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Abstract—We investigate the effect of nonlinear self-phase
modulation (SPM) on clock recovery in long-haul coherent
optical communication systems with low to moderate baud rates.
We consider dual-polarization, multilevel quadrature amplitude
modulation, and evaluate conventional timing estimators as well
as a modified Cramér-Rao bound. As the latter is hard to
compute in the presence of nonlinear channel impairments, we
derive an approximate closed-form expression. Contrary tolinear
channel impairments, the nonlinear impairments can degrade the
performance for higher input powers. In addition, the bounds
exhibit oscillatory behavior due to the oscillations in thesignal
spectrum in the presence of SPM.

Index Terms—Modified Cramér-Rao bound, coherent optical
communication, timing offset estimation, clock recovery,self-
phase modulation, fiber optics.

I. I NTRODUCTION

RECEIVERS used in coherent optical communications
must compensate for various linear and nonlinear impair-

ments. As we move towards multilevel quadrature amplitude
modulation (M-QAM) formats, which require higher input
powers to achieve a fixed target bit error rate, the impact
of the nonlinear impairments is performance-limiting in dual-
polarization systems [2].

For moderate baud rates and large channel spacing, self-
phase modulation (SPM) is the main nonlinear phenomenon
in fiber optical communication systems [3] and is caused by
interaction of the light and the optical fiber. This results in
changes of the fiber refractive index and leads to nonlinear
phase shifts proportional to the signal power, with concomitant
spectral broadening. The effect of SPM accumulates since each
optical amplifier restores the initial power level. In addition,
optical amplifiers introduce amplified spontaneous emission
(ASE) noise, leading to nonlinear phase noise (NLPN) [4],
which is an interaction between the signal and the noise.
Thus, for input power levels above a certain threshold, the
nonlinear impairment may become the main limitation in long-
haul systems with many amplifier stages. This is in stark
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Figure 1. Transmission and receiver model: the signal passes through
Na spans of fiber, the fiber loss is compensated by the amplifier,
which also induces ASE noise. In every fiber span, the signal
undergoes SPM.

contrast to linear transmission systems, where an increasein
input power cannot lead to a decrease in performance.

There exist various studies on dealing with SPM and
NLPN, such as [5]–[9], which generally assume perfect clock
recovery. As clock recovery typically occurs early in the
receiver chain, this assumption may not hold. A useful tool in
analyzing the validity of this assumption is through theoretical
performance bounds, such as the Cramér-Rao bound (CRB)
[10]. The CRB, and variations thereof, provide a fundamental
lower bound on the variance of estimators (including clock
recovery algorithms).

In this paper, we build on our initial findings from [1]
to derive a modified Cramér-Rao bound (MCRB) for dual-
polarization M-QAM systems, under the assumption of low to
moderate baud rates. Since the derivation of an exact closed-
form MCRB is hard, we provide a lower bound on the MCRB.
Furthermore, the bound is compared to the estimation error
variance of a conventional maximum likelihood-based estima-
tor. The bound indicates that SPM and NLPN in themselves
do not degrade the performance of clock recovery, but when
the signal is filtered with a too narrow filter, reliable clock
recovery becomes impossible.

Notation: We will denote column-vectors in bold (e.g.,x),
matrices in bold capitals (e.g.,X), the conjugate transpose of
x by xH, the Euclidean norm ofx by ‖x‖, the real part of
x by ℜ{x}, the expectation operator byE {·}, the phase of a
complex numberx by ∠x.

II. COHERENT OPTICAL COMMUNICATION MODEL

A. Channel Model

We consider a dual-polarization M-QAM coherent optical
communication system as shown in Fig. 1. The transmission
system consists of multiple consecutive optical spans. In a
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practical setting, each span consists of a single-mode fiber
(SMF), a dispersion-compensating fiber (DCF), and an am-
plifier. The DCF is designed to compensate perfectly for
the chromatic dispersion in the SMF. By assuming the use
of DCF and restricting the symbol rate to moderate values,
we can neglect chromatic dispersion. Each optical span ends
with an amplifier that compensates the propagation power loss
perfectly. At the receiver side, the optical signal is converted to
an electrical signal, filtered, and sampled. For easy reference,
the system parameters we use in this paper are given in Table I.
The notations will be clarified in later sections.

