
Chalmers Publication Library

Deadlock avoidance for multi product manufacturing systems modeled as sequences
of operations

This document has been downloaded from Chalmers Publication Library (CPL). It is the author´s

version of a work that was accepted for publication in:

2012 IEEE International Conference on Automation Science and Engineering: Green

Automation Toward a Sustainable Society, CASE 2012, Seoul, 20-24 August 2012 (ISSN:

2161-8070)
Citation for the published paper:
Bergagård, P. ; Fabian, M. (2012) "Deadlock avoidance for multi product manufacturing
systems modeled as sequences of operations". 2012 IEEE International Conference on
Automation Science and Engineering: Green Automation Toward a Sustainable Society,
CASE 2012, Seoul, 20-24 August 2012 pp. 515 - 520.

http://dx.doi.org/10.1109/CoASE.2012.6386378

Downloaded from: http://publications.lib.chalmers.se/publication/162725

Notice: Changes introduced as a result of publishing processes such as copy-editing and

formatting may not be reflected in this document. For a definitive version of this work, please refer

to the published source. Please note that access to the published version might require a

subscription.

Chalmers Publication Library (CPL) offers the possibility of retrieving research publications produced at Chalmers
University of Technology. It covers all types of publications: articles, dissertations, licentiate theses, masters theses,
conference papers, reports etc. Since 2006 it is the official tool for Chalmers official publication statistics. To ensure that
Chalmers research results are disseminated as widely as possible, an Open Access Policy has been adopted.
The CPL service is administrated and maintained by Chalmers Library.

(article starts on next page)

http://dx.doi.org/10.1109/CoASE.2012.6386378
http://publications.lib.chalmers.se/publication/162725

Deadlock avoidance for multi product manufacturing systems
modeled as sequences of operations

Patrik Bergagård and Martin Fabian
Department of Signals and Systems Chalmers University of Technology

{patrikm, fabian}@chalmers.se

Abstract— This paper demonstrates how industrial models of
the sequential order between manufacturing operations may be
connected with academic resource deadlock avoidance policies.
Given a set of product types each modeled as a sequence of
operations, the operations can be adapted to control concurrent
manufacturing of multiple product instances, without resource
deadlocks and with maximal flexibility. The given sequences of
operations may contain routing flexibility, conjunctive and/or
disjunctive resource requirements, and product assembly. Using
a known deadlock avoidance approach, this paper presents how
to transform the given operations into models required for the
deadlock avoidance approach and how the calculated policy
may be retransformed back into the operations.

I. INTRODUCTION

Operations and sequences of operations are common
elements that interconnect products, processes, resources,
and automation information during design of products and
manufacturing systems in industry [1]. Machining and as-
sembly of products can be described by operations where
each operation requires one or multiple resources from a
manufacturing system. In order to raise the resource uti-
lization, multi product manufacturing systems are designed
to process more than one product at the same time. The
products can be instances from a single product type or from
multiple product types.

It is a challenging task to design a flexible control function
for these types of systems. One challenge has to do with
allocation of resources for the different products. It is well
known that concurrent processing of products in systems
with finite resource capacity may result in deadlocks [2].
A common industrial solution to these type of problems are
over-specified control functions that limit the flexibility of
the manufacturing system [3]. Well defined mathematical
methods, i.e. formal methods, are seldom used.

To find deadlock avoidance control policies is a well
established problem in the discrete event systems community.
The systems are classified as different types of Resource
Allocation Systems (RASs), for which different policies are
valid [4]. One way to calculate a control policy is to use
the synthesis algorithm in the supervisory control theory [5].
Synthesizing an optimal supervisor belongs to the class of
NP-complete problems [6]. Some work has therefore aimed

This work has been carried out at the Wingquist Laboratory VINN
Excellence Centre within the Production Area of Advance at Chalmers.
It has been supported by the European 7th FP, grant agreement number
213734 (FLEXA) and Vinnova. The support is gratefully acknowledged.

for sub-optimal solutions that are computationally efficient,
see for example [7], but these solutions are also less flexible.
Others have aimed for the optimal solution, for example [8].

