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Abstract

The problem of finding a maximum independent set in a graph is known to be NP-
hard[1]. In fact, even various weaker forms of the maximum independent set problem,
such as approximating its size within a large factor, are known to have no polynomial
time solutions unless P=NP[2].

In this report, we consider a special case of the maximum independent set problem
in which a large independent set is hidden in an otherwise random graph. This model is
the graph complement of the random planted clique graph proposed by Jerrum[5] and
Kučera[6]. We show that the Lovász number, as introduced by Lovász[17], of graphs
generated according to this model is exactly the size of the planted independent set with
high probability, provided the planted set is sufficiently large. This characterization of
the Lovász number extends the technical Lemma by Feige and Krauthgamer[8]. We
also derive a similar property for an upper bound on the Lovász number introduced by
Luz[19].

After this, we discuss the problem of certifying a maximum independent set in this
model. We present a method for reducing the problem of certifying a maximum in-
dependent set to certifying that a certain matrix is positive definite. This method is
significantly faster than the algorithm presented by Feige and Krauthgamer, while still
working in essentially the same parameter regimes.

Keywords: Independent set, planted clique, Erdös-Rényi graphs, Lovász
number, certificate, eigenvalues.
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Chapter 1

Introduction

An independent set S of a simple undirected graph G = (V,E) is a subset of the vertex
set such that no pair of distinct vertices in S has an edge between them. Similarly, a
clique S of G is a subset of the vertex set such that all pairs of distinct vertices in S
have an edge between them. We define the independence number of G, α(G), as the size
of the largest independent set of G.

The problem of computing α(G) for a general graph G (or more accurately the
problem of deciding whether α(G) ≥ k for some given k), is one of Karp’s 21 NP-complete
problems[1] and is thus one of the first problems to be shown to be NP-complete. In
fact, it has been shown that even approximating α(G) within a factor of nr for some
r > 0 can not be done unless P=NP[2]. It is therefore unlikely that some polynomial
algorithm for finding α(G) for a general graph ever will be found.

One method that has been used to tackle the problem of finding the independence
number of a graph G is to express α(G) as the optimal value of some optimization
problem and instead solve some appropriate relaxation. As α(G) is most naturally
expressed as a maximization problem, these relaxations provide upper bounds on the
independence number. Arguably the most famous such bound is known as Lovász ϑ-
function or the Lovász number of a graph G. This function can be formulated as the
optimal value of a semi-definite programming, SDP, problem and can thus be computed
in polynomial time[3]. A definition of ϑ(G) will be presented in Chapter 3. While ϑ(G)
has no guarantee of being close to α(G) for a general graphs, it has been shown that
there is a large class of graphs where α(G) = ϑ(G) including bipartite, chordal and
perfect graphs[4].

In order to bridge the gap between worst case performance and these special classes
of graphs, it is natural to ask what can be done for an “average” graph, one which is
neither constructed to be particularly hard nor easy to solve. The most straight-forward
way to formalize this question would be to consider some kind of random graph model.

The following random model was proposed by Jerrum[5] and Kučera[6] regarding to
the maximum clique problem: A graph on the vertex set {1, . . . n} is constructed by
tossing a fair coin for each of the

(
n
2

)
possible edges and including the edge if the outcome

is heads. A subset of k vertices is then picked at random with uniform probability and
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a clique is planted on them by adding all edges between pairs of vertices in the subset.
As taking the graph complement maps cliques to independent sets and vice versa,

solving the maximum clique problem for this graph and the maximum independent set
problem for the complement graph are equivalent. To apply this model to the indepen-
dent set problem we will thus consider the graph complement of the model. However,
by convention we will keep the notion of planting cliques rather than independent sets.

Jerrum and Kučera posed independently the problem of finding for which n and k
the planted set could be retrieved with high probability in polynomial time, given the
graph. It can be shown that for k much larger than log n, this set is the maximum clique
with high probability, so the problem is equivalent to finding the maximum clique in the
graph.

Kučera noted that for k ≥ C
√
n log n, the planted clique was the k vertices with

highest degrees with high probability, allowing an easy means for retrieval. The problem
of retrieving the clique for k = o

(√
n log n

)
was first solved by Alon, Krivelevich, and

Sudakov[7]. They showed that, for k ≥ C
√
n, the eigenvector corresponding to the

second largest eigenvalue of the adjacency matrix is very concentrated on the planted
clique with high probability, and used this to retrieve the clique. Their result has later
been matched by various other techniques: Feige and Krauthgamer[8] showed that the
clique could be recovered by inspecting the optimal solution of one formulation of ϑ(Ḡ).
Feige and Ron[9] gave a very nice proof that iteratively removing the vertex with lowest
degree would leave a large fraction of the clique. This algorithm has the advantage of
running in O(n2) time, making it significantly faster than previously known methods, but
their proof only guarantees a probability of success of 2

3 . Later, Dekel, Gurel-Gurevich,
and Peres[10] presented an algorithm for recovering the planted set with high probability
in O(n2) time based on sampling degrees.

Interestingly, the methods mentioned above all break down at k = o(
√
n) for seem-

ingly unrelated reasons, and there is currently no known algorithm that has been proved
to recover cliques of that size. It has however been noted by Alon et al. that the prob-
lem of recovering a hidden clique of size k ≥ C

√
n for any positive constant C can be

solved in polynomial time. One approach to recover cliques of size k ≥ Cn1/3(log n)4

was proposed by Frieze and Kannan[11], but their method requires maximizing a cubic
form, which currently has no known polynomial time implementations.

One method of special interest to this thesis is the algorithm presented by Feige
and Krauthgamer. Using properties of Lovász ϑ-function their algorithm manages to
provide a tight upper bound on the independence number, certifying optimality of found
solutions. Feige and Krauthgamer also showed that their method retrieves the clique in
an extension of the planted clique model in which an adversary is allowed to remove any
edges not in the clique. While both of these properties could potentially be very useful
in applications, computing Lovász ϑ-function requires solving an SDP problem, which is
notoriously computer-intensive. To the author’s knowledge, the fastest known algorithm
approximates the Lovász number within an additive error of δ > 0 in O

(
(ϑ/δ)2n5 lnn

)
time where ϑ denotes the Lovász number of the given graph[12]. Because of this, their
method is simply infeasible in many cases, especially compared to the very elegant O(n2)
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solutions. It would therefore be of interest to reproduce these properties by some more
practical algorithm.

