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Analytic Framework for the Effective Rate of
MISO Fading Channels

Michail Matthaiou, Member, IEEE, George C. Alexandropoulos, Member, IEEE,
Hien Quoc Ngo, Student Member, IEEE, and Erik G. Larsson, Senior Member, IEEE

Abstract—The delay constraints imposed by future wireless
applications require a suitable metric for assessing their impact
on the overall system performance. Since the classical Shannon’s
ergodic capacity fails to do so, the so-called effective rate
was recently established as a rigorous alternative. While prior
relevant works have improved our knowledge on the effective
rate characterization of communication systems, an analytical
framework encompassing several fading models of interest is
not yet available. In this paper, we pursue a detailed effective
rate analysis of Nakagami-m, Rician and generalized-K multiple-
input single-output (MISO) fading channels by deriving new,
analytical expressions for their exact effective rate. Moreover, we
consider the asymptotically low and high signal-to-noise regimes,
for which tractable, closed-form effective rate expressions are
presented. These results enable us to draw useful conclusions
about the impact of system parameters on the effective rate of
different MISO fading channels. All the theoretical expressions
are validated via Monte-Carlo simulations.

Index Terms—Delay constraints, effective rate, fading chan-
nels, multiple-input single-output (MISO) systems.

I. INTRODUCTION

THE capacity performance and limits of multiple-antenna
technologies have been well investigated in the corre-

sponding literature (see [1] and references therein among
others). In this context, the typical metric for performance
evaluation has been Shannon’s ergodic capacity (or outage ca-
pacity for non-ergodic channels). However, some of the most
important emerging applications (e.g., voice over IP (VoIP),
interactive and multimedia streaming, interactive gaming, mo-
bile TV and computing) impose stringent quality of service
(QoS) constraints; such constraints typically appear in the
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form of constraints on queuing delays or queue lengths. These
applications are inherently delay-sensitive, which implies that
the data will expire if it is not successfully delivered within a
time frame. As such, a QoS metric that is able to capture the
delay constraints of communication systems becomes of vital
importance. Unfortunately, the conventional notion of Shannon
capacity cannot account for the delay aspect.

Motivated by these observations, the authors in [2] intro-
duced effective capacity as an appropriate metric to quantify
the system performance under QoS limitations, such as data
rate, delay and delay-violation probability. Since then, this
area has attracted considerable research interest following the
need of next-generation wireless systems to support diverse
QoS requirements and traffic characteristics. More particularly,
we first note the works [3]–[7] which explored the effective
capacity of different single-antenna communication systems.
A plethora of recent works focused on the effective capacity
of multiple-antenna communication systems. In this context,
[8] investigated the effective capacity of Gaussian quasi-static
block-fading multiple-input multiple-output (MIMO) systems
in independent and identically distributed (i.i.d.) Rayleigh
fading channels. Moreover, [9] derived the optimal precoding
scheme with covariance feedback for correlated multiple-input
single-output (MISO) systems. Recently, [10] examined in
detail the MIMO effective capacity in the high and low signal-
to-noise (SNR) regimes and demonstrated the interactions
between the queuing constraints and spatial dimensions over
a wide range of SNR values. Finally, [11] considered the
effective capacity of MISO systems by taking into account the
effects of spatial correlation. By doing so, it was theoretically
shown, using principles of majorization theory, that correlation
always reduces effective capacity.

The common characteristic of the above mentioned works
[8]–[11], however, is that they adopt the assumption of
Rayleigh fading. Although the assumption of Rayleigh fading
simplifies extensively the performance analysis of multiple-
antenna systems, its validity is often violated in practical
propagation scenarios [12]. Yet, very little is still known about
the effective capacity of multiple-antenna systems in non-
Rayleigh fading conditions. In this light, we herein bridge this
gap by analytically investigating the effective rate of MISO
systems for several more general fading models. In particular,
the contributions of this paper can be summarized as:

• We elaborate on three popular channel fading models,
namely Nakagami-m, Rician, and generalized-K models,
which have been extensively used for the performance

0090-6778/10$25.00 c© 2012 IEEE
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analysis of wireless communication systems [12]. For
these fading models, new analytical expressions for the
exact effective rate are derived. For the particular case
of Nakagami-m fading, two novel upper bounds on the
effective rate are also proposed. Note that, although the
considered models incur significant mathematical chal-
lenges, all the presented results can be easily evaluated.

• In order to get additional insights into the impact of
system parameters, such as delay constraints, fading
parameters and number of antennas, we consider the
asymptotically low and high-SNR regimes. In these
asymptotic cases, we investigate the notions of minimum
normalized energy per information bit to reliably convey
any positive rate and wideband slope, along with the
high-SNR slope and high-SNR power offset, respectively.
For these metrics, new tractable expressions are deduced
that extend and complement previous results on Rayleigh
fading channels. For the sake of completeness, the link
of the presented results with previously reported results
is also provided.

The rest of the paper is organized as follows: In Section II,
the MISO channel model is introduced along with the concepts
of effective capacity and effective rate. In Section III, we
pursue a detailed effective rate analysis of several fading
channel models. A set of numerical results is also provided to
validate the theoretical analysis. Finally, Section IV concludes
the paper and summarizes the key findings.

