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Optimization of Lattices for Quantization

Erik Agrell and Thomas Eriksson

Abstract—A training algorithm for the design of lattices for
vector quantization is presented. The algorithm uses a steepest
descent method to adjust a generator matrix, in the search for a lattice
whose Voronoi regions have minimal normalized second moment.
The numerical elements of the found generator matrices are
interpreted and translated into exact values. Experiments show that
the algorithm is stable, in the sense that several independent runs
reach equivalent lattices. The obtained lattices reach as low second
moments as the best previously reported lattices, or even lower.
Specifically, we report lattices in 9 and 10 dimensions with
normalized second moments of 0.0716 and 0.0708, respectively, and
nonlattice tessellations in 7 and 9 dimensions with 0.0727 and
0.0711, which improves on previously known values. The new 9-
and 10-dimensional lattices suggest that Conway and Sloane’s
conjecture on the duality between the optimal lattices for packing and
quantization might be false. A discussion of the application of lattices
in vector quantizer design for various sources, uniform and
nonuniform, is included.

Index Terms—Lattice quantization, normalized second
moment, Voronoi region, lattice design, training algorithm.

I. INTRODUCTION: VECTOR QUANTIZATION AND
LATTICES

Lattices are widely recognized as an important tool in the design of
vector quantizers, not only for uniform sources. The design can be
thought of as two independent problems: the choice of a suitable
lattice and the creation of a codebook based on a subset of the lattice.
The present paper considers the first of these problems, and the
second is studied in, e.g., the report [1].

To select a good lattice, one can of course rely on written
sources, such as [2], where many lattices and their properties are
tabulated. However, there is reason to believe that the best d -
dimensional lattice has not yet been found for every d

�
 (see, e.g.,

Fig. 2). Perhaps there is some knowledge to be gained through an
approach completely different from the algebraic methods that have
been dominating lattice design? This was the question that triggered
the present work, and the answer we found was affirmative.

We propose an algorithm for lattice design that can be used with a
minimum of insight into algebra and lattice theory. The algorithm
employs a numerical algorithm to iteratively improve a given lattice,
in a manner that parallels traditional training methods for the design
of unconstrained vector quantizers.

This section introduces the background and preliminaries for the
work. Section I-A is a brief review of the fundamentals of vector
quantization and its terminology. In Section I-B, we then apply
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vector quantization to uniform sources, and explain why a lattice is a
commonly employed structure of uniform quantizers. After a
summary of some lattice theory in Section I-C, we return to the
problem of vector quantizer design in Section I-D. This section,
which is essentially a literature survey, presents various strategies to
design lattice-based vector quantizers for nonuniform sources, which
is not as straightforward as in the uniform case.

The lattice training algorithm is presented in Section II. In Section
III, experiments with the algorithm are reported, which lead to
improvements on previously known results in dimensions 7, 9, and
10. Section IV is a summary.

A . Vector Quantization

A vector quantizer is a general utility for digital representation of
multidimensional data. Its input is a real-valued vector x  and its
output is one of a finite number of codevectors c c1, ,� N(

�
), which is

selected to approximate x  as well as possible, according to some
criterion. The codevector ci  can, through its integer index i , be
represented using log2 N  bits. The rate R is the number of bits used
to quantize one scalar, that is, R N d= log2 , where d  is the
dimension of the quantizer, in other words, the number of
components in x  and ci .

The quantization is governed by a function Q d: → � , where�
= { }c c1, ,� N  is the codebook. This function should be chosen to

optimize some quality measure for a given source. The standard
quality measure is the minimum mean square error, or distortion, per
vector,

D Q f d
d

= − ( ) ( )∫ x x x xx
2

(1)

where fx x( )  is the probability density function of the source vectors
x . If the codebook is given, the optimal quantization function is to
simply choose the closest codevector in the Euclidean sense,

Q x x c
c

( ) = −
∈

argmin� 2. (2)

This rule reduces the problem of vector quantizer design to finding a
point constellation for use as a codebook.

Many input vectors x  yield the same output vector ci . The set of
all input vectors that are encoded as the same codevector is called a
Voronoi region,

Ωk
d

kQ= ∈ ( ) ={ }x x c: . (3)

Hence, the function Q ⋅( )  partitions d
�

-dimensional source space into
N Voronoi regions, without neither gaps nor overlaps. In terms of
Voronoi regions, the distortion (1) can be separated into the
contributions by each codevector:

D f di
i

N

i

= − ( )∫∑
=

x c x xx
2

1 Ω

. (4)

In the next section, this expression will be specialized to the case of
uniform sources.

The most common way to design a vector quantizer is to generate
a large set of source samples, a training database, and iteratively
adjust (“train”) an initial codebook, in order to decrease an estimate of
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the distortion, based on the training database. Among the large
number of training algorithms that have been proposed, we mention
[3],1 [4], [5, chs. 5 and 7], and [6].

In this paper, an alternative approach for vector quantizer design
is studied: lattice-based design. The general idea is to find a lattice
with attractive properties and subsequently shape a subset thereof to
the source. The focus of this paper is on the lattice itself; truncation
and modifications of lattices to suit various sources are discussed in
Section I-D.

B . Quantizer Design for Uniform Sources

This section summarizes the application of vector quantization to
uniform sources. Suppose that the source probability density function
is uniform within a region ∆

�
,

fx x
x

x
( ) = ( )

∈

∉







1

0

vol
if 

if 

∆
∆

∆
(5)

where vol Ψ( ) denotes the d
�

-dimensional volume of a region
Ψ ⊂ d. Then the distortion (4) becomes

D di
i

N

i

=
( )

−
∩=
∫∑1 2

1vol ∆ Ω ∆

x c x. (6)

Now we concentrate on what happens when the rate R is high, for a
constant dimension d . The region ∆

�
 then becomes partitioned into a

large number, N, of Voronoi regions, each one contributing a small
amount to the overall distortion D . According to a well-known
conjecture in quantization theory, first posed by Gersho [7], almost
all the Voronoi regions will be similar to each other in the optimal
vector quantizer. In other words, there exists a typical body that,
through proper scaling, rotation, reflection, and translation, will
approximate most of the Voronoi regions.

We will now, supported by Gersho’s conjecture, make the
approximation that all Voronoi regions are congruent to a typical
body Ω
�

t . Moreover, since the source under consideration is uniform,
we assume that all regions have the same size. Hence, the Voronoi
regions are translations (possibly rotated or reflected) of αΩt ,2

where α  is a rate-dependent scaling parameter to be determined
below. This approximation contains two errors, for any finite rate.
Firstly, the regions in (6) deviate a little from αΩt ; secondly, some
of the regions, notably those close to the boundary of ∆

�
, deviate a

lot. How these errors are handled implicitly selects one of two
concepts for vector quantizer design for uniform sources. The errors
can be neglected, which is the basic assumption behind lattice
quantization, or they can be considered, which leads into
unconstrained quantizer design. In this paper, we follow the former
approach.

If all Voronoi regions are congruent, the sum in (6) is not needed
anymore:

D N d

N dd

≈
( )

−

=
( )

−

∫

∫

1

1

2

2
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x c x

y c y

α

α α α
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. (7)

1 Lloyds original manuscript, which although unpublished has become famous, is
dated 1957.
2 We will allow the following operation on a set Ψ  of vectors: Elementwise
multiplication by a scalar a, denoted aΨ , and elementwise addition of a vector
a , denoted Ψ

�
+ a .

The value of α  as a function of N can be deduced by considering the
total volume that the regions cover. The volume is

vol vol volt t∆ Ω Ω( ) ≈ ( ) = ( )N N dα α (8)

from which follows that

α ≈ ( )
( )





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vol t

∆
ΩN

d1

. (9)

This value inserted into (7) yields
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where

G
d

dd=
( )

−+ ∫
1

1 2
2

vol t
t

t
Ω Ω

y c y (11)

is the normalized second moment of the typical body Ω
�

t . This
measure is independent of the rate and the source shape. It is also
dimensionless and thus insensitive to scaling. Hence, congruent
bodies have the same G . The normalization with respect to d

�
 is to

make easier the comparison between quantizers of different
dimensions. This paper is devoted to the search for structures with a
low value of G .

