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Optimization of Lattices for Quantization

Erik Agrell and Thomas Eriksson

Abstract—A training algorithm for the design of lattices forvector quantization to uniform sources, and explain why a lattice is a
vector quantization is presented. The algorithm uses a steepestmonly employed structure of uniform quantizers. After a
descent method to adjust a generator matrix, in the search for a lasticemary of some lattice theory in Section I-C, we return to the
whose Voronoi regions have minimal normalized second momemtoblem of vector quantizer design in Section I-D. This section,
The numerical elements of the found generator matrices adgich is essentially a literature survey, presents various strategies to
interpreted and translated into exact values. Experiments show tiestign lattice-based vector quantizers for nonuniform sources, which
the algorithm is stable, in the sense that several independent isim®t as straightforward as in the uniform case.
reach equivalent lattices. The obtained lattices reach as low secondhe lattice training algorithm is presented in Section Il. In Section
moments as the best previously reported lattices, or even lowkr.experiments with the algorithm are reported, which lead to
Specifically, we report lattices in 9 and 10 dimensions wiimprovements on previously known results in dimensions 7, 9, and
normalized second moments of 0.0716 and 0.0708, respectively, HhidSection 1V is a summary.
nonlattice tessellations in 7 and 9 dimensions with 0.0727 and
0.0711, which improves on previously known values. The newA- Vector Quantization
and 10-dimensional lattices suggest that Conway and Sloang'sector quantizeis a general utility for digital representation of
conjecture on the duality between the optimal lattices for packing anditidimensional data. Its input is a real-valued veotoand its
quantization might be false. A discussion of the application of latticastput is one of a finite number cbdevectorgc,,-+,cy), which is
in vector quantizer design for various sources, uniform asglected to approximate as well as possible, according to some

nonuniform, is included. criterion. The codevectog; can, through its integer index be
Index Terms—Lattice quantization, normalized secondepresented usintpg, N bits. Therate R is the number of bits used
moment, Voronoi region, lattice design, training algorithm. to quantize one scalar, that i®=log, N/d, where d is the

dimensionof the quantizer, in other words, the number of
components irx andc;.
I INTRODUCTION. VECTORQUANTIZATION AND The quantization is governed by a functon R - @, where
LATTICES € ={c,,---,cy} is thecodebookThis function should be chosen to

. . . . . . _optimize some quality measure for a given source. The standard
Lattices are widely recognized as an important tool in the design 8% 9 y 9

. . . tality measure is the minimum mean square erratistortion, per
vector quantizers, not only for uniform sources. The design can%e y q P

thought of as two independent problems: the choice of a suitaﬁgtor’

lattice and the creation of a codebook based on a subset of the lattice. D= J’Hx - Q(x)H2 f (x)dx (1)
The present paper considers the first of these problems, and the R
second is studied in, e.g., the report [1]. where f, (x) is the probability density function of the source vectors

To select a good lattice, one can of course rely on written If the codebook is given, the optimal quantization function is to
sources, such as [2], where many lattices and their propertiessitgply choose thelosestcodevector in the Euclidean sense,
tabulated. However, there is reason to believe that the dest _ . 2
dimensional lattice has not yet been found for evérysee, e.g., QM) = argﬂr@mn\\x K 2)

Fig. 2). Perhaps there is some knowledge to be gained throughg 1 je reduces the problem of vector quantizer design to finding a
approach completely different from the algebraic methods that h%\f)?nt constellation for use as a codebook.

been dominating lattice design? This was the question that triggeredMany input vectorsc yield the same output vectoy. The set of

the present work, and the answer we found was affirmative. 4| input vectors that are encoded as the same codevector is called a
We propose an algorithm for lattice design that can be used W|\I7(ﬁonoi region

minimum of insight into algebra and lattice theory. The algorithm

. . S e ; X _ d. _

employs a numerical algorithm to iteratively improve a given lattice, Q, ={xOR": Q) =c}. (3)

in a manner that parallels traditional training methods for the desigénce, the functio®([) partitionsd -dimensional source space into
of unconstrained vector quantizers. N Voronoi regions, without neither gaps nor overlaps. In terms of

This section introduces the background and preliminaries for §aéronoi regions, the distortion (1) can be separated into the
work. Section I-A is a brief review of the fundamentals of vectepntributions by each codevector:
quantization and its terminology. In Section I-B, we then apply N
D=3 [x—c’f()dx. @
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the distortion, based on the training database. Among the lafdpe value ofa as a function olN can be deduced by considering the
number of training algorithms that have been proposed, we mentiatal volume that the regions cover. The volume is

1
(31.% (4], [5, chs. 5 and 7], and [6]. . : vol(A) = Nvol(aQ,) = Na® vol(Q,) ®)

In this paper, an alternative approach for vector quantizer design )
is studied: lattice-based design. The general idea is to find a lattié8" Which follows that

with attractive properties and subsequently shape a subset thereof to 0 vol(a) }d
the source. The focus of this paper is on the lattice itself; truncation a= EW(Q)H . 9
and modifications of lattices to suit various sources are discussed in t
Section I-D. This value inserted into (7) yields
. . . _pvolyfen 1 gt 2
B. .Quant?zer Design f?r Uniform So-urc<-es o D=g 0 Ek/ol(Q[)H f!‘Hy —cdy
This section summarizes the application of vector quantization to t
uniform sources. Suppose that the source probability density function =dvol(A)?9272RG (10)
is uniform within a regiom, where
1 if x OA G:;J-Hy_c Pay (11)
f.(x) =[O vol(A) (5) dVOI(Qt)1+2/d 2 t
H o if x OA ‘

) ) _is thenormalized second momeat the typical bodyQ;. This
where vol(¥) denotes thed-dimensional volume of a regionmeasyre is independent of the rate and the source shape. It is also

d . .
W UR". Then the distortion (4) becomes dimensionless and thus insensitive to scaling. Hence, congruent
1 N ) bodies have the sante. The normalization with respect tb is to
=voI(A)zl IHX_CiH dx. 6)  make easier the comparison between quantizers of different
=1 Q;nA

dimensions. This paper is devoted to the search for structures with a
Now we concentrate on what happens when theRai high, for a |ow value ofG.
constant dimensiod . The regionA then becomes partitioned intoa  The distortion expression (10) can be used to estimate the
large numberN, of Voronoi regions, each one contributing a smalerformance of a well-optimized high-rate vector quantizer for a
amount to the overall distortiol. According to a well-known yniform source. Conversely, it can also be used as a tool in the
conjecture in quantization theory, first posed by Gershaalifjost design of such quantizers. The method is to find-dimensional
all the Voronoi regions will be similar to each othiarthe optimal body Q, with a low G. Every body is not admissible; only bodies
vector quantizer. In other words, there existygical bodythat, that can form dessellation A tessellation is a partition &9 into
through proper scaling, rotation, reflection, and translation, Wilgions, such that any pair of regions can be transformed into each
approximate most of the Voronoi regions. other through rotation, reflection, and translatfoVhen a

We will now, supported by Gersho's conjecture, make thgssellation is found that consists of bodies with a Bw the
approximation thaall Voronoi regions are congruent to a typicaodebook is formed as the intersection of the centroidstantihe
body Q.. Moreover, since the source under consideration is uniforgasired rate determines the scaling of the tessellation. The structure is
we assume that all regions have the same size. Hence, the Vorgamid atessellating quantize]. In previous studies of tessellating
regions are translations (possibly rotated or reflected@f.2 quantizers, most attention has been devotedttize quantizers

where a is a rate-dependent scaling parameter to be determiigfich constitute an important subset of all tessellation quantizers.
below. This approximation contains two errors, for any finite rateattices are defined in the next section.

