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Abstract

This thesis develops integer linear programming models for and studies the com-
plexity of problems in the areas of maintenance optimization and location—routing.
We study how well the polyhedra defined by the linear programming relaxation of
the models approximate the convex hull of the integer feasible solutions. Four of the
papers consider a series of maintenance decision problems whereas the fifth paper
considers a location-routing problem.

In Paper I, we present the opportunistic replacement problem (ORP) which is to
find a minimum cost replacement schedule for a multi-component system given a
maximum replacement interval for each component. The maintenance cost consists
of a fixed/set-up cost and component replacement costs. We show that the prob-
lem is NP-hard for time dependent costs, introduce an integer linear programming
model for it and investigate the linear programming relaxation polyhedron. Nu-
merical tests on random instances as well as instances from aircraft applications are
performed.

The stochastic opportunistic replacement problem (SORP) extends the ORP to
allow for uncertain component lives/maximum replacement intervals. In Paper II,
a first step towards a stochastic programming model for the SORP is taken by allow-
ing for non-identical lives for component individuals. This problem is shown to be
NP-hard also for time independent costs. A new integer linear programming model
for this problem is introduced which reduces the computational time substantially
compared to an earlier model.

In Paper I1I, we study the SORP and present a two-stage stochastic programming
solution approach, which aims at — given the failure of one component — decid-
ing on additional component replacements. We present a deterministic equivalent
model and a decomposition method; both of which are based on the model devel-
oped in Paper II. Numerical tests on instances from the aviation and wind power in-
dustries and on two test instances show that the stochastic programming approach
performs better than or equivalently good as simpler maintenance policies.
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In Paper IV, we study the preventive maintenance scheduling problem with in-
terval costs which again considers a multi-component system with set-up costs. As
for the ORP, an optimal schedule for the entire horizon is sought for. Here, the maxi-
mum replacement intervals are replaced by a cost on the replacement intervals. The
problem is shown to be a generalization of the ORP as well as of the dynamic joint
replenishment problem from inventory theory. We present a model for the problem
originally introduced for the joint replenishment problem. The model is utilized in
three case studies from the railway, aircraft and wind power industries.

Finally, in Paper V we consider the Hamiltonian p-median problem which be-
longs to the class of location—routing problems. It consists of finding p disjoint min-
imum weight cycles which cover all vertices in a graph. We present several new
and existing models and analyze these from a computational as well as a theoretical
point of view. The conclusion is that three models are computationally superior, two
of which are introduced in this paper.

The main contribution of this thesis is to develop models for maintenance de-
cisions and thus take an important step towards efficient and reliable maintenance
decision support systems.

Keywords: integer linear programming; complexity theory; polyhedral analysis;
stochastic programming; maintenance optimization; Hamiltonian p-median prob-
lem
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1 Introduction

The purpose of this thesis is to improve the understanding and solution efficiency
of optimization problems in the areas of maintenance optimization and location-routing.
Optimization problems can be described as problems where one searches for the
best decision with respect to a given objective within the set of allowed, or feasi-
ble, decisions. The optimization problems that this thesis concern all belong to the
family of combinatorial optimization problems, in which the feasible set consists of a
finite set of objects such as routes in a graph or feasible schedules. Maintenance op-
timization is to find optimal decisions for replacement and repair actions in a given
system during a given time-frame. An important aspect is to balance the cost of pre-
ventive maintenance actions with the probability of future component failures or
system shutdowns. Location-routing combines two classical fields of combinatorial
optimization: facility location and vehicle routing. The problem is to simultaneously
decide where to locate facilities, or depots, and how to route vehicles to and from
those depots so that all clients are visited, at minimum total cost.

When studying optimization problems, a natural first question to ask is whether
the problem is difficult or easy, i.e., if efficient solution techniques exist or not. The
theory designed for such a classification is complexity theory. A common approach
for solving optimization problems is to introduce a mathematical description or
model which belongs to a class of optimization models that can be solved by a gen-
eral purpose algorithm. In this thesis, we consider the widely used class of integer
linear programming (ILP) models (also denoted integer linear optimization). The mod-
els consist of linear constraints, a linear objective, and integrality requirements on
the variables. The linear programming (LP) relaxation of an ILP model is obtained by
removing the integrality requirement. The reason for using ILP models is, on one
hand, that they provide a possibility to model a wide variety of problems and, on
the other hand, that mature algorithms and a rich theory for these models exist.
For a given optimization problem, several mathematical models can be formulated.
The solution efficiency of these models greatly depends on how well the LP relax-
ation approximates the ILP model. Since the LP feasible region is a polyhedron,
the relation between the ILP model and the LP relaxation is analyzed by the use of
polyhedral theory. Finally, in many optimization problems decisions need to be taken
without having access to all the data; the future is uncertain, and at best statistical
data or probability distributions are available. An important concept developed for
optimization under uncertainty is stochastic programming.

The following sections are intended to provide a short introduction to the theory
used and the results obtained in the appended papers. In Section 2 we introduce ba-
sic concepts of and common solution techniques within complexity theory, integer
linear programming and stochastic programming. Section 3 gives an introduction
to the two areas of application considered, namely maintenance optimization and
location-routing. Section 4 introduces the optimization problems considered in the
appended papers and presents the most important results therein. Finally, Section 5
summarizes the contributions of the thesis.
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2 Theory

This section contains short introductions to the areas of complexity theory, integer
linear programming and stochastic programming.

2.1 Complexity

This section is intended to give an informal and short introduction to the topic of
complexity theory necessary for understanding the proofs of complexity included in
the appended papers. A comprehensive description of complexity theory is found
in [14]. Complexity theory classifies a problem according to the number of elemen-
tary operations required to solve it by a Turing machine, which is a theoretical com-
puter. In order to perform such a formal classification, one needs to define concepts
such as an alphabet, language, the Turing machine, etc. We proceed along a more
intuitive path that captures the crucial aspects of the theory without the necessity of
technical definitions.

Complexity theory was initially developed for decision problems. A decision prob-
lem consists of an instance definition and a “yes or no” question. As an example, we
present two decision versions of classical optimization problems.

Example 1 (The traveling salesman decision problem). Consider a set of vertices V =
{v1,..., v}, distances d(v;,v;) € N for each pair of vertices v;,v; € V, and a length
L € N. Does a cycle of length less than L which visits each vertex exactly once exist?

Example 2 (The shortest path decision problem). Consider a set V- = {vi,...,v,} of
vertices, distances d(v;,v;) € N for each pair of vertices v;,v; € V, and a length L € N.
Does a path between node vy and vy, of length less than L exist?

As previously stated, complexity theory groups problems according to their dif-
ficulty. We begin by considering the class P of polynomially solvable decision prob-
lems. For all problems, it is natural to assume that if the instance size (for instance,
the number of vertices in the above examples) is increased the computation time
required for solving the considered problem will increase as well. A problem is
solvable in polynomial time if an algorithm exists such that the solution time is
bounded by a polynomial function of the instance size. We consider problems solv-
able in polynomial time to be “easy”. Consider again the problems of Example 1 and
2. Dijkstra’s algorithm (see [12]) is a classic polynomial algorithm for the shortest
path problem; hence, the problem belongs to P. For the travelling salesman problem
(TSP) no such algorithm is known to exist.

The second class of problems considered is the class of non-deterministic poly-
nomial decision problems, NP. It is sometimes described as the class of all reason-
able decision problems. It contains all problems for which suggestions or guesses of
“yes”-answers are verifiable in polynomial time. The name non-deterministic poly-
nomial stems from the definition of a non-deterministic algorithm consisting of two
stages. The first stage contains a non-deterministic guessing which suggests “yes”-
answers. The second stage attempts to verify these suggestions. If the guessing stage
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is prosperous, the problem can be solved in polynomial time. For Examples 1 and 2,
a suggestion of a “yes”-answer corresponds to a suggested cycle and path, respec-
tively. The polynomial time verification algorithm is simply to calculate the length
of the suggested cycle or path and compare this to L. Note that a suggested “no”-
answer does not have to be verifiable in polynomial time in order for a problem to
belong to the class NP.

The third class considered is that of the NP-complete (NPC) problems. A problem
Ais NPC if, for every problem B belonging to NP, a polynomial reduction from B
to A exists. A polynomial reduction is defined as follows. Given an instance of B,
construct an instance of A such that the following two properties hold. First, the size
of A must be bounded by a polynomial function of the size of B. Second, solving the
constructed instance of A implies that a solution to B is obtained. In 1971 S.A. Cook
showed that every problem in NP is polynomially reducible to the satisfiability (SAT)
problem, which became the first problem shown to be NPC. Since then, proving that
a problem A is NPC is done by showing that a problem B in NPC is polynomially
reducible to A. Doing so, one avoids the necessity of constructing a transformation
of all NP problems to A. Returning once more to Example 1, the TSP problem is
shown to be NPC by a reduction from the vertex cover problem, which in turn is
proven to be NPC by reduction of the 3SAT problem (a restricted version of SAT),
which finally is shown to be NPC by reduction from SAT. Note that a generalized
NPC problem is NPC. However, a restriction of an NPC problem might not be NPC.
For problems in P, the opposite is true.