The control policy can be developed online or offline. An
online policy can be recalculated, based on the current prod-
ucts in the system, when a product enters or exits. The benefit
is a limited state space in the calculation. The drawback is the
need for extra algorithms online. An approach is presented
in Papers IV and V in [9], where each new product that
enters is instantiated from a product type library. An offline
policy copes with all product combinations in advance. The
offline deadlock avoidance policy can be implemented into
the control function, therefore no extra online algorithms are
needed. A drawback is the possible state space explosion
during the offline calculation.

Many of the approaches presented in the literature have
focused on deadlock avoidance policies for products that
undergo different machining sequences in the same system,
see for example [10], [8], [7]. Deadlock avoidance policies
for systems that include assembly is less common, see for
example [11] that use Petri nets for modeling and [12] that
uses digraphs.

Motivated by the above observations, this paper tries to
bridge the operation models from industry with academic
deadlock avoidance policies. This paper describes an offline
approach for how to adapt sequences of operations, that
model processing of single product instances in multi product
systems with reusable resources, to operations that can
control processing of multiple product instances. The adapted
operations are applied with the avoidance policy presented in
[10] to enable concurrent processing without deadlocks. The
focus in this paper is on the bridging of operation models
and deadlock policies, thus any policy could have been used
for demonstration. The approach in [10] is selected since the
models are condensed and the approach aims for the optimal,
most flexible, avoidance policy.

Moreover, the presented approach allows a user to specify
which resource(s) each operation requires and not have to
explicitly deal with resource allocation and deallocation. The
requirement can be a conjunction and/or a disjunction of
resources. More than one instance of a resource type can be
required. The sequences of operations may include routing
alternatives and product assembly.

II. PRELIMINARIES

In this paper, a manufacturing system contains a set of
resource types. The number of instances for a resource type
X is denoted Xc.

Processes and tasks that are to be executed on a product
are modeled by operations. The set of operations that are to
be executed on each instance of a product type is given as a
sequence of operations (SOP) [1]. Here, the term sequence
does not necessarily imply a straight sequence, alternative
and parallel execution are also allowed. A SOP is a generic
model used in various types of industries, such as, batch
processing, automotive, and manufacturing. An operation
in a SOP can execute once for each product instance. An
operation is supplemented with what resource type(s) that
is(are) required in order to execute.

In this paper, each operation is appended with a pre- and/or
post- transition condition that has to be satisfied before the
operation can start and finish, respectively [1]. A transition
condition (in the following just condition) can be used to put
constraints on the current system state and on the succeeding
system state.

In this paper, the sequential relations between operations
in a SOP are modeled as conditions. The sequential relations
are visualized with the graphical language Sequences of
Operations, introduced in [1]. Figure 1 shows two SOPs.
The syntax is exemplified on operation O13. O13 has a
precondition. O13 can start if O12 has finished and that there
is one instance of resource type M3 available in the system.
The sequential relation to O12 is represented with an arrow
and the resource requirement is given to the right of the
operation label.

To formally model SOPs for calculating deadlock avoid-
ance policies, Extended Finite Automata (EFAs) [13] are
used. An (deterministic) EFA is a Finite Automaton with
bounded integer variables. Each transition can be appended
with a set of guard expressions (in the following just guards)
and/or a set of action functions (in the following just actions).
A transition is enabled if all guards evaluate to true and each
action evaluates to a value inside the domain of the variable
for which the function is defined. All transitions with in-
cremental increasing and/or decreasing actions are appended
with guards to prevent that the variables are updated to values
outside their domains. In this paper, these guards are omitted
for readability. A minimally restrictive, non-blocking, and
controllable supervisor [5] can be synthesized from an EFA
model [13]. The supervisor may be characterize as guards
for the initially defined transitions [14].

