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Abstract—We investigate the effect of nonlinear self-phase @ - ----"----------"-"-----"-"-~-~-~-----

modulation (SPM) on clock recovery in long-haul coherent ' fiber
optical communication systems with low to moderate baud ras. G SRR SRR
We consider dual-polarization, multilevel quadrature amplitude loss i§ :

modulation, and evaluate conventional timing estimators & well 8
as a modified Cramér-Rao bound. As the latter is hard to
compute in the presence of nonlinear channel impairments, &
derive an approximate closed-form expression. Contrary tdinear : : 1
channel impairments, the nonlinear impairments can degrae the P T

performance for higher input powers. In addition, the bounds

exhibit oscillatory behavior due to the oscillations in thesignal Figure 1. Transmission and receiver model: the signal passes through
spectrum in the presence of SPM. N. spans of fiber, the fiber loss is compensated by the ampilifier,

. . ) which also induces ASE noise. In every fiber span, the signal
Index Terms—Modified Cramér-Rao bound, coherent optical undergoes SPM.

communication, timing offset estimation, clock recovery,self-
phase modulation, fiber optics.

contrast to linear transmission systems, where an incri@ase
. INTRODUCTION input power cannot lead to a decrease in performance.
. . L There exist various studies on dealing with SPM and
R ECEIVERS used in coheren_t optical Comm““"?a“o'ﬁLPN, such as [5]-[9], which generally assume perfect clock
must compensate for various linear and nonlmeammpape—covery_ As clock recovery typically occurs early in the

ments. As we move towards multilevel quadrature amplltucﬂgceiver chain, this assumption may not hold. A useful tool i

modulation (MTQAM) fprmats, Which require higher i_npUtanaIyzing the validity of this assumption is through thé¢iced
powers to achieve a fixed target bit error rate, the imp

. . . . S T rformance bounds, such as the Cramér-Rao bound (CRB)
of the nqnllnear impairments is performance-limiting inatiu [10]. The CRB, and variations thereof, provide a fundamlenta
polarization systems [2]. , lower bound on the variance of estimators (including clock

For moderate baud rates and large channel spacing, sgl Sovery algorithms).
phase modulation (SPM) is the main nonlinear phenomenor\n this paper, we build on our initial findings from [1]

in fiber optical communication systems [3] and is caused By jerive a modified Cramér-Rao bound (MCRB) for dual-
interaction of the light and the optical fiber. This results 'polarization M-QAM systems, under the assumption of low to

changes of the fiber refractive index and leads to nonllneﬁ\roderate baud rates. Since the derivation of an exact closed

phase shifts proportional to the signal power, with con(_tami form MCRB is hard, we provide a lower bound on the MCRB.
spectral broadening. The effect of SPM accumulates sm:_fe ®&urthermore, the bound is compared to the estimation error

optical amplifier restores the initial power level. In addlil, |5 iance of a conventional maximum likelihood-based estim
optical amplifiers intraduce amplified spontaneous emnss%)r. The bound indicates that SPM and NLPN in themselves
(ASE) noise, leading to nonlinear phase noise (NLPN) [4} o degrade the performance of clock recovery, but when

which is an interaction between the S|gna! and the NOISRe signal is filtered with a too narrow filter, reliable clock
Thus, for input power levels above a certain threshold, ﬂ?@covery becomes impossible

nonlinear impairment may become the main limitation in long Notation: We will denote column-vectors in bold (e.g)
haul systems with many amplifier stages. This is in stafkayices in bold capitals (e.gX), the conjugate transpose of

H .
Part of this work was presented in [1], at the 2010 EuropeanféZence x by x”, the Euclidean norm ok by ||X| , the real part of

and Exhibition on Optical Communication. x by R {x}, the expectation operator l®/{-}, the phase of a
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Table |

practical se_tting, _each span co_nsist_s of a single-mode fiber SYSTEM AND CHANNEL PARAMETER VALUES
(SMF), a dispersion-compensating fiber (DCF), and an am-
plifier. The DCF is designed to compensate perfectly for ”a”;_e _ symbol Va'“\?\} Ulﬂl': 1

: : : : : nonlinearity parameten -~ 1.2 W™ km™
the chromatic d|s_pe_r3|on in the SMF. By assuming the use attenuation o 0.25 dB /km
of DCF and restricting the symbol rate to moderate values, length per span L 80 km
we can neglect chromatic dispersion. Each optical span ends ASE constant Nsp 1.5
with an amplifier that compensates the propagation powsr los bandwidth B, /T | 14 GHz