The distortion expression (10) can be used to estimate the
performance of a well-optimized high-rate vector quantizer for a
uniform source. Conversely, it can also be used as a tool in the
design of such quantizers. The method is to find a d -dimensional
body Ω
�

t  with a low G . Every body is not admissible; only bodies
that can form a tessellation. A tessellation is a partition of d into
regions, such that any pair of regions can be transformed into each
other through rotation, reflection, and translation.3 When a
tessellation is found that consists of bodies with a low G , the
codebook is formed as the intersection of the centroids and ∆

�
. The

desired rate determines the scaling of the tessellation. The structure is
called a tessellating quantizer [8]. In previous studies of tessellating
quantizers, most attention has been devoted to lattice quantizers,
which constitute an important subset of all tessellation quantizers.
Lattices are defined in the next section.

C. Lattices

A lattice is a popular special case of a tessellation.4 The following
brief summary of lattice theory is intended to be a sufficient
background for the quantization problem investigated in this paper.
For a more extensive treatment, the interested reader is referred to the
book by Conway and Sloane [2], which has more or less become the
standard textbook on lattice theory.

A lattice is an infinite set of vectors, defined through d  linearly
independent basis vectors b	 b b1 2, , � d. The lattice consists of all
linear combinations of the basis vectors, with integer coefficients.
The matrix whose rows are the basis vectors is called the generator
matrix of the lattice,

B b b b= [ ]1 2, , ,� d
T

. (12)

Formally, we can write the lattice Λ  as

3 The body with the lowest G is the d



-dimensional sphere, but it is not
admissible as Ω t , because it cannot form a tessellation (for d



≥ 2).

4 With a slight abuse of terminology, we will use “tessellation” to denote both a
partition of the type defined above and an infinite set of points whose Voronoi
regions form such a partition.
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Fig. 1. Two possible bases for the hexagonal lattice. Some of
the Voronoi regions are shown.

Λ = ∈ ( ) ∈{ }−x B xd T d: 1 . (13)

Hence, any lattice point5 can be uniquely written as B uT , where
u ∈ d .

Fig. 1 is an example of a lattice. It is the well-known hexagonal
lattice, also called A2, and can be defined through, e.g., the generator
matrix

2 0
1 3






. (14)

A2 is the 2-dimensional case of the lattice Ad , which is defined,
along with some other common lattices, in the appendix.

In the design and analysis of lattices, it is often convenient to
employ d  basis vectors having more than d  coordinates. However,
throughout this paper, B�  denotes a square generator matrix. This
notation does not restrict generality, since d  vectors cannot span
more than d

�
 dimensions. Hence, for every nonsquare generator

matrix ′B , there exists a square matrix B describing an equivalent
lattice. (More on equivalent lattices below.) Practically, such a B�  can
be found through, e.g., QR factorization of ′( )B T  or Cholesky
decomposition of ′ ′( )B B T . Some of the following theory draws
advantage of B being square, thus simplifying the notation. For
example, both the inverse and the determinant of B�  have important
interpretations.

Lattice points are evenly distributed in space—there is no region
where the lattice is denser than somewhere else. It is because of this
uniformity that lattices are suitable for the quantization of uniform
sources. Gersho pointed out, “if you sit on one lattice point and view
the surrounding set of lattice points, you will see the identical
environment regardless of which point you are sitting on” [9].
Consequently, the Voronoi regions form a tessellation, as mentioned
above in Section I-B. Indeed, the Voronoi regions are pure
translations of each other, without needing any rotation or reflection.
(See Fig. 1 for an example.) This is a chief characteristic of all
lattices.

The all-zero vector 0�  belongs to all lattices. This follows trivially
from the definition (13). The Voronoi region around 0� ,

Ω Λ= ∈ ≤ − ∈{ }x x x c cd : 2 2  for all , (15)

is commonly called the Voronoi region of the lattice Λ . It is the
standard choice of a typical body (see Section I-B) in the computation
of lattice parameters. The volume of Ω

�
 is V = ( ) =vol Ω detB .6 The

normalized second moment (11) is

5 We use “lattice point” and “lattice vector” interchangeably.
6 The volume is more commonly given in the form (det( ))BBT 1 2 , which allows
for nonsquare generator matrices.

G
dV

dd= + ∫
1
1 2

2x x
Ω

. (16)

A complication in the analysis of lattices is that equivalent lattices
can be specified through seemingly different generator matrices. Two
lattices are considered equivalent if their Voronoi regions (15) are
congruent. In this case, the two lattices have the same G , and most
other lattice parameters agree, too. For example, the generator
matrices

−





+ −
− +







−
− + + −







2 0
3 1 3

3 1 3 1
3 1 3 1

2 2 2
1 1 3 6 1 1 3 2

 ,   ,  and  π
π π

all specify the A2 lattice, so these lattices are equivalent to the one
given by (14).

A lattice can be transformed by scaling, rotation, and reflection,
without changing the shape of the Voronoi region.7 In addition, basis
vectors can be selected in many ways within the point set Λ , as
illustrated in Fig. 1. It can be shown that the lattices generated by B1

and B� 2 are equivalent if and only if there exist matrices W
  and Q
�

such that

B WB Q2
2

1

1

1= 





V

V

d

(17)

where all elements of W  are integers, W  has determinant ±1, and Q
is orthonormal. The coefficient V V d

2 1
1( )  takes care of scaling, W
  of

basis change, and Q
�

 of rotation and/or reflection. Unfortunately,
there has, to our best knowledge, not been published any general
algorithm to determine whether two given generator matrices specify
equivalent lattices. Of course, if either W  or Q is known, the other
one is obtained by matrix inversion, but to determine both of them
simultaneously is still an open problem. It has been suggested to
employ a canonical form for lattices to solve the problem: if B1 and
B2 have the same canonical form, they are equivalent; otherwise not.
Unfortunately, the algorithms that have been proposed to transform a
generator matrix into a canonical form (see, e.g., [10, pp. 65–67]
and [11, pp. 184–201]) consider basis changes only, not rotation. If
B1 and B2 are rotated versions of the same lattice, the canonical
forms obtained by such an algorithm will differ. Hence, the problem
of identifying equivalent lattices remains, as discussed in Section II-
C.

Finally, for every lattice there is a dual. The dual of Λ  is another
lattice, whose generator matrix is B−( )1 T

. The dual is denoted Λ* . It
has the same degree of symmetry as Λ , but the lattice parameters,
such as the normalized second moment G , are normally different.

D. Quantizer Design for Nonuniform Sources

We now return to vector quantization. So far, the discussion has been
focused upon uniform sources, where lattices are immediately
applicable as quantizer structures. While under some circumstances,
for example, image data can be modeled as a uniform source [12, p.
33], most applications display different probability density functions.
However, lattices have found their use in vector quantization for
nonuniform sources, too.8 In this section, we will review some
approaches that have been proposed in the past.

One possibility is, of course, to approximate the probability
density function of the source with a uniform function, and design a

7 Translation also preserves the Voronoi region, but a translated lattice is
normally not a lattice (13). It is still, of course, a tessellation.
8 In fact, all applications of lattices that are mentioned in this section are directly
generalizable to other types of tessellations as well. We retain the lattice
terminology because it is the framework in which most of the research was
originally published.
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lattice quantizer (Section I-B) accordingly. Much attention has been
devoted to the problem of optimizing the size and shape of the
uniform function for a given source density; in other words, the
problem of scaling and truncation of the lattice. This problem is
discussed in [1] and several of its references. The gain in memory
and encoding time, compared with a source-optimized codebook, is
significant. The price paid is a performance degradation, the severity
of which depends on the rate, the dimension, and the probability
density of the source. The general trend is that the degradation
increases with higher rate and lower dimension, as illustrated for a
Gaussian source in Fig. 3.4 of [1].