The operations in Figure 2 lack explicit sequential re-
lations. Instead, the operations are related through a set
of bounded integer variables. O13 is once again used for
exemplification. O13 has both a pre- and a postcondition.
O13 can start if the boolean guard expression (prefixed
g:) evaluates to true and each of the four action functions
(prefixed a:) evaluate to a value inside the domain of the
variable for which the function is defined. O13 can finish if
the single action function evaluates to a valid value.

III. EXPLAINING THE CONCEPT

The sequences of operations (SOPs), that model product
types, are transformed into an Extended Finite Automaton
(EFA) model required for the approach in [10]. A supervisor
is synthesized from the EFA model [14]. Guards are extracted
from the supervisor [14]. Finally, in the retransformation, the
supervisor (as a set of guards) is applied to the operations.

It is important so stress that any synthesis algorithm
succeeded with guard extraction can be used. The focus
and contribution of this paper is the transformation from the
operation model to the EFA model and the retransformation
of the extracted guards back to the operations.

A. The modeling approach used in [10]

The approach proposed in [10] uses two variable types
to model a system in an EFA formalism: resource variables
and instance variables. Each resource type, X, in the system
is modeled as a resource variable, with a domain from 0 to
Xc. Xc is the initial and marked value. Each product type is
described as a set of processing stages (in the following just
stages), where each stage requires a set of resource instances
to execute. Each stage is modeled as an instance variable.
The domain is from 0 to n, where n is the maximal number
of instances that can execute the stage simultaneously. n can
be calculated based on the available resource instances in the
system. 0 is the initial and marked value. The use of instance
variables gives partial order reduction benefits for the size of
the model in contrast to explicit product instance models.

The connection, sequential relation, between two consecu-
tive stages is modeled as a transition with unique controllable
event, guards and actions. The transition is self-looped at
the single location that exists in the EFA model. Three
general expressions can be identified in a connection: allo-
cation, deallocation, and progress. The allocation expression
checks for availability of resource instances required in the
target stage, and also performs the actual allocation. The
deallocation expression deallocates resource instances used
in the source stage. Finally, the progress expression checks
for availability of an instance in the source stage, and also
performs the switch between source and target instance
variables.

B. A Single-Unit RAS

Example 1. The following example is adapted from Example
1 in [4]. Two product types (P1 and P2) are to be produced
in a flexible automated robotic system consisting of four
resource types (M1-M4), and a transporter robot, where
M1c=M2c=M3c=M4c=1. Each instance of a product type is
machined in three operations. The operations have sequential
relations to other operations and resource requirements as
given according to the product type SOPs in Figure 1. The
operations are to be executed in a straight sequence. The
robot is only used when both a source and a target resource
are allocated, it can therefore be omitted in the deadlock
calculation.

O11 | M1(1) O12 | M2(1) O13 | M3(1)

O21 | M3(1) O22 | M4(1) O23 | M1(1)

Fig. 1. The SOP for product type 1 (P1) top and for product type 2 (P2)
bottom.

Transformation and retransformation are presented for the
operations in P1. The operations in P2 are (re)transformed
similarly but with reversed resource allocation.

1) Transformation: The transformation is based on the
idea that an operation is modeled as a transition and a stage
and that an operation is finished at the same time that it is
started, i.e. there is no explicit state for execution. In order
to include the execution state in the final result, an additional
type of progress expressions are added to the operations in
the retransformation.

Resources allocated for the last stage before a product
exits a system, the terminal stage, are eventually deallocated
without allocating any new resources. Deallocation will not
cause deadlock. Thus, it is enough to check that the resources
required for a terminal stage are available, but no allocation
is necessary in the model used for deadlock analysis, see
Papers IV and V in [9]. Therefore a terminal stage in [10]
lack instance variable and is only modeled by a transition.

The EFA model for Example 1 contains four resource
variables mk, k=1..4, and two times two instance variables
oij, i,j=1, 2. All variables have a domain {0, 1}.