B. Validity of the Model

Our model includes SPM but neglects chromatic dispersion
and interchannel effects, resulting in the same model as used
previously, e.g., for studying nonlinear phase noise [7], [11]–
[13]. Here, we discuss this model and quantify its validity.

1) Dispersion: In absence of dispersion, the nonlinear
phase shift in one amplifier span isφSPM ≈ γP/α, where
P is the initial power. This is induced over the effective
length Leff = 1/α ≈ 17.4 km in SMF, since the nonlinear
length LNL = 1/(γP0) ≫ Leff. In order to neglect dis-
persion, periodical (span-wise) dispersion compensationmust
be used, which is still the case in most commercial links.
Furthermore, the dispersion-induced waveform change should
be small overLeff. This implies that the dispersion length
LD = 1/(B2|β2|), whereβ2 is the group-velocity dispersion
coefficient, should be much larger thanLeff. Equality occurs
whenB =

√

α/|β2| ≈ 51 GHz (assumingβ2 = 22 ps2/km).
For the discussed channel bandwidth (14 GHz), dispersion is
a weak effect.

2) Interchannel effects:The model is valid for systems
using wavelength-division multiplexing (WDM) when the in-
terchannel nonlinearities, cross-phase modulation (XPM)and
four-wave mixing (FWM), are small compared to SPM. The
XPM-induced phase shift is, with sufficiently large chan-
nel spacing, proportional to the walk-off lengthLwo =
1/(B|β2|∆ω), where∆ω = 2π∆ν is the channel spacing
[14]. The induced phase shift is approximatelyφXPM =
2γP̃Lwo, whereP̃ is the power of the neighboring channel.
Assuming identical channel powers, we haveφXPM/φSPM =
2Lwo/Leff = 2α/(B|β2|∆ω). This ratio is 15 % even with a
channel spacing of 400 GHz, which shows that neglecting
XPM is not compatible with high spectral efficiency. This
shows that the XPM influence on clock recovery deserves
further study.

The impact of FWM is estimated using the parametric gain
G = 1 + (γP/g)2 sin2(gL), whereg2 = ∆β(∆β/4 + γP )
and the fiber is assumed to be lossless [15]. The linear phase
mismatch∆β = β2∆ω2 and at the power levels relevant
for communication systems we haveg ≈ |β2|∆ω2/2. The
converted power is proportional to1/g2 andg2SPM/g

2
FWM must

therefore be small in order to neglect FWM. Since SPM can
be viewed as FWM within the channel spectrum itself, we
haveg2SPM/g

2
FWM ≈ (B/∆ν)2. Compared to XPM, the channel

spacing demand is significantly less restrictive in this case.

Table I
SYSTEM AND CHANNEL PARAMETER VALUES

name symbol value, unit
nonlinearity parameter γ 1.2 W−1km−1

attenuation α 0.25 dB/km
length per span L 80 km
ASE constant nsp 1.5
bandwidth B, 1/T 14 GHz
number of spans Na 22
number of symbols Nd 100
wavelength λ = c/ν 1.55 µm

C. Received Signal

Two independent data sequences are transmitted through
two orthogonal optical polarizations. We will consider the
equivalent electrical complex baseband signals. The signal at
time t at the output of the transmitter is given by a vector of
length 2:

r0(t) =
√

Pin

Nd∑

n=1

Uanp(t− nT − τ)ejθ , (1)

where Pin is the launch power per polarization,an =

[a
(X)
n a

(Y)
n ]T is then-th data symbol vector,Nd is the number

of data symbols,p(t) is a unit energy pulse,T is the symbol
duration,τ is the unknown timing offset between transmitter
and receiver,θ is an unknown carrier phase offset, andU
is an unknown unitary matrix that models the mixing of
the two polarization-multiplexed channels that occurs during
transmission. We consider conventional return-to-zero (RZ)
pulses [16] with 33% and 67% duty cycles, given in [17].
We assume thatE{an} = 0, and E{aHnam} = 0, when
m 6= n, whereE{·} denotes the expectation operator. The
optical signal after thei-th amplifier is given recursively by

ri(t) = ri−1(t) exp
(

jγLeff ‖ri−1(t)‖
2
)