For high-dimensional sources, a low-rate lattice quantizer is
known to have close to optimal performance. This is because of the
asymptotical equipartition property, according to which a large class
of high-dimensional probability density functions can be well
approximated with uniform densities [13, pp. 73, 285], [14]. For
example, data drawn from an uncorrelated Gaussian density tend to
be uniformly distributed in a thin spherical shell, if the dimension is
high [15], whereas the multidimensional Laplacian density can be
approximated by a uniform density on the surface of a “pyramid”
(hyperoctahedron) [16]. The tendency towards uniform distributions
has been successfully employed in several applications. Competitive
lattice quantizers have been designed for use in CELP [17] and
transform coded [18] speech coding systems. In image coding, Jeong
and Gibson have achieved good performance through lattice
quantized DCT coefficients [19]. For high rates and low dimensions,
on the other hand, the performance degradation of lattice quantizers
compared with source-optimized vector quantizers can be quite severe
[20, 21, 1].

To avoid performance degradation due to nonuniform sources,
the quantizer should be matched to the specific source density, but
still there exist promising alternatives to the training of an
unconstrained codebook. The basic idea is to maintain the local
lattice-similarity while making the global structure matched to the
source.

One quantizer structure with this aim is the piecewise uniform
quantizer introduced by Kuhlmann and Bucklew [22, 20]. It is a
generalization of the lattice quantizer, where a given (nonuniform)
probability density function is approximated with a staircase function.
In each region where the density approximation is constant, the
codebook is populated by a suitably scaled lattice. Similar structures
are obtained by designing two-stage quantizers where the second
stage is a lattice [23, 24, 25].

A more general method to improve the performance of a lattice
quantizer for nonuniform source densities is to apply a nonlinear
transform function to each input vector before quantization, and the
inverse function to quantized data. This approach is called
companding and it is used in many scalar applications. It was
suggested for use in vector quantization by Gersho [7], and Bucklew
characterized its high-rate performance [26, 27]. Antonini et al.
applied companding and lattice vector quantization to wavelet
coefficients for image data [28]. The piecewise uniform quantizer is a
special case of a companding lattice quantizer, where the transform
function is piecewise linear.

An alternative method to modify a lattice quantizer to match a
nonuniform source is presented in [1], where the advantages of a
lattice structure are incorporated into a design algorithm for source-
optimized vector quantizers.

In Section I-A it was assumed that each codevector was encoded
with exactly log

�
2 N  bits. If the codevectors have unequal a priori

probabilities, the average rate can be reduced by applying an entropy

code to the quantizer output. It has been shown that if an entropy
code is employed, the optimal high-rate vector quantizer should have
a uniform distribution of codevectors [7] [29, p. 131] [30, p. 471].
Hence, if Gersho’s conjecture (see Section I-B) is true, then a
tessellating quantizer is asymptotically optimal when the rate tends to
infinity. The optimality does not require the source density to be
uniform or even smooth, only that the differential entropy is finite, as
proved by Linder and Zeger [8]. It is worth mentioning that a
tessellating quantizer with entropy coding performs closer to the rate-
distortion bound than the optimal fixed-rate vector quantizer. The
argument behind this statement is the following: The optimal fixed-
rate vector quantizer is inferior to (has higher average rate than) the
same quantizer with an entropy code. And a codebook with
nonuniform point density is inferior to a uniform codebook, as long
as entropy coding is being applied. Applications of entropy coded
lattice quantization are presented in, e.g., [14, 31, 32].

For high rates, the performance of an entropy-coded tessellating
quantizer is proportional to the normalized second moment G  of the
tessellation. This was shown in [8], through the high-rate
approximation

D dG h H d≈ −( )22 (18)

in which h f f d= ( ) ( )∫ x xx x xlog2  is the differential entropy of the
source and H  is the output entropy of the quantizer,
H p pi i= −∑ log2 , where pi  is the probability of the event
Q ix c( ) = . The approximation is asymptotically exact, in the sense
that the relative error tends to zero as H  approaches infinity. The
factor G  in (18) shows the importance of tessellations with a low G ;
the gain obtained by improving a tessellation can be expected to
propagate directly into the distortion of an entropy-coded quantizer
built upon the tessellation. A distortion proportional to G  is also a
feature of, e.g., high-rate uniform quantization (10), nonuniform
quantization [33], and lattice quantization of Gaussian sources [21]
[1, sec. 3.2].

Hence, we turn our attention towards the minimization of G .

II. NUMERICAL OPTIMIZATION OF LATTICES

The history of lattice design is closely interlinked with group theory
and error-correcting codes. Almost all lattice design methods that
have been proposed arise from the algebraic approach. We now study
an alternative method. The idea to iteratively adjust a lattice in order to
decrease the normalized second moment was suggested in [34], but
to the best of our knowledge, no specific algorithm for the purpose
has yet been presented.9 We have developed an algorithm that
minimizes the normalized second moment by a gradient search
procedure. The algorithm is related to algorithms for vector quantizer
training, but it operates on a generator matrix instead of individual
codevectors. In Section II-A, we regard lattice design for quantization
as an optimization problem and adopt a suitable set of variables. The
new algorithm is presented in detail in Section II-B, together with the
theoretical background. Section II-C discusses in general terms what
kind of results is expected from the algorithm, and how these results
can be interpreted.

A . The Optimization Problem

The problem of finding a good lattice for high-rate uniform
quantization can be stated as a multivariate minimization problem

9 For the design of binary codes, however, iterative algorithms have been
employed, see [35] and its references.



5

min
B∈ ×d d

G (19)

where G  is the normalized second moment (16)

G
dV

dd= + ∫
1
1 2

2e e
Ω

. (20)

The problem contains d2 unknowns, or degrees of freedom, namely,
the d2 elements of the generator matrix, which specify the lattice
through the construction (13).

To simplify the problem, we recall the concept of equivalent
lattices, see Section I-C, especially (17). There are many ways to
change a generator matrix into one that spans an equivalent lattice,
and such changes do not affect the normalized second moment G  at
all. On the contrary, an iterative optimization algorithm should
concentrate on changes that has a potential of improving the lattice.
Why attempt a 100-variate optimization problem when 50 variables
suffice? If we fix the rotation of the lattice, and the scaling, almost
half of the d2 variables in the generator matrix can be removed from
the minimization. Specifically, the rotation is in (17) controlled by an
orthonormal d d×  matrix, and the set of all such matrices spans a
parameter space of d

�
d −( )1 2 dimensions. This number of variables

disappear from the minimization problem when the rotation is fixed;
one more variable disappears when the scale factor is fixed.10 Hence,
of the d2 degrees of freedom that a general generator matrix B
possesses, d

�
d −( ) +1 2 1 are irrelevant in the optimization of G ,

whereas d d d d d2 1 2 1 2 1 2− −( ) − = +( ) −( )  are important. The
irrelevant degrees of freedom can be removed from the generator
matrix in several ways; we employ the following straightforward
method.