The description below shows allocation,deallocation, and
progress expressions for the three transitions that model the
operations in P1. A guard is prefixed with a g: and an action
is prefixed with a a:. A transition can only fire if all guards
and actions are satisfied [13].

o11 a:o11+=1 a:m1-=1
o12 a:o11-=1 a:o12+=1 a:m2-=1 a:m1+=1
o13 g:m3>=1 a:o12-=1 a:.m2+=1

The progression of the product instances through the
system is modeled with the progress expressions. The outside
of the system is assumed never to be restrictive, so a
new product instance can always enter the system if the
expression for O11 is satisfied. Similarly, a product can
always exit the system if the expression for O13 is satisfied.
Operation O13 is modeled as a terminal stage. Deallocation
of resource instances is performed in the first successor stage
that does not require the instance, in this case in O12 (for
M1) and in O13 (for M2).

2) Calculation of the avoidance policy: The problem to
coordinate concurrent processing of P1 and P2 is reduced to
synthesizing a supervisor for the EFA model [10]. The EFA
model for Example 1 contains; a single location EFA with
six self-loop transitions (three transitions per product type),
six controllable events (one for each transition), and four
variables for resources and four variables for operations. The
synthesized supervisor is realized as guards over the defined
EFA variables for when each controllable event can be (or
can not be) executed [14], [10]. The extracted guards are not
necessarily unique. Several variable value combinations can
correspond to the same state in the supervisor.

3) Retransformation: In the retransformation; the super-
visor is applied to the operations, explicit execution states
are added to the calculated policy, and allocation and deal-
location expressions are added for operations modeled as
terminal stages.

The start of each operation is modeled as a transition with
a unique event in the EFA model, therefore the extracted
guards can be applied directly to the precondition of the
corresponding operation.

In order to express that an operation has to be finished
before a successor operation can start, an additional set
of variables is included into the model. The new set of
variables is a duplicate of the set of instance variables. An
additional type of progress expressions, termed stretched
progress expressions, are included in the model to capture
that an operation progresses from executing to finished.
The stretched progress expressions are used on the new
variables in the same way as the progress expressions are
used on the instance variables. The single difference is that
the incrementation takes place in the postcondition of each
operation, instead of the precondition.

The three operations in Figure 2 show allocation,
.deallocation, progress, stretched progress, and

:::::::
extracted

:::::
guard for the retransformed operations in P1.

g:
::::
o12!=1

:
|
:::::

o21!=1
:
|
:::::

o22!=1
a:o11+=1
a:m1-=1

O11

a:o11f+=1

a:o11-=1
a:o11f-=1
a:o12+=1
a:m2-=1
a:.m1+=1

O12

a:o12f+=1

g:m3>=1
a:o12-=1
a:o12f-=1
a:m3-=1
a:.m2+=1

O13

a:.m3+=1

Fig. 2. Retransformed operations in P1.

Operations O11 and O21 are the single operations with
extracted guards in Example 1. The guard for O11 in Figure
2 is a disjunction of instance variables.

Note that the deallocation of the M1 (M2) instance occurs
in the transition that connects the two operations O11 and
O12 (O12 and O13) in the EFA model. Thus, at least one
M1 (M2) instance is available in the target state for these
transitions in the synthesis. The introduction of the stretched
progress expressions will divide all these target states into
execution and finish states, so the resource instance should
eventually be deallocated in one of these states. Therefore,
the deallocation of the M1 (M2) instance in operation O12
(O13) can be an action in the pre- or the postcondition and
still comply with the supervisor. In Figure 2, the deallocation
is a preaction. This discussion is continued in Section V.

C. To summarize

This section has shown how operations that model machin-
ing of two product types can be adapted to operations that
control concurrent machining of multiple product instances
without resource deadlocks and with maximal flexibility.
The initial conditions that model sequential relations and
resource requirements are replaced with conditions that use

the resource variables and two times the instance variables
defined in the approach in [10].

For the discussion to follow, the operations in P1 are
classified as start (O11), sequence (O12), and terminal
operation (O13), respectively.