+ ni(t), (2)

where γ is the nonlinearity parameter of the SMF, and
Leff =

(
1− e−αL

)
/α is called the effective length of the

SMF for attenuationα and physical lengthL. The noise due
to amplified spontaneous emission (ASE)ni(t) is modeled
as a circularly symmetric complex Gaussian noise process
with power spectral densityN0 = hνnsp(G − 1) in each
polarization, whereh is Planck’s constant,ν is the optical
frequency,nsp is the spontaneous emission factor andG is the
power gain of the amplifier. Substitutingri−1(t) recursively,
we find that the received signalr(t) , rNa(t) can be expressed
as

r(t) = r0(t) exp

(

jγLeff

Na−1∑

i=0

‖ri(t)‖
2

)

+w(t), (3)

wherew(t) is a complex white Gaussian noise process with
power spectral densityNaN0 in each polarization. The goal
of clock recovery is to determineτ , without knowledge ofa,
θ, or U. In practice, clock recovery generally takes place after
chromatic dispersion compensation [18].
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Figure 2. The final received signalr(t) is filtered by an ideally
flat low-pass filter (LPF) bandwidth equal to1/Ts and sampled,
using an analog-to-digital converter (ADC), at rate1/Ts. We compute
the Fisher informationJ(NLIN)(τ ) before the LPF and the Fisher
informationJ(NLIN)

LPF (τ ) after the LPF.

III. MCRB FOR CLOCK RECOVERY

A. Background

The MCRB is a tool from estimation theory [10] that
establishes a (loose) lower bound on the variance of any
unbiased1 estimator, and is thus useful to understand ultimate
performance limits and to assess the performance of practical
estimators in an absolute frame of reference. Given a vector
representationrvec (obtained, e.g., by sampling at a sufficiently
high rate) corresponding to an observed signal and an unknown
deterministic parameterτ , the MCRB is defined as the inverse
of the so-calledFisher information, given by

J(τ) = −E

{
∂2lnp (rvec|τ, a, θ,U)

∂τ2

}

, (4)

where p (rvec|τ, a, θ,U) is the likelihood function, anda
denotes the totality of transmitted symbols. To lighten the
notation, we do not writeJ(τ) as a function ofθ or U, for
reasons that will become clear later. The expectation in (4)
is over the noise and the unknown data symbols. The MCRB
is MCRB(τ) = J−1(τ), and has the following property: for
any unbiased estimator̂τ , the variance of the estimation error
obeys the following inequality:

var (τ − τ̂ ) ≥ MCRB(τ). (5)

We will derive an expression for the likelihood function
p (rvec|τ, a, θ,U), and then determine the MCRB for a sim-
plified case, with and without low-pass filter (LPF), shown in
Fig. 2.

B. The Likelihood Function of the Received Signal

We will consider two models, the first one corresponding
to Fig. 1, and a simplified model that allows closed-form
computation of the MCRB.

1) Model I: To obtain a vector representation of the re-
ceived signal, we will assume that the signal has a bandwidth
W (i.e., the received signal outside of[−W/2,W/2] contains
only additive noise). Then,rvec is obtained by filteringr(t)
with a filter that has a frequency response equal to 1 for
f ∈ [−W/2,+W/2] and is zero for all other frequencies,
followed by sampling at a rateW . Note thatW depends on the
input power, as the signal will experience spectral broadening.

1An estimator is said to be unbiased when the expected value ofthe estimate
is equal to the true value of the unknown parameter.