Using (17), it is easily shown that for any lattice, there exists an
equivalent lattice with a generator matrix of the form

B =























− − − −

−
−

=

−

∏

b
b b

b b b

b b b b

d d d d

d d d d k k
k

d

11

2 1 2 2

11 1 2 1 1

1 2 1
1

1

1

0 0 0
0 0

0

,

, ,

, , ,

, , , ,

�
�� � � �
�
�

. (21)

Geometrically, this form locks the first basis vector, b1, along the
first axis of the coordinate system, b	 2 in the plane spanned by the
first two axes, etc. In addition, the volume of the Voronoi regions,
V , is locked to unity. The training algorithm to be presented in the
next section operates on a matrix of the type (21). The matrix can be
regarded as a function of

f = ( )+( ) −( )f f d d
T

1 2 1 2, ,�  (22)

where

f
�

b j d i j di i j i j−( ) + = = − =1 2 1 1, , , , ,for  and � � (23)

are the d d+( ) −( )2 1 2 “free” variables in the optimization.
The constraint thus imposed on the form of the generator matrix

B�  actually serves two purposes in the simplification of the numerical
optimization problem (19). The number of variables are reduced, as
discussed above, and it is also worth observing that the objective
function itself (20) gets a simpler form, namely,

G
d

d= ∫
1 2e e

Ω

(24)

10 The change of basis vectors, as denoted by the matrix W
�

 in (17), does not
contribute any degrees of freedom in the sense discussed here, since the elements
of W
�

 are subject to an integer constraint.

because of the volume normalization. This expression contains no
determinant, which will lead to a very simple form for the gradient
derived in the next section.

B . The Lattice Training Algorithm

The training of a lattice basis is in many ways similar to training of an
unstructured VQ for a uniform probability density function, but there
are also important differences. For instance, the centroid condition
for local optimality of a VQ [30, sec. 11.2] is of no help, since the
codevectors of any lattice are the centroids of their Voronoi regions.
This means that we cannot use the generalized Lloyd algorithm in its
common form, or, for that matter, any other algorithm that relies on
the centroid condition, for the training. We propose a steepest descent
algorithm, which is found to be reliable and sufficient for the
problems considered here. In higher dimensions, it might be
rewarding to study more sophisticated algorithms, such as the Gauss-
Newton method and its relatives.

In the development of the algorithm, we take advantage of the
problem formulation in the previous section. The strategy is to iterate
the vector f  (22) in order to decrease G  (24). Random training
vectors are generated with a uniform distribution inside the Voronoi
region Ω
�

. For each training vector, the squared distance to the origin
is computed, and also the gradient of the squared distance with
respect to f . Then f , and thus the generator matrix, is adjusted a
small step in the direction of the negative gradient. The adjustment
can be made for each individual training vector or for blocks of
vectors.

The first question is how to generate the training vectors.
Conway and Sloane give an elegant method to generate uniform data
within a Voronoi region [36]. First, d

�
 independent random numbers

are obtained, uniformly distributed between 0 and 1. They constitute
a random vector within the d

�
-dimensional unit cube. Calling this

vector z, another vector x B z= T  is created. Next, a search algorithm
is applied to find the closest codevector to x  in the lattice, denoted
c B u* = T . Finally, the difference vector e x c= − * , which has a
uniform distribution over the Voronoi region Ω

�
, is computed.

To steer the training, we need the gradient of the integrand in
(24). Hence, we differentiate e 2  with respect to each component of
f :

∂
∂

∂
∂

∂
∂

e 2
2

1 1

2
b b

e e
e

bi j i j
k

k

d

k
k

i jk

d

, , ,

= = ⋅
= =

∑ ∑ (25)

where ek  denotes component k  of e. To find the partial derivatives
∂� ∂e bk i j, , e is first written as a function of f . Defining
y z u= ( ) = −y yd1, ,� , we obtain

e x c B z B u B y= − = − =* T T T (26)

or, componentwise,

e b yk l k l
l

d

=
=
∑ ,

1

. (27)

This gives e as a function of B, which in turn is a function of f . To
continue, we employ (21):

e b y

b y k d

y b k d

k l k l
l k

d

l k l
l k

d

d l l
l

d

=

=
<

=










=

=

−

=

−

∑

∑

∏

,

,

,

if 

if 1

1

1 (28)
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TABLE I
THE LATTICE TRAINING ALGORITHM.

Step 1: Initialize a generator matrix B of the form (21). Set the
number of iterations M , the start step size ε � , and the
reduction interval Mr  to suitable values. Set m = 1.

Step 2: Compute a new training vector as x B z= T , where each
component of z is uniformly distributed in the interval 0 1,( ).

Step 3: Find the lattice vector c B u* = T  that is closest to the
training vector x . Set y z u= −  and e B y= T .

Step 4: Update the components of B for j d= −1 1, ,�  and
i j d= , ,�  as

b b
bi j i j m

i j
, ,

,

:= − ⋅ε ∂
∂

e 2

where

∂
∂

e 2
2

2 2b

e y i j

e y e y
b

b
i j

i j

j i

i i d d
d d

i i
,

,

,

=
≠

− =







if 

if 

and εm is a linearly decreasing step size parameter,
ε εm m M= −( )0 1 / . The last diagonal element, bd d, , is
computed by the expression

b bd d k k
k

d

, ,= 



=

− −

∏
1

1 1

Step 5: If m is divisible by Mr , then perform a reduction on B�
and subsequently rotate B into lower triangular form.

Step 6: If the desired number of iterations has been performed,
m M= , then exit. Otherwise, set m m:= +1 and continue
from step 2.

which is a function of f
�
 only. The derivative is

∂
∂

e

b

y j k d
y

b
b i j k dk

i j

i

d

i i
l l

l

d

, ,
,=

= <

− = =









−

=

−

∏
if 

if  and 

otherwise

1

1

1

0

. (29)

Inserted into (25), finally, this yields

∂
∂

e 2

1

1

1

2

2
2

b

e y i j

e y
e y

b
b i j

i j

j i

i i
d d

i i
l l

l

d

,
,

,
=

≠

− =






−

=

−

∏
if 

if (30)

for all components bi j,  of f
�
. Equation (30) gives, componentwise,

the gradient of e 2  with respect to f
�
. According to the steepest

descent rule, f
�
 should be updated in the direction of the negative

gradient.
Many small changes to a matrix may eventually make it ill-

conditioned. This means that an iterative algorithm for lattice design
may grow long and almost parallel basis vectors, which may slow the
algorithm down and in severe cases cause numerical problems. For
instance, such basis matrices tend to generate “sensitive” lattices, in
the sense that a small change of an element yields a large change in
the normalized second moment G . Sensitive lattices could potentially
prevent the algorithm from converging, at least if they would be
present near a local minimum.

Fortunately, there is a way to counteract this problem. Again we
rely on the theory of equivalent lattices. Through a basis change, a
given generator matrix can be replaced by one in which the basis
vectors are short and reasonably orthogonal to each other. This
process, which is called reduction, should be repeated regularly
during lattice training. Several reduction algorithms have been
proposed, of which the one by Lenstra et al. [37] is probably the

most popular. The reduction normally destroys the triangular
structure of the generator matrix, so reduction is immediately
succeeded by rotation in our algorithm. It is worth stressing that
neither reduction nor rotation changes the lattice (except into an
equivalent one); it is the representation of the lattice that is changed.

Some details must be decided in order to complete the training
algorithm. The choices include block- or sample-iterative training,
step size values, etc. In Table I, we have formulated one suggestion,
a sample-iterative algorithm with linearly decreasing step size. Note
that the diagonal elements of the generator matrix are updated
differently from the other elements. The upper triangular part is not
updated, and the last diagonal element, bd d, , is computed from the
other diagonal components as in (21). In the execution of the training
algorithm, we employ b

�
d d,  to simplify the expressions (28) and (30).

Still, bd d,  should be regarded purely as a function of other matrix
elements, and b

�
d d,  does not enter the vector of optimization variables,

f .
Any lattice can serve as initial value for B� . We recommend the

cubic lattice (see appendix), possibly with a small random
disturbance. This lattice is neutral, in the sense that it is not close to
any local optimum. Almost any adjustment will reduce the normalized
second moment. Metaphorically speaking, the cubic lattice lies on top
of the hill. Of course, a better lattice can be used as initialization, if
the user wishes to examine this specific lattice, for instance to
determine whether it is a local optimum, but this is not a good
strategy in the search for a global optimum, especially if the chosen
initial lattice is already good. From a point below the hill, you will
not see the deep valleys on the other side. The strength of our training
algorithm is that it may point at previously unknown lattices.