Optimization problems do not belong to NP, since they are not decision prob-
lems. The TSP is an optimization problem.

Example 3 (The travelling salesman problem). Consider a set of vertices V- = {v1,...,v,}
and distances d(v;,vj) € Z for each pair of vertices v;,v; € V. Find the minimum length
cycle that visits each vertex in V exactly once.

In order to classify the complexity of optimization problems, we introduce the
class of NP-hard problems. Problems belonging to this class are no longer required
to be decision problems, nor problems that require the verification of suggested
solutions; instead the following must hold. A problem A is NP-hard if a polynomial
reduction of a problem B in NPC to A exists. Obviously, by solving the TSP we
solve the TSP decision problem. Hence, the TSP is NP-hard. Proving that a problem
is NP-hard can also be done by reduction from another NP-hard problem.

If a polynomial algorithm for an NPC or an NP-hard problem was found, this
would imply that NP=P. “Is NP=P?" is still today an open and important research
question. The usual assumption is that NP # P, which implies that no polynomial
algorithms for NPC problems exist. The NPC and NP-hard problems are therefore
considered to be “difficult”. Proving that a problem is in P usually provides an ef-
ficient algorithm for the problem. The knowledge that a problem is NPC or NP-
hard motivates further studies and the use of non-polynomial algorithms such as
branch—-and-bound (see Section 2.2). It should, however, be stated that NPC or NP-
hard problems are generally not impossible to solve. For many of these problems,
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NP

Figure 1: [llustration of the relations between the complexity classes provided that
P # NP.

NP-hard

efficient methods for reasonably sized instances exist. Papers I, II, and V use com-
plexity theory to show that the problems considered are NP-hard.

2.2 Integer linear programming

The purpose of this section is to give a short introduction to integer linear program-
ming. For more comprehensive introductions, see [34, 25]. Integer linear program-
ming (ILP), or integer linear optimization, is a class of optimization problems de-
fined as follows. Given A € R™*", b € R™ and ¢ € R", we wish to

minimize Tz, (1a)
subject to Az > b, (1b)
x>0, (1c)
x €z (1d)

This problem can be described as finding the best integral point within a polyhedron
w.rt. a linear objective function. The name stems from the fact that relaxing the
integrality restrictions (1d) yields a linear program (LP), which is an optimization
problem with affine constraints and a linear objective function.

Although the general ILP (1) is NP-hard, efficient general-purpose solvers exist
for instances of moderate sizes (see Section 2.2.1). Further, ILPs are useful for mod-
eling numerous optimization problems. We demonstrate this fact by presenting ILP
models of the shortest path and traveling salesman problems (i.e., the optimization
versions of Examples 1 and 2).

Example 4 (Shortest path problem). Let A = { (4,7) | i,7 € V,i # j } be the set of arcs
in the complete graph with the set V' of vertices. Introduce the binary variables z;; = 1 if arc
(1,7) € Ais included in the solution and z;; = 0 otherwise. An ILP model for the shortest
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path problem is to

minimize Z dijTij,
(i,5)€A
1, =1,
subject to Z (xij —xj;) = 0, 7=2,....,n—1,
ieV\{j} 1, j=mn,

xij € {071}7 (7’7.7) € A.

Example 5 (Travelling salesman problem). Let E = {(i,j) | 4,5 € V,i < j} be the set
of all edges (undirected) in the complete graph with the set of vertices V. For each proper
subset S C Vet §(S)={(i,j) e E|ie S,j e V\Sorje S,iecV\S} bethe cut set
of S; let 6(i) := 6({i}). An ILP model for the TSP is to

minimize Z dexe, (2a)
ecE

subject to Z Te = 2, eV, (2b)
e€d(i)

Z Te > 2, ScV, (20)
€8 (S)

z. €{0,1}, e€F. (2d)

(2e)

Note that the number of subsets grows exponentially with the instance size of the TSP; hence,
so does the size of the ILP.

In the papers included in this thesis, we use ILPs to model and solve problems
within the areas of maintenance optimization and location-routing. In Section 2.2.1
we discuss solution approaches for ILPs, and in Section 2.2.2 we use polyhedral
analysis to analyze the quality of the models.

2.2.1 Branch-and-bound

Consider the general ILP formulated in (1). By relaxing the integrality restrictions
(1d) we obtain a linear program (LP). For LPs efficient solution algorithms, such
as the simplex or interior point methods, exist (see [23] and [32], respectively). The
optimal solution to the LP relaxation may, however, be non-integral. If this is the
case, acommon approach is to use the branch-and-bound method, briefly described
as follows: Solve the LP relaxation. If the optimal solution of at least one of the
variables, x say, is fractional, introduce two new problems, in which the constraints
z; > [z}] and z; < |z7], respectively, are included. This is denoted as branching on
the variable x;. The two new problems correspond to two new nodes in the branch-
and-bound tree. Solve the LPs corresponding to these two nodes. Prune a node if its
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optimal LP objective is worse than that of the best found integer feasible solution or
if the LP is infeasible. The algorithm continues branching on variables in the leaves
of the branch-and-bound tree until all leaves either have been pruned or posses
optimal solutions of the corresponding LP which are integer. We demonstrate the
method on a simple example.

Example 6. We apply a pure branch-and—bound algorithm on the following problem

minimize 1 + T + T3 + 324,
subject to 3x1 + 229 + x3 + 214 > 4,
Z1,...,x4 € {0,1}.

The resulting branch-and—bound tree is illustrated in Figure 2 and the method is described
as follows. Since the optimal LP solution obtained at the root node (node 1) is fractional
in xo, we create two new LPs, one in which x5 = 0 (node 2) and one in which x5 = 1
(node 3). Solve the LPs corresponding to nodes 2 and 3. In node 2 an integer optimal LP
solution is obtained. In node 3, we obtain a fractional optimal LP solution with objective
value lower than the best found feasible integer solution; hence, we branch again. We obtain
two new LPs, one with an integer optimal solution (node 5) and one with a fractional optimal
solution (node 4). Prune node 4 since its optimal LP objective value is higher than that of
the best integer feasible solution found (node 2). We conclude that two optimal solutions,
(1,0,1,0) and (1,1,0,0), are found with the optimal objective value of 2.

ZLp = 1.5
z%p = (1,0.5,0,0)

ro =
2pp =2 zp=1+2/3
rip = (10,10 2ip = (2/3,1,0,0)
zp=2+2/3 Zpp =2
sz - (07 17 17 1/2 Trp = (1a 170,0)

Figure 2: The branch—-and-bound tree of Example 6.

The branch—-and-bound method for general ILPs was introduced in [20]. The
method has since then become increasingly popular for exact solution of combinato-
rial optimization problems. Several solvers that implement this method successfully
exist, both commercial ones such as Gur obi , CPLEX, and XPRESS, and open-source
solvers such as SCI P, GLPK, and CO N- OR Any successful solver also includes ad-
ditional aspects such as presolve, branching rules, heuristics, and cutting planes; see
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[22]. Many solvers also allow for a the dynamic generation of constraints through a
callback procedure, which enables the implementation of a branch-and—cut method
(see Section 2.2.3).

Finally, it should be pointed out that branch-and-bound is a method which in
the worst case reduces to a complete enumeration of all feasible solutions, and is
thus non-polynomial. The success of the method relies to a large extent on how well
the LP relaxation approximates the ILP. Note again that if the optimal solution of
the LP relaxation is integral, it is an optimal ILP solution. For the shortest path ILP
formulated in Example 4, this holds irrespective of the distances between the nodes.
For the ILP model of the TSP formulated in Example 5, this is, however, not the
case. Section 2.2.2 discusses, among other topics, the quality of the LP relaxation
and sufficient conditions for optimal LP solutions to be integral.

2.2.2 Weak and strong formulations and polyhedral theory

Section 2.2.1 introduced the branch—-and-bound method for ILPs based on the se-
quential solution of LPs. If the optimal value of the LP relaxation is close to the
optimal ILP objective value, then it might be possible to prune many nodes at an
early stage of the branch-and-bound process. In this section, we investigate condi-
tions on the constraint matrix implying that at least one optimal solution to the LP
relaxation is integral, as well as theoretical methods for assessing how well the LP
relaxation approximates the ILP.

