Testplattform för nätverks-RTK i syfte att ge en rikstäckande GPS-tjänst med centimeternoggrannhet

Test platform for network RTK with the objective to achieve a nationwide GPS service with centimeter accuracy

Jens Samsioe
Björn Öhman

Examensarbete 2000:3
Förord

Handledare har varit Fredrik Darin och Henrik Sundberg på Teracom. Examinator har varit Gunnar Lannér på Chalmers tekniska högskola.

Examensarbetet är gjort inom ramen för civilingenjörsutbildningen vid sektionen för väg- och vattenbyggnad vid Chalmers tekniska högskola.

Göteborg 29 februari 2000

Jens Samsioe

Björn Öhman
Sammanfattning

Rapporten behandlar uppbyggnaden av en testplattform för utvärdering av nätverks-RTK-system. I plattformen har en befintlig kommersiell nätverks-RTK-programvara från det tyska företaget Geo++ implementerats och utvärderats för att på så sätt analysera både testplattformen och programvaran.

Resultaten visar att befintlig infrastruktur kan användas för utsändning av nätverks-RTK-korrek tioner, men nätverks-RTK-programvaran behöver vidareutvecklas för att fungera under svenska förhållanden.

Abstract

The report deals with the design of a test platform for evaluation of network RTK systems. In the platform an existing commercial network RTK software from the German company Geo++ has been implemented and evaluated in order to analyse both the test platform and the software.

The results show that existing infrastructure can be used for transmitting network RTK corrections, but the network RTK software needs further development in order to work under Swedish conditions.
Innehåll

1. Inledning 3
2. Introduktion till GPS 4
 2.1. Allmänt om GPS 4
 2.1.1. Satelliternas konstellation 4
 2.1.2. Princip för positionsberäkning 5
 2.2. Satelliternas signaler 6
 2.2.1. Signalstrukturer 6
 2.2.2. Störningar och kryptering 7
 2.3. Positionering 7
 2.3.1. Kodmätning 7
 2.3.2. Bärvågsmätning 8
 2.4. Status för GPS idag 9
3. Felkällor 10
 3.1. Atmosfärsfel 10
 3.1.1. Atmosfärens lager 10
 3.1.2. Jonosfärens effekter 10
 3.1.3. Troposfärens effekter 11
 3.2. Övriga felkällor 11
 3.2.1. Klockfel 11
 3.2.2. Banfel 12
 3.2.3. Flervågssignaler 12
 3.2.4. Antenncentrumfel 12
 3.3. Felens inverkan på positionen 12
4. Differentiell GPS 13
 4.1. Förutsättningar 13
 4.2. Korrektionsmetoder vid kodmätning 13
 4.2.1. Vektorkorrektion 13
 4.2.2. Pseudoavståndskorrekter 14
 4.3. Korrektionsmetoder vid bärvågsmätning 15
 4.3.1. Pseudoavståndskorrekter 15
 4.3.2. Pseudoavståndssimulationer 15
 4.3.3. Överföringshastighet 15
 4.4. Fixlösning 15
 4.4.1. Falsk fix 15
 4.4.2. Cycle slip 15
 4.5. Möjlighet till felkorrektion 15
 4.5.1. Typiska felstorigekar i positionering 16
 4.5.2. Översikt av fel 16
 4.6. Nätverk 16
 4.6.1. Felkorrektionsmodeller 16
 4.6.2. Realtid 17
 4.6.3. Virtuell referensstation 17
5. Referensstationer och koordinatsystem 18
 5.1. Koordinatsystem 18
 5.1.1. Presentation av koordinater 18
 5.1.2. WGS 84 18
 5.1.3. EUREF 89 18
 5.1.4. SWEREF 93 18
 5.2. Referensstationer 19
 5.2.1. SWEPOS 19
6. Korrektioner 20
 6.1. RTCM-korrektioner 20
6.2. Distribution
6.2.1. FM-nätet