Firstly, the regions in (6) deviate a little froa€,; secondly, some
of the regions, notably those close to the boundaré ofleviate a C. Lattices

lot. How these errors are handled implicitly selects one of o tticeis a popular special case of a tessellatidine following

concepts for vector quantizer design for uniform sources. The ergrs summary of lattice theory is intended to be a sufficient

can be neglected, which is the basic assumption behind latjigyround for the quantization problem investigated in this paper.
quantization, or they can be considered, which leads I8 5 more extensive treatment, the interested reader is referred to the
unconstrained quantizer design. In this paper, we follow the fornB%rok by Conway and Sloane [2], which has more or less become the
approach. o _ _ standard textbook on lattice theory.
If all Voronoi regions are congruent, the sum in (6) is not needed A |attice is an infinite set of vectors, defined througtinearly
anymore: independenbasis vectord,,b,,---by. The lattice consists of all
1

D=~ N ([ - ac szx linear combinations of the basis vectors, with integer coefficients.
vol(A) a-!; t The matrix whose rows are the basis vectors is callegeherator
1 ' matrix of the lattice,
= N —ac,a’dy. 7
vol(A) é[ lay - acfFa”dy ™ B =[byby. by (12)

Formally, we can write the latticA as

1 Lioyds original manuscript, which although unpublished has become famous} i§he body with the lowesG is the d-dimensional sphere, but it is not
dated 1957. admissible af),, because it cannot form a tessellation @cx 2).

2 We will allow the following operation on a s& of vectors: Elementwise 4 With a slight abuse of terminology, we will use “tessellation” to denote both a
multiplication by a scalar, denoteda¥, and elementwise addition of a vectorpartition of the type defined above and an infinite set of points whose Voronoi
a, denoted¥ +a. regions form such a partition.



1
G= ST J'HXHZdX. (16)
Q

A complication in the analysis of lattices is that equivalent lattices
can be specified through seemingly different generator matrices. Two
lattices are considereghjuivalentif their Voronoi regions (15) are
congruent. In this case, the two lattices have the gamand most

other lattice parameters agree, too. For example, the generator
: : : : matrices
“‘ o g2 0p BB+l \3-10 0 2 2-m2 L
B3 1v3@ HB-1 v3+1H H-1/V3+m/\V6 1+1/3-m/2F

all specify theA, lattice, so these lattices are equivalent to the one
. . . . . . . . . given by (14)
Fig. 1. Two possible bases for the hexagonal lattice. Some of A lattice can be transformed by scaling, rotation, and reflection,
the Voronoi regions are shown. without changing the shape of the Voronoi redidn.addition, basis
T vectors can be selected in many ways within the poinf\sets
A ={X OR*: (B™) x Dzd}- (13) illustrated in Fig. 1. It can be shown that the lattices generat@j by

Hence, any lattice poifitcan be uniquely written aBTu, where and B, are equivalent if and only if there exist matrié&s and Q

unzd. such that
Fig. 1 is an example of a lattice. It is the well-known hexagonal By ﬂ/d
; - B, = G20 WB,Q (17)
lattice, also called®,, and can be defined through, e.g., the generator 2 E\ZH 1
matrix
where all elements oV are integersyW has determinant +1, ar@
2 0t 14) is orthonormal. The coefficierfi, /\;)"® takes care of scalingy of
A V3 (24) . Wa/v1 :
_ _ _ _ o _ basis change, an@® of rotation and/or reflection. Unfortunately,
A, is the 2-dimensional case of the lattiég, which is defined, there has, to our best knowledge, not been published any general
along with some other common lattices, in the appendix. algorithm to determine whether two given generator matrices specify

In the design and analysis of lattices, it is often convenientdguivalent lattices. Of course, if eith&f or Q is known, the other
employd basis vectors having more thancoordinates. However, one is obtained by matrix inversion, but to determine both of them
throughout this pape denotes a square generator matrix. Thigmultaneously is still an open problem. It has been suggested to
notation does not restrict generality, sintevectors cannot spanemploy acanonical formfor lattices to solve the problem: B, and
more thand dimensions. Hence, for every nonsquare generatgy have the same canonical form, they are equivalent; otherwise not.
matrix B', there exists a square matiixdescribing arequivalent Unfortunately, the algorithms that have been proposed to transform a
lattice. (More on equivalent lattices below.) Practically, sueh@n generator matrix into a canonical form (see, e.g., [10, pp. 65-67]
be found through, e.g., QR factorization (B')" or Cholesky and [11, pp. 184—201]) consider basis changes only, not rotation. If
decomposition of8'(B')". Some of the following theory draws B, and B, are rotated versions of the same lattice, the canonical
advantage ofB being square, thus simplifying the notation. Foforms obtained by such an algorithm will differ. Hence, the problem
example, both the inverse and the determinar bfwve important of identifying equivalent lattices remains, as discussed in Section II-
interpretations. C.

Lattice points are evenly distributed in space—there is no region Finally, for every lattice there isdual. The dual ofA is another
where the lattice is denser than somewhere else. It is because ofghige, whose generator matrix(iB‘l)T. The dual is denoted\". It
uniformity that lattices are suitable for the quantization of uniforfls the same degree of symmetryNasbut the lattice parameters,

sources. Gersho pointed out, “if you sit on one lattice point and vigith as the normalized second mon@nare normally different.
the surrounding set of lattice points, you will see the identical
environment regardless of which point you are sitting on” [9P. Quantizer Design for Nonuniform Sources

Consequently, the Voronoi regions form a tessellation, as mentioRgg now return to vector quantization. So far, the discussion has been
above in Section I-B. Indeed, the Voronoi regions are pugcused upon uniform sources, where lattices are immediately

translations of each other, without needing any rotation or reflectig plicable as quantizer structures. While under some circumstances,
(See Fig. 1 for an example.) This is a chief characteristic of rlexample, image data can be modeled as a uniform source [12, p.

lattices. _ _ ~ 33], most applications display different probability density functions.
The all-zero vectod belongs to all lattices. This follows trivially However, lattices have found their use in vector quantization for
from the definition (13). The Voronoi region aroufid nonuniform sources, todln this section, we will review some
Q= {x ORY : x| < I - ¢? for allc D/\} , (15) approaches that have been proposed in the past.

One possibility is, of course, to approximate the probability

is commonly calledhe Voronoi region of the lattice\. It is the . . . . . .
. ) - . density function of the source with a uniform function, and design a
standard choice of a typical body (see Section I-B) in the computation

1 1 = = 6 . . . . .
of lattice parameters. The volume@fis V = vol(Q) =detB|.° The 7 Translation also preserves the Voronoi region, but a translated lattice is

normalized second moment (11) is normally not a lattice (13). It is still, of course, a tessellation.