Recall that an ILP is defined as to find the best integer solution within a polyhe-
dron. Different polyhedra can, however, contain identical sets of integer points (see
Figure 3, which illustrates this fact in two dimensions). In general, let P, := {z €
R7% | Az > b' }and P, := {z € R} | A%z > b? } be such that P\NZ" = P,NZ" := X.
This implies that P, and P, together with the integrality restrictions yield the same
set of integer feasible solutions X. Assume that P» C P;. This implies that the LP
relaxation of P» provides a stronger lower bound than the LP relaxation of P, that
is, minge p, ¢’z > mingecp, ¢’ z; we say that the formulation P is stronger than P;.
In some cases, neither P, C P, nor P, C P, holds. In such cases, P; = {z € R} |
Alz > b', A%z > b? } provides a third formulation which is stronger than both P;
and P. Further, we often obtain ILPs for the same problem which are formulated
with different sets of variables. If a linear transformation between these formula-
tions exists we can, however, still compare the strength of the LP relaxation. Papers
II and V compare strengths of LP relaxations of different ILP models of the same
problem.
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Figure 3: Three polyhedra containing the same integer points.

We proceed by investigating when the LP relaxation is the strongest possible.
Consider again a polyhedron P := {2z € R’} | Az > b} and the corresponding
integer feasible set X := P N Z". The smallest convex set which contains X is the
convex hull of X and is denoted conv(X). In Figure 3 the polyhedron P; corresponds
to conv(X). In general, if A has rational coefficients, then conv(X) is a polyhedron.
The extreme points of this polyhedron are integral. If all extreme points of the poly-
hedron P are integral, then conv(X) = P, and we say that the polyhedron P is
integral. If this is the case, then the set of optimal solutions to the optimization prob-
lem mingecp ¢’ 2 contains the ILP optimal solution. Further, by using the simplex
method to solve this LP relaxation we only obtain integer optimal solutions.

We characterize integral polyhedra by studying their constraint matrices. First,
however, we need to introduce the concept of total unimodularity.

Definition 1 (Total unimodularity). A matrix A is totally unimodular (TU) if the deter-
minant of each square submatrix of A is equal to —1, 0, or 1.

We state the following propositions, the proofs of which can be found in [25,
Sect. 1I1.2].

Proposition 1. The polyhedron P(b) = {« € R | Ax > b} is either integral or empty
forany b € Z" if and only if A is TU.

Proposition 2. The following statements are equivalent for a matrix A € R™*™ with
matrix elements a;;.

i) The matrix A is TU.
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ii) The matrix (A, I) is TU.
iii) The matrix AT is TU.
iv) The matrix obtained by duplicating any row or column is TU.

v) The matrix obtained by multiplying any row or column of A by —1is TU.

vi) For each subset of columns J C {1,...,n}, a partition of J into Jy and J exists such
that
Zaij* Zaij <1, ie{l,...,m}.
je€N1 JjeJ2

The constraint matrix of the shortest path model (Example 4) contains exactly
one 1 and one —1 in each column. By statement iii) and vi) of Proposition 2 we
conclude that the corresponding polyhedron has the integrality property. Papers I,
II, and IV use the TU characterization to show that the integrality restrictions on
certain variables in the models studied can be relaxed.

If we have access to an LP description of the convex hull polyhedron (i.e., conv(X)),
then the corresponding problem is solvable in polynomial time (unless the size of
the convex hull LP grows exponentially with instance size). In many cases, however,
we have access only to an ILP formulation which yields fractional solutions when
relaxing the integrality restrictions. A natural question to ask is then whether the in-
equalities describing the ILP are necessary for the description of conv(X) or if these
can be improved. In order to formalize this idea, we introduce some further polyhe-
dral theory. We begin by considering a general polyhedron Q = {z € R" | Az > b},
in which o’ and b denote the i:th row of the matrix A and right-hand side b, respec-
tively.

Definition 2 (Affinely independent points). The points x1,...,z, € R™ are affinely
independent if the vectors xo — 1, ..., x — x1 are linearly independent.

Definition 3 (Dimension). A polyhedron Q is of dimension dim(Q) = k if a maximum
number of k + 1 affinely independent points belong to Q.

Definition 4 (Proper inequality). The inequality a’x > b in the definition of Q is a
proper inequality if there exists an x € Q such that a’x > b'.

Definition 5 (Valid inequality). Given = € R" and my € R, the inequality n7x > g is
valid for the polyhedron Q) if it holds for all x € Q.

Definition 6 (Face). If (7, 7o) defines a valid inequality for Q, then F = {z € Q | Tz =
o } is called a face of Q and (m, my) represents the face F.

Definition 7 (Facet). A face I of Q is called a facet if dim(F') = dim(Q) — 1.

The following proposition states that the facet inducing inequalities are both nec-
essary and sufficient for representing a polyhedron (see [25, Sect. 1.4]).
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Proposition 3. Removing a proper inequality a™x > bwhich represents a face of dimension
less than dim/(Q) — 1 does not alter the polyhedron Q. For each facet F', a proper inequality
representing the facet must be included in each description of the polyhedron.

We now proceed to consider the polyhedron of interest and let @ = conv(X).
In order to investigate the quality of an LP relaxation, we need to know whether
the constraints defining P are facets of (). We illustrate the principles behind the
polyhedral analysis in Figure 4. The inequality constraints 2 and 3 do not represent
facets of @, whereas the constraint 1 does. Constraint 1 must, hence, be included in
any description of @. For a convex hull polyhedron of dimension k, proving that a
constraint represents a facet is done by showing that & affinely independent inte-
ger feasible points satisfy the constraint with equality. Papers I, II, and IV use this
technique to show that the inequality constraints of the ILP models studied therein
define facets of the convex hull polyhedron.

€2

G @ @ @ &

Figure 4: An ILP in two variables and three inequality constraints (in addition to the
non-negativity constraints). The black circles represent the integer feasible solutions
X and the grey region represents ) = conv(X).

Returning to the illustration in Figure 4, we see that constraint 3 can be improved
by “pushing” it towards the convex hull. The inequality then obtained represents a
facet of Q. This corresponds to increasing the right-hand side of the corresponding
inequality. In order to obtain the facet-inducing inequality x; < 2 it is, however, not
enough to alter the right-hand side of any of the defining inequalities. A general
method for generating valid inequalities is Chvatal-Gomory rounding.

Definition 8 (Chvatal-Gomory cut). Consider an ILP (1) with the constraint matrix
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A € R™*™ and right hand side vector b € R™. Given u € R'?, the inequality
[ul A1z > [u”b]
is a Chodtal-Gomory (CG) cut.

The following arguments indicate that a CG cut yields a valid inequality: A lin-
ear combination of linear constraints is a valid linear constraint. Increasing the co-
efficients of the left-hand side is allowed in any valid inequality. Finally, rounding
up to the nearest integer of the right-hand side is allowed since all variables and
coefficients in the left hand side are integer.

A CG cut with u; € {0,1/2} for i = 1,...,m is called a zero-half cut. A finite
number of repeated applications of zero-half cuts generates a representation of the
convex hull polyhedron for bounded integer programs (see [15]). Not all zero-half
cuts, however, provide facets of the convex hull. Adding all possible zero-half cuts
to an ILP formulation is seldom practical. Instead, one can add these constraints in
order to cut away fractional points in the process of a branch-and-bound algorithm
(see Section 2.2.3). One can also try to isolate a subset of zero-half cuts which define
facets of the convex hull or which are defined by a combinatorial structure that is of
help when locating violated constraints. Zero-half cuts are employed in Paper I in
order to generate new facets for the ILP model considered.

2.2.3 Branch-and-cut

Consider the ILP model (2) of the TSP in Example 5. The cut-set inequalities (2c)
consist of one constraint for each subset of vertices. The number of such constraints
grows exponentially with the number of vertices of the graph. The branch—-and-
bound technique, described in Section 2.2.1, starts with the solution of the LP relax-
ation. In this case, however, the number of constraints would make the LP problem
intractable for moderately sized graphs. Instead, we solve an LP relaxation consist-
ing of the assignment constraints (2b) and bounds 0 < z. < 1 for all e € E. If the
optimal LP relaxation obtained does not satisfy a certain cut set inequality (2c), we
add the corresponding constraint and resolve. If a solution is fractional, we branch.
This is repeated in every node of the branch-and-bound tree and the procedure is
called branch—and—cut.

A vital step in the branch-and-cut procedure is to find violated inequalities.
Consider a (possibly fractional) solution z* € R™ and a set of constraints a’z > b’ for
i € C. The separation problem is to find a subset D C C such that a’z < b* fori € D,
that is, the subset of constraints which are violated. Often, one searches for the most
violated constraint. Since the number of such constraints can be large, searching
through all the constraints is not an efficient method. If a combinatorial structure
exists, one might construct a special-purpose algorithm for the separation problem.
For the cut-set inequalities (2c), the separation problem is to find the minimum cut
betweennode 1 and anode ¢ € V\{1}. This is equivalent to solving |V|—1 maximum
flow problems, for which efficient polynomial algorithms exist (for instance, the
Edmonds—Karp algorithm introduced in [13]).
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Two types of constraints can be added in a branch—-and—cut procedure. The first
type of constraints, like the cut-set inequalities (2c), remove integer solutions which
are feasible with respect to the constraints already included. This implies that an
exact separation of integer LP relaxations must be performed before accepting the
solution as feasible. The second type of constraints are included solely in order to
strengthen a formulation. Such constraints can, for instance, be CG cuts (see Section
2.2.2). These constraints are always satisfied by integer feasible solutions; hence only
fractional solutions require separation. The separation of fractional solutions (for
both types of constraints) can be made by heuristic methods, although this often
leads to weaker formulations.