Notation: We use upper and lower case boldface to denote
matrices and vectors, respectively. The symbol (·)† represents
the Hermitian transpose, while tr(·) yields the matrix trace.
The expectation of a random variable is denoted as E{·}, and
Pr(·) represents probability. The symbol

a.s.→ denotes almost
sure convergence.

II. SYSTEM MODEL

We consider a MISO system with Nt transmit antennas
whose complex input-output relationship can be expressed as

y = hx+ n (1)

where h ∈ C
1×Nt represents the MISO channel fading vector,

while x ∈ CNt×1 and n denote the transmitted vector and the
complex additive white Gaussian noise (AWGN) term with
zero-mean and variance N0, respectively. According to [2],
the effective capacity is defined as the maximum constant
arrival rate that a given service process can support in order to
guarantee a statistical QoS requirement, specified by the QoS
exponent θ. Assuming block fading channels, the effective
capacity is defined as [8]

a(θ) = − 1

θT
ln {E {exp (−θTC)}} , θ �= 0 (2)

where T is the block-length, C is the transmission rate which
is a random variable (RV), and the expectation is taken over
C. It is noted that the parameter θ determines to so-called
asymptotic decay-rate of the buffer occupancy and is given
by

θ = − lim
x→∞

ln Pr[L > x]

x
(3)

where L is the equilibrium queue-length of the buffer at
the transmitter [2]. Then, assuming that the transmitter sends
uncorrelated circularly symmetric zero-mean complex Gaus-
sian signals and uniform power allocation across the transmit
antennas, the effective rate can be succinctly expressed as
follows1

R(ρ, θ) = − 1

A
log2

(
E

{(
1 +

ρ

Nt
hh†
)−A

})
bits/s/Hz

(4)

where A � θTB/ln 2, with B denoting the bandwidth of
the system, while ρ is the average transmit SNR. Evidently,
for θ = 0, i.e., no delay constraints, the effective capacity
coincides with the well established concept of ergodic rate of
the corresponding wireless channel.

III. EFFECTIVE RATE ANALYSIS OF FADING CHANNELS

In this section, we present a detailed effective rate analysis
of three popular fading channel models, namely Nakagami-m,
Rician and generalized-K, assuming i.i.d. fading across the
transmit antennas. Note that the scenarios of non-identically
distributed or correlated fading can be addressed using the
same methodologies as in the following. Such an analysis
remains an important topic for further work, though we do
not pursue it further in this paper.

A. Nakagami-m fading channels

The Nakagami-m distribution, where m is the Nakagami-
m factor, is a general fading model that includes the one-
sided Gaussian distribution (for m = 1/2) and the Rayleigh
distribution (m = 1) as special cases [13]. It has been
demonstrated that it often yields good fit with measured
data in various land-mobile [14] and indoor-mobile multipath
propagation environments [15], [16]. In this case, the entries
of the channel vector h are i.i.d. Nakagami-m RVs with
parameters m and Ω, where Ω is the average fading power.
Then, the probability density function (p.d.f.) of x = |h k|2
(k = 1, . . . , Nt), where hk is the k-th entry of h, is given by

p(x) =
xm−1

Γ(m)

(m
Ω

)m
exp
(
−m
Ω
x
)
, m ≥ 0.5, Ω ≥ 0 (5)

where Γ(x) =
∫∞
0
tx−1 exp(−t)dt represents the Gamma

function [17, Eq. (8.310.1)].
1) Exact analysis: We first consider the exact effective rate

R(ρ, θ) as follows:
Proposition 1: For Nakagami-m fading, the effective rate

of MISO channels is given by

R(ρ, θ) =
mNt

A
log2

(
Ωρ

mNt

)

− 1

A
log2

(
U

(
mNt;mNt + 1−A;

mNt

Ωρ

))
(6)

1Henceforth, we will be using the terminology effective rate instead of
effective capacity, since we perform no optimization over the input covariance
matrix Q = E{xx†}. For a detailed discussion, interested readers are referred
to [10].
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= log2

(
Ωρ

mNt

)
− 1

A
log2

(
U

(
A;A+ 1−mNt;

mNt

Ωρ

))
(7)

where U(·) is the Tricomi hypergeometric function [18, Eq.
(13.1.3)].

Proof: In order to evaluate the expectation in (4), we first
need to determine the p.d.f. of the sum of N t i.i.d. Gamma
RVs, defined as z =

∑Nt

k=1 |hk|2. In general, it is known (see
e.g., [19]) that the sum of n statistically independent Gamma
RVs with shape parameters {ci}ni=1 and a common scale
parameter b, is also a gamma RV with parameters

∑n
k=1 ci

and b. As such, we can easily obtain for the p.d.f. of z,

p(z) =
zmNt−1

Γ(mNt)

(m
Ω

)mNt

exp
(
−mz

Ω

)
. (8)

Substituting (8) into (4), we can obtain the desired result in
(6) after evaluating the involved integral with the help of the
following identity [20, Eq. (39)]∫ ∞

0

(1 + ax)−νxq−1e−pxdx=
Γ(q)

aq
U
(
q; q + 1− ν;

p

a

)
.

(9)

The proof concludes by recalling Kummer’s transforma-
tion U(a; b;x) = x1−bU(a − b + 1; 2 − b;x) [21, Eq.
(07.33.17.0007.01)] to obtain (7).