8 In fact, all applications of lattices that are mentioned in this section are directly
5 We use “lattice point” and “lattice vector” interchangeably. generalizable to other types of tessellations as well. We retain the lattice
6 The volume is more commonly given in the fotdet®B'))¥2, which allows terminology because it is the framework in which most of the research was
for nonsquare generator matrices. originally published.



lattice quantizeSection 1-B) accordingly. Much attention has beecode to the quantizer output. It has been shown that if an entropy
devoted to the problem of optimizing the size and shape of dwle is employed, theptimal high-rate vector quantizer should have
uniform function for a given source density; in other words, tleeuniform distribution of codevectofg] [29, p. 131] [30, p. 471].
problem of scaling and truncation of the lattice. This problem lience, if Gersho’s conjecture (see Section I-B) is true, then a
discussed in [1] and several of its references. The gain in memtesgsellating quantizer is asymptotically optimal when the rate tends to
and encoding time, compared with a source-optimized codebooknfiity. The optimality does not require the source density to be
significant. The price paid is a performance degradation, the sevauitiform or even smooth, only that the differential entropy is finite, as
of which depends on the rate, the dimension, and the probabititpved by Linder and Zeger [8]. It is worth mentioning that a
density of the source. The general trend is that the degradat&ssellating quantizer with entropy coding performs closer to the rate-
increases with higher rate and lower dimension, as illustrated fatistortion bound than the optimal fixed-rate vector quantizer. The
Gaussian source in Fig. 3.4 of [1]. argument behind this statement is the following: The optimal fixed-
For high-dimensional sources, a low-rate lattice quantizerriate vector quantizer is inferior to (has higher average rate than) the
known to have close to optimal performance. This is because ofshene quantizer with an entropy code. And a codebook with
asymptotical equipartition propertaccording to which a large classnonuniform point density is inferior to a uniform codebook, as long
of high-dimensional probability density functions can be wedls entropy coding is being applied. Applications of entropy coded
approximated with uniform densities [13, pp. 73, 285], [14]. Fdattice quantization are presented in, e.g., [14, 31, 32].
example, data drawn from an uncorrelated Gaussian density tend td=or high rates, the performance of an entropy-coded tessellating
be uniformly distributed in a thin spherical shell, if the dimension éggiantizer is proportional to the normalized second mor@enf the
high [15], whereas the multidimensional Laplacian density can tessellation. This was shown in [8], through the high-rate
approximated by a uniform density on the surface of a “pyramidpproximation
(hyperoctahedron) [16]. The tendency towards uniform distributions D = g G 22h-Hyd 18
has been successfully employed in several applications. Competitive - (18)
lattice quantizers have been designed for use in CELP [17] dhdvhich h=[f,(X)log, f,(x)dx is the differential entropy of the
transform coded [18] speech coding systems. In image coding, Jetice and H is the output entropy of the quantizer,
and Gibson have achieved good performance through lattide =) P10g, b, where p is the probability of the event
quantized DCT coefficients [19]. For high rates and low dimensiorf&{X) = ¢i- The approximation is asymptotically exact, in the sense
on the other hand, the performance degradation of lattice quanti3g® the relative error tends to zero ldsapproaches infinity. The
compared with source-optimized vector quantizers can be quite se{@ftor G in (18) shows the importance of tessellations with a@w
[20, 21, 1]. the gain obtained by improving a tessellation can be expected to
To avoid performance degradation due to nonuniform sourcBeopagate directly into the distortion of an entropy-coded quantizer
the quantizer should be matched to the specific source density, i upon the tessellation. A distortion proportionalGois also a
still there exist promising alternatives to the training of dfature of, e.g., high-rate uniform quantization (10), nonuniform
unconstrained codebook. The basic idea is to maintain the Igd4®ntization [33], and lattice quantization of Gaussian sources [21]
lattice-similarity while making the global structure matched to thé S€c. 3.2].
source. Hence, we turn our attention towards the minimizatio®of
One quantizer structure with this aim is fiecewise uniform
quantizer introduced by Kuhlmann and Bucklew [22, 20]. It is a
generalization of the lattice quantizer, where a given (nonuniform) 1. NUMERICAL OPTIMIZATION OF LATTICES

probability d(_ensity function is approximated \_Nith gsta}ircase functioﬂ,]e history of lattice design is closely interlinked with group theory
In each region where the depsnty appromma_tlon IS (_:onstant, error-correcting codes. Almost all lattice design methods that
codebook is populated by a suitably scaled lattice. Similar structyles . peen proposed arise from the algebraic approach. We now study
are ob_talned.by designing two-stage quantizers where the Sece(()rpglternative method. The idea to iteratively adjust a lattice in order to
stage is a lattice [23, 24, 25]. . decrease the normalized second moment was suggested in [34], but
A more general method to |mprove.t_he performance ofa I‘"?‘tt't%ethe best of our knowledge, no specific algorithm for the purpose
quantizer for nonuniform source densities is to apply a nonlin s yet been presentédVe have developed an algorithm that
Fransform func'tion to each input vector befqre quantizatiop, and Riimizes the normalized second moment by a gradient search
inverse fl_mct|on .to_ quantlged data. This app_roa_ch is call H)cedure. The algorithm is related to algorithms for vector quantizer
compandingand '_t is used in many scalar applications. It w. Faining, but it operates on a generator matrix instead of individual
suggestec_i for use in vector quantization by Gersho [7], a”‘? ITD’u‘:kk%(&evectors. In Section II-A, we regard lattice design for quantization
chargcterlzed Its _hlgh-rate pe.rformance [26, 2_7]' _Antonlnl et 3% an optimization problem and adopt a suitable set of variables. The
app"_efj compgndmg and lattice ve_ctor quann;auon to V,Vave_ algorithm is presented in detail in Section II-B, together with the
coefficients for image data [28]. The piecewise uniform quantizer "doretical background. Section II-C discusses in general terms what

fspec!al case of a.corppandlng lattice quantizer, where the ”a“S“Rfﬁ‘a of results is expected from the algorithm, and how these results
unction is piecewise linear. can be interpreted.

An alternative method to modify a lattice quantizer to match a
nonuniform source is presented in [1], where the advantages @f arhe Optimization Problem
lattice structure are incorporated into a design algorithm for sour
optimized vector quantizers.

In Section I-A it was assumed that each codevector was encoded

with ex-e?c.tly log, N bits. If the codevectors have unquabriori 9 For the design of binary codes, however, iterative algorithms have been
probabilities, the average rate can be reduced by applying an entedffoyed, see [35] and its references.

ﬁ“?fe problem of finding a good lattice for high-rate uniform
tization can be stated as a multivariate minimization problem

4



min G (19) because of the volume normalization. This expression contains no

BLR™ determinant, which will lead to a very simple form for the gradient
whereG is the normalized second moment (16) derived in the next section.
1 . i .
G= Wi\\a\zde. (20) B. The Lattice Training Algorithm

The training of a lattice basis is in many ways similar to training of an

g2
The pzroblem containd” unknowns, or de.grees' of freedpm, nameI.B(instructured VQ for a uniform probability density function, but there
the d“ elements of the generator matrix, which specify the lattice . . . . "

. are also important differences. For instance, the centroid condition
through the construction (13).

. . for local optimality of a VQ [30, sec. 11.2] is of no help, since the
To simplify the problem, we recall the concept of eqUIValenc%devectors ohnylattice are the centroids of their Voronoi regions.

. ) . C
lattices, see Section I'C’. e;pemally (17). There are many WayS-{ means that we cannot use the generalized Lloyd algorithm in its
change a generator matrix into one that spans an equivalent lattice

- cormmon form, or, for that matter, any other algorithm that relies on
and such changes do not affect the normalized second m@nant . S T, any 9
- ; L . e centroid condition, for the training. We propose a steepest descent
all. On the contrary, an iterative optimization algorithm shouf

. . . agorithm, which is found to be reliable and sufficient for the
concentrate on changes that has a potential of improving the lattic . . . . L

; T . foblems considered here. In higher dimensions, it might be
Why attempt a 100-variate optimization problem when 50 Va“abr%%varding to study more sophisticated algorithms, such as the Gauss-
suffice? If we fix the rotation of the lattice, and the scaling, alm y '

i . .
) . . RNewton method and its relatives.
half of the d? variables in the generator matrix can be removed from .
R i ] In the development of the algorithm, we take advantage of the
the minimization. Specifically, the rotation is in (17) controlled by an N . . . .
. . problem formulation in the previous section. The strategy is to iterate
orthonormald x d matrix, and the set of all such matrices spans, a - L
. 3 . . the vectorf (22) in order to decreasé (24). Random training
parameter space af(d —1)/2 dimensions. This number of variables . . L T .
. L .7 vectors are generated with a uniform distribution inside the Voronoi
disappear from the minimization problem when the rotation is fixed; .