IV. COMPLEX MACHINING AND ASSEMBLY

Many systems are more flexible than the system in Ex-
ample 1. A product can be machined in alternative branches
and/or by alternative resources. New product instances can
originate from sub-instances. Therefore, this section de-
scribes transformation and retransformation for SOPs with
different types of alternatives and assembly.

A. A Conjunctive/Disjunctive RAS with assembly

Example 2. A system is to perform machining on sub-
products (P5, P6, and P7) and thereafter assemble the sub-
products into products (P8 and P9). The SOPs for the product
types are given in Figures 3 and 5-7. The system consists of
five resource types: M9c=1, M5c=M6c=M8c=2, and M7c=3.
The system allows the (sub-) products to be machined and
assembled in alternative branches. Two types of alternatives
are identified: controllable and uncontrollable alternatives. In
a controllable alternative, all branches are equally good from
a product point of view, therefore any branch can be chosen.
In an uncontrollable alternative, the branch is chosen online
based on the outcome from a predecessor operation.

The resource requirements in the operations for P5 (P6 and
P7) are conjuncted with one instance of a movable fixture of
type Fa (Fb), Fac=2 and Fbc=3. Allocation of more than one
resource type at the same time is an example of a Conjunctive
RAS [4].

Transport of products between resources and transport of
empty fixtures are only performed when both source and
target resources are allocated. Transport can therefore be
omitted in the deadlock analysis.

1) A controllable alternative: The SOP for P5, see Figure
3, contains a controllable alternative, the system can choose
left or right branch for each product instance. This is an
example of a Disjunctive RAS [4].

O51 | M5(1)∧Fa(1)

O52 | M6(1)∧Fa(1)

O53 | M7(1)∧Fa(1)

O54 | M8(1)∧Fa(1)

O55 | M6(1)∧Fa(1)

Fig. 3. SOP for machining of sub-product P5.

All operations for P5 except O55 are transformed as start
or sequence operations. Each branch in the alternative may
require different allocation and deallocation expressions and
for sure different progress expressions when they merge. A
stage which follows directly after the merge of alternative
branches is therefore transformed into as many transitions as

there are alternative branches [10]. A unique event is added
for each transition. Thus, operation O55 is transformed into
two transitions, in the following termed o55l and o55r. Each
instance of P5 will eventually be assembled, O55 is therefore
modeled with one instance variable in the EFA model.

Resource allocation and deallocation will not take place
between two consecutive operations that have the same
resource requirements. The fixture instance allocated in op-
eration O51 is therefore used in all operations O5x.

The description below shows the transitions for P5 in the
EFA model for Example 2.

o51 a:o51+=1 a:m5-=1 a:fa-=1
o52 a:o51-=1 a:o52+=1 a:m6-=1 a:m5+=1
o53 a:o51-=1 a:o53+=1 a:m7-=1 a:m5+=1
o54 a:o53-=1 a:o54+=1 a:m8-=1 a:m7+=1
o55l a:o52-=1 a:o55+=1
o55r a:o54-=1 a:o55+=1 a:m6-=1 a:m8+=1

All operations for P5 except O55 are retransformed as
start or sequence operations. Operations that are transformed
into multiple transitions, where each transition allocates and
deallocates different resources, are retransformed into the
same number of operation instances in the final result.
The use of a unique event for each transition enables the
guards extracted from the supervisor to be applied directly
to each operation instance. It is important to stress that each
operation instance is executed in the same way, it is only the
preconditions that are different. Figure 4 shows operation
O55 after retransformation. Each product instance of P5
executes O55l or O55r. The machining of a product instance
is the same in both O55l and O55r. Note that only O55r is
applied with an extracted guard.

O55

a:o52-=1
a:o52f-=1
a:o55+=1

O55l

a:o55f+=1

g:
:
...

a:o54-=1
a:o54f-=1
a:o55+=1
a:m6-=1
a:.m8+=1

O55r

a:o55f+=1

Fig. 4. Retransformation of operation O55. The guard expression in O55r
is left out for clarity.