Three training parameters, ε0, M , and Mr , must be specified in
advance for the algorithm. Our standard choice, empirically found, is
ε0

310= − , M = 107, and Mr = 104. Small changes in the values,
tailored to the intended experiment, may yield slightly improved
performance (in terms of speed and/or quality), but the algorithm is
not too sensitive to these parameter values. In fact, Mr = ∞  works
well in dimensions up to about 10, which means that low-
dimensional lattices can be designed by a simplified version of the
algorithm, in which step 5 is omitted.

The computational complexity in the training algorithm is, for
high d
�

, dominated by the so-called closest point problem, the search
for the closest lattice point of the training data, in step 3. Algorithms
have been developed by Kannan [38] and Agrell and Eriksson [39].
It has been theoretically proved that the problem is NP-hard, see,
e.g., [40], but the complexity is nevertheless not overwhelming. To
indicate the order of magnitude, we mention that with one
implementation of the algorithm in [39], the average time to find the
closest point in a 24-dimensional lattice is 37 milliseconds.

The lattice training algorithm is easily modified to solve other
problems that can be formulated in a similar framework. For
example, if we search for a lattice under the constraint of a specific
structure, all that is needed is the identification of a vector of free
optimization variables f  and the gradient of e 2  with respect this
vector. One application of this idea is reported in Section III-B,
where the generator matrix (31) was refined by such a constrained
lattice training algorithm.

C. Identification of Lattices

In applications of numerical optimization, exact solutions cannot be
expected. The presented training algorithm for lattices is of course no
exception: the results are approximations of true optima, local or



7

1 2 3 4 5 6 7 8 9 10

Dimension

0.070

0.075

0.080

N
o

rm
a

liz
e

d
 s

e
co

n
d

 m
o

m
e

n
t

Lower bound
Best classical lattice

Fig. 2. The lowest normalized second moments previously
known, in dimensions 1–10. This diagram is supplemented
with our results in subsequent figures.

global. This section is a discussion of the interpretation of
approximate results. An example concludes the section.

The purpose of the lattice training algorithm is to find lattices with
the lowest possible value of the normalized second moment G , for a
given dimension d . The exact computation of G  for a general lattice
involves the determination of every vertex, edge, 2-dimensional face,
etc., of the Voronoi region [41]. The complexity of this computation
grows dramatically with the dimension, so it is practically feasible
only for lattices of moderate dimension. As a less complex
alternative, G  can be estimated through Monte Carlo integration of
(24). This method, proposed by Conway and Sloane in [36], is the
one we use in this paper. We also follow their nomenclature in
presenting estimates of G  on the form ˆ ˆG ± 2σ , where σ̂  is an
estimate of the standard deviation of Ĝ .

When the lattice training algorithm exits, it has converged to the
vicinity of a local minimum. Thus, the training algorithm does not
directly point out exact local minima f * ; it terminates anywhere inside
a small region around f * . All f

�
’s inside the region represent the same

minimum, and to find this (exact) minimum, we need some kind of
“rounding” process. The rounding, which takes place when the
training is complete, is guided by the following rule.

Postulate 1: If two lattices represent the same local minimum, the
one with most symmetry is the more accurate representative.

The postulate is empirically motivated. Nature favors symmetry.
In the past, every lattice that has shown good quantization
performance has also possessed a high degree of symmetry, while on
the other hand, the (unrounded) lattices generated by the training
algorithm have minimum symmetry (that is, reflection in the origin
and nothing else). Zamir and Feder [34] show that the optimal lattice
quantization noise is white, which means that if a random vector e,
uniformly distributed in the optimal Voronoi region, is projected onto
an arbitrary line, the obtained random variable has the same variance
regardless of the orientation of the line. This property certainly
supports the notion of symmetric Voronoi regions. There is a
practical reason to encourage symmetry as well: search time. For
many lattices, the symmetrical structure has been exploited in the
development of very efficient search algorithms [42].

In the comparison of lattices, it is important to remember the
possibilities of basis change and rotation. As discussed in Section I-
C, equivalent lattices can have generator matrices that look quite
different from each other, which is why the identification of a lattice
requires some manual efforts.

Suppose that the output of the training algorithm is a generator
matrix B� 1. To identify the lattice, we need to find matrices W  and
Q, and a scale factor given by V2, such that B2 in (17) gets a
suitable form, preferably one that has been described in the literature,
if this is possible. The first thing that we do is to estimate the
normalized second moment G , which is independent of both W  and
Q, and also of the scaling. If the estimate agrees with a value that we
have seen for another lattice in the same dimension, in the literature or
in our experiments, it is likely that the two lattices are equivalent. To
prove it, we study the innermost shell of the lattice, that is, the set of
nonzero lattice points being closest to 0� . This set of points, which is
independent of W  but not Q, can be computed by a modified closest
point algorithm [39]. The radius of the shell (which equals twice the
packing radius) and the number of points in it (the kissing number)
are two Q-independent lattice parameters, so they should be equal
for equivalent lattices (if V V2 1= ). If they are, we complete the proof
by selecting a subset of the shell for both lattices and rotating the two
subsets into each other, thus obtaining Q.

The following example demonstrates how a 5-dimensional lattice
was identified through suitable choices of the W  and Q matrices.
The example also illustrates how we employ postulate 1 to round the
resulting matrix to a more symmetrical one. The method and the
magnitude of rounding in this example are representative for the
experiments in the next section, where other lattices obtained by the
training algorithm are identified.

Example 1: For d = 5, one run of the lattice training algorithm
gave the following generator matrix:

B� 1 =  

 



 



1.285 0.000 0.000 0.000 0.000
–0.518 1.025 0.000 0.000 0.000
–0.255 0.517 1.149 0.000 0.000
–0.514 –0.261 –0.579 0.811 0.000
0.513 0.263 –0.572 –0.003 0.815

and the normalized second moment G  was estimated to 0.075624 ±
0.000010. Direct inspection of the generator matrix does not
immediately suggest any symmetries. However, we observe that the
best 5-dimensional lattice currently known, D5

* , has a normalized
second moment of G = ⋅ ≈−2 264145 0 07562548 5 .  [43], which falls
well within the interval estimated for B1. Hence, the D5

*  lattice is the
hypothesis that we try to verify. Employing the strategy outlined
above, we create another generator matrix through (17) with a basis
change given by

W =  

 



 



0 –1 0 0 0
1 0 1 1 0
0 0 0 –1 0
0 0 0 0 1
1 0 0 0 0

,

a rotation given by

Q
�

=

 



 



0.449011 0.448323 0.447087 0.446851 0.444785
–0.893513 0.224658 0.226453 0.227533 0.219344
0.001054 0.496921 0.500431–0.500429–0.502203

–0.001532 0.708240–0.705966–0.002575–0.000121
0.004514–0.001350–0.003817 0.705774–0.708411

,

and a scaling of V V2 1 0 5= . . The new generator matrix,

B WB Q2
2

1

1

1= 





=V

V

d

 



 



1.0000.002–0.000–0.001 0.005
0.0020.999 0.002 0.001–0.001

–0.0000.002 1.002 0.001–0.004
–0.0010.001 0.001 1.002–0.003
0.5020.501 0.500 0.500 0.498

,

specifies a lattice that is equivalent to B1. The structure underlying
this matrix is clearly visible, and postulate 1 allows us to create a
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TABLE II
THE LATTICES OBTAINED BY THE TRAINING ALGORITHM, GROUPED ACCORDING TO LOCAL

MINIMA . INTERVALS ARE GIVEN ON THE FORM ˆ ˆG ± 2σ , SEE SECTION II-C.