. . . region Q. For each training vector, the squared distance to the origin
one more variable disappears when the scale factor isifitéence, J g q 9

2 ._is computed, and also the gradient of the squared distance with
of the d° degrees of freedom that a general generator m&trix o . Then f d th h i is adi d
ossessesd(d —1)/2+1 are irrelevant in the optimization d® respect tof. Then f, and thus the generator matrix, is adjusted a
P 2 . ' small step in the direction of the negative gradient. The adjustment
whereasd” —d(d-1)/2-1=(d +2)(d -1)/2 are important. The

. c?n be made for each individual training vector or for blocks of
irrelevant degrees of freedom can be removed from the genergior |

matrix in several ways; we employ the following straightforwar The first question is how to generate the training vectors.
methoq. - . . ., Conway and Sloane give an elegant method to generate uniform data
Using (17), it is easily shown that for any lattice, there exists ani S - .
equivalent lattice with a cenerator matrix of the form within a Voronoi region [36]. Firstd independent random numbers
q 9 are obtained, uniformly distributed between 0 and 1. They constitute
0oy 0 0 0 r a random vector within the -dimensional unit cube. Calling this
Sbg,l YR 0 0 E vector z, another vectok = Bz is created. Next, a search algorithm
B : : : foC 21) is applied to find the closest codevectorxton the lattice, denoted
Ea_n By-12 -+ Bygga O ¢ =B"u. Finally, the difference vectoe=x-c', which has a
Oy b b Y uniform distribution over the Voronoi regid, is computed.
Ar o2 d,d-1 rlbx,kE T - . : .
k=1 o steer the training, we need the gradient of the integrand in
Geometrically, this form locks the first basis vectoy, along the (24). Hence, we differentiatg|® with respect to each component of
first axis of the coordinate systern, in the plane spanned by thef:

first two axes, etc. In addition, the volume of the Voronoi regions, el g 4 5 d e,

V, is locked to unity. The training algorithm to be presented in the N Zek = ZZGK L= (25)

next section operates on a matrix of the type (21). The matrix can be B W& k=1 |

regarded as a function of where g, denotes componetit of e. To find the partial derivatives
T dg/dh;, e is first written as a function off. Defining

t=(f fgeaa-2) (22)  y=(y, " Yg) =2~ u, we obtain
where e=x-c =B'z-B'u=B'y (26)
fii-y2+j =0 forj=1.-,d-landi=j,;--.d (23) or, componentwise,

are the(d + 2)(d —1)/2 “free” variables in the optimization. d
The constraint thus imposed on the form of the generator matrix &= z B Y- (27)
B actually serves two purposes in the simplification of the numerical. . . =1 . ) .
optimization problem (19). The number of variables are reduced,-rgés_glvese as a function o8, which in tum is a function of . To
gtinue, we employ (21):

discussed above, and it is also worth observing that the objecﬁg

o ; p
function itself (20) gets a S|mpller form, namely, o - Z By
G=7 [leide (24) =
¢ by ifk<d
. (28)
10 The change of basis vectors, as denoted by the matrin (17), does not é/d Iqtﬂl if k=d

contribute any degrees of freedom in the sense discussed here, since the elements
of W are subject to an integer constraint.



which is a function of only. The derivative is most popular. The reduction normally destroys the triangular

o ifj =k <d structure of the ggnergtor matrix,_ SO red_uction is immgdiately
g, Oy, 1 succeeded by rotation in our algorithm. It is worth stressing that
— =07 []b; fi=jandk=d. (29) neither reduction nor rotation changes the lattice (except into an
¥ EO B 1= otherwise equivalent one); it is the representation of the lattice that is changed.

Some details must be decided in order to complete the training
algorithm. The choices include block- or sample-iterative training,
e Elzejyi ifi#] step size values, etc. In Table |, we have formulated one suggestion,

= 2 ar . 30) a sample-iterative algorithm with linearly decreasing step size. Note
O.h’j %elyl — edyd |—| th |f i=j ( ) p g y g p
i1=1

that the diagonal elements of the generator matrix are updated
for all componentd) ; of f. Equation (30) gives, componentwisefjiﬁeremly from the othgr elements. The upper triangular part is not
the gradient oflg> with respect tof . According to the steepestuPdate_d’ and the last dlagonaI- elemdn, is compu.ted from the_ .
descent rulef should be updated in the direction of the negati\P her diagonal components as in (21). In the execution of the training
gradient algorithm, we employ, 4 to simplify the expressions (28) and (30).
Many small changes to a matrix may eventually make it ir?_till, by 4 should be regarded purely as a funct_iorl of_ other_matrix
conditioned. This means that an iterative algorithm for lattice desi ffments, andy 4 does not enter the vector of optimization variables,
may grow long and almost parallel basis vectors, which may slow the latti initial value fBr W dth
algorithm down and in severe cases cause numerical problems. Fof_A‘nyI at.tlce can serve asdl_nltla va u'ebl g _ehrecommﬁn t ;
instance, such basis matrices tend to generate “sensitive” Iatticeg‘umIC attice (§ee appen 1x), possibly with a small random
the sense that a small change of an element yields a large chan gfiHrbance. This lattice is neutral, in the sense that it is not close to
the normalized second mome@at Sensitive lattices could potentially ny local optimum. Almost any ad]ustm.ent will redupe th,e nqrmahzed
prevent the algorithm from converging, at least if they would l§§cond moment. Metaphorically speaking, the cubic lattice lies on top
present near a local minimum of the hill. Of course, a better lattice can be used as initialization, if
Fortunately, there is a way to counteract this problem. Again W& user W's:ei to .e>.(am|rl1e ﬂ;'s spemflc ll)attlc;]a_, f_or Instance tdo
rely on the theory of equivalent lattices. Through a basis changgeéermm_e whether It Is a loca optlmum, ut t '_S' IS _not a goo
given generator matrix can be replaced by one in which the b%fgtegy in the search for a global optimum, especially if the chosen

vectors are short and reasonably orthogonal to each other. 'FHféal lattice is already good. From a point below the hill, you will

process, which is called reduction, should be repeated regulgr(f’flsee the deep valleys on the other side. The strength of our training

during lattice training. Several reduction algorithms have be@igorithm is that it may point at previously unknown lattices.

proposed, of which the one by Lenstra et al. [37] is probably th Three training pargmetersﬁ,, M, and M, must be gpecified in .
advance for the algorithm. Our standard choice, empirically found, is

TABLE | £ =102, M =10, and M, =10*. Small changes in the values,
THE LATTICE TRAINING ALGORITHM. tailored to the intended experiment, may yield slightly improved

Inserted into (25), finally, this yields

Step 1: Initialize a generator matri® of the form (21). Set tHe Performance (in terms of speed and/or quality), but the algorithm is
number of iterationsM, the start step size,, and thg Not too sensitive to these parameter values. In fdgts o works

[¢)

reduction intervalM, to suitable values. Sen=1. well in dimensions up to about 10, which means that low-
Step 2: Compute a new training vector as= B'z, where each dimensional lattices can be designed by a simplified version of the
component of is uniformly distributed in the interv40,1). algorithm, in which step 5 is omitted.
Step 3: Find the lattice vectoc' =B'u that is closest to tHe The computational complexity in the training algorithm is, for
training vectorx. Sety =z-u ande=B"y. high d, dominated by the so-calletbsest point problenthe search
Step 4: Update the components & for j=1---,d-1 and for the closest lattice point of the training data, in step 3. Algorithms
i=j,-das have been developed by Kannan [38] and Agrell and Eriksson [39].