2) An uncontrollable alternative: The SOP for P6, see
Figure 5, contains an uncontrollable alternative. The outcome
of operation O62 determines if the left or the right branch
should be executed for each product instance. This can for
example be used to model abnormal behavior as in [10].

The deadlock avoidance policy must assure that an in-
stance of P6 can execute both operation O63 followed by
O64, and O65 followed by O66, when the product instance
is finished with O62. This is not the case in a controllable
alternative, as in the SOP for P5, where it is enough that
an instance can execute one of the branches in the alterna-
tive. The approach in [10] captures this online choice with
uncontrollable events, events that cannot be disabled by the
supervisor [5]. The first operations in an uncontrollable alter-
native are transformed into two transitions and two instance

O61 | M5(1)∧Fb(1)

O62 | M6(1)∧Fb(1)

O63 | M7(1)∧Fb(1)

O64 | M8(1)∧Fb(1)

O65 | M7(1)∧Fb(1)

O66 | M9(1)∧Fb(1)

O67 | M6(1)∧Fb(1)

Fig. 5. SOP for machining of sub-product P6. The dotted line, to visualize
an uncontrollable alternative, is an extension to the graphical language
Sequences of Operations [1].

variables in the EFA model. A unique uncontrollable event
is applied to the first transition and a unique controllable
event is applied to the second transition. Progress expressions
are added to the transitions in order to progress to the first
instance variable with the uncontrollable transition and then
progress to the second instance variable with the controllable
transition. Resource allocation and deallocation expressions
are added to the controllable transition. The first instance
variable models that a product is still in the predecessor
operation, but the outcome of which branch to choose has
been determined. The second instance variable models that
the product is in the first operation of the chosen branch.

The description below shows the transitions connected to
the uncontrollable alternative for P6 in the EFA model for
Example 2.

o63uc a:o62-=1 a:o63c+=1
o63 a:o63c-=1 a:o63+=1 a:m7-=1 a:m6+=1
o64 a:o63-=1 a:o64+=1 a:m8-=1 a:m7+=1
o65uc a:o62-=1 a:o65c+=1
o65 a:o65c-=1 a:o65+=1 a:m7-=1 a:m6+=1

The retransformation of the operations in P6 is similar to
the retransformation as described for the operations in P5.

The uncontrollable transitions are only included to guar-
antee that each branch can be chosen in the synthesis. These
transitions are therefore removed in the retransformation.
This removal requires modification of the progress expres-
sions for the first operations in the uncontrollable alternative.

The first operation that follows directly after the merge of
uncontrollable alternative branches is retransformed in the
same way as if it was a controllable alternative.

3) Alternatives in sequence: The SOP for P7 is given in
Figure 6. The disjunctive resource requirements in operations
O73 and O74 are syntactic sugar for a controllable alternative
with a single operation in each branch. Operation O72
requires two instances of resource M7 in order to execute.
The upper limit for the instance variable for O72 is given
through truncated integer division as min{M7c/2, Fbc}.

Alternatives in sequence raise the number of transitions
in the EFA model in order to capture the different allocation
and deallocation combinations. The description below shows
some of the transitions for P7 in the EFA model for Example
2.

o72 a:o71-=1 a:o72+=1 a:m7-=2 a:m5+=1
o73 a:o72-=1 a:o73+=1 a:m7+=1

O71 | M5(1)∧Fb(1)

O72 | M7(2)∧Fb(1)

O73 | [M7(1)∨M6(1)]∧Fb(1)

O74 | [M8(1)∨M9(1)]∧Fb(1)

O75 | M6(1)∧Fb(1)

Fig. 6. SOP for machining of sub-product P7. The disjunctive resource
requirement is short for a controllable alternative.

o73’ a:o72-=1 a:o73’+=1 a:m6-=1 a:.m7+=2
o74l a:o73-=1 a:o74+=1 a:m8-=1 a:m7+=1
o74r a:o73’-=1 a:o74+=1 a:m8-=1 a:.m6+=1
o74’l a:o73-=1 a:o74’+=1 a:m9-=1 a:.m7+=1
o74’r a:o73’-=1 a:o74’+=1 a:m9-=1 a:.m6+=1

The retransformation of the operations in P7 follows the
retransformation for the operations in P5.