6.3. Tjänster
6.3.1. Epos
6.3.2. Ciceron

7. Testplattform
7.1. Kriterier
7.1.1. Drift
7.1.2. Befintlig infrastruktur
7.1.3. Lokalisering av testplattform

7.2. Dataflöde

7.3. Roversidan

8. Måtpunkter
8.1. Urval
8.1.1. Urvalskriterier

8.2. Urvalsgenomförande

8.3. Data för utvalda punkter
8.3.1. SWEREF Annelund
8.3.2. SWEREF Landvetter
8.3.3. SWEPSO Borås
8.3.4. Sammanställning av måtpunkter

8.4. Representativitet för verkliga förhållanden

8.5. Mätningssförarande
8.5.1. Mätproceduren
8.5.2. Mätråd

9. Nätverksprogramvara
9.1. Metod
9.1.1. Server
9.1.2. Rover

9.2. Läkttagelser
9.2.1. Serversidan
9.2.2. Roversidan

10. Slutsatser
10.1. Testplattform
10.2. Måtpunkter
10.3. Nätverksprogram
10.4. Geo++ nätverksprogram
10.4.1. Problemdiskussion

10.5. Framtida nätverks-RTK-system
10.5.1. Krav
10.5.2. Synpunkter vid utveckling av nätverks-RTK-system

11. Referenser

Bilagor
Bilaga A. Ordlista
Bilaga B. Mått resultat
Bilaga C. Mätningssförarande
Bilaga D. Tekniska specifikationer
Bilaga E. SWEREF-kriterier
Bilaga F. Punktdatal
Bilaga G. RTCM SC-104 v2.2
1. Inledning

Syftet med detta examensarbete är att utforma en testplattform och testrutin för utvärdering av nätverks-RTK-system samt implementera och testa en befintlig nätverks-RTK-programvara i testplattformen, för att därigenom kunna testa plattformen samt ge synpunkter på hur ett eventuellt framtida nätverks-RTK-system bör se ut.

Testplattformen skall fungera för tidiga utvärderingar och begränsas geografiskt till Västsverige.

Inledningsvis sker en översiktlig introduktion till GPS samt en mer djupgående beskrivning av felkällor inom GPS samt principerna bakom differentiell GPS och RTK. Därefter följer en kortare redogörelse för olika koordinatsystem och referenspunkter. Kapitel sex behandlar korrektioner och hur de distribueras, en kortare beskrivning av befintliga GPS-tjänster som används i Sverige görs också.

De ovan nämnda kapitlen syftar till att skapa en grundläggande förståelse för de problem som uppstår vid RTK med långa baslinjer. De därefter följande kapitlen beskriver hur testplattformen bör se ut samt hur ett eventuellt framtida nätverks-RTK-system kan utformas.

I kapitel sju beskrivs uppbyggnaden och lokaliseringen av testplattformen för att möjliggöra utvärdering av olika RTK-system. I kapitel åtta ges en redogörelse för de mätpunkter som anses vara bäst lämpade för testplattformen. I kapitel nio utvärderas testplattformen med hjälp av en nätverksprogramvara tillhandahållen av Geo++, dessutom beskrivs och utvärderas även Geo++ nätverksprogramvara, i syfte att ge information om hur en framtida nätverks-RTK-programvara bör vara uppbyggd.

I kapitel tio sker en sammanfattning av slutsatser och därefter ges rekommendationer om eventuella framtida undersökningar.

I bilagorna finns en ordlista som beskriver specifik GPS-terminologi. De innehåller också data och mätningssörfarande från de mätningar som utförts. I bilagorna återfinns även de tekniska specifikationerna för den utrustning som har använts samt kompletterande material till vissa textavsnitt.
2. Introduktion till GPS

2.1. Allmänt om GPS

GPS-systemet består av satelliter som kontinuerligt sänder ut signaler som kan tas emot av en GPS-mottagare på jorden. Satelliterna övervakas från jorden för att säkerställa att korrekt information alltid sänds ut från dem.