We can substitute (2) into (3) and obtain the sufficient statistics
[19]

rk = sk exp
(

jγLeffNa ‖sk‖
2 + jδk + jφk

)

+wk, (6)

where rk = r(k/W ), sk = s(k/W ) = r0(k/W ), wk ∼
CN (0, Naσ

2
aseI), σ2

ase = N0W . Here,CN (µ,Σ) denotes a
multi-variate complex Gaussian distribution with meanµ and
covariance matrixΣ. The anglesδk and φk are distributed
as follows: conditioned onsk, δk is a zero-mean Gaussian
random variable with variance

σ2
δk = γ2L2

eff ‖sk‖
2
(Na − 1)Na(2Na − 1)σ2

ase/6, (7)

andφk is a χ2 random variable, independent ofsk. We can
neglectφk whenPin ≫ σ2

ase.
2) Model II: As Model I is hard to deal with analytically,

due to the dependence ofδk on the data and the noise, we
will consider a simplified model, where we neglectδk and
focus on the effect of nonlinear phase shift caused by the
original signal. We will revisit Model I when we consider the
performance of practical estimators in Section IV. Lettingrvec
denote the sequence of the samples of the received signal, the
likelihood function for this simplified model is given by

p(rvec|τ, a, θ,U)

=

+∞∏

k=−∞

p(rk|τ, a, θ,U) (8)

∝
+∞∏

k=−∞

exp

(

−
‖rk − s̃k‖

2

Naσ2
ase

)

(9)

∝
+∞∏

k=−∞

exp

(

−
‖s̃k‖

2

Naσ2
ase

)

exp

(

2ℜ
{
rHk s̃k

}

Naσ2
ase

)

, (10)

where we have introduced̃sk , sk exp
(

jγLeffNa ‖sk‖
2
)

.
Note thatsk depends onτ , θ, and U. We note that while
Model II is not interesting from a practical point of view,2

the MCRB corresponding to Model II will be lower than the
MCRB corresponding to Model I, as Model II has fewer noise
sources. Hence, the MCRB for Model II is a valid lower bound
on the variance of an estimator for Model I.

C. MCRB Derivation for Model II

1) Case 1: without low-pass filter:The log-likelihood func-
tion can be expressed as

lnp (rvec|τ, a, θ,U) ∝ (11)

1

Naσ2
ase

+∞∑

k=−∞

(
2ℜ
{
rHk s̃k

}
− s̃Hk s̃k

)

where ∝ denotes proportionality up to additive constants,
independent ofτ . After some straightforward manipulations,

2Indeed, the nonlinearity could be precompensated at the transmitter.
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we obtain

∂2lnp (rvec|τ, a, θ,U)

∂τ2

=
1

Naσ2
ase

+∞∑

k=−∞

(

2ℜ

{

[rHk − s̃Hk ]
∂2s̃k

∂τ2

}

− 2
∂s̃Hk
∂τ

∂s̃k
∂τ

)

.

(12)

Next, taking the expectation of (12) over the noise we get

J (NLIN)(τ) =
2

Naσ2
ase

+∞∑

k=−∞

E

{
∂s̃Hk
∂τ

∂s̃k
∂τ

}

, (13)

where the remaining expectation is with respect to the data
symbols. The complete derivation ofJ (NLIN)(τ) is given in
the Appendix, and yields

J (NLIN)(τ) =
2PinNdE2

NaN0

∫ +∞

−∞

|ṗ(t)|2 dt

︸ ︷︷ ︸
.
=J(LIN)(τ)

(14)

+
8γ2L2

effP
3
inNdNaE6

N0

∫ +∞

−∞

|ṗ(t)|2 |p(t)|4 dt,

whereEl = E{‖an‖
l} andṗ(t) denotes differentiation ofp(t)

with respect tot. We observe that the Fisher information com-
prises two terms: the first termJ (LIN)(τ) is the well-known
Fisher information for linearly modulated signals withoutSPM
[20]. The second term is non-negative, and can be interpreted
as theadditional information due to the nonlinearity. This
can be explained by the widened spectrum of the signal
due to SPM. The high-frequency components provide more
information regarding the parameterτ , thus increasing the
Fisher information. The additional information is cubic inthe
input power, and will thus be more prominent at higher input
powers. Note also that the Fisher information does not depend
on θ, U, or τ .