4) Assembly: The SOPs for P8 and P9 are given in Figure
7. Each P8 (P9) instance is assembled from one P5 and one
P6 instance (one P5 and one P7 instance). This is graphically
specified with operations O55 and O67 (O55 and O75) in
parallel before O81 (O91) can start.

O55 | M6(1)∧Fa(1)

O67 | M6(1)∧Fb(1)
O81 | M8(1) O82 | M5(1)

O55 | M6(1)∧Fa(1)

O75 | M6(1)∧Fb(1)
O91 | M8(1)∨M9(1) O92 | M5(1)

Fig. 7. The SOP for P8 top and P9 bottom.

Transformation for assembly situations are not included in
the approach in [10]. A straightforward extension, to include
assembly in the EFA model, is to let the progress expression
for an assembly operation require a product instance in
each of the ingoing branches. The deallocation expression
deallocates all resource instances that are not used in the
assembly operation.

The description below shows the transitions for P9 in the
EFA model for Example 2. Operations O82 and O92 are
transformed as terminal operations.

o91 a:o55-=1 a:o75-=1 a:o91+=1 a:m8-=1 a:m6+=2 a:.fa+=1
a:.fb+=1

o91’ a:o55-=1 a:o75-=1 a:o91’+=1 a:m9-=1 a:m6+=2 a:.fa+=1
a:.fb+=1

o92l g:m5>=1 a:o91-=1 a:.m8+=1
o92r g:m5>=1 a:o91’-=1 a:m9+=1

Operations O81, O91, and O91’ are retransformed as
sequence operations. O82 and O92 are retransformed as
terminal operations. Note that O92 is retransformed like O55,
because of the alternative in O91.

5) Computational results: The EFA model for Example
2 has 75135 reachable states. The supervisor for the model
contains 68118 states. 19 out of the 32 events in the EFA
model are applied with extracted guards. The extracted
guards are too complex to be understood by a human.

Transformation, synthesis ([14]), guard extraction ([14]), and
retransformation take a few seconds on a standard computer.

V. DEADLOCK ARISING FROM INCORRECT
DEALLOCATION

As indicated in Section III-B.3, in order to comply with the
supervisor, resource instances should be deallocated in the
first successor operation to an operation where the resource
instances are not required. It is rather straightforward to
see that deallocation in another successor operation than the
first successor operation can cause deadlock. The synthesized
control policy is not valid.

A slightly modified Example 1, see Figure 8, is included
as observation. The M1 instance used in operation O11 is
deallocated in O13 instead of O12, as required. State p is
then a deadlock state because the modified deallocation gives
no M1 instance available in state p. A correct deallocation
would have enabled operations O11 and O23 to start from
state p. Both O11 and O23 require a M1 instance.

Fig. 8. Synchronization of the retransformed operations from the modified
Example 1. Only start events are included for clarity.

It is maybe less obvious to see that deallocation of a
resource instance as an action in the postcondition to the
operation where it has been used can also cause deadlock.
An example is given in Figure 9. The SOPs for P3 and P4
are given in Figure 10. The system has the same resources as
in Example 1. The M1 instance used in O31 is deallocated
with an action in the postcondition to O31 and not in O32, as
is required in the approach. State e is then a deadlock state
because neither O32 nor O42 can start. O41 is not enabled
in state d if the deallocation would have been performed in
O32.

Fig. 9. Synchronization of the retransformed operations given in Figure
10, with incorrect deallocation. Only start events are included for clarity,
except for O31.

O31 | M1(1)∧M4(1) O32 | M2(1)∧M4(1) O33 | M3(1)

O41 | M1(1)∧M2(1) O42 | M4(1)

Fig. 10. The SOPs for P3 top and P4 bottom.