2.1.1. Satelliternas konstellation

![Figur 2-1. Principiell skiss av en satellitbana kring jorden](image)

![Figur 2-2. Principiell skiss av de sex omloppsbantor över jorden](image)
2.1.2. Princip för positionsberäkning

Varje satellit skickar ut radiosignaler som kan tas emot och tolkas av en GPS-mottagare. Signalen innehåller bland annat information om satellitens position och interna tid. GPS-mottagaren jämför tiden då signalen skickades ut med tiden då signalen togs emot och beräknar de olika signalernas löptider från respektive satellit. Avstånden mellan mottagare och satelliter erhålls genom att löptiderna multipliceras med ljusets hastighet. GPS-mottagarens position beräknas sedan genom att bestämma avstånden till tre satelliter med kända koordinater.

Figur 2-3. En satellit

Om avståndet från en satellit är känt kommer mottagaren att befina sig någonstans på ytan av en sfär.

Figur 2-4. Två satelliter

Om avstånden från två satelliter är känt kommer mottagarens position att finnas på randen av den cirkel som bildas där de båda sfärens skär varandra.

Figur 2-5. Tre satelliter

Om tre avstånd är känt kommer de möjliga positionerna att begränsas till två punkter (kryssen i figuren ovan), varav en kommer att befina sig nära jordens yta. Denna punkt är då mottagarens position.
Ofta finns möjlighet att ta emot signaler från ännu fler satelliter, detta ger normalt en bättre position eftersom ekvationssystemet med de tre obekanta rumsdimensionerna och den obekanta tiden då blir överbestämt, vilket ger möjlighet till medelvärdesbildning.

2.2. Satelliternas signaler
Satelliterna genererar båvgångssignaler på två frekvenser: L1 (1575,42 MHz, vågändlad 19,0 cm) och L2 (1227,60 MHz, vågändlad 24,4 cm). Dessa är multiplier av en grundfrekvens på 10,23 MHz. De båda frekvenserna påverkas på olika sätt under sin väg genom atmosfären. Därför kan en mottagare som utnyttjar både frekvenserna minska effekterna av vissa felkällor i atmosfären.

2.2.1. Signalstrukturer
Båvgångssignalerna är fasmodulerade med tre olika koder.

2.2.1.1. Navigationsmeddelandet
Navigationsmeddelandet innehåller information om satelliten, bland annat bandata och klockinformation.

2.2.1.2. Coarse Acquisition-koden

2.2.1.3. Precise-koden
2.2.1.4. Kodkarakteristik

Tabell 2-I. Kodkarakteristik (Hofmann-Wellenhof, 1997)

<table>
<thead>
<tr>
<th>Navigationsmeddelande</th>
<th>C/A-kod</th>
<th>P-kod</th>
</tr>
</thead>
<tbody>
<tr>
<td>Överföringshastighet</td>
<td>50 bps</td>
<td>1,023·10⁶ bps</td>
</tr>
<tr>
<td>Bitlängd</td>
<td>6·10⁶ m</td>
<td>293 m</td>
</tr>
<tr>
<td>Meddelandelängd</td>
<td>1500 bitar</td>
<td>1023 bitar</td>
</tr>
<tr>
<td>Repetitionsintervall</td>
<td>30 s</td>
<td>1 ms</td>
</tr>
</tbody>
</table>

2.2.2. Störningar och kryptering

2.2.2.1. Selective Availability

Då GPS blev operativt, visade det sig att positionsnoggrannheten var mycket bättre än vad som teoretiskt beräknats. För att reducera noggrannheten för icke-militära användare, försämrade USA:s försvarsarkivet positionsnoggrannheten genom att lågga in en störning, Selective Availability (SA). SA innefattar störning av satellitens klocka, vilket påverkar grundfrekvensen 10,23 MHz. Dessutom trunkeras satelliternas bandata, vilket ger en sämre noggrannhet i bestämningen av satelliternas position.