In this report we will consider an extension of the planted clique model, where we
allow the coin to be (possibly extremely) biased. We will investigate the behavior of
two upper bounds of the independence number of the complement of these graphs, and
how this relates to the problem of finding the maximum clique. After this, we discuss
the problem of certifying maximum independent sets and propose a novel method for
certifying optimality of the planted set in this model.
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Chapter 2

Preliminaries

In this report, the word graph will always refer to simple undirected graphs. For a graph
G, we will denote the complementary graph Ḡ. For simplicity we will always assume
V = {1, . . . n}. For a vertex i, N(i) denotes the neighbors of i, i.e. the set of all j ∈ V
such that i and j are connected by an edge in G. An independent set S is said to be a
maximal independent set if it is not a proper subset of some other independent set. If S
is an independent set such that |S| = α(G), then S is a maximum independent set.

For vectors, we will use ‖ · ‖ to denote the Euclidean norm. Unless stated otherwise,
all vectors are assumed to be column vectors.

The adjacency matrix A of a graph G = (V,E) is the n×n matrix defined by Aij = 1
if ij ∈ E and Aij = 0 if ij 6∈ E. Note that the adjacency matrix is always symmetric.

For any square diagonalizable n× n matrix M we will denote the eigenvalues by

λ1(M) ≥ λ2(M) ≥ · · · ≥ λn(M). (2.1)

By convention, we will in some cases write λmin instead of λn. For a matrix M we define
the matrix norm

‖M‖ = sup
x, y

xTMy

‖x‖‖y‖
. (2.2)

Recall that for symmetric matrices, this equals maxi |λi(M)|.
The results derived will consider asymptotic properties of random graphs. This means

that the random graph model considered will be likely to have said property provided
the number of vertices n is sufficiently large. We will use the following notation:

� f(n) = O (g(n)) iff lim supn→∞
∣∣∣f(n)
g(n)

∣∣∣ <∞
� f(n) = Ω (g(n)) iff g(n) = O (f(n))

� f(n) = o (g(n)) iff lim supn→∞
∣∣∣f(n)
g(n)

∣∣∣ = 0

� f(n)� g(n) iff g(n) = o (f(n))

� f(n)� g(n) iff g(n)� f(n)

5



In particular, if an event occurs with probability 1 − o(1) we say that the event occurs
with high probability.

2.1 Random graphs models

We will use G(n, p) to denote a random graph on n vertices where each of the
(
n
2

)
potential edges are included independently with probability p. This model for generating
random graphs is commonly referred to as the Erdős-Rényi model.

G(n, p, k) denotes the random graph constructed by planting a clique on a random
vertex set of size k in G(n, p), i.e. picking k vertices at random with uniform distribution
and adding all edges between these vertices. Equivalently, we can see G(n, p, k) as the
graph generated by first planting a clique on a random vertex set of size k on the
empty graph of size n and then independently adding each remaining potential edge
with probability p.

We use Ḡ(n, p, k) to denote the complement graph of G(n, p, k). We will refer to
the k chosen vertices as the planted clique, the planted independent set when considering
the complement graph, or simply the planted set. To simplify notation, we will always
assume that the planted set is the vertices {1, . . . k}.

2.2 Spectrum of random matrices

A central building block of the proofs in this thesis is bounding the eigenvalues of certain
symmetric random matrices. In a famous article by Füredi and Komlós[13] it is shown
that under certain conditions, all eigenvalues of a random symmetric matrix with inde-
pendent entries are bounded in absolute value by (2 + ε)σ

√
n with high probability for

any ε > 0, where σ is the standard deviation of the individual elements in the matrix.
The following Theorem is an improved result due to Vu[14]:

Theorem 2.1. (Vu, 2007) There are constants C and C ′ such that the following holds.
Let rij, 1 ≤ i ≤ j ≤ n be independent random variables, each of which has mean 0 and
variance at most σ2 and is bounded in absolute value by K, where σ ≥ C ′n−1/2K(lnn)2.
Then with high probability

‖R‖ ≤ 2σ
√
n+ C(Kσ)1/2n1/4 lnn. (2.3)

To simplify the usage of this theorem we derive the following corollary:

Corollary 2.2. Let C ′ be as above and assume p = p(n) satisfies p(1−p) ≥ C ′2n−1(lnn)4.
Let R = {rij}ni,j=1 be any n×n symmetric random zero-mean matrix where rij for i ≥ j
are independent random variables which are either constantly zero or assumes the value
p− 1 with probability p and the value p with probability 1− p. Then

‖R‖ ≤ 2
√
np(1− p)

(
1 +O

((
(lnn)4

np(1− p)

)1/4
))

(2.4)
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with high probability.

2.3 Other high concentration results

Besides eigenvalues, our results require bounding some additional random quantities. For
example, it turns out that the number or neighbors the vertices in V \S has in S is very
important for whether various methods manages to recognize the planted independent
set or not.

As the model we consider includes edges not in the planted set independently, this
type of quantity can be seen as a sum of independent random variables. For this case
there are various known strong bounds on the tail distribution. In particular, in this
thesis we use the following results:

Lemma 2.3. [15] Let X ∼ Bin(n, p). For every 0 < a ≤ np we have

Pr [|X − np| ≥ a] ≤ 2e−
a2

3kp . (2.5)

Theorem 2.4. (Hoeffding’s inequality[16]) Let the random variables X1, . . . , Xn be in-
dependent, with ak ≤ Xk ≤ bk for each k, for suitable constants ak, bk. Let Sn =

∑
Xk

and let µ = E[Sn]. Then for any t ≥ 0,

Pr [Sn − µ ≥ t] ≤ e−2t2/
∑

(bk−ak)2 . (2.6)
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Chapter 3

Lovász theta function

In 1979, László Lovász published an article in which he computed the Shannon zero-
error capacity of some specific graphs[17]. Let us say we are given a graph where the
vertices represents the letters in an alphabet and each edge represents a pair of letters
that can be confused, and we want to choose as many strings in this alphabet as possible
of a fix length such that no two strings can be confused. We denote the maximum
number of strings of length k we can choose by α(Gk). For length 1, this is clearly
the independence number of the graph, so α(G1) = α(G). For a general length k one
could therefore suspect that the the maximum number of strings is α(G)k, but it turns
out that one can do better in many cases. Instead, as k grows we can show that the
“effective number of letters”, k