Paper I uses a branch—and—cut approach for a class of facets obtained by a zero-
half cut procedure in order to strengthen the LP formulation. Paper V uses a branch-
and—cut approach for including constraints similar to the cut-set inequalities (2c) of
the TSP model.

2.2.4 Other solution apporaches

Many solution approaches for ILPs exist; in this section we review two classical
methods which are of importance for the appended papers and belong to the class
of decomposition methods. Benders decomposition (introduced in [4]) is a decomposi-
tion approach which is useful when the variables of the problem can be grouped into
master and subproblem variables with the following properties. Fixing the master
variable values implies that the problem of finding the optimal subproblem vari-
able values is done by solving a series of simpler problems for which efficient so-
lution techniques exist. We use the subproblem solution to include new constraints
into a master problem, which is re-optimized in each iteration. An important con-
dition for the classical Benders decomposition to work is that the subproblems are
LPs. The second method we consider is Dantzig—Wolfe decomposition (introduced
in [9]), which replaces complicated constraints by many variables (one variable for
each extreme point of the original polyhedron or integer solution). Since the number
of variables grows exponentially with instance size, the simplex method is modi-
fied such that variables are dynamically generated when needed by a process called
column generation. If fractional solutions arise, we branch and continue generating
new columns in each node of the branch-and-bound tree. This procedure is called
branch—and-price (see [3]). The integer L-shaped method is a version of the L-shaped
method (which equals Benders decomposition in a stochastic programming context,
see Section 2.3) for the case of binary subproblems. In Paper III, an extension of the
integer L-shaped method is presented and successfully applied. In Paper V a formu-
lation based on Dantzig—Wolfe decomposition is considered from a theoretical point
of view, although not implemented computationally.

2.3 Stochastic programming

Stochastic programming (SP), also denoted optimization under uncertainty, is concerned
with decision-making when data is random with a known probability distribution.
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We give a short overview of the field with the intention to introduce some key con-
cepts used mainly in Paper III. For a more comprehensive introduction to SP, see for
instance [5] or [19].

Consider first a standard linear programming (LP) problem:

minimize 'z,

subject to Az = b,
xz > 0.

The data consists of the vectors ¢ and b, and the matrix A. If the data is deterministic
we obtain the optimal solution by solving the LP. However, if our model includes
phenomena such as future outcomes of financial markets, weather forecasts, or the
uncertain future demand and price of a product, we may at best obtain probability
distributions for the data. A simple approach is then to use the expected values of
¢, b, and A, and solve the corresponding deterministic LP. The resulting solution is
denoted the expected value solution. Using this solution often leads to suboptimal
decisions since only the expected value of the data is taken under consideration and
not the whole probability distribution: the solution might, for instance, perform very
poorly for certain outcomes.

When creating a model which takes uncertainty into account, it is common to
distinguish between two types of decisions. The first-stage decisions are those taken
before the realization of the uncertainty (such as to decide the production plan for a
product before knowing its demand and/or price). The second stage decisions are
taken once the uncertainty has been realized (such as to decide to which customers
the product should be offered given the demand and price realized). Let 2 and y
denote the first and second stage variables, respectively, w a possible realization,
or scenario, of the uncertain parameters, and €2 the probability space of all possible
realizations w. A standard two-stage stochastic linear program is formulated as that
to

minimize ¢’z + E,cqlQ(z,w)], (3a)
subjectto Az =1b, (3b)
x>0, (3¢c)
where
Q(z,w) = minimum ¢(w)’y, (3d)
y
subjectto W (w)y = h(w) — T(w)z, (3e)

and ¢(w), W(w), h(w) and T(w) denote the stochastic parameters of the problem
realized at w. The function Q : R" — R defined by Q(z) = E,cq[Q(z,w)], is called
the recourse function. For a scenario w € € and first stage decision z, evaluating the
function Q(z,w) corresponds to solving the subproblem (3d)—(3e).

A common assumption in stochastic programs is that the probability space (2
is finite. For a continuous, or finite but large, probability space an approximation
of the same is obtained by sampling a finite number of scenarios. This is denoted
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the sample average approximation methodology. For finite probability spaces we can
formulate a (large) LP, denoted the deterministic equivalent, the solution of which is
equivalent to the solution to the stochastic program. Let p(w) denote the probability
of the scenario w € ). The deterministic equivalent of program (3) is to

. . .
minimize ¢’z + alw o).
zy(w),we Zp( )q(w)” y(w)

wel)
subject to Az =D,
W(w)y(w) + T(w)x = h(w), w € Q,
x> 0.
An equivalent formulation of this problem is to

minimize )+ T , 4a
 minimize | Z p(w 4(w)"y(w)) (4a)
subject to Az(w) = b(w), weQ, (4b)
W(wy(w) +T(w)z = h(w), we, (40)
2(w1) = z(wa), w1, ws € Q, (4d)
x(w) >0, we . (4e)

The constraints (4d) are denoted the non-anticipativity constraints. If these are re-
laxed, then the problem separates into solving one subproblem for each scenario
w € (. This means that we would anticipate the realization of the stochastic process
before determining the optimal value of the first stage variables or, equivalently, that
we have information about the realization of the stochastic process before-hand. The
solution obtained from solving the program (4a)—(4c), (4e) is denoted the expected
perfect information solution.

In order to solve instances of stochastic programs for which the deterministic
equivalent becomes too large to solve, decomposition techniques have been proven
useful. The most common technique is called the L-shaped (see [31]) method which
is an application of Benders decomposition (see Section 2.2.4). In this thesis, we
however consider stochastic integer programs, in which integrality constraints are
present for both the first and second stage variables. In such a setting the L-shaped
method is not applicable since it is based on the assumption that strong duality is
satisfied for the subproblems; this is in general not fulfilled for subproblems with
integrality constraints. Decomposition techniques for integer stochastic programs
exist (see for instance [29]), but they are neither as general, nor as efficient, as the
L-shaped method for linear stochastic programs. In Paper III we present a modified
version of the integer L-shaped method (see [21]) adapted to the stochastic oppor-
tunistic replacement problem considered.

In many applications, including the stochastic opportunistic replacement prob-
lem studied in this thesis, a sequence of decisions are to be taken. First, a first stage
decision is taken (for instance, to buy or sell a stock). Secondly, the outcome of a
stochastic process is realized (e.g., the price of the stock is altered) which is followed
by a second stage decision (e.g., decide whether or not to sell or buy more of the
stock). Again, a realization of a stochastic process occurs (the price is again altered)
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which is followed by a third stage decision (a new decision on buying or selling
the stock). This pattern is repeated for several stages and the problem is then called
a multistage problem. This type of problems are generally more difficult to solve
than two-stage problems. The mathematical formulation of a multistage problem in-
cludes a recourse function in the objective of the subproblem (3d)—(3e). The recourse
function is evaluated by solving one subproblem for each scenario, which again con-
tains a recourse function, and so on. We can formulate a deterministic equivalent for
multistage problems; the number of variables, however, tend to become very large.
Multistage problems can be solved by using nested decomposition approaches, which
means that the subproblems in the decomposition are themselves solved through
a decomposition, in a recursive manner (see [5, Ch. 7] for more on multistage pro-
grams and nested decomposition). In Paper III we ignore the multistage structure
of the problem and approximate it by a two-stage model.

3 Applications

3.1 Maintenance optimization

Maintenance can be described as a set of activities necessary to ensure that a sys-
tem stays operational. Maintenance costs make up a large proportion of production
costs; according to [28], on average 20% of the total plant operating budget consists
of maintenance costs. Hence, improving maintenance decisions provides a possi-
bility for substantial cost reductions. The purpose of this section is to give a short
overview and introduce important terminology in the field of maintenance opti-
mization.

Maintenance actions are often categorized into preventive maintenance (PM)
and corrective maintenance (CM). PM consists mainly of scheduled maintenance
tasks performed in order to prevent failure occurrences. CM, on the other hand, are
maintenance actions taken after a failure has occurred in order to restore the system
to an operational state. Maintenance which is performed due to condition measure-
ments of the system is denoted condition-based maintenance (CBM).