. . . . . number of spans Na 22

perfectly. At the receiver side, the optical signal is cotse to number of symbols | Ny 100
an electrical signal, filtered, and sampled. For easy retere wavelength A=c/v | 1.55 ym

the system parameters we use in this paper are given in Table |
The notations will be clarified in later sections.
C. Received Signal

B. Validity of the Model Two independent_ data sequences are tra_\nsmitte_d through
two orthogonal optical polarizations. We will consider the
Our model includes SPM but neglects chromatic dispersieguivalent electrical complex baseband signals. The kigna
and interchannel effects, resulting in the same model a8 usine ¢ at the output of the transmitter is given by a vector of
previously, e.g., for studying nonlinear phase noise [Y1{ length 2:
[13]. Here, we discuss this model and quantify its validity.

1) Dispersion: In absence of dispersion, the nonlinear Na i
phase shift in one amplifier span ispy ~ P/, where ro(t) = \/PinZUanP(t—"T—T)e ) 1)
P is the initial power. This is induced over the effective n=1

length Ler = 1/a =~ 17.4 km in SMF, since the nonlingarWhere P, is the launch power per polarizatiom, —
length Lt = 1/(yFy) > Lex. In order to neglect dis- [0 a7 is then-th data symbol vectory is the number
persion, periodical (span-wise) dispersion compensatiast -, ,_. " : . [

L . k .. of data symbolsp(t) is a unit ener ulsel’ is the symbol
be used, which is still the case in most commercial link y p(t) gy pulsel y

. N %‘urationn- is the unknown timing offset between transmitter
Furthermore, the dispersion-induced waveform changeldhognd receiverd is an unknown carrier phase offset, afifl
be small Og’erLeff- This implies that the dispersipn Ien_gthls an unknown unitary matrix that models the m'ixing of
goDe;iclié r(f s|ﬁ<23|3| dWS:rriﬁ iﬁﬁ;?ee?:ﬁg_veleocdzislsgfgﬁgn the two polarization-multiplexed channels that occursirgur
’ 9 PR3- £ y transmission. We consider conventional return-to-zerd)(R
when B = \/a/|B2| ~ 51 GHz (assuming3, = 22 pst/km).

. . . .__pulses [16] with 3% and 67% duty cycles, given in [17].
Zov:/et;:\i S:cfs;:gtssed channel bandwidth (14 GHz), dlspersmr\/bsé assume thaE{a,} — 0, and E{a'a,,} — 0, when

m # n, whereE{-} denotes the expectation operator. The

2) Interchannel effects;The model is valid for systems ,yica| signal after the-th amplifier is given recursively by
using wavelength-division multiplexing (WDM) when the in-

terchannel nonlinearities, cross-phase modulation (XBM)
four-wave mixing (FWM), are small compared to SPM. The
XPM-induced phase shift is, with sufficiently large chan- ) ) )
nel spacing, proportional to the walk-off lengthy, — where v is theLnonhr_\eanty parameter pf the SMF, and
1/(B|Ba|Aw), where Aw — 27Av is the channel spacing Lett = (1—¢7@%) /ais called the effective length of the
[14]. The induced phase shift is approximatelyey — SMF for attenuationv and physical lengthil. The noise due

9+ P Lo, Where P is the power of the neighboring channel!® @mplified spontaneous emission (ASE){) is modeled
Assuming identical channel powers, we haigw/¢spy = as a circularly symmetric complex Gaussian noise process
2Lwo/Let = 200/ (B|fB2|Aw). This ratio is 15% even with a with power spectral densityVy = hvngp(G — 1) in each
channel spacing of 400 GHz, which shows that neglectiffg'arization, whereh is Planck's constanty is the optical
XPM is not compatible with high spectral efficiency. Thidf€duencyys, is the spontaneous emission factor &nis the

shows that the XPM influence on clock recovery deservBSWer gain of the amplifier. Substituting, (¢) recursively,
further study. we find that the received signa(t) £ r, (t) can be expressed