In addition to the exact results given by Proposition 1, we
now propose two new analytical upper bounds on the effective
rate of Nakagami-m fading channels.

Theorem 1: For Nakagami-m fading, the effective rate of
MISO channels is upper bounded as R(ρ, θ) ≤ Ru1 ≤ Ru2,
with

Ru1=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ωρ

ln 2
3F1

(
1 +mNt, 1, 1; 2,− Ωρ

mNt

)
1

ln 2
exp

(
mNt

Ωρ

)mNt∑
k=1

Ek

(
mNt

Ωρ

)
, mNt ∈ Z

+

(10)

Ru2 = log2 (1 + Ωρ) (11)

where pFq(·) represents the generalized hypergeometric func-
tion with p, q ∈ Z [17, Eq. (9.14.1)], while En(x) =∫∞
1

e−xt

tn dt is the exponential integral function [18, Eq.
(5.1.4)] of order n, for n = 0, 1, . . . and Re(x) > 0.

Proof: The proof is essentially an application of Jensen’s
inequality. In particular, we can first exploit the fact that
− log2(·) is a log-convex function to upper bound the effective
rate in (4) according to

R(ρ, θ) ≤ − 1

A
E

{
log2

((
1 +

ρ

Nt
hh†
)−A

)}
(12)

= E

{
log2

(
1 +

ρ

Nt
hh†
)}

(13)

≤ log2

(
1 +

ρ

Nt
E
{
hh†}) (14)

where (14) follows since log2(·) is a concave function. Note
that from (13) and (14) we will respectively obtain Ru1 and
Ru2. As such, we can express Ru1, Ru2 in the following
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Fig. 1. Simulated effective rate, analytical expression and upper bounds
against the SNR for Nakagami-m fading (Nt = 6,m = 2,Ω = 2.5).

integral form:

Ru1 =
1

ln 2

∫ ∞

0

ln

(
1 +

ρ

Nt
z

)
p(z)dz (15)

Ru2 = log2

(
1 +

ρ

Nt

∫ ∞

0

zp(z)dz

)
. (16)

In order to evaluate the involved integrals, we employ some
standard methodologies taken from [22] and [23], and there-
after simplify the results. By doing so, we have for Ru1

Ru1 =
1

Γ(mNt) ln 2
G1,3

3,2

[
Ωρ

mNt

∣∣∣1−mNt,1,1

1,0

]
(17)

where Gr,s
p,q

[
x,
∣∣∣α1,...,αp

β1,...,βq

]
denotes the Meijer’s-G function [17,

Eq. (9.301)]. The above formula can be re-expressed with the
aid of [17, Eq. (9.31.5)] according to

G1,3
3,2

[
Ωρ

mNt

∣∣∣1−mNt,1,1

1,0

]
=

Ωρ

mNt
G1,3

3,2

[
Ωρ

mNt

∣∣∣−mNt,0,0

0,−1

]
.

Then, using [24, Eq. (8.4.51.1)] and the property Γ(x +
1) = xΓ(x) [18, Eq. (6.1.15)], we can obtain the desired
result, in terms of a hypergeometric function, after appropriate
simplifications.

Clearly, Ru1 is harder to evaluate but is inherently tighter
than Ru2. Both bounds, however, are independent of the delay
constraints while Ru1 is identical to the ergodic capacity of a
single-antenna fast-fading channel under Nakagami-m fading
conditions. We note that when the number of transmit antennas
Nt grows large, both bounds become exact and equal to Ru2.
This is due to the law of large numbers which states that
1
Nt

hh† a.s.→ Ω, as Nt→∞. In essence, in the large-antenna
regime the channel behaves equivalently to an AWGN channel
with SNR Ωρ.

In Fig. 1, the simulated effective rate R(ρ, θ) is plotted
against the average transmit SNR, ρ. The outputs of a Monte-
Carlo simulator are compared with the exact analytical ex-
pression of Proposition 1 and the upper bounds of (10) and
(11), respectively. The match between theory and simulation is
excellent in all cases under consideration. More importantly,
the effective rate is systematically reduced as the QoS re-
quirements become more stringent, i.e., A gets larger. This is
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consistent with the results reported in [8], [10], [11]. Further,
a smaller value of A makes both bounds tighter. For example,
for A = 0.5, both bounds become almost exact across the
entire SNR range. This implies that they can very efficiently
approximate the effective rate for loose delay constraints.

The above results, though exact, provide limited physical
insights into the implications of the system parameters on
the effective rate. On this basis, we hereafter consider the
asymptotically low and high-SNR regimes. We begin with the
former regime:

2) Low-SNR analysis: Following the generic methodology
of [10], we can assess the low-SNR performance via a second-
order expansion of the effective rate around ρ→ 0+ according
to

R(ρ, θ) = Ṙ(0, θ)ρ+ R̈(0, θ)
ρ2

2
+ o(ρ2) (18)

where Ṙ(ρ, θ) and R̈(ρ, θ) denote the first and second order
derivatives of the effective rate (4) with respect to the SNR ρ.
We point out that these derivative expressions are inherently
related with the notions of the minimum normalized energy
per information bit to reliably convey any positive rate and
the wideband slope respectively, originally proposed in [25].
For the case of QoS constraints, the latter two metrics are
respectively defined as,

Eb

N0 min
� lim

ρ→0

ρ

R(ρ, θ)
=

1

Ṙ(0, θ)
, S0 � −

2 ln 2
[
Ṙ(0, θ)

]2
R̈(0, θ)

.

