λ1 + z) + (1 + s)(λN + z)

2
,

takes the real interval [−1, 1] onto the segment [λ1 + z, λN + z], parallel to the real axis.
We note that τ = 0 when s = −sz, so that if we define

Qn(τ) :=
Tn(s)

Tn(−sz)
with s = −

λN + λ1 + 2(z − τ)
λN − λ1

,

then Qn(τ) ∈ Pn and Qn(0) = 1. Thus

max
λ∈[λ1,λN ]

|Qn(λ + z)| = max
τ∈[λ1+z,λN+z]

|Qn(τ)| = max
−1≤s≤1

|Tn(s)|
|Tn(−sz)|

=
1

|Tn(−sz)|
,

and hence the first statement of the theorem follows by Theorem 3.3.
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Defining θ by cosh θ ≡ (eθ + e−θ)/2 = −sz and letting ηz = eθ,

Tn(−sz) = Tn(cosh θ) = cosh(nθ) =
ηn

z + η−n
z

2
.

Here ηz satisfies the quadratic equation ηz + η−1
z = −2sz, with roots

ηz,± = −sz ±

√
s2

z − 1 = −
(
√

sz + 1 ∓
√

sz − 1)2

2
.

Let ηz = ηz,+. Since (sz + 1)/(sz − 1) = (λN + z)/(λ1 + z) = κz, we find that

−ηz =

√
sz + 1 −

√
sz − 1√

sz + 1 +
√

sz − 1
=

√
κz − 1
√
κz + 1

=
1 − κ−1/2

z

1 + κ−1/2
z

,

and since |arg
√
κz| < π/2 we have Re

√
κz > 0. Hence |ηz| < 1.

For the final conclusion, we note that κ−1
z = (z + λ1)λ−1

N + O(λ−2
N ) and thus, because

|arg (z + λ1)| < |φ| < π, we have, for λN large,

Re κ−1/2
z ≥ cos(φ/2)

√
|z + λ1|λ

−1/2
N + O(λ−1

N ) ≥ c(z, λ1)λ−1/2
N ,

with c(z, λ1) > 0. Since −ηz = 1 − 2κ−1/2
z + O(λ−1

N ), it follows that

|ηz|
2 = 1 − 4 Re κ−1/2

z + O(λ−1
N ) ≤ 1 − 2c(z, λ1)λ−1/2

N for λN large,

which completes the proof. �

Since |ηz| < 1, it follows that |Tn(−sz)|−1 ≈ 2|ηz|
n, and so Theorem 3.4 shows linear

convergence with approximately this rate. When A = Lh and λN = O(h−2), the error
bound is thus of order (1 − ch)n, with c > 0. The values of |ηz| shown in Table 3 refer
to the model problem from Section 4, for which λ1 ≈ 1 and λN ≈ 4000. Comparing the
|ηz| with the corresponding values of εz in Table 1 confirms the superiority of the CG
method over the Richardson iteration (without preconditioning).

Freund [4, Theorem 4(c)] proved a similar error bound in the norm ‖v‖T :=
√

(Tv, v),
where T = A − xI, under the restriction x > −λ1(A) so that T is positive definite.

We now seek to precondition the CG method applied to (3.1), and consider first
the special preconditioner Bz = (µzI + A)−1, with µz > −λ1. We multiply (3.1) by
(z − µz)−1Bz to write the equation in the form

z̃w + Bzw = z̃ Bzg where z̃ := (z − µz)−1, (3.5)

in which thus z̃ and Bz play the roles previously taken by z and A. Note that the
angle φ̃ := arg z̃ = −arg (z − µz) satisfies |φ̃| < π. In particular, the Krylov subspaces
are now

Vn = span{r0, Bzr0, . . . , Bn−1
z r0} with r0 = z̃ Bzg − (z̃I + Bz)w0, (3.6)
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T 3. Error reduction by CG iteration.

j x j y j |ηz| |η̃z| µz |η̃z| for µz = 0

0 0.00 0.00 0.9687 0.0000 0.000 0.0000
2 −0.05 0.30 0.9690 0.0762 0.002 0.0762
4 −0.18 0.64 0.9699 0.1650 0.031 0.1652
6 −0.43 1.02 0.9708 0.2698 0.165 0.2724
8 −0.81 1.51 0.9711 0.3749 0.507 0.3880