The impact of FWM is estimated using the parametric gaﬁ’ﬁs
G =1+ (yP/g)*sin?(gL), whereg®> = AB(AB/4 + vP) Na—1
and the fiber is assumed to be lossless [15]. The linear phase r(t) = ro(t) exp (j’yLeﬂ‘ Z ||ri(t)||2> +w(t), 3)
mismatchAp = BAw? and at the power levels relevant =0
for communication systems we haye~ |8s|Aw?/2. The
converted power is proportional 1 g and g4p\/gAwm MUst wherew(t) is a complex white Gaussian noise process with
therefore be small in order to neglect FWM. Since SPM cgrower spectral density, Ny in each polarization. The goal
be viewed as FWM within the channel spectrum itself, wef clock recovery is to determinge, without knowledge ot,
havegZp\/92wm ~ (B/Av)?. Compared to XPM, the channeld, or U. In practice, clock recovery generally takes place after
spacing demand is significantly less restrictive in thisscas chromatic dispersion compensation [18].

ri(t) = v (O exp (Lo s (0)]) + i), ()



We can substitute (2) into (3) and obtain the sufficient stiat

rt) [ pr vty y(k1y)  [19]
| |
e L
| BW=I/T, | AP ,
v v rj; = Sk exp (mLeffNa skl + 5% +j¢k) +wy,  (6)
JOHN (7) Tipr (7)

, . . o _ wherer, = r(k/W), s = s(k/W) = ro(k/W), wi ~
Figure 2. The final received signat(t) is filtered by an ideally 2 0
flat low-pass filter (LPF) bandwidth equal t/7Ts and sampled, CN(vaﬁanscI)' Tase = NOW' He_re,.C/\/?(u’ 2) denotes a
using an analog-to-digital converter (ADC), at rajé;. We compute multi-variate complex Gaussian distribution with mearand
the Fisher information/(™“™)(7) before the LPF and the Fishercovariance matrixX. The angless, and ¢, are distributed
information J 3™ (7) after the LPF. as follows: conditioned oms, 5 is a zero-mean Gaussian

random variable with variance

Ill. MCRB FORCLOCK RECOVERY o2 =7 L% |Isk|? (Na — 1)Na(2N, — 1)0%. /6, (7)

A. Background and ¢y, is a x? random variable, independent of. We can

The MCRB is a tool from estimation theory [10] thatheglecty; when P, > o2...

establishes a (loose) lower bound on the variance of any2) Model Il: As Model | is hard to deal with analytically,
unbiased estimator, and is thus useful to understand ultimafg,e to the dependence 6f on the data and the noise, we
performance limits and to assess the performance of pedctig|| consider a simplified model, where we neglet and
estimators in an absolute frame of reference. Given a vecigtys on the effect of nonlinear phase shift caused by the
representation,.. (obtained, e.g., by sampling at a sufficientlyyriginal signal. We will revisit Model | when we consider the
high rate) corresponding to an observed signal and an unknayarformance of practical estimators in Section IV. Letting,
deterministic parameter, the MCRB is defined as the inversejenote the sequence of the samples of the received sigeal, th

of the so-callecrisher information given by likelihood function for this simplified model is given by
821 vec b) I 07 U
I = g { P n2a b O gy ra,60,0)
or? o
where p (ryec|7,a,0,U) is the likelihood function, anda = H p(rk|,a,0,U) (8)
denotes the totality of transmitted symbols. To lighten the k=—o0
notation, we do not write/(7) as a function ofd or U, for +oo s — 8l
reasons that will become clear later. The expectation in (4) H P\ N2 9)
is over the noise and the unknown data symbols. The MCRB k=—o00 a7 ase

is MCRB(7) = J~!(r), and has the following property: for oo Bk 2R {rHis, }
any unbiased estimatot, the variance of the estimation error x H P\ "Nz [Pl N2 (10)
obeys the following inequality: k=—o0 arase a7 ase

A

var (1 — 7) > MCRB(7). (5) where we have introduces, £ s exp (jvLesNa [|sk]l?).
nNote thats, depends onr, #, and U. We note that while

We will derive an expression for the likelihood functio \Vodel 11 i . g f cal Do £ vidw
P (rvec|T, @, 6, U), and then determine the MCRB for a sim- odel Il Is not interesting from a practical point of view,

plified case, with and without low-pass filter (LPF), shown iﬁhe MCRB corresppnding to Model 11 will be lower than the
Fig. 2. MCRB corresponding to Model I, as Model Il has fewer noise

sources. Hence, the MCRB for Model Il is a valid lower bound

on the variance of an estimator for Model |.
B. The Likelihood Function of the Received Signal