2) Case 2: with low-pass filter:In this section we assume
that the received signal is further filtered with a low-pass
filter h(t) that has a frequency response equal to 1 forf ∈
[−1/(2Ts),+1/(2Ts)] and is zero for all other frequencies. In
contrast to the previous section, we do not assume that the
filter bandwidth exceeds the signal bandwidthW . The filtered
signaly(t) is then sampled at a rate1/Ts to obtain sufficient
statistics. Hence, filtering will cause a loss of information
and the Fisher informationJ (NLIN)

LPF (τ) will depend onTs. As
1/Ts → W , we expectJ (NLIN)

LPF (τ) → J (NLIN)(τ). Denoting
convolution by⊗, and introducing

qn(t− τ ; an) = (15)

p(t− nT − τ)ejγLeffPinNa‖an‖
2|p(t−nT−τ)|2 ⊗ h(t),

the received signal after filtering can now be written as

y(t) = r(t)⊗ h(t) (16)

=
√

Pin

Nd∑

n=1

Uanqn(t− τ ; an)e
jθ +w(t)

.
= x(t) +w(t). (17)
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Figure 3. Impact of low-pass filter on the Fisher informationas a function
of oversampling factorT/Ts for γLeffPinNa = 0.3.

Fromy(t), we can compute the Fisher informationJ (NLIN)
LPF (τ)

as

J
(NLIN)
LPF (τ) =

2

Naσ2
ase

+∞∑

k=−∞

E

{
∂xH

k

∂τ

∂xk

∂τ

}

, (18)

wherexk = x(kTs). We easily find that

J
(NLIN)
LPF (τ)

=
2PinNd

Naσ2
ase

E

{

‖an‖
2

+∞∑

k=−∞

|q̇n(kTs − τ ; an)|
2

}

=
2PinNd

NaN0
E

{

‖an‖
2
∫ +∞

−∞

|q̇n(t; an)|
2
dt

}

(19)

=
8π2PinNd

NaN0
E

{

‖an‖
2
∫ +1/Ts

−1/Ts

f2 |Qn(f ; an)|
2 df

}

,

whereQn(f ; an) is the Fourier transform ofqn(t; an). The
computation ofQn(f ; an) as well as the expectation are easily
performed numerically. Again, the Fisher information doesnot
depend onθ, U, or τ . When γ = 0, we can evaluate (19)
to recover the well-known Fisher informationJ (LIN)

LPF (τ) for
linear channels. Some straightforward manipulations yield

J
(LIN)
LPF (τ) = (20)

2PinNdE2

NaN0

∫ +∞

−∞

∣
∣
∣
∣

∫ +∞

−∞

h(u)ṗ(t− u)du

∣
∣
∣
∣

2

dt,

which reverts toJ (LIN)(τ) in (14) whenh(t) = δ(t).

IV. N UMERICAL RESULTS

A. Impact of Low-Pass Filter

To gain insight into the effect of the LPF, we plot the ratios
J
(NLIN)
LPF (τ)/J (NLIN)(τ) andJ (NLIN)

LPF (τ)/J
(LIN)
LPF (τ) as a func-

tion of T/Ts for γLeffPinNa = 0.3, the pulsep33(t), and 4-
QAM, in Fig. 3. We observe thatJ (NLIN)

LPF (τ)/J (NLIN)(τ) → 1
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as Ts → 0, as we would expect. To have small information
loss, we requireT/Ts > 7, corresponding to a wideband
LPF. WhenT/Ts ≈ 1, which is a more practical scenario,
the Fisher information is reduced by a factor 13 compared
to J (NLIN)(τ). Hence, we expect significant performance
degradations with a narrowband LPF. Secondly, considering
J
(NLIN)
LPF (τ)/J

(LIN)
LPF (τ), we observe that for low oversampling

factors (T/Ts < 2.5) J
(NLIN)
LPF (τ) < J

(LIN)
LPF (τ), meaning

the nonlinearity is harmful. When the oversampling is in-
creased, nonlinearity adds Fisher information. ForT/Ts > 7,
J
(NLIN)
LPF (τ) is about 50% higher thanJ (LIN)

LPF (τ).