It has been theoretically proved that the problem is NP-hard, see,

2
=h.-¢ K] e.g., [40], but the complexity is nevertheless not overwhelming. To
bj=h;—én =9 _ . :

‘?Q,j indicate the order of magnitude, we mention that with one

where implementation of the algorithm in [39], the average time to find the
ey if i # | closest point in a 24-dimensional lattice is 37 milliseconds.
dle? _ BZ e b The lattice training algorithm is easily modified to solve other
Y - %qyi —Z%Ydﬁ if i =] problems that can be formulated in a similar framework. For
' J

example, if we search for a lattice under the constraint of a specific
and ¢, is a linearly decreasing step size parameterstructure, all that is needed is the identification of a vector of free
&m =&@-m/M). The last diagonal elementy,,, is| optimization variable$ and the gradient ofg’> with respect this

computed by the expression vector. One application of this idea is reported in Section 111-B,
1 gt where the generator matrix (31) was refined by such a constrained
byg = ﬁj bx,kH lattice training algorithm.
=1

Step 5: If m is divisible by M,, then perform a reduction o&| C. Identification of Lattices

and subsequently rotainto lower triangular form. In applications of numerical optimization, exact solutions cannot be
Step 6: If the desired number of iterations has been performecexpected. The presented training algorithm for lattices is of course no

m=M, then exit. Otherwise, seh:=m+1 and continu¢  exception: the results are approximations of true optima, local or
from step 2.




global. This section is a discussion of the interpretation of The following example demonstrates how a 5-dimensional lattice
approximate results. An example concludes the section. was identified through suitable choices of e and Q matrices.

The purpose of the lattice training algorithm is to find lattices witthe example also illustrates how we employ postulate 1 to round the
the lowest possible value of the normalized second mofaefibr a resulting matrix to a more symmetrical one. The method and the
given dimensiord . The exact computation @ for a general lattice magnitude of rounding in this example are representative for the
involves the determination of every vertex, edge, 2-dimensional fageperiments in the next section, where other lattices obtained by the
etc., of the Voronoi region [41]. The complexity of this computatidmaining algorithm are identified.
grows dramatically with the dimension, so it is practically feasible Example 1For d =5, one run of the lattice training algorithm
only for lattices of moderate dimension. As a less complgave the following generator matrix:
alternative,G can be estimated through Monte Carlo integration of 1.285 0.000 0.000 0.000 0.000
(24). This method, proposed by Conway and Sloane in [36], is the -0.518 1.025 0.000 0.000 0.000 E
one we use in this paper. We also follow their nomenclature in By = [|-0.255 0.517 1.149 0.000 0.000 []

. . - A —-0.514 -0.261 -0.579 0.811 0.000
presenting estimates @& on the formG+ 20, where g is an 0513 0.263 —0.572 —-0.003 0.815

estimate of the standard deviation®f . .
- L . - nd the normalized second moméhiwas estimated to 0.075624 +
When the lattice training algorithm exits, it has converged to the . . ) .
_— . . . .000010. Direct inspection of the generator matrix does not
vicinity of a local minimum. Thus, the training algorithm does not . .
. . . . . . Immediately suggest any symmetries. However, we observe that the
directly point out exact local minimf ; it terminates anywhere inside ) . . . .
a small region arounti . All f’s inside the region represent the sam%eSt S-dimensional lattice currently knows, has a normalized
9 gion rep cond moment o6 = 27485 (264745= 0.07562¢ [43], which falls

minimum, and to find this (exact) minimum, we need some kind o? o . . b L
W L ( ) . ell within the interval estimated fd8,. Hence, theD; lattice is the
rounding” process. The rounding, which takes place when the

training is complete, is guided by the following rule. ypothesis that we try to verify. Employing the strategy outlined

Postulate 11f two lattices represent the same local minimum, thabove, we create another generator matrix through (17) with a basis

one with most symmetry is the more accurate representative. c%ange given by

The postulate is empirically motivated. Nature favors symmetry. E(l) ‘é (i) 2 8 E
In the past, every lattice that has shown good quantization w=[]0 00-10
performance has also possessed a high degree of symmetry, while on E 0 00 01 %
the other hand, the (unrounded) lattices generated by the training 1 00 00O

algorithm have minimum symmetry (that is, reflection in the origi@rotation given by

and nothing else). Zamir and Feder [34] show that the optimal lattice 0.449011 0.448323 0.447087 0.446851 0.444785
guantization noise iwhite, which means that if a random vecwr 0.893513 0.224658 0.226453 0.227533 0.219344
uniformly distributed irthe optimal Voronoi regioris projected onto Q =[] 0.001054 0.496921 0-500431—0-500429‘0-5022035

an arbitrary line, the obtained random variable has the same variance %888%2%5_868%‘;&8Sggg??g?gé?;ﬁggggiﬂ
regardless of the orientation of the line. This property certainly ' ' ' ) )

supports the notion of symmetric Voronoi regions. There isagd a scaling o¥y/\; = 0.5. The new generator matrix,

practical reason to encourage symmetry as well: search time. For E 68828885—8882—888% %88-;’

. . o d
(rjnany lattices, the sym.rr!etrlcal structure' has been exploited in th‘?2 - %V\ng/ WB,Q =[1-0.0000.002 1.002 0.001-0.004
evelopment of very efficient search algorithms [42]. A 0.0010.001 0.001 1.002—0.003

In the comparison of lattices, it is important to remember the 0.5020.501 0.500 0.500 0.498
possibilities of basis change and rotation. As discussed in Sectiogpkcifies a lattice that is equivalentBg. The structure underlying
C, equivalent lattices can have generator matrices that look quiie matrix is clearly visible, and postulate 1 allows us to create a
different from each other, which is why the identification of a lattice
requires some manual efforts.

Suppose that the output of the training algorithm is a generator
matrix B;. To identify the lattice, we need to find matricés and
Q, and a scale factor given by, such thatB, in (17) gets a §
suitable form, preferably one that has been described in the literatuge?-98%
if this is possible. The first thing that we do is to estimate th§
normalized second momef®, which is independent of botW and §
Q, and also of the scaling. If the estimate agrees with a value that \§e
have seen for another lattice in the same dimension, in the IiteratureE:or
in our experiments, it is likely that the two lattices are equivalent. Tg 0-075
prove it, we study the innermastell of the lattice, that is, the set of
nonzero lattice points being closestXoThis set of points, which is
independent ofV but notQ, can be computed by a modified closest

Norm

. . : . . [ | — Lower bound
point algorithm [39]. The radius of the shell (which equals twice the X B‘;Vs”teg,ag’;’{;al lattice

0.070r

packing radiuy and the number of points in it (théssing numb@r
are two Q-independent lattice parameters, so they should be equal 1 2 3 4 5 6 7 8 9 10
for equivalent lattices (i%, =\4). If they are, we complete the proof

by selecting a subset of the shell for both lattices and rotating the two
subsets into each other, thus obtainipg

Dimension

Fig. 2. The lowest normalized second moments previously
known, in dimensions 1-10. This diagram is supplemented
with our results in subsequent figures.