We will consider two models, the first one correspondin o

to Fig. 1, and a simplified model that allows closed-forfy- MCRB Derivation for Model Ii

computation of the MCRB. 1) Case 1: without low-pass filteThe log-likelihood func-
1) Model I: To obtain a vector representation of the retion can be expressed as

ceived signal, we will assume that the signal has a bandwidth

W (i.e., the received signal outside pf1¥//2, /2] contains Inp (ryec|7, @, 0, U) (11)
only additive noise). Then;,.. is obtained by filteringe(?) 1 400
with a filter that has a frequency response equal to 1 for N o3 Z (2R {rsr} —8./8k)

f e [-W/2,+W/2] and is zero for all other frequencies, avase j—
followed by sampling at a raté’. Note thatiV’ depends on the

input power, as the signal will experience spectral broadgn

— 00
where o« denotes proportionality up to additive constants,
independent ofr. After some straightforward manipulations,

1An estimator is said to be unbiased when the expected valine afstimate
is equal to the true value of the unknown parameter. 2|ndeed, the nonlinearity could be precompensated at tinsrtriter.



we obtain 16

9*Inp (Tyec|T,a,0,U) 14} ,/’ y
or? S
+o0 ~ ~ ~ ’
1 023, ot 95, 12F ‘ :
ORI el — g =28 L 9"k 78 ) L
N O-ie kzoo ( {[rk Sk] 67—2 } or Ot ,,
a2 L..--7

Next, taking the expectation of (12) over the noise we get °8

2 X (05108 08
(NLIN) E YSk
7 () = N,o2 ZOOE{aT 37’}’ (13)

ase k

0.4

where the remaining expectation is with respect to the de¢
symbols. The complete derivation ofN“™N) (1) is given in  °2
the Appendix, and yields

_J(NLIN)( )/J(NLIN)( )
- = EEE (1) g0 )

0

2P N E +o00 0 5 T/T 10 15
g () = 2 [ e @) S
NaNo P Figure 3. Impact of low-pass filter on the Fisher informat&sa function
= JLIN) (7 of oversampling factofl’/T’s for -y Leg Pin Na = 0.3.
212 3
. 8y° L3 ffleNdN EG/ Ip()]” |p(t)|” dt, _ _ . (NLIN)
0 —0 Fromy(t), we can compute the Fisher mformat@ﬁEF (1)
whereE; = E{|a,|'} andp(t) denotes differentiation qf(t) as
with respect ta. We observe that the Fisher information com-  (vuiw) 2 X Ix Oxy 18
prises two terms: the first termi™)(7) is the well-known e (7) = Nao2., Z or or [’ (18)
Fisher information for linearly modulated signals with@RM =
[20]. The second term is non-negative, and can be integhrewherex, = x(kT;). We easily find that
as theadditional information due to the nonlinearity. This (NLIN)
can be explained by the widened spectrum of the signal Jeer (7)
due to SPM. The high-frequency components provide more 2PmNd
information regarding the parameter thus increasing the - N,o2 {” ”H Z |gn (KTs — 73 2) }
Fisher information. The additional information is cubicthre T h=—oo
input power, and will thus be more prominent at higher input _ 2PinNdE {|a ”2 /+OO lGn(t; 2 )|2 dt} (19)
powers. Note also that the Fisher information does not dizpen NaNo " o
ond, U, or . 872P, N, +1/Ts
2) Case 2: with low-pass filterin this section we assume = Wod {H an||? /1/T F1Qu(fran)? df}

that the received signal is further filtered with a low-pass
filter h(t) that has a frequency response equal to 1ffor where @, (f;a,) is the Fourier transform of,,(¢;a,). The
[—1/(2T%), +1/(2T%)] and is zero for all other frequencies. Incomputation of).,(f; a,,) as well as the expectation are easily
contrast to the previous section, we do not assume that fierformed numerically. Again, the Fisher information does
filter bandwidth exceeds the signal bandwidith The filtered depend or¥, U, or 7. When~ = 0, we can evaluate (19)
signaly(t¢) is then sampled at a ratg'T to obtain sufficient to recover the well-known Fisher informati (LIN)( ) for
statistics. Hence, filtering will cause a loss of informatiolinear channels. Some straightforward manipulationsdyiel

and the Fisher mformatlod(NLIN)( ) will depend onTy. As
(NLIN - J(LIN)( ) = (20)
1/Ts — W, we expect/; pp (1) — JNLIN) (7). Denoting LPF ,
convolution by®, and introducing 2P]i\r;]>7\(;E2 / e ‘/*"O h(w)p(t — w)du| dt,
gn(t —T52,) = (15) il e e

p(t —nT — 7)elrLet PaNallanlPp(t=nT=0* g gy which reverts to7 ™) (7) in (14) whenh(t) = 6(t).