B. Impact of Input Power

We consider 4-QAM and 16-QAM signals and compare the
bounds with the performance of a feed-forward (FF) timing
estimator using the system parameters given in Table I. We use
a conventional3 ML-based FF timing offset estimator derived
for AWGN channels from [20, pp. 433-437] and extend it to
dual-polarization transmission. The estimator is given as

τ̂ = −
T

2π
∠

{
MNd−1∑

k=0

[y(kTs)]
H
z(kTs)e

−jπk/M

}

, (21)

where M = T/Ts, Nd is the observation length in sym-
bols, z(kTs) = [e−jπk/My(kTs)] ⊗ c(kTs), and C(f) =
P (f − 1/2T )P ∗ (f + 1/2T ), in which P (f) is the Fourier
transform ofp(t) andc(t) is the inverse Fourier transform of
C(f). The FF estimator has been applied to both Model I,
given by (6), and Model II, given by (6), withoutδk andφk,
both from Section III-B. Note that the estimator does not rely
on knowledge ofθ or U.

In Figs. 4 and 5,MCRBLPF(τ) = 1/J
(NLIN)
LPF (τ) for Ts =

T , MCRB(τ) = 1/J (NLIN)(τ), and the normalized estimation
error variance with respect to input power is given for 4-QAM
and 16-QAM, respectively. We observe the following:

• ForMCRB(τ), we see a change in slope for higher input
powers, as we expected from our discussion in Section
III-C1. The impact of the constellation onMCRB(τ) is
limited, as we would expect from the expression (14),
where the only difference is inE6.

• ForMCRBLPF(τ), we observe that after an input power
of −5 dBm, the bound stops decreasing monotonously
and shows an underdamped oscillation. The effect is most
obvious in 4-QAM, and becomes less pronounced for
higher-order constellations. The explanation lies in oscil-
lations in the spectrum after the LPF induced by SPM, as
a function of the input power. The frequency domain os-
cillations cause the oscillations in the bound computed by
(18). According to the results,MCRBLPF(τ) depends on
the type of the pulse, as well. However, the dependency
is opposite toMCRB(τ): before the LPF, the bound is
lower for a pulse with lower duty cycle, whereas after the
LPF it is the opposite. Although the result may seem to be
contradictory, it is in accordance with the expressions (14)

3Although derivation of new estimation algorithms in the presence of SPM
is possible, it is not in the scope of this work.
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Figure 4. The MCRB with and without LPF, and normalized estimation
error variance for 4-QAM for different duty cycles (33% and 66%).
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Figure 5. The MCRB with and without LPF, and normalized estimation
error variance for 16-QAM for different duty cycles (33% and66%).

and (18): the pulse with lower duty cycle has higher peak
power and undergoes more spectral broadening which
results in a lower bound before the LPF and a higher
bound after the LPF.

• The Model II error variance follows the general behav-
ior of MCRBLPF(τ): for small-order constellations, we
observe pronounced oscillations. At higher input powers,
the slope of the error variance followsMCRBLPF(τ).

• The Model I error variance is close to the Model II
error variance for low input powers. However, beyond
−5 dBm we see significant deviations, and the Model
I error variance increases rapidly. This is due to the
interaction between the signal and the noise, captured by
the parametersδk in (6), which becomes more prominent
at higher input powers. The behavior of the Model I error
variance does not seem impacted by the constellation.

We have also observed (results not shown) that whenTs is
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reduced, the boundMCRBLPF(τ) is reduced, and the error
floor disappears. This is congruent with our findings related
to Fig. 3. Finally, we mention that the input power to reach a
pre-decoding bit error rate of around10−3, which is a typical
operating point, is approximately−9 dBm and−2 dBm,
for 4-QAM and 16-QAM, respectively. Hence, we see that
for 4-QAM, the operating point for this system corresponds
to the linear regime, and traditional estimators can be used.
However, for 16-QAM, the operating point corresponds to the
nonlinear regime, in which case traditional estimators fail, and
so the assumption of reliable clock recovery often assumed in
literature may not hold when the received signal is filtered
with a too narrow filter. The same holds true for higher-order
modulation formats.