(19)

Proposition 2: For Nakagami-m fading, the minimum Eb

N0

and wideband slope S0 are respectively given by

Eb

N0 min
=

ln 2

Ω
(20)

S0 =
2mNt

A+ 1 +mNt
. (21)

Proof: Omitting explicit details and following a similar
line of reasoning as in [11, Appendix I], the first and second-
order derivatives in (19) are given by

Ṙ(0, θ) =
1

Nt ln 2
E
{
hh†} (22)

R̈(0, θ) = − A+ 1

N2
t ln 2

E
{(

hh†)2}+
A

N2
t ln 2

(
E
{
hh†})2 .

(23)

We can then use the following results on the traces of Nr×Nt

MIMO Nakagami-m fading matrices [26]

E
{
tr
(
HH†)} = NrNtΩ (24)

E
{
tr
(
HH†)2} = NrNtΩ

2(Nt +Nr − 1 + 1/m). (25)

Combining (22), (23) with (24)–(25) for N r = 1, we can
obtain the desired result after some basic algebraic manipula-
tions.

Interestingly, Eb

N0 min
is independent of the m-factor and

delay constraints, whereas S0 is independent of the average
power Ω. We note that S0 is an increasing function in Nt and
m and as such it obtains its minimum value for m = 0.5 and
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Fig. 2. Low-SNR effective rate and analytical linear approximation against
the transmit energy per bit for Nakagami-m fading (Nt = 6, A = 4,Ω =
2.5).

its maximum value for m→ ∞. Thus, we have that

Nt

A+ 1 + Nt

2

≤ S0 ≤ 2. (26)

On the other hand, S0 is a monotonically decreasing function
in A, which implies that delay constraints reduce wideband
slope and, in turn, the effective rate.

In Fig. 2, the simulated low-SNR effective rate and the
analytical linear approximation (18) are depicted against the
transmit energy per bit Eb/N0, for Nt = 6, A = 4, and
Ω = 2.5. The graph validates the accuracy of our analytical
expressions in (20)–(21). As anticipated, the fading parameter
m affects the rate performance through the wideband slope but
not through the minimum Eb

N0
. In addition, higher m values

yield higher rate, although the gap between the corresponding
curves decreases as m increases which implies that its effect
becomes less pronounced.

3) High-SNR analysis: In the high-SNR regime, we can
invoke the following affine expansion of the effective rate,
which was originally applied in the context of multiple access
systems with random spreading [27] and thereafter in the
analysis of MIMO systems [28]:

R(ρ, θ) = S∞ (log2 ρ− L∞) + o(1) (27)

where S∞ is the so-called high-SNR slope in bits/s/Hz per
3-dB units, given by

S∞ = lim
ρ→∞

R(ρ, θ)

log2 ρ
(28)

while L∞ is the zero-th order term or high-SNR power offset,
in 3-dB units, given by

L∞ = lim
ρ→∞

(
log2 ρ−

R(ρ, θ)

S∞

)
. (29)

Proposition 3: For Nakagami-m fading, the high-SNR
slope S∞ is given as

S∞ =

{
1, A ≤ mNt

mNt

A
, A > mNt

(30)
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Fig. 3. Exact analytical effective rate and high-SNR approximation against
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while the power offset L∞ is given by (31) at the bottom
of the page, where ψ(x) is the digamma function [17, Eq.
(8.360.1)] and γ = 0.577216 is the Euler constant.

Proof: A detailed proof is given in Appendix A.
The above results indicate that the high-SNR slope is

independent of the average power Ω, whereas a higher Ω tends
to increase the effective rate by reducing the power offset. It is
interesting to note the similarity of the presented expressions
with those reported for Rayleigh fading channels in [11]. In
Fig. 3, the exact analytical effective rate expression (7) is
plotted against the high-SNR approximation of Proposition 3.

Clearly, the high-SNR approximations are sufficiently tight
and become exact even at moderate SNR values. This implies
that they can efficiently predict the effective rate over a wide
SNR range. When A < mNt, we can not increase the high-
SNR slope by increasing Nt. Yet, a larger Nt will effectively
reduce the power offset, thereby yielding higher effective rate.
Similarly, we can clearly see that when A increases above
mNt it has a noticeable impact on the effective rate due to
the smaller high-SNR slope. For large and fixed A such that
A > mNt, an increase in the number of transmit antennas N t

can compensate for the loss due to the delay constraints. For
example, adding n transmit antennas will linearly increase the
high-SNR slope by nm/A.

Remark 1: Our numerical results demonstrated that for
A � mNt, the simulated effective rate may diverge for very
large values of the SNR (e.g., ρ > 40 dB). To address this
problem, one can use the following alternative expression
for the asymptotic behavior of the Tricomi function [18, Eq.