the received signal after filtering can now be written as IV. NUMERICAL RESULTS

y(t) = rx(t)®h(t) (16) o .
Ny To gain insight into the effect of the LPF, we plot the ratios
VP D Uangn(t — 5 a0)e +w(t) JOER) (7)) U () and JNEN) (7) /109 (7) as a func-
— tion of T/T; for yLeg Pin N. = 0.3, the pulsepss(t), and 4-
= x(t) +w(t). (17) QAM, in Fig. 3. We observe thaILNLIN)( )/ JINLIN) () 1

A. Impact of Low-Pass Filter



asTs; — 0, as we would expect. To have small informatiol
loss, we requirel’/Ts > 7, corresponding to a wideband i0*
LPF. WhenT'/Ts ~ 1, which is a more practical scenario,
the Fisher information is reduced by a factor 13 compart 0%
to JNLIN) (1), Hence, we expect significant performanc‘”
degradatlons with a narrowband LPF. Secondly, conS|der|crs 10"
JSE,EIN (1) /JSD%\I (1), we observe that for low oversampling@
factors /T, < 25) JEN () < g (), meaning 8%

=

the nonlinearity is harmful. When the oversampling is in® ] . \
17—~ - MCRB(r), 33% o 3

B

creased, nonlinearity adds Fisher information. ¢, > 7, o NN
(NLIN) b yoo higher thag&) v s - - -MCRB(7), 67% AN T
Jipp (1) is about 50% higher t adLPF (7). & 17[| — MCRBLpr(), 33% RN ]
£ —— MCRBLpr(7), 67% NN
2 || ——FF est.,, model II, 33% AN
B. Impact of Input Power 10°l{ —e— FF est., model II, 67% NN ,
. . -+ -FF est,, model |, 33% AN
We consider 4-QAM and 16-QAM signals and compare tr - o - FF est., model I, 67% N
bounds with the performance of a feed-forward (FF) timin 15 10 = P | (i)Bm] 5 10 15

estimator using the system parameters given in Table |. \&/e us
a conventional ML-based FF timing offset estimator de”\_/edFigure 4. The MCRB with and without LPF, and normalized eation
for AWGN channels from [20, pp. 433-437] and extend it terror variance for 4-QAM for different duty cycles (33% an696).
dual-polarization transmission. The estimator is given as

A R H —jmk/M
F=—ol0 Y [y(RT)) 2(kTy)e . (2D)

2
k=0

where M = T/Ts, N4 is the observation length in sym-
bols, z(kTs) = [e 7™ /My (kT,)] ® c(kTs), and C(f) =
P(f—1/2T)P*(f +1/2T), in which P(f) is the Fourier
transform ofp(t) and¢(¢) is the inverse Fourier transform ofO
C(f). The FF estimator has been applied to both Model 3

variance

given by (6), and Model 11, given by (6), withowi, and ¢y, & f:ﬁgggg:g’ 2?22 T
both from Section 11I-B. Note that the estimator does noy reE ol — MCRBypp(r), 33% ]
on knowledge o# or U. 5 71;/{:CR{3LPF(dT)IvI?7§/§O/ NN
. NLIN —+— FF est., model II, N N

In Figs. 4 and SMCRBrpr(r) = 1/J{5¢(7) for T, = = L7063 odel il 7% RSN ]
T, MCRB(7) = 1/JNMN) (1) and the normalized estimation -+ -FF est., model I, 33% S
error variance with respect to input power is given for 4-QAN  .[_°_FF est, modell, 67% ‘ NN
and 16-QAM, respectively. We observe the following: 2 e e P [dBm] 1 1

« ForMCRB(7), we see a change in slope for higher input
powers, as we expected from our discussion in Sect@?
I1I-C1. The impact of the constellation dMlCRB(7) is
limited, as we would expect from the expression (14),

where the only difference is . _ and (18): the pulse with lower duty cycle has higher peak
« ForMCRBrpr(7), we observe that after an input power  power and undergoes more spectral broadening which

of —5 dBm, the bound stops decreasing monotonously  resuits in a lower bound before the LPF and a higher

and shows an underdamped oscillation. The effectis most )qnd after the LPFE.

obvious in 4-QAM, and becomes less pronounced for, The Model Il error variance follows the general behav-

higher-order constellations. The explanation lies inlesci ior of MCRBLpr(7): for small-order constellations, we

lations in the spectrum after the LPF induced by SPM, as  gpserve pronounced oscillations. At higher input powers,

a function of the input power. The frequency domain 0s-  the slope of the error variance follo@§CRBypp(7).
cillations cause the oscillations in the bound computed by, The Model | error variance is close to the Model I

ure 5.  The MCRB with and without LPF, and normalized eation
or variance for 16-QAM for different duty cycles (33% ad6l%).