V. CONCLUSIONS

We have determined the MCRB for clock recovery for
a coherent optical communication system with pronounced
nonlinear effects (SPM and NLPN), both with and without
prefilter, and compared the MCRB with the performance of
practical estimators. Our analysis indicates that, for lowto
moderate baud rates, whereas nonlinearities are not inherently
detrimental in terms of the MCRB, the use of too aggresive
bandlimiting prefilters can result in significant increasesin the
MCRB. This implies that reliable clock recovery is impossible
for high input powers when the filter at the receiver front-end
is too narrow. In turn, this means that making the assumption
of perfect clock recovery in this regime for the design of
subsequent receiver block is meaningless, and may lead to
erroneous insights and designs. Moreover, existing practical
estimators, which were designed for linear transmission, ex-
hibit poor performance in the highly nonlinear regime. Hence,
(i) care should be taken when designing prefilters, and (ii)
synchronization algorithms designed specifically for nonlinear
transmission may results in many orders of magnitude estima-
tion performance improvements. Future work includes the ex-
tension of the derivation to a wavelength division multiplexing
setting, and the derivation of new clock recovery algorithms
for the highly nonlinear regime.
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APPENDIX

COMPUTATION OF THEFISHER INFORMATION WITHOUT

LPF

Here, we will derive (14), based on the following assump-
tions thatp(t) is real, time-limited, and has support within
t ∈ [−T/2,+T/2].

Introducingξn,k = k/W −nT − τ , we can write the signal
component of the received signal as

s̃(k/W )

=
√

Pin

Nd∑

n=1

Uanp(ξn,k)e
jθ

× exp



jγLeffNa

∥
∥
∥
∥
∥

√

Pin

Nd∑

n′=1

an′p(ξn′,k)

∥
∥
∥
∥
∥

2




=
√

Pin

Nd∑

n=1

Uanp(ξn,k)e
jθ

× exp
(

jγLeffPinNa ‖an‖
2 |p(ξn,k)|

2
)

,

where the last equality is due to the finite duration ofp(t),
and the fact thatUHU = I. Hence

∂s̃k
∂τ

=

−
√

Pin

Nd∑

n=1

Uanṗ(ξn,k)e
jθ

× ejθ exp
(

jγLeffPinNa ‖an‖
2 |p(ξn,k)|

2
)

− 2jγLeffNaP
3/2
in

Nd∑

n=1

Uan ‖an‖
2
ejθ |p(ξn,k)|

2
ṗ(ξn,k)

× exp
(

jγLeffPinNa ‖an‖
2 |p(ξn,k)|

2
)

.

Then, by virtue of the assumptions on the transmitted data
symbols, and the fact that

(
Uejθ

)H (
Uejθ

)
= I,

E

{
∂s̃Hk
∂τ

∂s̃k
∂τ

}

=

Pin

Nd∑

n=1

E

{

‖an‖
2
}

|ṗ(ξn,k)|
2

+ 4γ2L2
effN

2
aP

3
in

Nd∑

n=1

E

{

‖an‖
6
}

|p(ξn,k)|
4 |ṗ(ξn,k)|

2

+ 4γLeffNaP
2
in

Nd∑

n=1

E

{

‖an‖
4
}

ℜ
{

j |p(ξn,k)|
2 |ṗ(ξn,k)|

2
}

︸ ︷︷ ︸

=0

due to the pulse being real-valued. Hence, withEl
.
=

E

{

‖an‖
l
}

,

E

{
∂s̃Hk
∂τ

∂s̃k
∂τ

}

=

Nd∑

n=1

|ṗ(ξn,k)|
2
Pin

(

E2 + 4γ2L2
effN

2
aP

2
inE6 |p(ξn,k)|

4
)

.

Summation over allk leads to
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+∞∑

k=−∞

E

{
∂s̃Hk
∂τ

∂s̃k
∂τ

}

= (22)

WNdPinE2

∫ +∞

−∞

|ṗ(t)|2 dt

4γ2L2
effN

2
aP

3
inE6NdW

∫ +∞

−∞

|ṗ(t)|2 |p(t)|4 dt.

Finally, substitution of (22) into (13) yields (14).
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