Trained lattices Previously best known Lower bound

d



Number of local
minima

Hits in each
minimum

G
Name of

minimum
G Name G

2 1 10 0.080180 ± 0.000010 A2 0.080188 A2 0.080188

3 1 10 0.078540 ± 0.000010 A3
* 0.078543 A3

* 0.077875

4 2
9
1

0.076602 ± 0.000010
0.077551 ± 0.000010

D4
A4

* 0.076603 D4 0.076087

5 2
9
1

0.075624 ± 0.000010
0.075796 ± 0.000010

D5
*

—
0.075625 D5

* 0.074654

6 2
7
3

0.074240 ± 0.000010
0.074342 ± 0.000010

E6
*

E6
0.074244 E6

* 0.073475

7 2
9
1

0.073121 ± 0.000010
0.073234 ± 0.000010

E7
*

E7
0.073116 E7

* 0.072484

8 1 10 0.071681 ± 0.000010 E8 0.071682 E8 0.071636

9 3
8
1
1

0.071626 ± 0.000002
0.071634 ± 0.000002
0.071640 ± 0.000003

—
—
—

0.074693 D9
* 0.070902

10 1 10 0.070814 ± 0.000010 D10
+ 0.074701 D10

* 0.070258

more accurate representation of the found minimum by rounding the
elements:

B =  

 



 



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

1/2 1/2 1/2 1/2 1/2

,

which is indeed a generator matrix of the very symmetrical D5
*  lattice

(A.3). ❏

III. EXPERIMENTS

The work presented in this paper was inspired by the need for better
lattices for quantization. As discussed in Section I, the performance
of a lattice quantizer is, under some circumstances, characterized by
the normalized second moment of the lattice, G . Fig. 2 summarizes
the best classical lattices [43–46, 33, 47] along with Conway and
Sloane’s conjectured lower bound [44]. With “classical” we mean
lattices for which the normalized second moment has been reported
previously. The figure hints a potential for improvement, especially
in 9 and 10 dimensions. 10-dimensional quantization has received a
lot of attention in speech coding [48, 49], where suboptimal
structures such as split VQ and multistage VQ have been much
employed. A good 10-dimensional lattice might provide an attractive
alternative in this application.

In Section III-A, the results obtained through lattice training are
presented. When the dimension d

�
 is 9 or 10, we find lattices with

normalized second moments considerably lower than the values
previously known for these dimensions. If the new lattices are indeed
optimal, they disprove a famous conjecture by Conway and Sloane.
The structure of the new lattices draws our attention to a class of
nonlattice tessellations, which is examined in Section III-B. We
report tessellations that are better than all previously studied
tessellations, including lattices, in 7 and 9 dimensions. We tried to
focus the section on the results of the training algorithm, without
expanding the work into an essay on lattice theory. Hence, some
theoretical background and definitions are left to references.

A . The Best Lattices Found

There is no theoretical limitation on the number of dimensions that the
lattice training algorithm can handle, only a practical one. The
algorithm, in its present form, typically requires 2 hours in 3
dimensions, 4 hours in 10, and 25 hours in 20. With other training
parameters, time can, of course, be bought to the price of accuracy.
To evaluate the algorithm, especially to assess its ability to converge
into local minima with low normalized second moments G , we
considered it important to run the algorithm several times in each
dimension, and identify each output lattice through the methodology
of Section II-C, in a manner similar to example 1. This required some
manual work on each lattice, the amount of which ranged from
seconds to hours for the identification of a single lattice.

The considerations above led to the following experiment setup.
The training algorithm was run 10 times in each dimension from 2 to
10, and the trained lattices were identified. Most of this section is
devoted to results from this experiment. To study some further
features of the algorithm, we also designed 100 3-dimensional lattices
and one 20-dimensional one.

During training, we regularly output an estimate of G . Except
during the very first iterations, we have never observed any sudden
change, and in all tested cases, the algorithm had converged well
before the decreasing step size εm caused the training to cease. This
observation suggests that no numerical problems significantly disturb
the algorithm. Especially, the algorithm manages to avoid the
problem of “sensitive” lattices (see Section II-B).

In Table II, the 10 lattices obtained in dimensions 2–10 are listed,
grouped according to which local minimum they represent.
Normalized second moments G  were estimated for one (randomly
selected) member of each group. Most of the groups represent one of
the “classical” lattices, among which the most notable are d, Ad ,
and Ad

*  for d ≥ 1; Dd  and Dd
*  for d ≥ 3; and Ed  and Ed

*  for
6� 8≤ ≤d . They are all defined in the appendix and their properties
(normalized second moment, etc.) can be found in [2, chs. 4 and 21].
A few groups do not represent any known and named lattice; these
lattices are characterized below. For comparison, the previously best
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Fig. 3. A comparison between classical lattices and the
principal minima given by the training algorithm.

known G  values11 and Conway and Sloane’s lower bound12 are
included in the table.

The 10 runs for each dimension turned out to converge into just a
few different local minima; more than three local minima were not
found for any dimension. Of these minima, one, called the principal
minimum for a given d

�
, always got significantly more hits than the

others. It can be seen in Table II that in all dimensions, the principal
minimum turned out to be equivalent to the best known d

�
-

dimensional lattice—or better! In none of the studied dimensions, our
lattice training algorithm failed to reach a performance that has been
attained through other design methods. In dimensions 9 and 10, we
found lattices that have not been considered for quantization before.
Both these cases are discussed in detail below. In dimensions 2–8,
the principal minima were equivalent to best known results, which
lends confidence to our training algorithm as well as to previous
investigations. We do not claim that the principal minimum found by
the lattice training algorithm is always the global minimum, but we
have not yet seen a counterexample.

Fig. 3 summarizes the results obtained by lattice training, in
relation to the previously known results of Fig. 2. Lattice training
carries the normalized second moment much closer to the bound for
d
�

= 9 and 10. In 10 dimensions, the gain over the best classical
lattice, D10

* , is 0.23 dB, a gain that (18) indicates can be interpreted
as the SNR difference between corresponding lattice quantizers.

We now comment on the results in each dimension; first we give
a brief summary of dimensions from 2 to 8, then a more detailed
presentation of dimensions 9 and 10, which is where our lattice
results improve on previous knowledge. For d

�
= 2 and 3, all trials

converged to the same local minimum, A2 and A3
* . For d = 4 and 5,

we found two local minima, of which the principal ones (D4  and
D5

* ) were reached in 9 out of 10 attempts. The suboptimal local
minima are A4

*  and an unnamed 5-dimensional sublattice of D6
* .1 3

For d = 6 and 7, the principal minimum is Ed
* , and Ed  is a

secondary minimum. For d
�

= 8, the only local minimum found is

11 Among the “best known” lattices, only the ones in dimensions 1–3 have been
proven optimal.
12 The values were computed using a series expansion of the recursive integral
equation in [44].
13 The 5-dimensional locally optimal lattice can be obtained as the intersection of
D6

*  and a hyperplane perpendicular to the vector 111111, , , , ,( )T . This specification
of the new lattice is analogous to the definition of E7  as a sublattice of D8

* , see
the appendix.

E8, which is known as a very good and very symmetrical lattice
[44].

Before proceeding to the lattices found in dimensions 9 and 10,
we pause to make an observation on the less frequent local minima in
Table II. Since some local minima only received one hit in 10
attempts, there may well exist other lattices that are also locally
optimal, even though none of the 10 runs arrived there. If we wish to
estimate the exact number of local minima in a given dimension, 10
trials are apparently insufficient; if, on the other hand, we are more
concerned with finding the one global optimum in each dimension,
the trend of better local minima getting more hits, as the table
indicates, is encouraging. As an example of a thorough search for
local minima, we executed the algorithm 100 times in 3 dimensions.
All of them converged to A3

*  as expected; Barnes and Sloane have
shown that this is the only 3-dimensional local minimum [2, p. 60].
Especially, the face-centered cubic lattice, A3, was never reached. Its
G is only slightly higher than that of A3

* , but it is not even locally
optimal.