Gradens av störning har bestämts så att positionsnoggrannheten för civilt bruk med SA är 100 m i horisonttäld och 156 meter i höjdled (95 procent standardavvikelse) (Hofmann-Wellenhof, 1997).

2.2.2.2. Anti Spoofing

Genom kryptering av P-koden så kallad Anti-Spoofing (A-S), bildas en ny kod. Den nya koden kallas Y-kod och är idag reserverad för auktoriserade användare, i praktiken den amerikanska försvarsarkivet. Y-kod utan störning från SA ger en positionsnoggrannhet på 22 m i horisonttäld och 28 m i höjdled (95 procent standardavvikelse) (Farell, 1998).

2.3. Positionering

De fundamentala problemen i GPS-positionering är att bestämma avståndet mellan satellitter och mottagare så exakt som möjligt samt att bestämma satelliternas exakta positioner i varje tidsögonblick.

2.3.1. Kodmätning

Grunden för kodmätning är en jämförelse av satelliternas utsända kod och en genererad kod av mottagaren. De koder som satelliterna sänder ut (C/A-koden och P-koden), finns replikade i GPS-mottagaren. Denna replika jämförs sedan med den mottagna koden och genom bestämning av tidsförskjutningen, Δt, mellan de två koder-
na fås löptiden från satellit till mottagare. Denna löptid multipliceras med ljushastigheten varpå ett pseudoavstånd erhålls.

Kod i mottagaren

Kod från satelliten

\[t \]

Figur 2.6. Kodmätning

Noggrannheten på ett pseudoavstånd framtaget med hjälp av kodmätning är ungefär 1 procent av bitlängden, men en noggrannhet på 0,1 procent av bitlängden bör vara möjlig (Hofmann-Wellenhof, 1997). Märk att detta endast handlar om noggrannheten på pseudoavståndet, vilket inte är det sanna avståndet.

2.3.1.1. Påverkan av kryptering och störningar för allmänheten

Noggrannheten i kodmätningar begränsas av SA. Dessutom kan kodmätningar som regel endast göras på C/A-koden eftersom A-S praktiskt taget alltid är aktiverat. På grund av att C/A-koden endast är modulerad på L1 kan kodmätningar endast göras på en frekvens. Detta medför att vissa fel inte kan korrigeras och därmed begränsas noggrannheten ytterligare.

2.3.2. Bärvågsmätning

Genom att kontinuerligt mäta hur fasskillnaden mellan den mottagna signalen och referenssignalen förändras, kan dessutom antalet hela och delar av perioder som satelliten har avlägsnat sig eller kommit närmare GPS-mottagaren bestämmas i varje tidsögonblick.

Uttryckt i ekvationsform kommer avståndet till satelliten således att vara:

\[s(t) = \varphi(t_0) + \varphi(t) + N \]

Där:
- \(t \) tiden
- \(s(t) \) pseudoavståndet till satelliten
- \(\varphi(t_0) \) den initierliga fasskillnaden
- \(\varphi(t) \) antalet hela och delar av perioder i varje tidsögonblick
- \(N \) är ett obekant helt antal perioder

Metoden kan åskådliggöras i följande figur:
Figur 2.7. Bärvågsmätning

Genom att ställa upp ett ekvationssystem av alla pseudoavstånd från satelliter till mottagare kan man bestämma en uppsättning heltal som ger entydig bestämning av GPS-mottagarens position.

2.3.2.1. Påverkan av kryptering och störningar för allmänheten

SA påverkar grundfrekvensen 10,23 MHz och kommer därför att förändra den uppmätta fasskillnaden, vilket i sin tur genererar ett fel i pseudoavståndsbestämningen.