Maintenance activities are also characterized by the state of the system or com-
ponent after the activity has been performed. A perfect repair returns a component
to a state which is equivalent to that of a new component. Perfect repair is therefore
equivalent to replacement and also denoted “good as new”. An imperfect repair
returns the component to a state which is worse than that of a new component.
Minimal repair is a type of imperfect repair which returns the component to the
state just before failure; it is also denoted “bad as old”.

Another classification of maintenance problems is with regard to the type of sys-
tem under consideration. An important distinction is between single-component
and multi-component systems. The vast majority of maintenance research until the
1990s was focused on single-component systems. Two classical policies for single
component systems, the age policy and the constant-interval policy or periodic PM
policy, were introduced already in 1960; see [2]. The age policy replaces the compo-
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nent after 7" time units or at failure. 7" is the parameter of the policy. The constant-
interval policy replaces the component at fixed intervals k7" for k = 1,2,... and
performs minimal repair in between. The length of the period 7' is the parameter
of the policy. Research on single component systems is still an active field; see the
survey [33]. It consists of extensions of the above policies which consider, among
others, different types of both repair and failure. Further, policies based on cost and
risk level have also been studied.

Most systems, however, consist of several components. If the dependency be-
tween these components is negligible, then we can apply single-component models
for each of the components individually. If, on the other hand, dependencies be-
tween components exist, then optimal maintenance decisions must consider the sys-
tem as a whole. Surveys of research on multi-component maintenance are presented
in [26, 10]. Dependencies are categorized as either economic, structural or stochastic.
Positive (negative) economic dependencies imply that maintenance on several com-
ponents simultaneously is less (more) expensive than maintenance of the same set
of components at different times. Structural dependencies imply, for instance, that
maintenance of one component enforces the removal of another. Finally, stochastic
dependencies arise when the failure of one component is correlated with the failure
of another component.

A single-component policy which is easily applied to multi-component systems
is the constant-interval policy. Since this policy provides a fixed schedule for each
component, these can easily be coordinated in order to save costs. For systems with
positive economic dependencies, a well-studied approach for the choice of interval
lengths is by standard indirect grouping (see [10]) described as follows. The system
stops for maintenance every 7' time units. Component ¢ receives preventive mainte-
nance every k;T" time units. The parameters of the policy are T' € R and k; € N.

Another important strategy for systems with positive economic dependencies
is opportunistic maintenance (OM). The idea is that CM of one component is con-
sidered to be an opportunity for PM of other components. Using OM, maintenance
activities on several components can be coordinated. One type of policy, which ex-
tends the age policy for single component systems to an OM policy for a multi-
component system, is presented in [7]. The policy consists of one hard and one soft
age limit for each component. If a failure occurs, or a component reaches its hard age
limit, a maintenance stop is enforced. At a maintenance stop, all components which
are either failed or have passed their soft lives are replaced. The soft and hard lives
are the parameters of the policy.

Finally, different types of horizons are considered. The classical single compo-
nent policies, among others, consider an infinite horizon approach which enables
the use of analytical solution techniques. More recent research often considers fi-
nite or rolling horizons which enables the model to take short term information into
consideration.

The Papers I-IV consider ILP and SP models for maintenance decisions of multi-
component systems with positive economic dependencies. They all consider a finite
horizon and perfect repair. The main difference between the problems considered
in the papers is the approach to component failures. The use of these models is
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compared with a constant-interval policy and an age policy.

3.2 Location-routing

Location-routing is a group of problems which combine facility location with vehi-
cle routing. We begin by giving a short description of these two areas.

Facility location is a classical topic in operations research; see [27] and [17]. A
well studied problem in this area is the uncapacitated facility location problem
(UFLP). It is formulated as follows. Consider a set of customers I = {1,...,n} and
a set of possible depot locations J = {1,...,m}. Let d; denote the cost of opening a
depot at site j € J, and ¢;; the cost of assigning customer ¢ € I to depot site j € J.
Given that each customer must be assigned to one facility, the problem is to decide
which facilities to open in order to minimize the sum of fixed costs and assignment
costs. Another well-studied problem in the class of facility location problems is the
p-median problem. The problem concerns the opening of exactly p facilities (with
zero opening cost) among the m locations and assigning each customer in / to one
facility, such that the sum of assignment costs between customer and facility is min-
imized. Both the p-median problem and the UFLP are NP-hard.

Vehicle routing is also an area that has attracted much attention; see [16]. The
classical vehicle routing problem was first introduced in [8] and is defined as fol-
lows. Consider a graph G = (V, E) with costs ¢, on edges e € E. A given vertex
corresponds to the depot which contains the fleet of vehicles and the remaining ver-
tices correspond to customers. The problem is to assign a route for each vehicle such
that all customers are served by at least one vehicle and such that the transportation
costs are minimized. At the end of a route, the vehicle must return to the depot. If the
number of vehicles is one, then the problem reduces to the TSP. Many extensions of
this problem have been considered, such as introducing time windows, more than
one depot, load capacity of trucks, etc.

Facility location problems, in which customers are not individually connected
with facilities but instead supplied by a fleet of vehicles, require that the location
decisions are taken simultaneously with the routing decisions. The group of prob-
lems which consider this aspect are denoted location-routing problems (LRP); see
[24] for a survey. Solving LRPs provides a computational and modeling challenge
compared to solving the location and routing problems separately. Both exact al-
gorithms and heuristics for LRPs have been studied. Exact algorithms are mainly
based on integer linear programming formulations and solved using branch-and-
bound or branch—-and-cut methods. Heuristics are based on iterating between the
location and routing problems using heuristic approaches, such as tabu search, for
each subproblem.

Paper V concerns the Hamiltonian p-median problem, which is an LRP. Similarly
to the p-median problem, it concerns the location of exactly p facilities of fixed cost
zero. The objective is, however, to route exactly one vehicle from each depot so that
each customer is visited exactly once. Equivalently stated, the problem is to partition
the graph into p subsets and cover each subset by a Hamiltonian tour such that the
sum of the tour lengths is minimized.
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Figure 5: An illustration of the non-opportunistic maintenance schedule for the ORP
instance defined in Example 7.

4 Summary of the appended papers

This section contains a summary of the appended papers. The emphasis is on pre-
senting the problems considered in a less formal style than in the papers themselves,
and on pointing out the most important contributions.

4.1 Paper I: The opportunistic replacement problem

In this paper we study the scheduling of component replacements for a multi-
component system with positive economic dependencies. Each component is as-
sumed to have an a priori given maximum replacement interval or life. The prob-
lem is denoted the opportunistic replacement problem (ORP), and was introduced in
[11] and further studied in [1]. We begin by presenting a small instance of the ORP.

Example 7 (ORP). Consider a system consisting of two components. Assume that the re-
placement cost of component 1 is ¢y, the replacement cost of component 2 is co, the maximum
replacement interval of component 1 is 5 time steps, the maximum replacement interval of
component 2 is 3 time steps, and that the maintenance occasion/set-up cost is d. We wish
to find a minimum cost maintenance schedule over a time period defined by the time steps
1,...,10.

The non-opportunistic schedule is to replace each component at the end of its maximum
replacement interval. An illustration of the non-opportunistic maintenance schedule for the
system is shown in Figure 5. The resulting maintenance cost is 2¢1 + 3ca + 5d.
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Figure 6: An illustration of the optimal maintenance schedule for the ORP instance
defined in Example 7.

Figure 6 illustrates an optimal maintenance schedule for the system with the resulting
maintenance cost 2¢, + 3co + 3d.

We proceed by presenting a general problem definition, where we allow the re-
placement and maintenance occasion costs to depend on time. Given a set of com-
ponents ' = {1,...,n} and a time period defined by the set 7 = {1,...,T} the
problem is formally defined as follows.

Definition 9 (opportunistic replacement problem). Let d; be a fixed cost for a main-
tenance occasion at time t € T, ¢;; be the cost for replacing a component i € N at time
t € T, and let T; time steps be the maximum replacement interval of component i € N.
Find a maintenance schedule over the time period defined by T that minimizes the total
maintenance cost and such that each component i € N is replaced at least once every T;
time steps. O

A major contribution of the paper is the result that the set covering problem is
polynomially reducible to the ORP, which implies that the ORP is NP-hard (see Sec-
tion 2.1 for an introduction to complexity theory). The reduction relies on the fact
that the costs are allowed to be time dependent. The complexity of the ORP with
time independent costs is still unknown.