Nine-dimensional lattices are special. The lattices we reached are
more irregular than the ones in other dimensions, and none of them
were found in the literature. Moreover, they do not appear to be
integer lattices [2, p. 47] for any scaling, which makes them unique
amongst the presently best known lattices. While confusing at first,
this irregularity was to some extent explained when we studied
nonlattice tessellation (see Section III-B). It turned out that there is a
9-dimensional nonlattice tessellation (yes, a highly regular
tessellation!) that is considerably better than all known lattices. If the
optimal tessellation for d

�
= 9 is not a lattice at all, then the irregular

lattices that we observe may be attempts by the training algorithm to
approximate the nonlattice structure within a lattice constraint.

The generator matrix of the 9-dimensional principal minimum is

2 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0
1 0 0 0 1 0 0 0 0
1 0 0 0 0 1 0 0 0
1 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 1 0

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 0 573.





























(31)

and the normalized second moment of the lattice was estimated to
0.071622 ± 0.000003. In (31), we have interpreted the output of the
algorithm according to postulate 1, but for this lattice, the postulate
does not give exact values of all matrix elements. One element,
0.573, was left unrounded. We will explain later why no value can
be replaced for 0.573 to increase the symmetry of the lattice.

Since postulate 1 yields exact values of all but one element of the
generator matrix of this locally optimal lattice, a single-variate
optimization algorithm can be formulated to increase the accuracy of
this one variable. We modified the lattice training algorithm of
Section II for this purpose. The lattice structure was constrained to
(31) with an unknown variable substituted for the lower right
element. A derivative similar to (30) was calculated and the algorithm
was run to optimize the single variable. The theory by Zamir and
Feder on the whiteness of lattice quantization noise (see Section II-C)
shows that this optimization problem has a unique minimum. The
result, based on 100 runs of the single-variate training algorithm, was
0.57321 ± 0.00014, where the interval is again given on the form
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TABLE III
LATTICES THAT CHALLENGE CONWAY AND SLOANE’S

CONJECTURE. SHADED CELLS DENOTE BEST KNOWN VALUES
IN THEIR DIMENSION.

Lattice G δ  of dual

(31) 0.071622 ± 0.000003 0.02857 ± 0.00002

Λ9
* 0.071769 ± 0.000006 1 16 2 0 04419≈ .

D10
+ 0.070813 ± 0.000003 1 32 0 03125= .

Λ10
* 0.071339 ± 0.000009 1 16 3 0 03608≈ .

±2σ̂ , using an estimate σ̂  of the standard deviation. Hence, the three
decimals in (31) can be considered significant.14

The matrix (31) generates a peculiar lattice, in which the lattice
points lie closer together along the d

�
th coordinate that along the

others. This follows from the fact that the nonzero lattice points
closest to the origin are ±( )0 0 0 1 146, , , , .� .15 Just these two points;
for example, 1 146 0 0 0. , , , ,�(

�
)  is not a lattice point. The distance to

the two closest points is 1.146; in other directions, the distance to any
lattice point is 2 or greater. Hence, the Voronoi region of this lattice is
flat. It is tempting to conclude that the lattice therefore must have a
relatively high normalized second moment G , since this measure
characterizes how round the Voronoi region is (see Section I-B), but
the conclusion is severely wrong. A lower G  is not known among 9-
dimensional lattices. This lattice apparently compensates its weird 9th
coordinate with being extremely round in the first 8 dimensions. The
projection of the lattice orthogonal to 0 0 0 1 146, , , , .�(

�
)  is D8

+ , better
known as E8, whose Voronoi region is very round, as mentioned
above. The geometry of the 9th coordinate also explains why
symmetry arguments will not suffice to identify the local minimum
represented by (31) completely. To use an analogy, a cylinder cannot
be made more symmetrical by changing its height.

The two suboptimal local minima that the algorithm converged
into one time each for d = 9 display similar irregularities. One of
them reminds much of (31) above, in that it has a pair of vectors
being significantly shorter than any other lattice vector, and the
projection orthogonal to them is E8. The last local optimum has two
pairs of extra short vectors, and the projection orthogonal to both of
them is E7

* .
The obtained 10-dimensional lattices, finally, are all equivalent to

the lattice generated by

2 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 1 0

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

































. (32)

This lattice is well known, it is called D10
+ , but it has, to our

knowledge, not been considered for quantization earlier. Its
normalized second moment lies very close to the lower bound; we
estimated ˆ . .G = ±0 070813 0 000003. More on the D+  family,
including a very fast search method, is discussed in the next section.

There is a famous conjecture regarding the relation between
optimal lattices for “quantization” and “packing.”16 It is based on the
observation that the best known d

�
-dimensional lattices for the two

purposes were always each other’s duals. In 1982, Conway and
Sloane conjectured that this duality would be true for the optimal
lattices in any dimension [43]. They supported the conjecture in [36]
but later expressed some doubts [2, p. 62]. Forney has devoted a

1 4 Kenneth Zeger points in a personal communication out that
4 3 10 0 57321+( ) = . . Whether this is the exact value or a coincidence is an

open question.
15 To see that these points belong to the lattice, use the construction B uT  with
u = − −( )� �

3 11 1 2, , , , , .
16 In the lattice literature, the quantization problem is to minimize G, and the
packing problem [2, Ch. 1] is to maximize

δ = ( )∉

1
V

d

inf
x

x
Ω

paper to the duality conjecture, suggesting that it, although not true in
its present form, might be a first-order approximation of a yet
unknown relation [47]. However, no counterexample has been
presented to date, which motivates an investigation of our 9- and 10-
dimensional discoveries in this context.

The best known lattices for packing in 9 and 10 dimensions are
called Λ9 and Λ10, respectively [2, chs. 1 and 6]. The best known
lattices for quantization are now given by (31) and (32), the latter
being D10

+ . In Table III, we show that our new lattices have a lower
G  than Λ9

*  and Λ10
* , thus showing that Λ9

*  and Λ10
*  are not optimal,

as the conjecture would imply. We also show that the duals of the
new lattices are not optimal packings, which, if it were true, would
have been a second way to satisfy the conjecture.

Our new lattice results thus strongly indicate that the conjecture is
false, but they do not prove it. A proof would be complete the day
one of the four shaded values in Table III would be proved optimal.
For now, we have to be content with a “counter-conjecture”: d = 9 is
the lowest dimension for which the optimal lattices for quantization
and packing are not duals.

The present study ends with d
�

= 10, but the algorithm is able to
design lattices in considerably higher dimensions than this. The only
thing that limits the number of dimensions is, as far as we have
found, the available time. As an example, a 20-dimensional lattice
was designed. It took 25 hours, and the normalized second moment
of the resulting lattice was estimated to 0.067594 ± 0.000005. The
lower bound for d

�
= 20 is 0.066457.

B . The Best Tessellations Found

In the study of the trained lattices, we were struck by the similarities
between the best found lattices in 8 and 10 dimensions. In this
section, we generalize the pattern and discover very good nonlattice
tessellations in 7 and 9 dimensions. Traditionally, the study of
tessellation for quantization applications has been heavily dominated
by lattices, see, e.g., [2, p. 61]. This is, to our knowledge, the first
time that nonlattice tessellations have shown any competitive
performance in relation to lattices.

Compare (32) and (41): the pattern is obvious. On the other
hand, the best found lattice in 9 dimensions (31) is different, not very
much, but still significantly. The key to this mystery lies in the D+

family. It is defined as the union of Dd  and a translation of Dd  [2,
pp. 46 and 119]:

D D Dd d d
T+ = ∪ + ( )( )1 2 1 2, ,� (33)

where Dd  is defined in the appendix. When d
�

 is even, Dd
+  is a

lattice, whereas for odd values of d , Dd
+  is a nonlattice tessellation.