√
α(Gk) will converge to some quantity Θ(G) which we

call the Shannon zero-error capacity of G.
For given graphs, one can bound the Shannon capacity from below by constructing

some good coding scheme. For instance, by choosing all strings that only consist of
letters from a fix maximum independent set we see that α(G) ≤ Θ(G). The novelty of
Lovász approach was that he presented an optimization problem which he showed was
an upper bound on the Shannon capacity. This function has later been referred to as
Lovász ϑ-function, or simply the Lovász number of the graph and has been well-studied.
See [4] for a survey.

Lovász originally defined this function in terms of orthonormal representations of
graphs. We say that two vertices i, j in a graph G = (V,E) are adjacent iff i = j or
ij ∈ E. An orthonormal representation of a G is a system of unit vectors in a Euclidean
space (v1, . . . vn) satisfying that if i and j are non-adjacent vertices ofG then vi and vj are
pairwise orthogonal. It is clear from this definition that any graph G has an orthonormal
representation, one can for instance take a system of n pairwise orthonormal vectors.
Define the value of an orthogonal representation (u1, . . . un) to be

min
c

max
1≤i≤n

1
(cTui)2

, (3.1)

where c goes over all unit vectors. Then ϑ(G) is defined as the minimum value of any
orthonormal representation of G.

9



In his article, Lovász went on to show a number of equivalent formulations for ϑ(G).
It can for instance be formulated as an SDP problem, which means that ϑ(G) can be
computed in polynomial time with an arbitrarily small multiplicative or additive error[3].

To see that this function is an upper bound on the independence number, note that
the vertices of an independent set is always represented by pairwise orthogonal vectors.
Denoting an independent set by S, Bessel’s inequality implies that for any normal vector
c we have ∑

i∈S
(cTui)2 ≤ 1 (3.2)

hence for any orthonormal representation and any normal vector c there exists a vertex
i such that (cTui)2 ≤ |S|−1 and thus the value of any orthonormal representation is at
least |S|.

It was also shown by Lovász that ϑ(G) is a lower bound on minimum clique cover,
which is known to be NP-hard. This means that Lovász ϑ-function has the property
of being sandwiched between two NP-hard problems, while itself being computable in
polynomial time[4].

3.1 The Lovász number of planted independent set graphs

Feige and Krauthgamer[8] presented a method for recovering the planted set of size c
√
n

based on Lovász ϑ-function. A central building block of their result is the following
property of the Lovász number of random planted independent set graphs:

Lemma 3.1. (Feige and Krauthgamer 2000) Let G = G(n, 1
2 , k) where k > c′

√
n for a

large enough constant c′. Then ϑ(Ḡ) = k, with extremely high probability.

The term with extremely high probability used here denotes a probability of at least
1− e−nr

for some r > 0.
The idea behind their algorithm is that if one removes one vertex fromG = G(n, 1

2 , k),
the remaining graph will be distributed as G(n − 1, 1

2 , k − 1) if the vertex was in the
planted set and G(n−1, 1

2 , k) otherwise. By choosing k large enough Lemma 3.1 implies
that ϑ(Ḡ \ {v}) equals k − 1 if v is in the planted set and k otherwise. By computing
the Lovász number of these graphs within a error of, say, ±1

3 we can therefore identify
which vertices are in S. It should however be noted that the final algorithm presented
by Feige et al. only computes Lovász ϑ-function and instead identifies the vertices in S
by inspecting the optimal solution.

In their concluding remarks, Feige and Krauthgamer stated that they believed their
result could be extended to work for G(n, 1 − p, k). In particular, for p = o(1) they
believed the corresponding bound on k would be c′

√
n/p.

In the next section we prove the following extension of their Lemma:

Theorem 3.2. Let G = G(n, 1− p, k) where k > (2 + o(1))
√
n(1− p)/p and p = p(n)

satisfies p(1− p)� n−1(lnn)4. Then ϑ(Ḡ) = k with high probability.

10



We will for simplicity not attempt to prove that this holds with extremely high
probability. A more rigorous study of the probabilities involved would however be needed
to show that this can be used to retrieve the planted set.

It is not hard to see from the from the definition of Lovász ϑ-function that it is
decreasing, i.e. removing edges will always increase the Lovász number. This means
that we can choose distributions such that ϑ (G(n, p)) ≤ ϑ

(
Ḡ(n, 1− p, k)

)
always holds.

From this we see that ϑ
(
Ḡ(n, 1− p, k)

)
can only equal k if k ≥ ϑ (G(n, p)). The Lovász

number of Erdös-Rényi graphs have been studied by Coja-Oghlan[18]. In his article, he
shows that for p as in Theorem 3.2 the Lovász number of G(n, p) is with high probability
bounded from below by c

√
n(1− p)/p for some constant c > 0. This implies that the

bound on k presented in Theorem 3.2 can at most be improved by a constant factor.

3.2 Proof of Theorem 3.2.

We will begin by presenting an outline the proof. This approach similar to the proof of
Lemma 3.1.

We will use one of the alternative formulations of ϑ(G) given in Lovász original
article[17]:

Theorem 3.3. (Lovász 1979) Let G be a graph on vertices {1, . . . n}. Then ϑ(G) is the
minimum of the largest eigenvalue of any symmetric matrix {aij}ni,j=1, such that

aij = 1, if i = j or if i and j are nonadjacent. (3.3)

It turns out that for Ḡ(n, 1 − p, k) it is possible to solve this optimization problem
explicitly with high probability for sufficiently large k. Specifically, let A be the adjacency
matrix of Ḡ and consider the matrix M defined by

Mij =


1 if 1 ≤ i, j ≤ k
1− rjAij if 1 ≤ i ≤ k < j ≤ n
1− riAij if 1 ≤ j ≤ k < i ≤ n
1
p (p−Aij) if k < i, j ≤ n

(3.4)

where ri is chosen such that
∑k

j=1Mij = 0 for all i > k. Equivalently, ri must satisfy

k − Siri = 0 (3.5)

where Si is the number of neighbors of i in the planted independent set. The case Si = 0
for some i > k may be resolved arbitrarily. Clearly, this matrix is feasible.