2.4. Status för GPS idag

Grundkonfigurationen med möjlighet till att ta emot minst fyra satelliter i alla tidsögonblick gäller när 24 satelliter finns i omlopp runt jorden. Idag finns det dock 28 satelliter i omlopp (U.S. Coast Guard Navigation Center, 2000) vilket underlättar vid positioneringen.

3. Felkällor

Som tidigare nämnts påverkas positioneringen i GPS av olika felkällor. För att kunna få en bra positionsnoggrannhet, måste dessa kunna bedömas på ett så bra sätt som möjligt. De mest svårbedömda felen härstammar från atmosfären. På grund av att atmosfären är variabel i både tid och rum, blir även felen som uppstår variabel i tid och rum. Övrigafel är endast variabel i tid, vilket medför att dessa felkällor kan bestämmas rmsligt då de har bestämts i en punkt vid en viss tid.

3.1. Atmosfärsfel

GPS-signalen utsätts för olika effekter på sin väg genom atmosfären. Atmosfären påverkar bland annat signalvägen och hastigheten på GPS-signalerna. De fel som uppstår varierar i tid och rum samt med längden på signalvägen genom atmosfären.

3.1.1. Atmosfärens lager

![Diagram av atmosfärens lager i GPS-sammanhang](image)

Figur 3-1. Viktiga delar av atmosfärens lager i GPS-sammanhang

Jonosfären sträcker sig ungefär från 1000 km ner till 60 km ovanför jordytan (Gombosi, 1998). I detta område joniseras gasmolekyler av de ultraviolett strålarna från solen varpå gasmolekylerna släpper ifrån sig fria elektroner. Dessa fria elektroner ger upphov till att jonosfären är ett dispersivt medium med avseende på GPS-signaler.

3.1.2. Jonosfärens effekter

Jonosfärens dispersiva egenskaper ger upphov till en sänkning av GPS-signalens grupp hastighet, det vill säga kodhastigheten, samt en ökning av signalens fashastighet. Storleken på dessa effekter styrs av mängden elektroner längs signalvägen. Elektronmängden påverkas bland annat av solfläckscykeln, årstiden och tiden på dygnet.

Signalen från en satellit med mindre elevationsvinkel färdas längre sträcka igenom jonosfären och påverkas därför mer än signalen från en satellit med större elevationsvinkel.

| Tabell 3-1. Exempel på jonosfärens inverkan på signalvägen (Kaplan, 1996) |
|---------------------|------|------|
| Natt | Dag |
| 90° elevation | 3 m | 15 m |
| 0° - 10° elevation | 9 m | 45 m |
Sänkningen av grupphastigheten är till beloppet lika stor som ökningen av fashastigheten, eller uttryckt i avstånd: pseudoavståndet mätt på koden kommer att bli lika mycket större än det verkliga avståndet som pseudoavståndet mätt på fasen (bärvägen) kommer att bli mindre än det verkliga avståndet. Sambandet mellan grupp- och fashastighet kan även uttryckas enligt:

$$v_g - v_f = c^2$$

Där:
- v_g: grupphastigheten (kodhastigheten)
- v_f: fashastigheten (bärvägshastigheten)
- c: ljusets hastighet

En viss refraktion av GPS-signalen inträffar också i jonosfären. Denna är emellertid mycket liten och kan under normala omständigheter försakras.

Den geometriska vägen genom jonosfären är identisk för alla frekvenser, men olika frekvenser får olika hastighet. För att göra en bedömning av jonosfårens fördjupande effekt på signalkoden, kan GPS-signalens frekvenser, L1 och L2, jämföras. Den nuvarande frekvensskillnaden mellan L1 och L2 är en acceptabel avvägning mellan behovet av att kunna uppskatta jonosfårens fördjupning och möjligheten att kunna ta emot de båda frekvenserna i samma antenn. Om skillnaden hade varit mindre, skulle skillnaden i felet på signalvägen vara så liten att den skulle vara svår att beräkna. Om frekvensskillnaden mellan L1 och L2 hade varit större, och därmed skillnaden i hastigheten varit större, hade det varit lättare att hitta ett noggrannare fel för signalvägen. Men då skulle det krävas separata antenner för de två frekvenserna (Klobuchar, 1996).