more accurate representation of the found minimum by rounding the

elements: A. The Best Lattices Found
E 1 0 0 0 O E There is no theoretical limitation on the number of dimensions that the
0 1 0 0 O lattice training algorithm can handle, only a practical one. The
B= Dg 8 é 2 8 algorithm, in its present form, typically requires 2 hours in 3
/2 12 1/2 12 1/2 dimensions, 4 hours in 10, and 25 hours in 20. With other training
which is indeed a generator matrix of the very symmetmﬁ,alattice parameters, time can, of course, be bought to t.he pr.i.ce of accuracy.
(A.3). 0 To evaluate the algorithm, especially to assess its ability to converge

into local minima with low normalized second mome@s we
considered it important to run the algorithm several times in each
. EXPERIMENTS dimens_ion, and_identify each_ogtput lattice through t_he mthodoIogy
of Section 1I-C, in a manner similar to example 1. This required some
The work presented in this paper was inspired by the need for bettanual work on each lattice, the amount of which ranged from
lattices for quantization. As discussed in Section I, the performaisegonds to hours for the identification of a single lattice.
of a lattice quantizer is, under some circumstances, characterized byr'he considerations above led to the following experiment setup.
the normalized second moment of the lattiGe,Fig. 2 summarizes The training algorithm was run 10 times in each dimension from 2 to
the best classical lattices [43—46, 33, 47] along with Conway &l and the trained lattices were identified. Most of this section is
Sloane’s conjectured lower bound [44]. With “classical” we meaevoted to results from this experiment. To study some further
lattices for which the normalized second moment has been repofeedures of the algorithm, we also designed 100 3-dimensional lattices
previously. The figure hints a potential for improvement, especiafipd one 20-dimensional one.
in 9 and 10 dimensions. 10-dimensional quantization has received aDuring training, we regularly output an estimate®f Except
lot of attention in speech coding [48, 49], where suboptimduring the very first iterations, we have never observed any sudden
structures such as split VQ and multistage VQ have been mgbange, and in all tested cases, the algorithm had converged well
employed. A good 10-dimensional lattice might provide an attractibefore the decreasing step sig caused the training to cease. This
alternative in this application. observation suggests that no numerical problems significantly disturb
In Section llI-A, the results obtained through lattice training atBe algorithm. Especially, the algorithm manages to avoid the
presented. When the dimensidnis 9 or 10, we find lattices with problem of “sensitive” lattices (see Section II-B).
normalized second moments considerably lower than the valuesIn Table II, the 10 lattices obtained in dimensions 2-10 are listed,
previously known for these dimensions. If the new lattices are indggduped according to which local minimum they represent.
optimal, they disprove a famous conjecture by Conway and SloaNdermalized second momen@ were estimated for one (randomly
The structure of the new lattices draws our attention to a classelected) member of each group. Most of the groups represent one of
nonlattice tessellations, which is examined in Section 11I-B. Whe “classical” lattices, among which the most notableZdre Aq,
report tessellations that are better than all previously studiudd Ay for d>1; Dy and Dy for d>3; and E4 and Ey for
tessellations, including lattices, in 7 and 9 dimensions. We triedGs d < 8. They are all defined in the appendix and their properties
focus the section on the results of the training algorithm, withdmormalized second moment, etc.) can be found in [2, chs. 4 and 21].
expanding the work into an essay on lattice theory. Hence, sofntew groups do not represent any known and named lattice; these
theoretical background and definitions are left to references. lattices are characterized below. For comparison, the previously best

TABLE Il
THE LATTICES OBTAINEDBY THE TRAINING ALGORITHM, GROUPED ACCORDING TQOCAL
MINIMA . INTERVALS ARE GIVEN ON THE FORMG + 25, SEESECTIONII-C.

Trained lattices Previously best known| Lower bound
d Numb‘er‘ of local H|t_s in each G Name of G Name G
minima minimum minimum
1 10 0.080180 + 0.000010 A 0.080188 A 0.080188
1 10 0.078540 + 0.000010 A3 0.078543 A3 0.077875
9 0.076602 + 0.000010 D,
4 2 1 0.077551 + 0.000010 A 0.076603 D, 0.076087
9 0.075624 + 0.000010  D; .
5 2 1 0.075796 + 0.000010 - 0.075625 Ds 0.074654
7 0.074240 £ 0.000010 Eé "
6 2 3 0.074342 + 0.000010  E, 0074244 E 0.073475
9 0.073121 + 0.000010 E; «
7 2 1 0.073234 + 0.000010 E, 0.073116 E; 0.072484
8 1 10 0.071681 + 0.000010 Eg 0.071682 Eg 0.071636
8 0.071626 + 0.000002 —
9 3 1 0.071634 + 0.000002 — 0.074693 Dg 0.070902
_ 1 0.071640 + 0.000003 —
10 1 10 0.070814 + 0.000010  Dj, 0.074701 Dio 0.070258




Eg. which is known as a very good and very symmetrical lattice
[44].

Before proceeding to the lattices found in dimensions 9 and 10,
we pause to make an observation on the less frequent local minima in
Table Il. Since some local minima only received one hit in 10
attempts, there may well exist other lattices that are also locally
optimal, even though none of the 10 runs arrived there. If we wish to
estimate the exact number of local minima in a given dimension, 10
trials are apparently insufficient; if, on the other hand, we are more
x X concerned with finding the one global optimum in each dimension,
the trend of better local minima getting more hits, as the table
indicates, is encouraging. As an example of a thorough search for
local minima, we executed the algorithm 100 times in 3 dimensions.
All of them converged toog as expected; Barnes and Sloane have
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ shown that this is the only 3-dimensional local minimum [2, p. 60].

1 2 3 4 5 6 7 8 9 10 Especially, thdace-centered cubic latticéd;, was never reached. Its

Dimension G is only slightly higher than that 04\3 but it is not even locally
Fig. 3. A comparison between classical lattices and the optimal.
principal minima given by the training algorithm. Nine-dimensional lattices are special. The lattices we reached are
i more irregular than the ones in other dimensions, and none of them
known G values! and Conway and Sloane’s lower bothdre were found in the literature. Moreover, they do not appear to be

included in the table. integer latticeg2, p. 47] for any scaling, which makes them unique

The 10 runs for efagh dimension tumed out to converge Into Ju%tnqongst the presently best known lattices. While confusing at first,
few different Iogal minima, more thap Fhree local minima were Nfifis irregularity was to some extent explained when we studied
fogn_d for any dlmensmn. Of these minima, one, called_atlmclpal nonlattice tessellation (see Section I1I-B). It turned out that there is a
minimumfor a givend ,_always got S|g.n|f|canﬂy more hits than.thgg_ imensional nonlattice tessellation (yes, a highly regular
ot_he_rs. It can be seen in Table Il that in all dimensions, the p”nc'%%jsellation!) that is considerably better than all known lattices. If the
”?'“'m“_m turngd out to be equivalent to thg begt knc_;dvn optimal tessellation fod = 9 is not a lattice at all, then the irregular
dimensional lattice—or better! In none of the studied dimensions, PMlices that we observe may be attempts by the training algorithm to

Iatti(_:e training algorithm fai!ed to reach a performar_me that has b%%'aroximate the nonlattice structure within a lattice constraint.
attained through other design method;. In dlmen3|on§ 9 gnd 10, Wery,q generator matrix of the 9-dimensional principal minimum is
found lattices that have not been considered for quantization before.

0.080r

0.075¢

Normalized second moment

— Lower bound
X Best classical lattice
O Best lattice found

0.070r

Both these cases are discussed in detail below. In dimensions 2-8, pg 0 0 0 0 0 0 O 0
the principal minima were equivalent to best known results, which Bi é (1) 8 8 g 8 8 8 E
lends confidence to our training algorithm as well as to previous 03 O 0 1.0 0 0 O 0 C
investigations. We do not claim that the principal minimum found by a C
the lattice training algorithm is always the global minimum, but we gi 8 8 8 é (1) 8 8 8 E (31)
have not yet seen a counterexample. 90 o o 0 0 O 1 0 o L