Let ek denote the n-dimensional vector where the topmost k entries are 1 and the
rest 0. By construction of M , it has ek as an eigenvector with corresponding eigenvalue
k. Since Ḡ contains an independent set of size k we know that k ≤ α(Ḡ) ≤ ϑ(Ḡ). This

11



means that if we can show that k is the maximum eigenvalue of M , then ϑ(Ḡ) = k. To
prove this, it suffices to show that all but at most one eigenvalue of M is strictly less
than k. The theorem now follows from Lemma 3.6.

Before we prove Lemma 3.6 we need some elementary machinery. As before, let A
denote the adjacency matrix of Ḡ and consider the two matrices

Uij =


0 if 1 ≤ i, j ≤ k
1
p (p−Aij) if 1 ≤ i ≤ k < j ≤ n
1
p (p−Aij) if 1 ≤ j ≤ k < i ≤ n
1
p (p−Aij) if k < i, j ≤ n

(3.6)

Vij =


0 if 1 ≤ i, j ≤ k(
rj − 1

p

)
(p−Aij) if 1 ≤ i ≤ k < j ≤ n(

ri − 1
p

)
(p−Aij) if 1 ≤ j ≤ k < i ≤ n

0 if k < i, j ≤ n

(3.7)

where ri are the same as in (3.4).

Lemma 3.4. Let U be defined as above, then if p(1− p)� n−1(lnn)4

λ1(U) ≤ (2 + o(1))

√
n(1− p)

p
(3.8)

with high probability.

Proof. Let D be the diagonal matrix where Dii = 0 for 1 ≤ i ≤ k and Dii = 1 for
k < i ≤ n. The matrix p(U −D) satisfies the conditions of Corollary 2.2. Hence

λ1(U) ≤ ‖U −D‖+ ‖D‖ ≤ (2 + o(1))

√
n(1− p)

p
(3.9)

with high probability.

Lemma 3.5. Let V be defined as above, then if p(1 − p) � n−1(lnn)4 and k >
2
√
n(1− p)/p

λ1(V ) ≤ o

(√
n(1− p)

p

)
(3.10)

with high probability.

Proof. Consider the n× n matrix V ′ defined by

V ′ij =


0 if 1 ≤ i, j ≤ k
1
p (p−Aij) if 1 ≤ i ≤ k < j ≤ n
1
p (p−Aij) if 1 ≤ j ≤ k < i ≤ n
0 if k < i, j ≤ n.

(3.11)

12



As in the previous proof, we note that pV ′ satisfies the conditions of Corollary 2.2. Hence
‖V ′‖ = O

√
n(1− p)/p.

Let x be a unit eigenvector corresponding to the maximum eigenvalue of V . This
means that

λ1(V ) = xTV x

= 2
n∑

i=k+1

xi

(
ri −

1
p

) k∑
j=1

(p−Aij)xj .

By Cauchy-Schwartz inequality, this is less than

2

 n∑
i=k+1

x2
i ·

n∑
i=k+1

(
ri −

1
p

)2
 k∑
j=1

(p−Aij)xj

21/2

≤ 2

 n∑
i=k+1

(pri − 1)2

 k∑
j=1

1
p

(p−Aij)xj

21/2

= 2

 n∑
i=k+1

(pri − 1)2

 k∑
j=1

V ′ijxj

21/2

≤ 2 max
i
|pri − 1| ·

 n∑
i=k+1

 k∑
j=1

V ′ijxj

21/2

.

Since V ′ij = 0 for i, j > k, this equals

2 max
i
|pri − 1| ·

 n∑
i=k+1

 n∑
j=1

V ′ijxj

21/2

≤ 2 max
i
|pri − 1| ·

 n∑
i=1

 n∑
j=1

V ′ijxj

21/2

= 2 max
i
|pri − 1| · ‖V ′x‖

= max
i
|pri − 1|O

(√
n(1− p)

p

)
,

where the last step follows from that ‖V ′x‖ ≤ ‖V ′‖ · ‖x‖ = ‖V ′‖.
By the definition of M , we know that ri = k/Si, where Si ∼ Bin(k, p). Under the

assumptions of this Lemma it is easy to verify that kp �
√
kp lnn. Hence Lemma 2.3
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with a =
√

6kp lnn implies that ri = p−1 + o(p−1) for all k < i ≤ n with probability
1 − O( 1

n). This means that maxi |pri − 1| = o(1) and thus λ1(V ) ≤ o
(√

n(1− p)/p
)

with high probability.

Lemma 3.6. Let M be defined as in (3.4) and assume p(1 − p) � n−1(lnn)4. Then
there exists a function f(n, p) = (2 + o(1))

√
n(1− p)/p such that λ2(M) ≤ f with high

probability whenever k > f .

Proof. Let ek denote the n-dimensional vector where the first k elements are 1 and the
rest 0. By the variational inequality

λ2(M) = min
v

max
|x|=1x⊥v

xTMx

≤ max
|x|=1x⊥ek

xTMx

≤ λ1(U) + λ1(V ) + max
|x|=1x⊥ek

xT (M − U − V )x.