We present an ILP model for the ORP. Let

1, if maintenance shall occur at time ¢,

2y = teT,
! {O, otherwise,



20

and

L
Tt =
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The model is then to

otherwise,
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Tt
Lt
2t
Lit
2t

4 SUMMARY OF THE APPENDED PAPERS

> 1,

< z,
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{=0,...

teT,
teT,
teT,
teT,
teT.

if component ¢ shall be replaced at time ¢,

aT_Ti7

ieN,
ieN,

1eN,

i€eN,

(5a)

(5b)

(5¢0)
(5d)
(5e)
(5f)
(5g)

As discussed in Section 2.2.2, the strength of the LP relaxation is important in order
to be able to solve the model efficiently. In Paper I all non-superfluous constraints,
out of the constraints (5b)-(5e), are shown to represent facets of the convex hull of
the set of feasible solutions. Furthermore, it is shown that the integrality require-
ments on z;; for all i € N and ¢t € T can be relaxed.

We also use zero-half cuts to produce a new set of facets for the convex hull
polytope. Assume that T; > 2 for all i € A" and let p, ¢ € N be such that T, > T, + 1.
Lett, € {0,....,T—T,}, €, € {l,+1,....0,+T,—T,}, and define 7% = {{,, 0, +T,},
TP ={l,+1,... L+ T, }\T?,and T9 = {{,+1,...,¢,+T,—1}. Then, the following
inequality represents a facet of the convex hull polytope:

ST apt Y wgt Y =2 (6)
teT? teTa teT=

The next example illustrates how the inequality (6) is constructed through a zero-
half cut procedure.

Example 8. Let T, = 6,1, = 3, {, = 2 {, = 4. Consider three of the inequalities (5b)
corresponding toi =pand { =2,i =qand { = 3,and i = qand { = 4:

Lp3 +$p4 +-Tp5 +xp6 +37p7 +xp8 > 17
Tgq +xq5 +l‘q6 Z 1a
Tgs +Xge +Tgr > 1.

Multiply the above inequalities by 1/2 and add them together. Use the inequalities (5¢) for
i € {p,q}and t € {4,7}. We obtain the valid inequality

1 1 1 1 3
ipoS + 24 + ixpS + g5 + §xp6 + ZTge + 27 + gxpS > 5
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Rounding up the coefficients on both sides of the above inequality yields a facet corresponding
to the inequality

Tp3 + 24 + Tps + Tg5 + Tpe + Tge + 27 + Tpg > 2.

Finally, we introduce constraints which only allow maintenance at time ¢ if, for
some component i € N, a replacement took place T; time units ago:

@<y wipr, teT. ?)
iEN

The constraints (7) are denoted elimination constraints. For maintenance and replace-
ment costs which decrease with time they eliminate a subset of the optimal solutions
such that at least one optimal solution is left. For strictly decreasing costs, the con-
straints eliminate only suboptimal solutions. The purpose of the constraints is to
improve the computational speed by reducing the size of the branch-and-bound
tree.

The paper contains numerical tests on problem instances from the aircraft in-
dustry, as well as tests on random instances. The results for the aircraft case indicate
that the use of the model (5) can reduce costs compared to those gained by sim-
ple maintenance policies. Tests on random instances indicate that adding the facets
(6) in a branch-and-cut framework reduces computational time on instances with
time dependent costs. Further, adding the elimination constraints (7) is favourable
on instances with time independent costs and up to 10 components.

4.2 Paper II: The stochastic opportunistic replacement problem,
part I: models incorporating individual lives

Paper II studies an extension of the ORP (studied in Paper I) which allows different
maximum replacement intervals, or lives, for different individuals of the same com-
ponent. This extended problem is called the opportunistic replacement problem with
individual lives (ORPIL). The motivation for studying the ORPIL is that it poses a
first step towards solving the stochastic ORP (the SORP), which extends the ORP to
the case of uncertain component lives. Solving the SORP with perfect information
(see Section 2.3) about individual component lives results in solving an instance of
the ORPIL. Furthermore, the model for the ORPIL is the basis for a two-stage ap-
proach to the SORP presented in Paper III. We begin by presenting a small instance
of the ORPIL.

Example 9 (ORPIL). Consider a system consisting of two components. The first failure of
component 1 occurs at time 3, that is, the life of individual 1 of component 1 is 3 time steps.
Individual 1 is replaced by individual 2, which fails after 5 time steps, and is then replaced
by individual 3, which fails after 4 time steps. All individuals r with r > 3 have lives of 4
time steps. For component 2, individual 1 has a life of 2 time steps, individual 2 has a life of
4 time steps and individual r such that v > 3 has a life of 3 time steps. Let ¢, and co denote
the replacement cost of components 1 and 2 respectively, and let d denote the maintenance
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Figure 7: An illustration of a non-opportunistic maintenance schedule for the ORPIL
defined in Example 9.
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Figure 8: An illustration of an opportunistic maintenance schedule for the ORPIL
defined in Example 9.
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occasion cost. We wish to find a minimum cost maintenance schedule over the period defined
by the time steps 0, . . ., 10.

The non-opportunistic maintenance schedule for the system is illustrated in Fiqure 7 and
results in a maintenance cost of 2¢1 +3co+5d. The most opportunistic maintenance schedule
for the system is to replace both components at failure of one component. The schedule is
illustrated in Figure 8 and results in a maintenance cost of 3¢ + 3co + 3d. If 2d > ¢y,
this opportunistic schedule is optimal. If 2d < c1, a schedule which is similar to the non-
opportunistic schedule in Fiqure 7, but in which the first replacement of component 1 is
made at time 2 and the second at time 7, is optimal.

We now present the general definition of the ORPIL. In order to obtain problems
that are computationally easier to solve, we only allow the first ¢ individuals to
have non-identical lives. Let again N' = {1,...,n} be the set of components and
T ={0,...,T} represent the time period!. To simplify the presentation, we consider
a problem with time independent costs, i.e. ¢;; = ¢; and d; = d for all i € N and
teT.

Definition 10 (opportunistic replacement problem with individual component lives
(ORPIL)). Let d be the fixed cost for a maintenance occasion, c; the cost for replacing a
component i € N, T;, the life of individual r € N of component i € N, and assume that
T;r = T; for r > q. Find a maintenance schedule over the time period defined by T that
minimizes the maintenance cost, and such that each individual r € N of component i € N
is used in the system no more than Ty, time steps.

In Example 9, q =2,T11 =3, T2 =5,and Ty = 4; Ty = 2,Th =4, and Th = 3.
Note that for ¢ = 0 the ORPIL reduces to the ORP with time independent costs and
for ¢ = T we obtain a problem in which all individuals may posses non-identical
lives. The ORPIL for the cases ¢ = 1 and ¢ = T was briefly studied in [1].

A major contribution of Paper II is the result that the ORPIL is NP-hard by re-
duction from the vertex cover problem. This problem reduction and the problem re-
duction performed in Paper I utilize different properties of the problems analyzed.
In Paper II, we utilize the property that the lives of the first two individuals may
differ from those of the remaining individuals. In Paper I, we utilize the property
that the costs of the component replacement may be time dependent. Hence, the
complexity of the ORPIL with g € {0,1} can neither be determined by the analysis
in Paper I nor that in Paper II.

We introduce two ILP models for the ORPIL — model I and model II — and
show that in model I the integer requirements on most of the variables may be re-
laxed. We also show that in model I all the non-superfluous constraints define facets
of the convex hull of feasible solutions. Furthermore, we demonstrate that relaxing
the integer requirements in model IT and in Andréasson’s model (the model initially
studied in [1]) results in fractional optimal solutions. By projecting the constraints
from model I onto the variable space of model II we obtain model II'" which ob-
tains similar properties as model I. Numerical studies show that the solution times

IWe include time 0, as the model is intended to be used in a stochastic setting to decide on additional
replacement decisions at a time of failure, which is denoted “time 0”.
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Figure 9: Illustration of a decision support system (DS) for a wind power turbine.
At failure, the system data is sent to the DS, which solves the current problem and
returns a decision on the type of maintenance action to perform at the current time.

of model I are significantly shorter than those of model IT and Andréasson’s model,
as well as being slightly shorter than those of model IT*.

4.3 Paper III: The stochastic opportunistic replacement problem,
part II: a two-stage solution approach

In this paper we consider the replacement decisions in a multi-component system
similar to that in Paper I. However, we do not assume that maximum replacement
intervals are a priori given. Instead, the maximum replacement interval, or life, of
each component is uncertain and Weibull distributed. The problem is denoted the
stochastic opportunistic replacement problem (SORP). As before, the replacement of a
component i € N generates the replacement cost ¢;. We also assume that the main-
tenance occasion cost of a scheduled PM stop and an unexpected CM stop are both
equal to d. This implies that restricting maintenance stops to times when at least one
component has failed does not effect optimality.

The time of the maintenance stop is denoted the current time. At such a time, the
replacement of the failed component is enforced. The stop is, however, an occasion
to perform OM consisting of the replacement of the yet non-failed components in
order to avoid costly maintenance stops in the near future. We wish to take a deci-
sion on which components to replace at the current time? s in order to minimize the
expected cost over the remaining planing horizon, or contract period, [s, S]. This is
denoted the current problem. The vision, illustrated in Figure 9, is to create a decision
support system that, given the system state at a time of failure, returns an optimal
(wrt. expected costs) maintenance decision by solving the current problem.