(13.5.10)]

U(a; b; z) =
Γ(1− b)

Γ(a)
+O(|z|1−b), 0 < b < 1. (32)

Applying (32) on Proposition 3, we can obtain the same results
for (30) and (31) with the only difference pertaining to their
last branch, which instead of mNt < A will be defined as
mNt < A < mNt+1. This additional constraint on the values
of A guarantees that the numerical results remain consistent.

B. Rician fading channels

The Rician fading model is suitable when the radio channel
is dominated by a direct line-of-sight or specular component.
This scenario occurs frequently in microcellular urban and
suburban land-mobile [29], as well as picocellular indoor
environments [30]. Under these circumstances, the entries of
the channel vector h are assumed to be i.i.d. Rician RVs with
parameters K and Ω, where K represents the Rician K-factor
and Ω the average fading power. The p.d.f. of x = |h k|2
(k = 1, . . . , Nt) is given by [12, Eq. (2.16)]

p(x) =
(1 +K)e−K

Ω
exp

(
− (K + 1)x

Ω

)

× I0

(
2

√
K(K + 1)x

Ω

)
, K,Ω ≥ 0 (33)

where Iν(x) is the ν-th order modified Bessel function of the
first kind [17, Eq. (8.405.1)].

1) Exact analysis: We first obtain the exact R(ρ, θ) as
follows:

Proposition 4: For Rician fading, the effective rate of
MISO channels is given by

R(ρ, θ) = log2

(
Ωρ

(K + 1)Nt

)
+
KNt

A ln 2

− 1

A
log2

( ∞∑
n=0

(KNt)
n

Γ(n+ 1)

× U

(
A;A+ 1−Nt − n;

(K + 1)Nt

Ωρ

))
. (34)

Proof: The proof relies on the properties of non-central
chi-square distributions. For the particular case under consid-
eration, we can directly use the following expression [31, Eq.
(5)] for the p.d.f. of the sum of N t squared i.i.d. Rician RVs,
z =

∑Nt

k=1 |hk|2 , given by

L∞ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

log2

(
mNt

Ω

)
+

1

A
log2

(
Γ(mNt −A)

Γ(mNt)

)
, A < mNt

log2

(
mNt

Ω

)
+

1

A
log2

⎛
⎝ ln

(
Ωρ
mNt

)
− ψ(mNt)− 2γ

Γ(mNt)

⎞
⎠ , A = mNt

log2

(
mNt

Ω

)
+

1

mNt
log2

(
Γ(A−mNt)

Γ(A)

)
, A > mNt.

(31)
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p(z) =
(K + 1)e−KNt

Ω

(
(K + 1)z

KNtΩ

)Nt−1
2

× exp

(
− (K + 1)z

Ω

)
INt−1

(
2

√
K(K + 1)Ntz

Ω

)
. (35)

Substituting (35) into (4) and thereafter using the infinite series
representation of I0(·) from [17, Eq. (8.445.1)], we can obtain
the desired result after invoking (9).

In order to evaluate (34) we need to truncate the infinite
series. We therefore seek to obtain the truncation error which
also demonstrates the series’ convergence. Assuming that T0−
1 terms are used, the associated truncation error E0 can be
expressed as

E0 =

∞∑
n=T0

(KNt)
n

Γ(n+ 1)
U

(
A;A+ 1−Nt − n;

(K + 1)Nt

Ωρ

)
(36)

< U

(
A;A+ 1−Nt − T0;

(K + 1)Nt

Ωρ

) ∞∑
n=T0

(KNt)
n

Γ(n+ 1)

(37)

= U

(
A;A+ 1−Nt − T0;

(K + 1)Nt

Ωρ

)
exp (KNt)

×
(
1− Γ(T0,KNt)

Γ(T0)

)
(38)

with Γ(p, x) =
∫∞
x tp−1e−tdt being the upper incomplete

gamma function [17, Eq. (8.350.2)]. Note that from (36) to
(37) we have used the fact that U(a, b − n, z) is a monoton-
ically decreasing function in n, while (38) is a result of [18,
Eq. (6.5.4)] and [18, Eq. (6.5.29)]

Γ(p, x) = Γ(p)− xpΓ(p) exp(−x)
∞∑

n=0

xn

Γ(p+ n+ 1)
. (39)

2) Low-SNR analysis: We now investigate the energy effi-
ciency in the low-SNR regime and present tractable results on
the parameters dictating the low-SNR performance of MISO
Rician fading channels.

Proposition 5: For Rician fading, the minimum Eb

N0
and

wideband slope S0 are respectively given by

Eb

N0 min
=

ln 2

Ω
(40)

S0 =
2Nt(K + 1)2

Nt(K + 1)2 + (A+ 1)(2K + 1)
. (41)

Proof: Recalling that E{|hk|2} = Ω, ∀k = 1, . . . , Nt, we
can easily infer that E

{
hh†} = NtΩ. The fourth moment of

|hk| can now be computed according to

E{|hk|4} =
(1 +K)e−K

Ω

×
∫ ∞

0

x2 exp

(
− (K + 1)x

Ω

)
I0

(
2

√
K(K + 1)x

Ω

)
dx

=
(2 + 4K +K2)Ω2

(K + 1)2
(42)

where we have used [13, Eq. (50)] to evaluate the integral. As
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Fig. 4. Low-SNR effective rate and analytical linear approximation against
the transmit energy per bit for Rician fading (Nt = 6, A = 4).