Recalling the definitions of M , U and V , see (3.4) (3.6) (3.7), we note that for all x ⊥ ek

xT (M − U − V )x

=
k∑
i=1

k∑
j=1

xi(Mij − Uij − Vij)xj + 2
n∑

i=k+1

k∑
j=1

xi(Mij − Uij − Vij)xj

+
n∑

i=k+1

n∑
j=k+1

xi(Mij − Uij − Vij)xj

=
k∑
i=1

k∑
j=1

xixj + 2
n∑

i=k+1

k∑
j=1

xi

(
1− riAij −

1
p

(p−Aij)−
(
ri −

1
p

)
(p−Aij)

)
xj

=
k∑
i=1

k∑
j=1

xixj + 2
n∑

i=k+1

k∑
j=1

xi (1− pri)xj

=
k∑
i=1

xi

 k∑
j=1

xj


︸ ︷︷ ︸

=0

+2
n∑

i=k+1

xi (1− pri)

 k∑
j=1

xj


︸ ︷︷ ︸

=0

= 0

so max|x|=1x⊥ek
xT (M − U − V )x = 0. Thus if we assume that k > 2

√
n(1− p)/p,

Lemma 3.4 and 3.5 implies that

λ2(M) ≤ λ1(U) + λ1(V ) ≤ (2 + o(1))

√
n(1− p)

p
. (3.12)

The Lemma follows by letting f the maximum of this expression and 2
√
n(1− p)/p.
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Chapter 4

A Convex Quadratic Relaxation
of the Lovász number

While technically being solvable in polynomial time, SDP problems, such as ϑ(G), are
notorious for being computer-intensive to solve. Hence, computing ϑ(G) can be infeasible
for even moderately sized graphs. It would therefore be of great interest to find other
bounds of the independence number which are faster to compute.

An alternative function was presented by Luz[19]. Assume G has at least one edge.
We define

υ(G) = max
α≥0

2eTα− αT
(
I +

A

−λmin(A)

)
α, (4.1)

where e denotes the vector of all ones.
This special case of a convex quadratic optimization problem can be seen as a support

vector machine, SVM, problem. This type of problem has been studied in machine
learning. It has been shown that the optimization step is solvable with arbitrary precision
in O(n2) time[20], with potentially even faster convergence in practice. However, unless
the minimum eigenvalue of A can be guessed for the specific graph, an implementation
of υ(G) would besides this also need some to compute λmin(A).

Luz showed that this is an upper bound on the independence number of G. In fact,
Luz and Schrijver[21] generalized υ(G) to a class of convex optimization problems and
showed that all form upper bounds on ϑ(G). It could therefore also be of interest to use
υ(G) as a lightweight characterization of ϑ(G).

4.1 Graph for which this function equals the independence
number

Similarly to ϑ(G) there is a class of graphs satisfying α(G) = υ(G). We will call these
graphs Q-graphs. Luz gave the following characterization of such graphs:

Theorem 4.1. (Luz 1995) Let G be a graph with at least one edge. Then, the equality
α(G) = υ(G) is true, if and only if for any maximum independent set S the following
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inequality holds:
− λmin(A) ≤ min{|N(i) ∩ S| : i 6∈ S}. (4.2)

Proof sketch. Let S be any maximum independent set of G and let x denote the indicator
vector of S, i.e. the vector where xi = 1 if i ∈ S and xi = 0 otherwise. Since S is an
independent set this means that Aijxixj = 0 for all i, j.

The key to proving the Theorem is to note that

2eTx− xT
(
I +

A

−λmin(A)

)
x = 2|S| − (|S|+ 0) = α(G), (4.3)

so υ(G) = α(G) iff x is a global maximum of (4.1). Since this is a convex optimization
problem over a polyhedral cone, necessary and sufficient conditions for optimality is the
Karush-Kuhn-Tucker conditions which for x becomes exactly (4.2).

To make the criterion in 4.1 more tractable, we use the sufficiency of the KKT
condtions again to derive the following statement:

Theorem 4.2. Let G be a graph with at least one edge and let S be an independent set
in G. If S satisfies 4.2 then S is a maximum independent set and α(G) = υ(G) = |S|.

4.2 Performance for planted independence set graphs

The contribution from this thesis here is to investigate in what regimes G = Ḡ(n, 1−p, k)
is a Q-graph. We do this by applying Theorem 4.2 on G = Ḡ(n, 1− p, k) for S being the
planted set. This yields the following result:

Theorem 4.3. There exist constants C and C ′ such that for p(1 − p) ≥ C ′n−1(lnn)4

the graph G = Ḡ(n, 1− p(n), k) is a Q-graph with high probabilty if

k ≥ C max

((
n2(1− p) lnn

p

)1/3

, n1/2p−1/2(lnn)1/4

)
. (4.4)

Unfortunately this lower bound on k is much larger than for Theorem 3.2. In fact,
it turns out that for any k and p as in Theorem 4.3, the planted set can be retrieved by
trivial means, such as sorting the vertices by degrees. This makes the applicability of
υ(G) in this setting questionable.

4.3 Proof of Theorem 4.3.

Before proving Theorem 4.3 we will need a lower bound on the minimum eigenvalue of
G.

Let A denote the adjacency matrix of G. Consider the matrix A′ = A+D where D
is the diagonal matrix satisfying Dii = 0 for 1 ≤ i ≤ k and Dii = p for k < i ≤ n. Let Â
denote A− EA. Furthermore, we define

λ̄ = −kp+
3k2p

4n
. (4.5)
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Lemma 4.4. Let A′ and λ̄ be as above. Then λmin (EA′) ≥ λ̄.

Proof. We begin by noting that all vectors in the column space of EA′ are constant on
S and V \ S respectively. Let x be the unit vector having value (sin t)/

√
k on S and

(cos t)/
√
n− k the complement of S. Clearly all unit vectors in the column space can be

written on this form. Since all eigenvectors corresponding to non-zero eigenvalues must
be in this vector space, the minimum eigenvalue of EA′ is either 0 or the minimum of

xTE[A′]x = 2
√
k(n− k)p sin t cos t+ (n− k)p cos2 t

=
(n− k)p

2
+
√
k(n− k)p sin 2t+

(n− k)p
2

cos 2t

≥ (n− k)p
2

− p

2

√
4k(n− k) + (n− k)2

≥ (n− k)p
2

− p

2

(
n+

2nk − 3k2

2n

)
= −kp+

3k2p

4n

where the last inequality follows by Taylor expanding the square root at n2. Since the
last expression is non-positive we conclude that −kp+ 3k2p/4n is a lower bound on the
eigenvalues of EA′.

Lemma 4.5. For any fix non-zero vector x and any δ > 0 we have

Pr
[
xT Âx ≤ −δ ‖x‖2

]
≤ e−δ2 . (4.6)

Proof. Consider the random variable

X = −xT Âx =
∑
i>j

−2xixjÂij , (4.7)

where we note that the sum goes over independent random variables. Since Âij varies
by at most by 1, 2xixjÂij varies at most |2xixj | where∑

i>j

(2xixj)
2 = 2

∑
i 6=j

x2
ix

2
j ≤ 2‖x‖4.