10 −1.35 2.12 0.9703 0.4605 1.138 0.4948
12 −2.10 2.93 0.9686 0.5221 2.119 0.5839
14 −3.13 4.01 0.9659 0.5646 3.530 0.6553
16 −4.54 5.45 0.9622 0.5939 5.492 0.7121
18 −6.45 7.38 0.9577 0.6143 8.183 0.7577
20 −9.02 9.97 0.9523 0.6287 11.850 0.7946

and the iterates wn = w0 + vn, with vn ∈ Vn, are defined by

((z̃I + Bz)wn, ϕ) = (z̃ Bzg, ϕ) for all ϕ ∈ Vn. (3.7)

The earlier analysis remains valid, with sz now replaced by

s̃z :=
λ̃N + λ̃1 + 2z̃

λ̃N − λ̃1
where λ̃ j := (µz + λN+1− j)−1 for j = 1, N,

and correspondingly for ηz. Since λ̃N is bounded, Theorem 3.4 then shows that the
error reduction factor is bounded away from 1, independently of λN . We also show
that the optimal choice of µz is the same as for Richardson iteration in Theorem 2.2.
Recall that Gz(λ, µz) = (z + λ)/(µz + λ).

T 3.5. For the CG method (3.7) applied to equation (3.5), and for the norm
|||v|||2 = |z̃| ‖v‖2 + (Bzv, v),

|||en||| ≤ sec(φ̃/2) |Tn(−s̃z)|−1|||e0||| with Tn(−s̃z) =
η̃n

z + η̃−n
z

2
.

Here

η̃z := −
√
κ̃z − 1
√
κ̃z + 1

where κ̃z :=
λ̃N + z̃

λ̃1 + z̃
=

Gz(λ1, µz)
Gz(λN , µz)

, (3.8)

and hence |η̃z| ≤ c(z, λ1, µz) < 1. If |z + λN | > |z + λ1| then the smallest value of |η̃z| is
attained for µz as in (2.8), and for this choice

|η̃z| = tan(|ϕ̃z|/2) where ϕ̃z :=
ϕz,1 − ϕz,N

2
and ϕz, j := arg (z + λ j).
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P. With a j = Gz(λ j, µz) we have κ̃z = a1/aN , and so it follows from (3.8) that

η̃z = −

√
a1/aN − 1
√

a1/aN + 1
.

Since arg a j = ϕz, j, we may write
√

a1/aN = τeiϕ̃z , with τ > 0 and |ϕ̃z| < π/2, and find
that

|η̃z|
2 =

(τ cos ϕ̃z − 1)2 + τ2 sin2 ϕ̃z

(τ cos ϕ̃z + 1)2 + τ2 sin2 ϕ̃z
< 1. (3.9)

The ratio is minimized at τ = 1, that is, when |a1| = |aN |, or when (2.8) holds.
For τ = 1, (3.9) becomes |η̃z|

2 = tan2(ϕ̃z/2), and since |ϕ̃z| < π/2, this completes the
proof. �

Note that since |ϕ̃z| < π/2,

|η̃z| = tan(|ϕ̃z|/2) < sin |ϕ̃z| = ε̃z,

that is, the error reduction factor for CG is smaller than that for Richardson iteration.
If z ∈ Γ then |ϕ̃z| < 3π/8, implying that |η̃z| < tan(3π/16) ≈ 0.6682. In Table 3 we give
some values of |η̃z|, first for the optimal µz determined by Theorem 3.5, and then (in
the final column) for µz = 0. As for Richardson iteration, the preconditioning becomes
less effective with increasing j.

We now consider the preconditioned form (2.5) of (1.1), where Bz is a more general
Hermitian positive-definite operator than (µzI + A)−1, or

Gzw = g̃z := Bzg where Gz = BzAz = zBz + BzA. (3.10)

Note that both Bz and BzA are Hermitian and positive definite with respect to the inner
product [v, w] := (B−1

z v, w). We now define the Krylov subspaces by

Ṽn := span{r̃0,Gzr̃0, . . . ,G
n−1
z r̃0} where r̃0 := g̃z −Gzw0 = Bzr0,

and the CG iterates wn = w0 + vn with vn ∈ Ṽn by

(Azwn, ϕ) = (g, ϕ) for all ϕ ∈ Ṽn,

or equivalently [Gzwn, ϕ] = [g̃z, ϕ] for all ϕ ∈ Ṽn.
The existence and uniqueness of wn follow as before, and the inequalities in