a next step, (42) can be used in the following way

E
{(

hh†)2} = E

⎧⎨
⎩
(

Nt∑
k=1

|hk|2
)2
⎫⎬
⎭

=

Nt∑
k=1

E
{|hk|4}+ Nt∑

k=1

Nt∑
j=1,j �=k

E
{|hk|2|hj |2} (43)

=
NtΩ

2

(K + 1)2
(2 + 4K +K2) +Nt(Nt − 1)Ω2 (44)

= NtΩ
2

(
Nt +

1

K + 1
+

K

(K + 1)2

)
. (45)

From (43) to (44) we have exploited the independence of |h k|2
and |hj |2. The proof then follows trivially by invoking (22)–
(23) and simplifying.

Similar to the Nakagami-m case, Eb

N0 min
is independent of

the K-factor and delay constraints, while the wideband slope
is an increasing function in K , satisfying

2Nt

A+ 1 +Nt
≤ S0 ≤ 2. (46)

The lower bound in (46) is attained for K = 0 (i.e. Rayleigh
fading), while the upper bound is approached for K → ∞
(i.e. AWGN channel). It is noteworthy that for the case of no
delay constraints (A = 0), the wideband slope reduces to

S0 =
2Nt(K + 1)2

(Nt + 1)(2K + 1) +NtK2
(47)

which coincides with [32, Eq. (18)]. It is also worth mention-
ing that S0 is a monotonically decreasing function in A, since
we have that

dS0

dA
= − 2Nt(2K + 1)(K + 1)2

((2K + 1)(A+ 1) +Nt(K + 1)2)
2 < 0. (48)

This validates that strict delay constraints tend to reduce the
effective rate.

Figure 4 more closely investigates the low-SNR perfor-
mance of Rician fading channels. As for the Nakagami-m
case, the linear approximations remain sufficiently tight across
a wide range of SNR values. It is readily seen that a 50%
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increase in the average fading power Ω reduces the minimum
energy per bit by 3 dB. Meanwhile, a higher K-factor leaves
Eb

N0 min
unaffected but still increases the effective rate, through

an enhanced S0. This increase is more pronounced for smaller
values of K . For example, an increase in K from 0 to 1 will
increase the wideband slope by 1+(A+1)/(4Nt+3(A+1)).
We note that these results are in line with those reported in
[32].

3) High-SNR analysis: The presence of a Tricomi func-
tion in the effective rate expression (34) does not allow
straightforward algebraic manipulations. As such, the useful
parametrization in terms of high-SNR slope and power offset
can hardly be implemented. Yet, by considering the initial
expression (4) and keeping only the dominant term therein as
ρ→ ∞, we can obtain the following tractable result.

Proposition 6: For Rician fading, the effective rate of
MISO channels at high SNRs and for A < Nt is approximated
by

R∞(ρ, θ) ≈ log2

(
ρΩ

(K + 1)Nt

)
+
KNt

A ln 2

− 1

A
log2

(
Γ(Nt −A)

Γ(Nt)
1F1 (Nt −A;Nt;KNt)

)
. (49)

Proof: By taking ρ large in (4), the proof boils down
to the computation of the A-th negative moment of z,
E{z−A}. As a next step, we express the Bessel function in
(35) via a hypergeometric function according to [21, Eq.
(03.02.26.0002.01)]

Iν(x) =
1

Γ(ν + 1)

(x
2

)ν
0F1

(
—; ν + 1;

x2

4

)
. (50)

Combining (50) with (35), we can obtain the desired result by
invoking the following integral identity [17, Eq. (7.522.5)]∫ ∞

0

e−xxν−1
pFq (a1, . . . , ap; b1, . . . , bq;αx)

= Γ(ν)p+1Fq (ν, a1, . . . , ap; b1, . . . , bq;α) (51)

for p < q and Re(ν) > 0, and simplifying. Note that the
condition on the arguments of (51) is satisfied in our setting
by taking A < Nt.

The above result indicates that the high-SNR slope is
1, thereby reflecting the same observations made for the
Nakagami-m case. From Proposition 6, it can be also shown
that the high-SNR effective rate is a monotonically increasing
function in the Rician K-factor. This is anticipated, since
larger values of K reduce the signal’s envelope fluctuations,
making fading manifestations more deterministic. We finally
note that the effective rate grows logarithmically with the
SNR, when ρ→ ∞.

C. Generalized-K fading channels

The last fading model we are considering is the so-called
generalized-K fading model. This is a generic composite
model that encompasses both small-scale fading (modeled via
the Nakagami-m distribution) and large-scale fading (mod-
eled via the gamma distribution). Its main characteristic is
that is analytically friendlier than the classical Nakagami-
m/lognormal model, thereby lending itself into tractable ma-
nipulations. In parallel, it has been demonstrated to effectively

approximate most of the fading and shadowing phenomena oc-
curring in wireless channels [33]–[36]. In this case, the entries
of the channel vector h are assumed to be i.i.d. generalized-K
RVs2 with parameters m,κ and Ω, where κ ≥ 0,m ≥ 0.5
are the distribution shaping parameters and Ω is the average
fading power. Then, the p.d.f. of x = |hk|2 (k = 1, . . . , Nt)
is given by [34, Eq. (2)]

p(x) =
2x

κ+m
2 −1

Γ(m)Γ(κ)

(κm
Ω

) κ+m
2

×Kκ−m

(
2

√
κm

Ω
x

)
, κ,Ω ≥ 0, m ≥ 0.5 (52)

where Kν(x) denotes the ν-th order modified Bessel function
of the second kind [17, Eq. (8.407.1)].