Thus Theorem 2.4 applied on X states that for any t > 0

Pr[X ≥ t] ≤ exp
(
− t2

‖x‖4

)
. (4.8)

The statement is obtained by letting t = δ‖x‖2.

Lemma 4.6. Let A be the adjacency matrix of G = Ḡ(n, 1 − p, k) and let Â denote
A− EA. Then with probability at least 1− 1

n

− λmin(A) ≤ kp− 9k2p

16n
+
‖Â‖2

kp
+
√

lnn+ p. (4.9)
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Proof. Let v be a normalized eigenvector corresponding to the minimum eigenvalue of
EA′ and let u = x + y be any unit vector, where x ‖ v and y ⊥ v. Lemma 4.4 implies
that xTEA′x ≥ λ̄‖x‖2. Since EA′ is a rank 2 matrix and clearly Tr (EA′) ≥ 0, EA′ can
at most have one negative eigenvalue and thus yTE[A′]y ≥ 0. Furthermore, Lemma 4.5
states that vT Âv ≥ −

√
lnn with probability at least 1− 1

n . Hence,

λmin(A) = min
‖u‖=1

uT
(
EA′ + Â−D

)
u

≥ min
‖u‖=1

λ̄‖x‖2 + (2x+ y)T Ây + xT Âx− uTDu

≥ min
x2
1+x2

2=1

(
λ̄x2

1 − ‖Â‖
√

4x2
1 + x2

2 x2

)
−
√

lnn− p,

where we have used that x ⊥ y. By substituting x2 =
√

4/3 cos t in the first term we get

λ̄(1− x2
2)− ‖Â‖

√
4− 3x2

2 x2 =
λ̄

3
− 2

3

(
λ̄ cos 2t+

√
3‖Â‖ sin 2t

)
≥ λ̄

3
− 2

3

√
λ̄2 + 3‖Â‖2

so by Taylor expanding the square root at k2p2 we conclude that

min
x2
1+x2

2=1

(
λ̄x2

1 − ‖Â‖
√

4x2
1 + x2

2 x2

)
≥ λ̄

3
− 2

3

(
kp+

λ̄2 + 3‖Â‖2 − k2p2

2kp

)

= −kp+
k2p

n

(
3
4
− 3k

16n

)
− ‖Â‖

kp
.

Hence with probability at least 1− 1
n

λmin(A) ≥ −kp+
k2p

n

(
3
4
− 3k

16n

)
− ‖Â‖

kp
−
√

lnn− p. (4.10)

Proof of Theorem 4.3. According to Theorem 4.2, to prove that G is a Q-graph it suffices
to show that (4.2) is satisfied for S denoting the planted set.

For all i 6∈ S, |N(i) ∩ S| clearly has distribution Bin(k, p). We use Lemma 2.3 to
bound these uniformly. For p ≤ 1

2 we apply the lemma directly for a =
√

6kp lnn. For
p > 1

2 we instead consider Y = k− |N(i)∩S| where clearly Y ∼ Bin(k, 1− p) and apply
the lemma om Y for a =

√
6k(1− p) lnn. We can summarise the result as

|N(i) ∩ S| ≥ kp−
√

12kp(1− p) lnn (4.11)

for all i 6∈ S with probability at least 1 − O
(

1
n

)
. Under the assumption on k it is easy

to see that the conditions in Lemma 2.3 is satisfied for sufficiently large C ′.
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Putting (4.11) into (4.2) and applying Lemma 4.4 we get that G is a Q-graph with
probability 1−O(n−1) if

kp− 9k2

16n
+
‖A− EA‖2

kp
+
√

lnn+ p ≤ kp−
√

12kp(1− p) lnn. (4.12)

According to Corollary 2.2, ‖A − EA‖2 = O (p(1− p)n) with high probability for suffi-
ciently large C ′. Using this, we see that G is a Q-graph with high probability if

9k2p

16n
≥
√

12kp(1− p) lnn+
√

lnn+O

(
n(1− p)

k

)
. (4.13)

Under the assumption on k,√
12kp(1− p) lnn+

√
lnn+O

(
n(1− p)

k

)
=

(
√

12 +O

√
n2(1− p)
k3p lnn

)√
kp(1− p) lnn+

√
lnn

=
(√

12 +O

(
1

lnn

))√
kp(1− p) lnn+

√
lnn.

Thus (4.13) is satisfied with high probability if for sufficiently large C1, C2 > 0, k2p/n ≥
C1

√
kp(1− p) lnn and k2p/n ≥ C2

√
lnn. Solving these expressions for k we see that

(4.13) is satisfies with high probability if for sufficiently large C > 0,

k ≥ C
(
n2(1− p) lnn

p

)1/3

(4.14)

and
k ≥ Cn1/2p−1/2(lnn)1/4. (4.15)
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Chapter 5

Certifying optimality of
independent sets

Using Lemma 3.1, Feige and Krauthgamer[8] showed that it with extremely high proba-
bility is possible to certify the optimality of the maximum independent set in Ḡ(n, 1−p, k)
in polynomial time. This can be done by computing ϑ(Ḡ). This is indeed an interesting
property as it seems counter-intuitive to be possible to do without some kind of exhaus-
tive search. In fact, it is not too hard to show that the problem of certifying maximum
independent sets in a general graph is NP-hard.

Since the time the article by Feige and Krauthgamer was published, advancements
have been made on the problem of retrieving the planted set and the algorithms proposed
by Feige and Ron[9] and Dekel, Gurel-Gurevich, and Peres[10] are both considerably
faster and simpler. However, to the author’s knowledge no improvements have been
made on the problem of certifying the maximum independent set.

Seeing that fast algorithms for retrieving the planted set is known, it makes sense
to treat the problem of certifying optimality separately (the algorithm by Feige and
Krauthgamer retrieves the planted set and certifies its optimality at the same time). We
therefore consider the simplified problem where we are given a graph generated according
to the planted independent set model and a candidate for the maximum independent
set.