Lemma 3.1 remain valid, with ||| · ||| defined in (3.4). The error en = wn − w again
satisfies an orthogonality property,

(Azen, ϕ) = 0 for all ϕ ∈ Ṽn,

and the proof of the quasioptimality result of Proposition 3.2 carries over verbatim.
However, the proof of the error bound of Theorem 3.3 does not remain valid, in
general, owing to the presence of the operator Bz in the definition of the Krylov
subspaces Ṽn.
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We discuss briefly the implementation of the CG method, referring again to our
aforementioned eprint [13] for further details. Starting with the basic method (3.2),
one shows that, assuming r0 , 0, there is an N∗ ≤ N = dim(V) such that rn , 0 for
0 ≤ n < N∗, but rn = 0 (and thus wn = w) for n ≥ N∗. The residuals satisfy

Vn = span{r0, r1, . . . , rn−1} and (rn, ϕ) = 0 for all ϕ ∈ Vn.

In order to obtain a recursive algorithm for computing the CG iterates wn, one seeks a
second sequence of vectors pn, such that, if 1 ≤ n < N∗,

Vn = span{p0, p1, . . . , pn−1} and (Az pn, ϕ) = 0 for all ϕ ∈ Vn. (3.11)

Putting p0 := r0, one may show that

pn+1 = rn+1 + βn pn where βn := −
(rn+1, Az pn)
(Az pn, pn)

,

making it possible to compute the wn recursively by

wn+1 = wn + αn pn where αn :=
‖rn‖

2

(Az pn, pn)
for 0 ≤ n < N∗.

This implies that
rn+1 = rn − Az(wn+1 − wn) = rn − αnAz pn,

so that the rn may also be computed recursively. For real z > −λ1(A) the scalar αn is
real, so

−αn(rn+1, Az pn) = (rn+1, rn − αnAz pn) = ‖rn+1‖
2 and βn = ‖rn+1‖

2/‖rn‖
2,

which is the formula used in the classical CG method.
The preceding analysis remains valid if we use the special preconditioner Bz =

(µzI + A)−1, reformulating (3.1) as (3.5), with iterates defined by (3.6) and (3.7). We
now have rn = z̃Bzg − (z̃ I + Bz)wn, and in the computation of αn and βn, the inner
product (Azv, w) is replaced by ((z̃ I + Bz)v, w).

Finally, consider a general preconditioned equation of the form (3.10). The
preconditioned residuals r̃n := g̃z −Gzwn = Bzrn satisfy

Ṽn = span{r̃0, r̃1, . . . , r̃n−1} and [r̃n, ϕ] = (rn, ϕ) = 0 for all ϕ ∈ Vn,

and for 1 ≤ n < N∗ we seek pn satisfying (3.11) with Vn replaced by Ṽn. With p0 := r̃0,
we find that

pn+1 = r̃n+1 +

n∑
k=0

βnk pk,

where the βnk satisfy the nonsingular lower-triangular linear system

j∑
k=0

(Az pk, p j)βnk = −(Azr̃n+1, p j) for 0 ≤ j ≤ n < N∗.
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1

1

–1

F 1. The domain Ω.

Unfortunately, in contrast to the situation earlier, βnk , 0 is possible for k < n − 1, and
consequently all the p j must be stored.

Given wn, rn and pn, we can compute

wn+1 = wn + αn pn where αn :=
|[r̃n]|2

(Az pn, pn)
=

(rn, r̃n)
(Az pn, pn)

.

The residuals again satisfy rn+1 = rn − αnAz pn, implying that the preconditioned
residuals satisfy r̃n+1 = r̃n − αnGz pn. Each iteration is now more expensive than in
the basic CG method, both in CPU time and memory requirements, so one may want
to restart the iteration every m steps for some moderate choice of m. An investigation
of such a restarted iteration is beyond the scope of the present work, however.

4. A model problem

We now describe a concrete initial boundary-value problem (1.2), used already in
the numerical examples of Sections 2 and 3, and present some further illustrations of
our results.

For the domain Ω we take the trapezium with vertices (1, 0), (0, 1), (−1, 1) and
(−1, 0), shown in Figure 1. The minimum eigenvalue of −∇2 on Ω is close to 15, so
we choose the diffusivity a = 1/15 to give a time scale of order 1 for (1.2). We choose
the data u0 and f so that the exact solution is

u(x, y, t) = (1 + x)(1 − x − y) sin(πy)(1 + 2t)e−t,

and use continuous, piecewise linear finite elements on a quasiuniform, unstructured
triangulation Th of Ω, generated by the program Gmsh [6]. The dimension of the
finite-element space Vh is N = 2663, and the maximum element diameter is h = 0.035.
The extremal eigenvalues of the operator A = Lh are λ1 ≈ 1.014 and λN ≈ 4006.