Fig. 3 summarizes the results obtained by lattice training, in U o 0o o o 0 o0 1 o C
relation to the previously known results of Fig. 2. Lattice training B/Z V2 U2 V2 12 12 Y2 12 0_573E

carries the normalized second moment much closer to the bound fo . . .
and the normalized second moment of the lattice was estimated to

d=9 and 10. In 10 dimensions, the gain over the best classi .
lattice, Dy, is 0.23 dB, a gain that (18) indicates can be interpret@' 71622 + 0.000003. In (31), we have interpreted the output of the

as the SNR difference between corresponding lattice quantizers. algorithm a_ccordmg o postulate 1, but fpr this lattice, the postulate
. . L does not give exact values of all matrix elements. One element,
We now comment on the results in each dimension; first we gi . )
) . . -0.573, was left unrounded. We will explain later why no value can
a brief summary of dimensions from 2 to 8, then a more detaile . .
. ) . . e replaced for 0.573 to increase the symmetry of the lattice.
presentation of dimensions 9 and 10, which is where our latticé _ .
. . . Since postulate 1 yields exact values of all but one element of the
results improve on previous knowledge. Ebr 2 and 3, all trials . . . . . .
- « _ generator matrix of this locally optimal lattice, a single-variate
converged to the same local minimusg, and A;. For d =4 and 5, . . .
. . L optimization algorithm can be formulated to increase the accuracy of
we found two local minima, of which the principal onds, (and . . . . - )
thIIS one variable. We modified the lattice training algorithm of

D;) were reached in 9 out of 10 attempts. The suboptimal Io%a ) ) . .
minima areA, and an unnamed 5-dimensional sublatticeDfi3 ection |l for this purpose. The lattice structure was constrained to
(31) with an unknown variable substituted for the lower right

For d=6 and 7, the principal mini i€, and Ey i ;
or and 7, the pr|r1C|pa minimum IE‘*’. an Bq Is & element. A derivative similar to (30) was calculated and the algorithm
secondary minimum. Fod =8, the only local minimum found is . ) . -
was run to optimize the single variable. The theory by Zamir and

11 Among the “best known” lattices, only the ones in dimensions 1-3 have bge%der on the whiteness of lattice quantization noise (see Section II-C)

proven optimal. shows that this optimization problem has a unique minimum. The
12 The values were computed using a series expansion of the recursive integsult, based on 100 runs of the single-variate training algorithm, was
equation in [44]. 0.57321 + 0.00014, where the interval is again given on the form

13 The 5-dimensional locally optimal lattice can be obtained as the intersection of
Dé and a hyperplane perpendicular to the ve¢tdr1,1,1,1)". This specification

of the new lattice is analogous to the definitionsf as a sublattice 0Dy, see

the appendix.



+20, using an estimatg of the standard deviation. Hence, the three TABLE Il
decimals in (31) can be considered signifiddnt. LATTICES THAT CHALLENGECONWAY AND SLOANE’S
. . o . . CONJECTURE SHADED CELLS DENOTE BEST KNOWN VALUES
The matrix (31) generates a peculiar lattice, in which the lattice

_ _ : IN THEIR DIMENSION.
points lie closer together along tlikh coordinate that along the

. . . Lattice G J of dual
others. This follows from the fact that the nonzero lattice points
closest to the origin are(0,0,---,0,1.146).15 Just these two points; (1) PR UNDR) 0.02857 + 0.00002
for example,(1.1460,0,---,0) is not a lattice point. The distance to Ng | 0.071769 + 0.000006 1/16v2 = 0.0441¢
the two closest points is 1.146; in other directions, the distance to any Diy 0.070813 + 0.000003 1/32=0.0312¢
lattice point is 2 or greater. Hence, the Voronoi region of this lattice is Nio 0.071339 * 0.000009 1/16+3 = 0.0360¢

flat. It is tempting to conclude that the lattice therefore must have a
relatively high normalized second mome®t since this measure paper to the duality conjecture, suggesting that it, although not true in
characterizes how round the Voronoi region is (see Section I-B), iiatpresent form, might be a first-order approximation of a yet
the conclusion is severely wrong. A low@ris not known among 9- unknown relation [47]. However, no counterexample has been
dimensional lattices. This lattice apparently compensates its weird @@sented to date, which motivates an investigation of our 9- and 10-
coordinate with being extremely round in the first 8 dimensions. T@igensional discoveries in this context.
projection of the lattice orthogonal {6,0,---,0,1.146) is D3, better The best known lattices for packing in 9 and 10 dimensions are
known asEg, whose Voronoi region is very round, as mentionezlled Aq and Ay, respectively [2, chs. 1 and 6]. The best known
above. The geometry of the 9th coordinate also explains whitices for quantization are now given by (31) and (32), the latter
symmetry arguments will not suffice to identify the local minimureing D1+o*- In Table Ill, we show that our new lattices have a lower
represented by (31) completely. To use an analogy, a cylinder carfadghan Ag and A\, thus showing thaf\q and A, are not optimal,
be made more symmetrical by changing its height. as the conjecture would imply. We also show that the duals of the
The two suboptimal local minima that the algorithm converg&@w lattices are not optimal packings, which, if it were true, would
into one time each fod =9 display similar irregularities. One of have been a second way to satisfy the conjecture.
them reminds much of (31) above, in that it has a pair of vectors Our new lattice results thus strongly indicate that the conjecture is
being significantly shorter than any other lattice vector, and tf@dse, but they do not prove it. A proof would be complete the day
projection orthogonal to them ;. The last local optimum has twoone of the four shaded values in Table 11l would be proved optimal.
pairs of extra short vectors, and the projection orthogonal to boti6f now, we have to be content with a “counter-conjectude* is

them is E;. the lowest dimension for which the optimal lattices for quantization
The obtained 10-dimensional lattices, finally, are all equivalentadd packing araotduals.

the lattice generated by The present study ends with=10, but the algorithm is able to
2 0 0 0 0 0 0 0 0 O design lattices in considerably higher dimensions than this. The only
01 1 0o 0 0 0 0 0 0 ofr thing that limits the number of dimensions is, as far as we have
00 0o 1 0 0 0 0 0 o ot found, the available time. As an example, a 20-dimensional lattice
[I1 0 0 1.0 0 0 0 0 0 C was designed. It took 25 hours, and the normalized second moment
Bl 0 0 0 1.0 0 0 0 o E of the resulting lattice was estimated to 0.067594 + 0.000005. The
1 0 0 0 0 1 0 0 0 or. (32) lower bound ford = 20 is 0.066457.
b o o o 0 0 1 0 o0 ot .
Dl 0 0 00 0 0 1 0 0 C B. The Best Tessellations Found
Bl 0O 0 o 0 0 0 0 1 O E In the study of the trained lattices, we were struck by the similarities
B/2 v2 12 12 Y2 12 12 12 12 Y2F between the best found lattices in 8 and 10 dimensions. In this

This lattice is well known, it is called;,, but it has, to our section, we generalize the pattern and discover very good nonlattice
knowledge, not been considered for quantization earlier. igssellations in 7 and 9 dimensions. Traditionally, the study of
normaﬁzed’\second moment lies very close to the lower bound; tgssellation for quantization applications has been heavily dominated
estimated G = 0.070813+ 0.00000.. More on the D* family, by lattices, see, e.g., [2, p. 61]. This is, to our knowledge, the first
including a very fast search method, is discussed in the next sectiffile that nonlattice tessellations have shown any competitive
There is a famous conjecture regarding the relation betwdgfformance in relation to lattices.
optimal lattices for “quantization” and “packing®t is based onthe ~ Compare (32) and (41): the pattern is obvious. On the other
observation that the best knowihrdimensional lattices for the two hand, the best found lattice in 9 dimensions (31) is different, not very
purposes were always each other's duals. In 1982, Conway Emth, but still significantly. The key to this mystery lies in D&
Sloane conjectured that this duality would be true for the optimiamily. It is defined as the union dd; and a translation ob, [2,
lattices in any dimension [43]. They supported the conjecture in [$6}- 46 and 119]:
but later expressed some doubts [2, p. 62]. Forney has devoted a D; =D, O (Dd +(]/2’._.,]/2)T) (33)

_ ) o where Dy is defined in the appendix. Wheh is even, D] is a
14 Kenneth zeger points in a personal communication out that

. ¥ . .
(4+x“3)/10=0.57321 Whether this is the exact value or a coincidence is fﬁttlce, whereas for odd values df Dd is a nonlattice tessellation.

open question. We will return to the geometrical propertiesf, and the peculiar
15 To see that these points belong to the lattice, use the constr@tiomith ~ 9th dimension later in the section. For now, we turn to the main point
u=%-311-,1-2). of interest, namely, the normalized second moment.