This modification can simplify the problem substantially. For example, from the
proof of Theorem 3.2 can observe that there are instances where calculating ϑ(Ḡ) can
be performed by solving the optimization problem in Theorem 3.3 explicitly, provided
the planted set is known. For using Lovász ϑ-function to retrieve the planted set it is of
course nonsensical to try to speed up the computation of ϑ(G) using this property, but
it could be very useful for certifying optimality of the planted set.

Inspired by this, we devise a new algorithm for certifying optimality of independent
sets in Ḡ(n, 1−p, k). Using the ideas of the proof of Theorem 3.2 we reduce the problem
of certifying that an independent set is maximum to certifying that a certain matrix is
positive definite, which is known to be possible to do in O(n3) time by means of Cholesky
decomposition.

21



To conclude the chapter, we discuss another method for certifying independent sets,
which reduces the problem of certifying the optimality of S to bounding α(G \ S). As
G \ S is an Erdös-Rényi graph, provided the input is correct, this could potentially
be done in numerous ways and leaves room for various improvements. However, in its
current form the author sees no benefit of using this approach as opposed to the first
algorithm.

5.1 Reduction to certifying positive definiteness

The algorithm is given a graph G = (V,E) and a candidate for the maximum indepen-
dent set S. We will for simplicity assume that V = {1, . . . n} and S = {1, . . . k}. It
outputs YES if it manages to certify optimality, NO if it can disprove optimality, and
UNKNOWN otherwise.

Let A denote the adjacency matrix of G. The algorithm is based on the properties
of the matrix N = N(r) defined by

Nij =


0 if 1 ≤ i, j ≤ k
1− rjAij if 1 ≤ i ≤ k < j ≤ n
1− riAij if 1 ≤ j ≤ k < i ≤ n
1− rAij if k < i, j ≤ n,

(5.1)

where ri as above is chosen such that
∑k

j=1Nij = 0 for all i > k. We note that for
this definition to be valid we require |N(i) ∩ S| > 0 for all k < i ≤ n. Assuming S is a
maximal independent set this must hold.

Proposition 5.1. For any real-valued r, max (λ1(N), k) is an upper bound on the in-
dependence number of G.

Proof. Let ek as before denote the vector where the topmost k elements are 1 and the
rest 0 and define M = N + eke

T
k . Since ek is an eigenvector of N , this perturbation will

keep all eigenvalues except one constant, which will change from 0 to k. This means
that λ1(M) = max (λ1(N), k). Furthermore, M is a feasible matrix for the optimization
problem in Theorem 3.3, so λ1(M) ≥ ϑ(G) ≥ α(G).

Corollary 5.2. If S in an independent set and λ1(N) ≤ k, then S is a maximum
independent set.

Based on the properties of N an algorithm for certifying the optimality of S can be
done in two steps. See Appendix for an implementation in Matlab.

1. Check that S is a maximal independent set.

2. If so, construct N(r) and attempt to certify that λ1(N) ≤ k.
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In the cases where S is not a maximal independent set, i.e. S is either not an indepen-
dent set or not maximal we can clearly output NO. If the second step succeeds, Corollary
5.2 guarantees that S is optimal, so we can output YES is this case. If S is a maxi-
mal independent set but step 2 fails, we simply output UNKNOWN. The overall time
complexity is dominated by verifying that λ1(N) ≤ k which can be performed in O(n3)
steps by Cholesky decomposition on kI −N .

So far we have made no assumptions on the input graph. Indeed, this algorithm is
correct for any graph (and any r for that matter), but in general it has no guarantee of
outputting something other than UNKNOWN. To conclude this section, we will show
that if G is taken from Ḡ(n, 1−p, k) and S is the planted set, then the algorithm outputs
YES with high probability in essentially the same regime for as state-of-the-art methods
can retrieve the set.

For this to hold, we will need to choose r appropriately. Similarly to the proof of
Theorem 3.2, one possible choice is r = p−1. However, p may be unknown. In this case,
we will show that we can also take r =

(
k(n− k) +

(
n−k

2

))
/ |E|.

Proposition 5.3. Assume G is taken from Ḡ(n, 1−p, k) where p(1−p)� n−1(lnn)4 and
assume S in the planted set. Let N = N(r) be as defined in (5.1) where r is either p−1 or(
k(n− k) +

(
n−k

2

))
/ |E|. Then there exists a function f(n, p) = (2 + o(1))

√
n(1− p)/p

such that λ1(N) ≤ f with high probability whenever |S| = k > f .

Proof. Let us define M(r) = N(r) + eke
T
k . We note that if λ2(M) < k then λ1(M) = k

and thus λ1(N) = max (λ2(M), 0). This means that suffices to show that λ2(M) <
2
√
n(1− p)/p (1 + o(1)) with high probability. For r = p−1 this is exactly Lemma 3.6,

so it remains to show that this result can be extended to r =
(
k(n− k) +

(
n−k

2

))
/ |E|.

Using a simple perturbation argument we see that

λ2 (M(r)) ≤ λ2

(
M(p−1)

)
+
∣∣r − p−1

∣∣ ‖AS̄‖ (5.2)

where (AS̄)ij is given by Aij if k < i, j ≤ n and 0 otherwise. By Lemma 3.6 we know
that λ2

(
M(p−1)

)
≤ (2 + o(1))

√
n(1− p)/p so it remains to show that the second term

is o
√
n(1− p)/p with high probability.

For k = n the proposition trivially holds, so let us assume that k < n. Let L =
k(n−k)+

(
n−k

2

)
and note that in this case L ≥ n−1. Since |E| ∼ Bin(L, p), Lemma 2.3

implies that |E| = Lp+O
(√
Lp lnn

)
with high probability. Furthermore, by Theorem 2.1

we know that ‖AS̄−EAS̄‖+‖EAS̄‖ = O
(√

np(1− p) + (n− k)p
)

with high probability.
Hence

|r − p−1| · ‖AS̄‖ = O

(√
lnn
Lp

)
·O
(√

np(1− p) + (n− k)p
)

= O
(√

(1− p) lnn
)

+O
(√

p lnn
)
�

√
n(1− p)

p
,

with high probability.
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Corollary 5.4. Assume G is taken from Ḡ(n, 1−p, k) where k ≥ (2 + o(1))
√
n(1− p)/p

and p(1− p)� n−1(lnn)4 and assume S in the planted set. Then the certification algo-
rithm outputs YES with high probability assuming r = p−1 or r =

(
k(n− k) +

(
n−k

2

))
/ |E|.