1) Exact analysis: In general, an exact analysis for the case
of generalized-K fading is cumbersome since, up to date, the
exact distribution of the sum of generalized-K RVs is not
known in closed-form. However, we can use the tight approx-
imation proposed in [38] and obtain analytical expressions for
the most important figures of merit.3

Proposition 7: For generalized-K fading, the effective rate
of MISO channels is approximately given by

R(ρ, θ) ≈ − 1

A
log2

(
3F0

(
A, κ̂, m̂;—;− Ω̂ρ

κ̂m̂Nt

))
(53)

where m̂, κ̂ and Ω̂ are defined as

m̂ = mNt (54)

κ̂ = κNt + (Nt − 1)
−0.127− 0.95κ− 0.0058m

1 + 0.00124κ+ 0.98m
(55)

Ω̂ = ΩNt. (56)

Proof: Using [38], the p.d.f. of z =
∑Nt

k=1 |hk|2 can be
approximated as

p(z) ≈ 2z
κ̂+m̂

2 −1

Γ(m̂)Γ(κ̂)

(
κ̂m̂

Ω̂

) κ̂+m̂
2

Kκ̂−m̂

(
2

√
κ̂m̂

Ω̂
z

)
. (57)

Substituting (57) into (4), we end up with the following
approximating integral expression for the effective rate

R(ρ, θ) ≈ − 1

A
log2

(
2

Γ(m̂)Γ(κ̂)

(
κ̂m̂

Ω̂

) κ̂+m̂
2

×
∫ ∞

0

(
1 +

ρ

Nt
z

)−A

z
κ̂+m̂

2 −1Kκ̂−m̂

(
2

√
κ̂m̂

Ω̂
z

)
dz

)
.

(58)

To evaluate the integral in (58), we first express the in-

tegrands
(
1 + ρ

Nt
z
)−A

and Kκ̂−m̂

(
2
√

κ̂m̂
Ω̂
z
)

in terms of
Meijer’s-G functions with the help of [24, Eq. (8.4.2.5)] and

2The assumption of i.i.d. large-scale fading is sufficiently realistic for
distributed antenna systems or when the antenna separation is large [12].
Nevertheless, it was recently shown, via real measurement data [37], that even
for arrays with colocated antennas, shadowing can be independent across the
array.

3A detailed discussion about the tightness of this and previous approxima-
tions can be found in [38].
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[24, Eq. (8.4.23.1)], respectively(
1 +

ρ

Nt
z

)−A

=
1

Γ (A)
G1,1

1,1

[
ρ

Nt
z
∣∣∣1−A

0

]
(59)

Kκ̂−m̂

(
2

√
κ̂m̂

Ω̂
z

)
=

1

2
G2,0

0,2

[
κ̂m̂

Ω̂
z
∣∣∣ —

κ̂−m̂
2 ,− κ̂−m̂

2

]
. (60)

Then, combining (59), (60) with (58), and using the identity
[24, Eq. (2.24.1.1)], we obtain

R(ρ, θ) ≈ − 1

A
log2

(
1

Γ(m̂)Γ(κ̂)Γ(A)

×G1,3
3,1

[
Ω̂ρ

κ̂m̂Nt

∣∣∣1−A,1−κ̂,1−m̂

0

])
. (61)

Finally, by applying [24, Eq. (8.4.51.1)] on (61), we arrive at
the desired result in (53).

2) Low-SNR analysis: In the low-SNR regime, one can
exploit the independence of the channel entries to obtain exact
expressions for the minimum Eb

N0
and wideband slope S0.

Proposition 8: For generalized-K fading, the minimum Eb

N0

and wideband slope S0 are respectively given by

Eb

N0 min
=

ln 2

Ω
(62)

S0 =
2κmNt

κmNt + (A+ 1)(κ+m+ 1)
. (63)

Proof: For the evaluation of the expectations in (22) and
(23), we use the standard expression for the n-th order moment
of a generalized-K RV with parameters m,κ,Ω, given by [38,
Eq. (4)]:

E
{(|hk|2)n} =

(
Ω

κm

)n
Γ(κ+ n)Γ(m+ n)

Γ(κ)Γ(m)
. (64)

With this relationship in our hands, we can easily deduce

E
{
hh†} = NtΩ (65)

E
{(

hh†)2} (43)
=

NtΩ
2

κm
(κ+ 1)(m+ 1) +Nt(Nt − 1)Ω2

=
NtΩ

2

κm
(κ+m+ 1 + κmNt) . (66)

Combining (22), (23) with (65) and (66), we can obtain the
desired result after some basic algebra.