In our numerical results, we employ the discrete L2 norm ‖v‖h = ‖Ihv‖, where Ih

is the nodal interpolation operator for the finite-element space Vh. Table 4 shows this
discrete L2-norm of the error in Uq,h(t) at four values of t, for three choices of q, as well
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T 4. Discretization error ‖Uq,h(t) − u(t)‖h.

t q = 10 q = 20 q = 30 ‖u(t)‖h

0.25 1.3436 × 10−2 4.3778 × 10−4 4.1747 × 10−4 0.4452
0.50 6.1232 × 10−4 1.6260 × 10−4 1.7541 × 10−4 0.4623
1.00 2.2024 × 10−4 2.1088 × 10−4 2.1114 × 10−4 0.4206
2.00 1.9403 × 10−4 1.9411 × 10−4 1.9411 × 10−4 0.2579

T 5. Iteration counts for t = 1 at different quadrature points. In the column headings, B indicates the
basic CG method, INV the special preconditioner Bz = (µzI + A)−1, and AMG(k) the algebraic multigrid
preconditioner [1] with k V-cycles, used previously in Table 2. The heading IC refers to preconditioning
using an incomplete Cholesky factorization [8] of µzI + A.

Richardson CG

j INV AMG(3) B INV IC AMG(1) ‖w(z j)‖h ε j

0 1 5 250 1 52 7 1.14 × 100 3.18 × 10−6

2 7 9 227 5 48 7 1.13 × 100 3.06 × 10−6

4 10 15 235 6 50 8 1.03 × 100 2.84 × 10−6

6 15 25 242 7 51 9 7.67 × 10−1 2.78 × 10−6

8 24 42 234 8 50 10 4.39 × 10−1 3.03 × 10−6

10 39 56 219 9 46 11 2.21 × 10−1 3.86 × 10−6

12 49 57 184 10 40 11 1.19 × 10−1 6.08 × 10−6

14 48 45 149 9 32 10 7.41 × 10−2 1.27 × 10−5

16 44 37 98 8 22 9 5.11 × 10−2 3.83 × 10−5

18 32 26 34 5 11 5 3.69 × 10−2 1.91 × 10−4

20 8 7 10 2 3 2 2.71 × 10−2 1.87 × 10−3

as the norm of the solution itself. We see that once q is about 20, the O(h2) error from
the spatial discretization dominates the O(e−cq/ log q) error from the time discretization;
compare with (1.8).

In Table 5 we show iteration counts for t = 1 at alternate quadrature points for
several versions of the Richardson and CG iterations. As the acceleration parameter
for the Richardson iterations, we take the optimal α = α̃z from Theorem 2.2 in the
case of the INV preconditioner, and α = ᾰz from Theorem 2.3 for AMG(3). In all
cases, we use the value of the parameter µz given in Theorems 2.2 and 3.5, which is
optimal for the INV preconditioner. Except for j = 0, the AMG(1) preconditioner for
CG is almost as effective as INV, requiring only 11 iterations in the worst case. One
could also reduce the set-up cost for AMG by using the same µz for several nearby
quadrature points, but we have not investigated the trade-off between the cost saving
and a possibly slower convergence.
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Let en = w̃h(z j) − wh(z j) denote the solver error after n iterations. We compute
wh(z j) using a sparse direct solver [3], and stop the iterations once

‖en‖ ≤ ε j where ε j := δ ×
2πe|x j |t

(2q + 1)k|z′j|
for δ = 10−5, (4.1)

where x j = Re z j < 0. This way, the estimate (1.9) ensures that the additional error
in Uq,h(t) due to the iterative solver is less than δ. For j = 0, we start each iteration
with the zero vector, but for j ≥ 1 we use the final iterate at z j−1 as the starting iterate
at z j. The remaining columns of the table show the values of ‖wh(z j)‖ and ε j. The
former decrease whereas the latter increase with increasing j. In particular, the growth
in ε j more than compensates for the deterioration in the error reduction factors of the
iterative solvers, seen in Tables 1 and 3.
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