In ILP and SP models, it is common to discretize time. For models of the current

2The current time can be a period that stretches from a couple of hours to weeks, months, or years. It
is a period after which the decision to perform maintenance or not can not be postponed.
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problem, a time discretization ¢ is introduced such that failures and maintenance
decisions are assumed to occur at the time points { s, s+9,s+26,...,s+T }, where
T=[% 5~ 1. These time points will be denoted by {0, 1,...,7'}. Let v denote the state
of the system at the current time consisting of the age of each component and the
remaining planning period. Let ; = 1 if component ¢ € A has failed and & = 0
otherwise, and z; = 1 if we decide to replace component i € N at the current time
and z; = 0 otherwise. The current problem is formally defined as that to

minimize ¢’z + Q, (),
x

subjectto x; > &, €N,
$i€{0,1},i6./\/,

where Q, : BVl — R is the recourse function (defined in Section 2.3) such that
Q,(z) is the minimal expected future maintenance cost over the remaining planning
period given the current decision z.

The difficulty in solving the current problem stems from the fact that the recourse
function is hard to evaluate. However, in Paper III we show that an evaluation of the
recourse function given a replacement decision at the current time provides a lower
bound on the recourse function of every other replacement decision. The bounds
originate from the fact that by replacing less components we can not lower the re-
course function value, and by replacing an additional component j we can at most
lower the recourse function value by ¢; + d.

To solve the current problem, we generate a large number of scenarios for the
component lives. However, we can not solve each scenario individually; we must
decide on one replacement decision at the current time. This decision is common
for all the scenarios. The following example illustrates that the solution of ORPILs
corresponding to two different scenarios yield different suggestions for the current
decision.

Example 10 (SORP). Consider an instance of a system with two components, in which
component 1 has failed, and two following possible scenarios for the current problem. Using
notation from Section 4.2 we can describe the scenarios by the life of each individual of every
component. In scenario 1, we have T1; = 6, T1 = 4, Tyy = 4, and Ty = 5. In scenario
2, we have Ty = 3, Ty = 4, T51 = 1, and T5 = 5. In both scenarios, T = 6. Figure
10 illustrates the optimal maintenance schedules for the two scenarios (obtained by solving
the ORPIL). The optimal maintenance cost in scenarios 1 and 2 become 2¢y + co + d and
2¢1 + 2¢o + d, respectively. For scenario 1, the optimal current decision is to replace only
the failed component 1, whereas in scenario 2 both components should be replaced.

In order to impose a common current decision for the two scenarios, we formulate
one ORPIL for each scenario and force the decisions at time 0 (i.e., the current time)
to be equal (i.e., we impose non-anticipativity at time 0). The decisions at time 0 con-
stitute the first-stage variables, and all other decisions constitute the second-stage
variables.
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Figure 10: Illustration of optimal replacement schedules for the ORPIL scenarios in
Example 10.
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Figure 11: Illustration of the optimal second stage decisions for scenarios 1 and 2
when replacing both components and only component one, respectively.
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Example 11 (SORP cont.). After imposing non-anticipativity at time 0, we can either
replace only the failed component 1 (Figures 10(a) and 11(b)) or both components (Figures
11(a) and 10(b)) in both scenarios at the current time. Let p(w) denote the probability of
scenario w € {1,2}. The minimal expected cost in the two-stage model is p(1)(d + 2¢1 +
c2)+p(2)(2d+2¢1 +2¢2) if we replace component 1 only, and d+2c¢+2c¢; if we replace both
components. The example illustrates the fact that by replacing component 2 at the current
time, we can at most save d + cy in the future.

In Paper III we include non-anticipativity only at time zero and therefore solve
a two-stage approximation of the current problem. Including non-anticipativity at
later times is complicated since the available information depends on earlier re-
placement decisions. We present a deterministic equivalent model and a decompo-
sition method for the two-stage approximation of the current problem. The deter-
ministic equivalent is based on the ORPIL model. The decomposition is based on
the lower bounds of the recourse function and the subproblems are instances of the
ORPIL.

Numerical experiments on problem instances from the aviation and wind power
industries, as well as on two smaller test instances, are performed. We compare the
use of the two stage approach with the use of a simple age policy on a simulation
of the system. Using the stochastic programming approach is favorable for two out
of the four instances tested, and performs equivalently with the age policy on the
remaining two instances compared. The experiments also show that the decomposi-
tion method requires a shorter solution time compared to solving the deterministic
equivalent on all four instances considered. The decomposition method reduces the
solution time by up to 80% compared to the deterministic equivalent, and the re-
duction is largest on instances which require long solution times.

4.4 PaperIV:The preventive maintenance scheduling problem with
interval costs

In this paper, we consider the preventive maintenance scheduling of a multi-compo-
nent system with positive economic dependencies. We wish to schedule a set of PM
actions over a discrete planning horizon. Similarly as in Papers I-III, we assume
a fixed/set-up cost d; for performing PM on any component at time ¢. However,
instead of enforcing PM at least once within a certain interval, we consider an inter-
val cost ¢, if PM is performed at times s and ¢, and not in-between. The preventive
maintenance scheduling problem with interval costs (PMSPIC), introduced here, is to
schedule the PM of all components such that the sum of set-up costs and interval
costs is minimized. Note that the PMSPIC reduces to the ORP, introduced in Paper I,
if we assign ¢, := ¢;5 if t — s < T; and ¢, > dy, cj, forall j € N and u € T other-
wise. The PMSPIC is therefore NP-hard. We perform case studies on instances with
the following time independent cost structure. We assume that d; := d. We intro-
duce a deterioration cost function M; : R — R and define ¢}, := ¢'™ + M;(t — s) if
s > land ¢}, := M, (t) otherwise. The following example illustrates an instance of
the PMSPIC with time independent costs.
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Figure 12: The optimal schedules for the instance of the PMSPIC introduced in Ex-
ample 12

Example 12 (PMSPIC). Consider a system with n = 2 components over a horizon of
T = 11 time steps. Let the replacement cost for the components be ¢ = 20 and co = 5, and
the set-up cost be d = 0. The deterioration cost functions for the system are My (t) := (t/2)?
and Ma(t) := (t/5)°. The optimal PM schedule for this problem is displayed in Figure 12(a).
If we modify the set-up cost to d = 2, we instead obtain the maintenance schedule displayed
in Figure 12(b).

The PMSPIC resembles the standard indirect grouping of PM (see Section 3.1).
The main differences are that the PMSPIC does not enforce periodicity, and that it
considers a finite discrete horizon and allows time dependent costs. A special case of
the PMSPIC is the dynamic joint replenishment problem (DJRP) which is a well studied
problem in inventory theory. We utilize an ILP model for the PMSPIC which was
originally introduced for the DJRP in [18] and is described as follows.? Introduce
the variables

1
Ty = and ¢, and not in-between,

if component i receives PM at times s

)

ieN,se{0,...T},

te{s+1,...,T+1},
0, otherwise, { !

~ )1, if a maintenance occasion occurs at time ¢, cT
! 0, otherwise, '
The model is now formulated as that to
T T+1
minimize Z dizi + Z Z Z CorToy,s (8a)
teT i€N s=0t=s+1
t—1
subject to int < z, ieN,teT, (8b)
s=0
t—1 T+1
oal= Y al, i€eNteT, (8c)
s=0 s=t+1
T+1
> oah =1, ieN, 8d)
s=1

3The original model is based on the fact that the DJRP can be interpreted as an instancs of the PMSPIC
with a special cost structure, hence the model can be utilized on any instance of the PMSPIC.
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, 1eN,se€{0,...,T},
x;t € {071}7 { } (88)
te{s+1,....,T+1},

2 € {0,1}, teT. (8f)

The contribution of Paper IV consists of investigating theoretical properties of
the model (8) as well as demonstrating the usefulness of the model in case studies.
We show that the integrality restrictions on z;; can be relaxed. We also show that
the inequality constraints (8b) are facets of the convex hull of the set of feasible
solutions.

Further, we demonstrate the usefulness of the ILP model in three case studies
originating from the railway, aircraft, and wind turbine industries. In the railway
case the deterioration cost corresponds to a cost incurred due to a degradation of
rail. In the aircraft and wind turbine cases, the deterioration cost originates from
the expected CM cost for components with stochastic failures. To do so, we choose
the deterioration cost functions according to M;(t) := c¢S™m;(t), where ¢ is the
corrective maintenance cost for a failed component i and m; : R — R is the renewal
function for the failure distribution of component i. The value m;(t) is defined as
the expected number of failures in the time interval [0, ¢] if failed components are re-
placed by new ones. Solving the PMSPIC with this choice of deterioration cost func-
tions yields the optimal PM schedule given that failed components are replaced by
new ones and that the PM schedule stays fixed during the whole planning period.