5.2 Reduction to bounding the independence number of
the Erdös-Rényi graphs

An alternative approach to the problem of certifying optimality of a given independent
is to use the following statements:

Proposition 5.5. Let G be a graph and S a set of vertices. Then any independent set
S′ in G which is not a subset of S must satisfy∣∣S′∣∣ ≤ max

i 6∈S
|S \N(i)|+ α(G \ S). (5.3)

Proof. For all S′ which are not subsets of S there must exist a vertex i such that i ∈ S′
and i 6∈ S. As i shares an edge with all vertices in S ∩N(i) we know that S′ can at most
contain |S \N(i)| vertices in S and as S′ \S is an independent set in G\S we know that
S′ can at most contain α(G \ S) vertices not in S. The Proposition follows by taking
the maximum over all i 6∈ S.

Corollary 5.6. Let G be a graph. If S is an independent set in G satisfying

α(G \ S) ≤ min
i 6∈S
|S ∩N(i)| (5.4)

then S is a maximum independent set.

This type of argument has been given by various sources to argue that the planted set
is optimal with high probability. As seen from an algorithmic point of view, Corollary
5.6 states that if we are given G = Ḡ(n, 1

2 , k) and the planted set S, then we can prove
the optimality of S by certifying that α(G\S) is less than some easily computed quantity
which with some reasonable assumptions on k is approximately k/2 with high probability.
For k > C

√
n for sufficiently large C, this can be done by computing either of ϑ(G \ S)

and υ(G \ S) as both these quantities are O(
√
n) with high probability in this case, or

use a similar technique to the one presented in the previous section.
This technique gives a nice relation between upper bounds on the independence

number and certificates. While we could not use υ(G) directly to compute the size of a
planted independent set in the same interval for k as ϑ(G) we can still use it to certify
that the retrieved set is optimal. A natural question is what other possible methods we
could use to bound the independence number. In particular: Is there an upper bound on
the independence number which is O(

√
n) with high probability for G(n, 1

2) which can
be computed in o(n3) time? Is there an upper bound on the independence number which
is o(
√
n) with high probability for G(n, 1

2) which can be computed polynomial time? A
positive answer to any of these questions would lead to interesting improvements over
the algorithm presented in the previous section.
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Chapter 6

Concluding Remarks

When discussing certifying optimality of independent sets we stated that we can certify
positive definiteness of matrices using Cholesky decomposition. Strictly speaking this
requires a more careful consideration of numerical stability. However, this should not
be a problem in practice. Firstly, since independence numbers are always integer it
follows that we can relax the constraint in Corollary 5.2 to λ1(N) < k + 1 which means
that we only need to rule out the cases where kI − N are clearly not positive definite.
Furthermore, as Proposition 5.3 is formulated we can choose k such that all eigenvalues
of kI −N are arbitrarily far from zero with high probability.

The proofs presented in this report have essentially only used the randomness of the
graphs involved to bound certain spectral norms and compute concentration of quantities
on the form |S ∩N(i)|. This suggests that these results could be generalized to a larger
class of graphs. One possible generalization would be to instead of planting a random
independent set in an Erdös-Rényi graph we plant a random independent set in a general
graph. The concentration of |S ∩N(i)| in this setting could probably be derived from
the randomness of the planted set, which would imply that the only requirements on the
base graph would be bounded spectral norms and bounds on the degrees. The ability to
make these types of generalizations could be one big advantage of using spectral methods
to approach the independent set problem.

In the section about the Lovász number of Ḡ(n, 1−p, k) we noted that ϑ(Ḡ) can only
equal k if k ≥ ϑ (G(n, p)), which is at most a constant factor below the bound on k in
Theorem 3.2. The proof relied on an explicit guess on the optimal matrix from Theorem
3.3. A natural improvement would be to replace this guess of M by some version of
the optimal matrix. It would therefore seem reasonable that the actual constraint on
k is that it should be larger than (1 + o(1)) ϑ (G(n, p)). A problem of showing this is
that, since we in that case have no simple bound on the individual terms in the different
Si, we lose the concentration results for max |pri − 1|. This problem could possibly be
solved by answering one of the following questions. What happens if we only replace the
lower right part of M for an optimal matrix for G \ S? Can anything be said about the
optimization problem if we add the constraint that all elements in the matrix must be
bounded by for example a large constant times p−1? However, I currently see no way to
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complete this modification of the proof.
One related question to this is if the same improvement can be made for a general

base graph, i.e. can the needed size of k such that a random planted independent set
in a general graph can be recovered be expressed in terms of the Lovász number of the
graph. Similarly as for G(n, p), we could replace the spectral norms of U and V ′ by
eigenvalues of matrices related to the optimal solution in Theorem 3.2, but we are still
faced with the problem that the terms in Si have no simple bound.
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Appendix A

Implementation of algorithm
presented in Section 5.1

% Attempts to certify S as the maximum independent
% A − adjacency matrix
% S − indicator vector for maximum independent set
%
% Output:
% 1 − certified
% 0 − could not certify
% −1 − this is not the maximum independent set

function certified = certIndepset(A, S)
n = size(A,1);
k = sum(S);

% Place independent set as first k elements
[~, reorder] = sort(−S);
A = A(reorder, reorder);

if any(any(A(1:k,1:k)))
certified = −1; % This is not an independent set
return

end

rvec = k./sum(A(1:k,k+1:n));
r = ( k*(n−k) + (n−k)*(n−k−1)/2 )*2/sum(sum(A));

if any(rvec==Inf)
certified = −1; % This is not a maximal independent set
return

end

% Construct N
B = ones(k,n−k) − repmat(rvec,k,1).*A(1:k,k+1:n);
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N = [zeros(k), B; B', ones(n−k) − r*A(k+1:n, k+1:n)];
% Check if pd. Hopefully numerical instability won't be a problem..

[~, q] = chol(k * eye(n) − N);
if q==0

certified = 1;
else

certified = 0;
end
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