VI. CONCLUSION

This paper has shown how to adapt initial defined se-
quences of operations that model machining and assembly
of single product instances of different types to operations
that control concurrent manufacturing of multiple product
instances. The proposed approach can handle initially defined
sequences of operations with routing flexibility. Two types of
flexible routing are described, controllable and uncontrollable
alternatives. An operation may have a conjunctive and/or dis-
junctive resource requirement. The concurrent manufacturing
is without resource deadlocks and with maximal flexibility.
The formal deadlock avoidance approach presented in [10]
is used as a back-end.

As outlook and future work, the approach in this paper
can be refined and improved from the following aspects:
• In order to increase the number of systems for which the

approach is applicable, study how to model resources
that cannot be abstracted with a binary variable.

• The approach in [10] suffers from state space explosion
for large system sizes, it is therefore interesting to find
variable encodings that can mitigate this problem.

REFERENCES

[1] B. Lennartson, K. Bengtsson, C. Yuan, K. Andersson, M. Fabian,
P. Falkman, and K. Åkesson, “Sequence Planning for Integrated
Product, Process and Automation Design,” IEEE Transactions on
Automation Science and Engineering, vol. 7, no. 4, pp. 791–802, 2010.

[2] E. G. Coffman, M. J. Elphick, and A. Shoshani, “System Deadlocks,”
Computing Surveys, vol. 3, no. 2, pp. 67–78, 1971.

[3] K. Bengtsson, Operation Specification for Sequence Planning and
Automation Design. Licentiate Thesis, Chalmers University of Tech-
nology, 2009.

[4] S. A. Reveliotis, “Resource allocation systems: concepts and prob-
lems,” in Real-Time Management of Resource Allocations Systems A
Discrete Event Systems Approach, ch. 1, Springer, 2005.

[5] P. J. Ramadge and W. M. Wonham, “Supervisory control of a class of
discrete event processes,” SIAM Journal of Control and Optimization,
vol. 25, no. 1, pp. 206–230, 1987.

[6] E. M. Gold, “Deadlock Prediction: Easy and Difficult Cases,” SIAM
Journal on Computing, vol. 7, no. 3, pp. 320–336, 1978.

[7] J. Park and S. A. Reveliotis, “Deadlock avoidance in sequential
resource allocation systems with multiple resource acquisitions and
flexible routings,” IEEE Transactions on Automatic Control, vol. 46,
no. 10, pp. 1572–1583, 2001.

[8] Z. Li, M. Zhou, and M. Jeng, “A maximally permissive deadlock
prevention policy for FMS based on Petri net siphon control and the
theory of regions,” IEEE Transactions on Automation Science and
Engineering, vol. 5, no. 1, pp. 182–188, 2008.

[9] K. Åkesson, Methods and Tools in Supervisory Control Theory -
Operator aspects, computational efficiency, and applications. PhD
Thesis, Chalmers University of Technology, 2002.

[10] Z. Fei, S. Miremadi, and K. Åkesson, “Modeling sequential resource
allocation systems using Extended Finite Automata,” in IEEE Interna-
tional Conference on Automation Science and Engineering, pp. 444–
449, 2011.

[11] E. Roszkowska, “Supervisory Control for Deadlock Avoidance in
Compound Processes,” IEEE Transactions on Systems, Man and
Cybernetics, Part A: Systems and Humans, vol. 34, no. 1, pp. 52–
64, 2004.

[12] M. Fanti, G. Maione, and B. Turchiano, “Design of supervisors to
avoid deadlock in flexible assembly systems,” International Journal
of Flexible Manufacturing Systems, vol. 14, no. 2, pp. 153–171, 2002.

[13] M. Sköldstam, K. Åkesson, and M. Fabian, “Modeling of Discrete
Event Systems using Finite Automata With Variables,” in IEEE
Conference on Decision and Control, pp. 3387–3392, 2007.

[14] S. Miremadi, K. Åkesson, and B. Lennartson, “Symbolic Computation
of Reduced Guards in Supervisory Control,” IEEE Transactions on
Automation Science and Engineering, vol. 8, no. 4, pp. 754–765, 2011.