We will return to the geometrical properties of Dd
+ , and the peculiar

9th dimension later in the section. For now, we turn to the main point
of interest, namely, the normalized second moment.

Fig. 4 shows the results in dimensions from 2 to 10. For
comparison, the figure includes the conjectured lower bound [44] and
the best known lattices, including the new results from the previous
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Fig. 4. The performance of the D+  tessellation, versus
lattices and the lower bound. Note the improvement in 7 and 9
dimensions.

TABLE IV
THE BEST KNOWN NORMALIZED SECOND MOMENT G FOR

LATTICES AND TESSELLATIONS IN DIMENSIONS 7–10.
SHADED CELLS DENOTE NEW RESULTS.

d Best known lattice Best known tessellation Lower bound

7 0.073116 0.072734 ± 0.000003 0.072484

8 0.071682 0.071682 0.071636

9 0.071622 ± 0.000003 0.071103 ± 0.000003 0.070902

10 0.070813 ± 0.000003 0.070813 ± 0.000003 0.070258

section. The performances of the lattices Ad , Ad
* , Dd , and Dd

*  [43]
are also shown. Dd

+  gives significantly lower normalized second
moments than these four lattice families for d ≥ 6; the curve for Dd

+

indeed passes through the best lattices in 8 and 10 dimensions, as
expected. In 7 and 9 dimensions, however, the best known lattices
are inferior to Dd

+ , which performs considerably closer to the lower
bound. That the best lattices have higher normalized second moments
than other tessellations in certain dimensions has never before been
observed.

In Table IV, the results in dimensions from 7 to 10 are
summarized in terms of normalized second moment. The new
contributions of this paper are indicated by a shaded background.

Consider Fig. 4 again and observe G  for the best lattices, that is,
study the pattern formed by the circles. Without too much
imagination, the pattern can be described as somewhat zigzag: lattices
are in general worse for odd dimensions than for even, compared
with the lower bound. This property can, to some extent, be
explained by the relation between lattices and nonlattice tessellations.
To put it simple, good tessellations are more often lattices in even
dimensions than in odd. This observation motivates a closer look
upon the geometry of Dd

+ .
It is not hard to show that when d

�
 is even, Dd

+  is a lattice, with
the generator matrix

B =



















2 0 0 0
1 1 0 0
1 0 1 0

1 2 1 2 1 2 1 2

�
�
�� � � �
�

. (34)

The situation is more complicated when d  is odd. To begin with,
(34) does not generate Dd

+ . Instead, it generates a peculiar lattice,

which has many characteristics in common with the best found 9-
dimensional lattice (31) discussed above. E. g., ±( )0 0 0 1, , , ,�  are
lattice points, so the lattice points lie closer together along the d th
coordinate than along the others. For d

�
= 9, (34) generates Λ9

* ,
which was discussed in connection with Table III.

So what is the generator matrix of Dd
+  for odd values of d

�
? The

answer is that there is none. As mentioned, Dd
+  is not a lattice when

d
�

 is odd. However, it is still a tessellation, because all its Voronoi
regions are congruent. Half of them are upside-down (more
precisely, reflected in a point), which disqualifies the tessellation
from being a lattice. In a lattice, all Voronoi regions are translations
of each other, without scaling, rotation, or reflection, see Section I-
C.

Conway and Sloane [2, p. 120] summarize some parameters of
the tessellation Dd

+ . We conclude this section by adding two facts to
their list, without further comments. The covering radius is
R= 3 2 d =( )3 , 1 4 8≤ ≤( )d , d 8 even d ≥( )8 , or 2 1 4d −
odd d ≥( )8 . For even d

�
, the lattice Dd

+  is geometrically self-dual [2,
p. xix]: the dual is equivalent to the lattice itself.

IV. SUMMARY AND CONCLUSIONS

We have investigated the concept of designing lattices with low
normalized second moments through numerical optimization. The
main results of the paper can be concluded in the following points.
• We develop an iterative algorithm, which initially has the ability

to escape shallow local minima, but the ability decreases with
training time.

• The optimization problem has relatively few local minima. Of
the local minima, our experiments tend to converge into the
better ones.

• Numerically generated lattices can yield exact lattices by
symmetry arguments.

• In dimensions 2–8, we rediscover the lattices that have
previously been reported as best known.

• In dimension 9, a new lattice (31) is discovered, which is
considerably better than any lattice previously known. It has an
uncommon structure for locally optimal lattices.

• In dimension 10, a significant improvement can be attained by
employing D10

+  instead of the lattices that have been considered
before.

• Experiments suggest that the method is applicable to
optimization in considerably higher dimensions than 10.

• The new lattices suggest that the famous duality conjecture by
Conway and Sloane may be false.

• We show that the Dd
+  tessellation performs better than any

known lattice tessellation in dimensions 7 and 9. This is the
first time that lattices do not hold all second moment world
records for tessellations.

As a graphical summary, we conclude this paper with Fig. 5, which
presents our values (circles and dots) compared with what was
previously known.

APPENDIX: THE CLASSICAL LATTICES

In this appendix, the lattices d, Ad , Dd , and Ed  are briefly
defined. A much more thorough treatise on their structure and
properties is found in [2, ch. 4].
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Fig. 5. A comparison between classical lattices and the
lattices and tessellations found through training.

The cubic lattice d is the Cartesian product of d  1-dimensional
lattices. The generator matrix depends, as discussed in Section I-C,
on rotation and choice of basis vectors. One generator matrix for d

is the d
�

d×  identity matrix. The lattice is its own dual.
The lattice Ad  can be defined as a sublattice of the cubic lattice:

Ad  consists of the points of d+1 that lie on a hyperplane orthogonal
to 11 1, , ,�( )T . A rotated version of Ad  is generated by the matrix17

α
α

α

1 1
1 1

1 1

�
���� �
�

















(35)

where α = + +d 1 2. A2 is the hexagonal lattice, see Fig. 1. One
choice of a generator matrix of the dual Ad

*  is (35) with
α = + −d d1 .

The lattice Dd  is defined for d ≥ 3. It consists of every second
point in d, namely, those points whose coordinate sum is even. A
generator matrix is

2 0 0 0
1 1 0 0
1 0 1 0

1 0 0 1

�
�
������ �
�



















. (36)

Its dual, Dd
*  has the generator matrix

1 0 0 0
0 1 0 0

0 0 1 0
1 2 1 2 1 2 1 2

�
�� � � �
�
�



















. (37)

The Ed  family is defined for d = 6, 7, and 8 only. E6  is a
sublattice of A7

* . With A7
*  generated by (35), E6  is the lattice being

orthogonal to any of the basis vectors of A7
* . A generator matrix for

E6  and its dual is

17 For consistency, we give square generator matrices for all lattices, which is
why some of our definitions may appear unfamiliar. Especially in literature with
focus on theory rather than application, it is common to present the lattices Ad ,
E6 , E7 , and their duals using nonsquare generator matrices.

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

1 2 1 2 1 2 1 2 1 2 3 2

α
α
α
α
α
α























(38)

with α = 3 for E6  and α = 1 3 for E6
* . E7  is the sublattice of

D8
*  (37) being orthogonal to 11 1, , ,�( )T . As a generator matrices for

E7 , we can use

2 0 0 0 0 0 0
0 2 0 0 0 0 0
0 0 2 0 0 0 0
0 0 0 2 0 0 0
1 1 1 0 1 0 0
0 1 1 1 0 1 0
0 0 1 1 1 0 1


�























(39)

and for E7
* ,

2 0 0 0 0 0 0
0 2 0 0 0 0 0
0 0 2 0 0 0 0
1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1


�























. (40)

E8, finally, is equivalent to D8
+ , see Section III-B. The lattice, which

is also equivalent to its dual E8
* , can be generated by the matrix

2 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0
1 0 0 0 1 0 0 0
1 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2


�

























. (41)
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