16 |n the lattice literature, thguantizationproblem is to minimizeG, and the

packingproblem [2, Ch. 1] is to maximize Fig. 4 shows the results in dimensions from 2 to 10. For

1y d comparison, the figure includes the conjectured lower bound [44] and
5‘V(1%HXH) the best known lattices, including the new results from the previous
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which has many characteristics in common with the best found 9-
dimensional lattice (31) discussed above. E.440,0,---,0,1) are
lattice points, so the lattice points lie closer together alongithe
coordinate than along the others. Fbe9, (34) generates’\*g,
which was discussed in connection with Table Il1.

So what is the generator matrix Bff for odd values ofd? The
answer is that there is none. As mentionBg,is not a lattice when
d is odd. However, it is still a tessellation, because all its Voronoi
regions are congruent. Half of them are upside-down (more
precisely, reflected in a point), which disqualifies the tessellation
from being a lattice. In a lattice, all Voronoi regions are translations
of each other, without scaling, rotation, or reflection, see Section I-
C.

Conway and Sloane [2, p. 120] summarize some parameters of
the tessellatiorDj. We conclude this section by adding two facts to
their list, without further comments. Theovering radiusis
R=V3/2 (d=23), 1 (4<d<8), Jd/8 (evend=8), or v2d-1/4
(oddd = 8). For evend, the latticeD, is geometrically self-dugp,

p. xix]: the dual is equivalent to the lattice itself.

0.080r

0.075¢

Normalized second moment

— Lower bound
O Best lattice found

0.070r

Dimension

Fig. 4. The performance of theD* tessellation, versus
lattices and the lower bound. Note the improvement in 7 and 9
dimensions.

section. The performances of the lattideg A;, Dy, and Dy [43]
are also shownD; gives significantly lower normalized second

moments than these four lattice families ¢ 6; the curve forDy e have investigated the concept of designing lattices with low
indeed passes through the best lattices in 8 and 10 dimensiongo@salized second moments through numerical optimization. The
expected. In 7 and 9 dimensions, however, the best known lattigeg results of the paper can be concluded in the following points.

are inferior toDg, which performs considerably closer to the lowes e develop an iterative algorithm, which initially has the ability
bound. That the best lattices have higher normalized second moments 5 escape shallow local minima, but the ability decreases with

than other tessellations in certain dimensions has never before been aining time.

observed. «  The optimization problem has relatively few local minima. Of

In Table IV, the results in dimensions from 7 to 10 are  the |ocal minima, our experiments tend to converge into the
summarized in terms of normalized second moment. The New patter ones.

contributions of this paper are indicated by a shaded background.,
Consider Fig. 4 again and obsem@efor the best lattices, that is, symmetry arguments.
study the pattern formed by the circles. Without too much |n dimensions 2-8, we rediscover the lattices that have
imagination, the pattern can be described as somewnhat zigzag: lattices preyiously been reported as best known.
are in general worse for odd dimensions than for even, compayed
with the lower bound. This property can, to some extent, be
explained by the relation between lattices and nonlattice tessellations.
To put it simple, good tessellations are more often lattices in eyen
dimensions than in odd. This observation motivates a closer look
upon the geometry oD .
It is not hard to show that wheth is even,Dg is a lattice, with
the generator matrix

IV. SUMMARY AND CONCLUSIONS

Numerically generated lattices can yield exact lattices by

In dimension 9, a new lattice (31) is discovered, which is
considerably better than any lattice previously known. It has an
uncommon structure for locally optimal lattices.

In dimension 10, a significant improvement can be attained by
employing Dy, instead of the lattices that have been considered
before.

Experiments suggest that the method is applicable to
optimization in considerably higher dimensions than 10.

02 0 O (g . The new lattices suggest that the famous duality conjecture by
01 1 o oC Conway and Sloane may be false.

B=U1 o 1 .. oL (34) - We show that theD; tessellation performs better than any
EE oo : E known lattice tessellation in dimensions 7 and 9. This is the
&2 y2 12 y2r first time that lattices do not hold all second moment world

The situation is more complicated whenis odd. To begin with, records for tessellations. _ o _
(34) doesnot generateD]. Instead, it generates a peculiar latticéhs a graphical summary, we conclude this paper with Fig. 5, which
presents our values (circles and dots) compared with what was

TABLE IV previously known.
THE BEST KNOWN NORMALIZED SECOND MOMENTG FOR
LATTICES AND TESSELLATIONS IN DIMENSIONS/-10.

SHADED CELLS DENOTE NEW RESULTS APPENDIX. THE CLASSICAL LATTICES

d Best known lattice Best known tessellation Lower bound

7 0.073116 0.072734 + 0.000003  0.072484 In this appendix, the latticeE?, Ay, Dy, and E4 are briefly

8 0.071682 0.071682 0.071636 defined. A much more thorough treatise on their structure and
o | 0071622 0000003 0071103000008 0070002 Propertiesisfoundin [2, ch. 4].

10 0.070813 + 0.000003  0.070813 + 0.000003 0.070258
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5

£ 0.080r

o

1S

=)

c

o

[5)

Q

(2]

e)

N

= 0.075¢

£

o

z — Lower bound
X Best classical lattice
O Best lattice found
e Best nonlattice found

0.070r

Dimension

Fig. 5. A comparison between classical lattices and the
lattices and tessellations found through training.

Thecubic latticeZ¢ is the Cartesian product df 1-dimensional
lattices. The generator matrix depends, as discussed in Section I-C,
on rotation and choice of basis vectors. One generator matrBfor

is thed x d identity matrix. The lattice is its own dual.

The lattice A; can be defined as a sublatticeted cubic lattice

Ll 0 0 0 0 ar
00 1 0 0 0 ac©C
b o 1 0 0 a6t
Bo 0 0 1 0 a E (38)
0o 0 0 0 1 ar

B2 12 132 Y2 12 3a/2E
with a =3 for Eg anda =1/+3 for E;. E, is the sublattice of
Dg (37) being orthogonal t@,1,---,1)7. As a generator matrices for
E;, we can use

@2 0000 0 O

20000 OC

b o200 0 0O

0002000 (39)

M 11010 0

11101 0C

M o111 0 1F

and for E,

@ 0000 0 O

20000 OC

b 02 000 0L

%101000% (40)
11010 0

O0O110 1 0C

B oo 11 o0 1F

Aq consists of the points 6f*** that lie on a hyperplane orthogonalg, finally, is equivalent toD;, see Section I1I-B. The lattice, which
to (L1---,)T. A rotated version of\; is generated by the matHx

is also equivalent to its duﬁg, can be generated by the matrix

o 1 1c 2 0 0 0 0O 0O 0 O
ooa 1t (35) oL 1 0 0 0 0 0 oC
P : U0 o 1 0 0o 0 0 ot
Ho1 o af Lo 0 1 0 0 0 Of @1)
wherea =vd+1+2. A, is the hexagonal lattice, see Fig. 1. One gl 0 0 0 1 0 0 orf
choice of a generator matrix of the dud), is (35) with 0gr o 0 0O 0o 1 0 ot
a=d+1-d. b2 o o o o o0 1 ot
The lattice D, is defined ford > 3. It consists of every second B/Z Y2 12 Y2 y2 132 12 J/ZE
point in z9, namely, those points whose coordinate sum is even. A
generator matrix is
@ 00 Oor
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