(18). According to the results{CRBLpr(7) depends on error variance for low input powers. However, beyond
the type of the pulse, as well. However, the dependency _5 dBm we see significant deviations, and the Model
is opposite toMCRB(7): before the LPF, the bound is | error variance increases rapidly. This is due to the

lower for a pulse with lower duty cycle, whereas after the  jnteraction between the signal and the noise, captured by
contradictory, it is in accordance with the expressiong (14 4 higher input powers. The behavior of the Model | error

SAlthough derivation of new estimation algorithms in thegmece of SPM variance does not seem |mpacted by the ConSte”a.tlon'
is possible, it is not in the scope of this work. We have also observed (results not shown) that whegris



reduced, the boundICRBLpr(7) is reduced, and the error Introducingé, = k/W —nT — 7, we can write the signal
floor disappears. This is congruent with our findings relatemmponent of the received signal as
to Fig. 3. Finally, we mention that the input power to reach a

pre-decoding bit error rate of arouid—3, which is a typical s(k/W)

operating point, is approximately-9 dBm and —2 dBm, Ny

for 4-QAM and 16-QAM, respectively. Hence, we see that _ /P U 36
for 4-QAM, the operating point for this system corresponds "’; anp(&n.r)e

to the linear regime, and traditional estimators can be .used
However, for 16-QAM, the operating point corresponds to the
nonlinear regime, in which case traditional estimatork &id
so the assumption of reliable clock recovery often assumed i N
literature may not hold when the received signal is filtered - ;
Y g =V Pin Z Uanp(gn,k)eje
n=1

2

X exp | jyLeff Na

Ng
\/FTin Z an/p(gn/.,k)

n’'=1

with a too narrow filter. The same holds true for higher-order

modulation formats. . 2 2
X exp (]’YLeﬂ”PinNa lanll” [p(&n k)] ) ,

V. CONCLUSIONS where the last equality is due to the finite durationpof),

and the fact thaU” U = I. Hence
We have determined the MCRB for clock recovery for

a coherent optical communication system with pronounced s,
nonlinear effects (SPM and NLPN), both with and without 5 —

prefilter, and compared the MCRB with the performance of Ng

practical estimators. Our analysis indicates that, for tow — \/P_inZUanp(gn,k)eje

moderate baud rates, whereas nonlinearities are not imtere n=1

detrirr_ler_lt.al in te_rms of the MCRB, _thg use qf too gggresive x e7% exp (j’YLeﬂ”—PinNa ”an”? |p(§n,k)|2)
bandlimiting prefilters can result in significant increasethe N

MCRB. This implies that reliable clock recovery is impogsib = ,

for high input pgwers when the filter at the recyeiver fFr)onden ~ 2j7LerNaPy? Z Uay, [|a, || e/ [p(&n.i)” B(En.r)

is too narrow. In turn, this means that making the assumption n=t

of perfect clock recovery in this regime for the design of x exp (jVLcﬁ'PinNa an || |P(€n,k)|2)-

subsequent receiver block is meaningless, and may lead to

erroneous insights and designs. Moreover, existing @@CtiThen by virtue of the assumptions on the transmitted data
estimators, which were deS|gn_ed for Im_ear transmissien, &ymbols, and the fact thiueje)f‘] (Uei?) =1,

hibit poor performance in the highly nonlinear regime. Henc

(i) care should be taken when designing prefilters, and (ii) e
synchronization algorithms designed specifically for nedr g {8&%} —
transmission may results in many orders of magnitude estima [ 97 07

tion performance improvements. Future work includes the ex =~ Na

tension of the derivation to a wavelength division multipheggy ~ Fin Z E { ”anH2} 1B(Enie)]”
setting, and the derivation of new clock recovery algorghm  »=1

for the highly nonlinear regime. ol .
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Here, we will derive (14), based on the following assump- =1
tions thatp(t) is real, time-limited, and has support within
tel[-T/2,+T/2]. Summation over alk leads to
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Finally, substitution of (22) into (13) yields (14).
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