Since Paper IV considers stochastic component failures, there is an overlap with
the SORP of Paper III. The difference is that in Paper III we assume that the cost
of PM and the cost of CM are equal. Hence, PM occurs only in connection with
CM. Further, no schedule for PM exists; instead, all future PM decisions depend
on the system state at failure, which makes the recourse function difficult to evalu-
ate. In Paper IV, we instead focus on scheduling and are able to incorporate higher
CM costs through the deterioration cost function. The ILP model for the PMSPIC
is easier to solve than the current problem of the SORP. Hence, we can also use the
model opportunistically by re-optimizing at failure. However, although the deteri-
oration function is modified to compensate for rescheduling effects, the full effects
of rescheduling can not be accounted for and the maintenance decision obtained are
no longer provably optimal. Nevertheless, results from simulations on case studies
suggest that we can reduce costs compared to age and constant interval policies by
5-20%. The computational time for solving the model with were below 10 seconds
on most instances, and approximately 200 seconds on the most difficult instance of
the case study.

4.5 Paper V: A comparison of several models for the Hamiltonian
p-median problem

In this paper, we consider the Hamiltonian p-median (HpMP) problem which is a
location-routing problem (see Section 3.2). The problem was introduced in [6]. It
consists of placing exactly p facilities in a graph and routing one vehicle from each
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facility such that each node is on exactly one route and the total length of the routes
is minimized. The problem can also be described as that to cover all nodes by p
mutually node-disjoint cycles with a minimal total edge weight. Since locating a
facility does not generate a cost, any node in a cycle can be considered to be the
facility. To simplify modeling, we assume that each cycle has at least three nodes
and consider an undirected graph. Figure 13 illustrates an optimal solution on the
graph provided by the TSPLIB (see [30]) instance danzig4?2 for p = 4.

[ f

Figure 13: An optimal solution to the HpMP instance danzig4?2 for p = 4.

The literature contains several ILP models of the HpMP; no computational com-
parison of these has, however, been previously conducted. In this paper, we present
new models and perform both a theoretical and a computational comparison of the
new and old models. The theoretical analysis is based on comparing the strengths
of the respective LP relaxations (see Section 2.2.2).

From a computational point of view, the following model, introduced in Paper V,
is shown to be superior. Let us first introduce some notation. We consider the undi-
rected graph G = (V, E), where we label edges such that (¢, j) € E implies thati < j.
Letd(i) ={e€ E|e=(i,j) ore = (j,%) for j € V} be the set of edges connecting to
node i € V. Define the partition of the set V' of vertices into m subsets with a mini-
mum number of [ nodes in each subset: P = {5, ..., S,,} € P suchthat|S;| > [ for
alli € {1,...,m}, where P! denotes the set of all such partitions. Let Ep be the m-
cut associated with P, that is, the set of edges that connect any two node sets of the
partition. Further, let C, = {C C E | The edges in C' form exactly p disjoint cycles}.
Finally, introduce the variables z. for e € E, defined by . = 1 if edge e € Fisin
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the solution and x, = 0 otherwise. The model is to

minimize Z CeTe,
ecE
subject to Z Te = 2, 1€V, (9a)
e€d(i)

S =2, PeP, (9b)
ecEp

> e =2, CeCp, (9¢)
egZC

z. €{0,1}, e€E. (9d)

The objective is to minimize the length of the sum of cycles. The constraint (9a)
states that exactly two edges are connected to each vertex. If only constraints (9a)
and (9d) are included into the model, the solution obtained corresponds to the op-
timal two-matching. The two-matching problem can be considered as the HpMP
with the number of cycles p being variable and is polynomially solvable. In order to
obtain exactly p cycles, we need to introduce additional constraints. The constraints
(9b) remove integer solutions with more than p cycles, whereas the constraints (9c)
remove integer solutions with less than p cycles. The number of constraints of both
types increases exponentially with the instance size; hence they are not explicitly
included but dynamically generated in a branch—and—cut procedure. For integer so-
lutions with more than p cycles, a violated constraint (9b) is found by partitioning
the nodes according to the cycles obtained. Similarly, for integer solutions with less
than p cycles, a violated inequality (9¢c) is found by choosing C corresponding to
the current solution. However, we show that for fractional solutions satisfying (9a)
solving the separation problem of (9b) as well as of (9¢c) is NP-hard. Hence we resort
to heuristic separation procedures of fractional solutions. The model (9) is the only
model found in the literature in the natural variable space (i.e., only edge variables
z. for each edge e € E). We next present a model with additional variables.

The model (9) combined with the indicated solution procedure performs well
with respect to computation time but, according to computational tests, the LP re-
laxation of the model is not very strong. Instead, the computational tests show that
the following p-median based model, also introduced in Paper V, possesses the over-
all strongest LP relaxation. We introduce some additional notation. For each edge
e € E define the ordered vertex pair y(e) = { (i,7) € VxV | (4,j) = eor (j,i) = e }.
For each proper node subset W C V, define the cut set §(W) = Egw,y\wy. Intro-
duce the variables v;; = 1 if vertex i € V is served by depot at vertex j € V and
v;; = 0 otherwise. We also introduce y; = 1 if vertex i € V is a depot and y; = 0 oth-
erwise. Since the choice of depot for a cycle is arbitrary, we assume that the vertex
with lowest index in a cycle is the depot of that cycle. This construction reduces the
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symmetry of the formulation. The model is to

minimize Z CeZe,
c€E
subject to Z Te = 2, eV, (10a)
e€s(i)
Sowe=2 > vy, ieWCV\{j}, (10b)
ecs(W) JEVAW
v+ xe <14 vjy, e€ B, (i,j) € y(e),l € V\{i,j}, (10c)
Yi +xe < 1+0j, e€ FE, (i,j) € y(e), (10d)
> vi=p, (10e)
i€V
> wijtyi=1, ieV, (10f)
jeV\{i}
vij < i, 1€V, 5 e V\{i}, (10g)
vi; =0, 1< g1, €V, (10h)
z. € {0,1}, e€F, (101)
Vij € {07 1}7 ieV,je V\{Z}v (10j)
yi € {0, 1}, ieV. (10k)

The constraints (10b) ensure that if a node is served by a depot outside the set of
nodes W, at least two edges in the cut set of W must be included in the solution.
The constraints (10c) and (10d) imply that nodes which are linked must be served by
the same depot. The constraint (10e) ensures that p depots are located in the graph.
The constraints (10f) ensure that each node is either a depot or served by another
depot. The constraints (10g) imply that nodes cannot be served by other nodes if
these are not depots. Finally, the constraints (10h) imply that a node may only be
served by a depot with a lower index than the node itself.

A variety of other models from the literature are also investigated in the pa-
per. These models are, however, either shown to have a weak LP relaxation or
perform poorly in the computational tests. The only exception is a model intro-
duced (without implementation) in [6] based on a Dantzig-Wolfe decomposition
approach, wherein each column corresponds to one cycle. We show that the model
has a strong LP relaxation. Implementing the model, however, requires a branch-
and-price approach in which the subproblem becomes a prize collecting TSP and
was considered to be outside of the scope of Paper V.

5 Contributions of the thesis

This section presents a short summary of the main contributions of the thesis, in
terms of both the applications considered and mathematical results.
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From the point of view of the applications, the following contributions are made.
ILP models for several maintenance optimization problems have been developed,
implemented, and studied computationally (Papers I, II, and IV). A stochastic pro-
gramming model (Paper III) together with a decomposition method, which extends
the integer L-shaped method, have been developed, implemented and analyzed for
the maintenance problem considered. The study of these models constitute impor-
tant steps towards a decision support system for maintenance decisions. In par-
ticular the model with costs based on the replacement interval length (proposed
in Paper IV) presents an interesting combination of flexibility and computational
tractability to build upon in future research. A connection between the joint replen-
ishment problem from inventory theory and the considered maintenance optimiza-
tion problems has also been established (Paper IV). The research on the HpMP (Pa-
per V) has contributed to the classification and comparison of new and existing ILP
models for the problem. We have demonstrated that problem instances of moder-
ate sizes can be solved by a branch—and—cut method. The conclusion is that three
models are of particular interest for future research.

From a mathematical point of view several interesting properties have been in-
vestigated. Complexity analyses of two opportunistic replacement problems (ORP
in Paper I and ORPIL in Paper II) as well as separation problems for the model of
the HpMP (Paper V) have been made. Polyhedral studies of ILP models (Papers
I, II, and IV) as well as a comparison of the LP relaxation of different models for
the same problem (Paper II and V) were conducted. Finally, lower bounds on the
recourse function for the SORP leading to the development of the decomposition
method have been obtained (Paper III). All of the above has increased the under-
standing of the problems as well as lead to ILP models which are efficiently solved.
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