Clearly, the minimum Eb

N0
is identical with that for the

Nakagami-m and Rician fading scenarios. At the same time,
it is independent of the shaping parameters m and κ. As for
the cases of Nakagami-m and Rician fading, we can infer that
S0 is a monotonically decreasing function in A. In addition,
it is monotonically increasing in κ, since we have that

dS0

dκ
=

2mNt(A+ 1)(m+ 1)

(κmNt + (κ+m+ 1)(A+ 1))
2 > 0. (67)

Note that in the limit κ → ∞, (63) reduces to (21). This
is expected since for κ → ∞, the generalized-K distribution
approximates the Nakagami-m distribution [33]. For the spe-
cial case of double Rayleigh fading (i.e. m = κ = 1), that is
frequently used in cascaded multipath fading channels [39],
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Fig. 5. Simulated effective rate, analytical and high SNR approximations
against the SNR for generalized-K fading (A = 1.5,m = 2.0, κ =
1.45,Ω = 2.5).

(63) simplifies to

S0 =
2Nt

Nt + 3(A+ 1)
. (68)

3) High-SNR analysis: As for the Rician case, the presence
of a hypergeometric function in the effective rate expression
(53) renders the high-SNR analysis cumbersome. For this
reason, we follow the methodology of Proposition 6 to obtain
the following tractable result.

Proposition 9: For generalized-K fading, the effective rate
of MISO channels at high SNRs and for A < m̂ and A < κ̂
is approximated by

R∞(ρ, θ) ≈ log2

(
Ω̂ρ

κ̂m̂Nt

)

− 1

A
log2

(
Γ(m̂−A)Γ(κ̂−A)

Γ(m̂)Γ(κ̂)

)
. (69)

Proof: By taking ρ large in (4), we have to compute the
A-th negative moment of z, E{z−A} as follows

E{z−A} =
2

Γ(m̂)Γ(κ̂)

(
κ̂m̂

Ω̂

) κ̂+m̂
2

×
∫ ∞

0

z
κ̂+m̂

2 −A−1Kκ̂−m̂

(
2

√
κ̂m̂

Ω̂
z

)
dz (70)

=

(
κ̂m̂

Ω̂

)A
Γ(m̂−A)Γ(κ̂−A)

Γ(m̂)Γ(κ̂)
(71)

where from (70) to (71) we have used the integration relation-
ship [17, Eq. (6.561.16)] and thereafter simplified. Note that
the condition for this integration relationship requires A < m̂
and A < κ̂.

As for the previous fading models, the slope of the effective
rate at high SNRs is equal to 1. We finally note that for the
particular case A = 1, (69) simplifies to

R∞(ρ, θ) ≈ log2

(
Ω̂ρ (m̂− 1) (κ̂− 1)

κ̂m̂Nt

)
(72)

which indicates the beneficial impact of κ̂, m̂, due to the
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reduced fading fluctuations [33], [34].
In Fig. 5, the simulated effective rate is plotted along with

the approximating expression for the exact effective rate (53)
and the high-SNR approximation in (69). We consider differ-
ent MISO configurations by increasing the number of transmit
antennas Nt. It is easily seen that the approximation for the
exact rate is remarkably tight for all the considered cases and
values of SNR, while its tightness is slightly improved for
larger Nt. This validates that the approximation of [38] can
accurately model the p.d.f. of the sum of generalized-K RVs.
On similar grounds, the high-SNR approximation becomes
exact around 15 dB. We also observe that an increase in N t

tends to increase the effective rate, albeit the relative difference
between the curves gets steadily smaller.

IV. CONCLUSION

A plethora of emerging applications, such as VoIP and
mobile computing, impose stringent delay constraints that
have to be appropriately accounted for, using a suitable metric.
Unfortunately, the classical notion of Shannon’s ergodic ca-
pacity fails to do so. Hence, the concept of effective rate arises
which can efficiently characterize communication systems in
terms of data rate, delay and delay-violation probability. Yet,
most studies reported in this context consider the tractable
case of Rayleigh fading channels.

In this paper, a detailed effective rate analysis of MISO
systems was presented. In particular, we considered three
popular fading models, namely Nakagami-m, Rician and
generalized-K, which have been exhaustively used in the
performance analysis of wireless communication systems. For
the considered models, new analytical expressions for the
exact effective rate were derived that extend and complement
previous results on Rayleigh fading channels. Moreover, we
elaborated on the asymptotically low and high-SNR regimes
for which simple, closed-form expressions were deduced.
By doing so, we were able to obtain additional physical

insights into the implications of several parameters (e.g. fading
parameters, number of antennas, delay constraints) on the
system performance. As a final remark, we highlight the fact
that the presented analysis can be extended to other fading
models of interest, e.g. Weibull, η − μ, and κ− μ [40].

APPENDIX A
PROOF OF PROPOSITION 3

The proof relies on the asymptotic properties of Tricomi
hypergeometric functions. In particular, with the aid of [18,
Eq. (13.5.6)–(13.5.12)], the expressions given in (73) hold for
the asymptotic behavior of U(·) in (6).

In order to derive the high-SNR slope, we start from (29)
and follow the methodology of [10], yielding (74)–(77) at
the bottom of the page. Combining (73) with (77), we can
obtain the result in (30) after some simplifications and using
the fundamental properties of limits. Likewise, the expressions
for the high-SNR power offset L∞ in (31) are obtained via
the definition in (29) and (73). This concludes the proof.
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