Jonosfären varierar förhållandefullt långsamt och ganska konstant, vilket gör att felen som härrör sig från jonosfären kan uppskattas över en större yta med hjälp av flera referensstationer, se avsnitt 4.6 Nätverk.

3.1.3. Troposfårens effekter

Troposfårens brytningsindex beror på temperatur, tryck och relativ fuktighet.

<table>
<thead>
<tr>
<th>Tabell 3-2. Exempel på troposfårens inverkan på signalvägen (Kaplan, 1996)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elevation</td>
</tr>
<tr>
<td>90° elevation</td>
</tr>
<tr>
<td>0-10° elevation</td>
</tr>
</tbody>
</table>

3.2. Övriga felkällor

3.2.1. Klöcksel

Som tidigare nämnts, manipuleras satelliternas interna tid genom SA, se avsnitt 2.2.2.1. Selective Availability. Detta gör att satellitsignalernas löpptid förändras jämfört med den

Det verkliga avståndet behöver inte vara det sanna avståndet, utan avser det beräknade avståndet mellan satellitens rapporterade position och referensstationens position. I realtid tar denna beräkning ingen hänsyn till det banföl som satelliten kan utsättas för.
sanna löptiden. Denna förändring ger upphov till att det beräknade avståndet till satelliten blir något längre eller något kortare än det sanna avståndet.

3.2.2. Banfel
De banor som GPS-satelliterna i idealfallet använder är exakt beräknade. I praktiken hamnar satelliterna utanför dessa beräknade banor, bland annat på grund av solwindar och variationer i jordens gravitation. Dessutom påverkas satelliternas banparametrar av SA. Den information om satellitens position som sänds ut, kommer därför inte att vara helt sann. Noggrannheten i satellitens baninformation är cirka 5 m, men med SA ökar felet upp till 50-100 m (Hofmann-Wellenhof, 1997).

Exakta bandata blir tillgängliga för efterberäkning med någon dags fördröjning.

3.2.3. Flervägsfel

Det finns olika metoder för att beräkna effekterna av att signalerna tar flera vägar. Om omgivningen runt antennen är konstant, kan korrektioner för multiväg uppskattas genom efterberäkning. En annan metod är att titta på olikheter på L1 och L2 (Han, 1997). Det finns även GPS-antenn som är speciellt konstruerade för att minska flervervägsfel. Exempel på sådana antenner är så kallade chokeringantenner, där markreflektioner elimineras genom att radiosignaler som kommer in mot antennen under horisontalplanet avlägsnas.

3.2.4. Antenncentrumfel
Antennens fascentrum är den punkt i antennen som mottagningen av GPS-signalen relaterar till. Detta centrum är i allmänhet inte samma som antennens fysiska centrum. Storleken på avvikelserna mellan fascentrum och fysiskt centrum, antenncentrumfelet, beror på satellitens elevationsvinkel och asimut samt på satellitsignalens intensitet. Felet kan bli upp till 5 mm i nordlig och östlig riktning och upp till 30-50 mm i höjd (Han, 1997).

Om samma typ av antenner antas ha samma antenncentrumavvikelse, och antennerna är orienterade i samma riktning, kan detta fel elimineras. Det finns även programvara som kompenserar för antenncentreringssfel.

3.3. Felens inverkan på positionen
De olika fel som finns i GPS-sammanhang är av olika storlek, typiska storlekar på felens inverkan på positionen presenteras i följande tabell:

Tabell 3-3. Exemplet på felens inverkan på positionen i plan (Sundberg, 1995)

<table>
<thead>
<tr>
<th>Fel</th>
<th>Val</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jonosfar</td>
<td>5 m</td>
</tr>
<tr>
<td>Troposfar</td>
<td>0,5 m</td>
</tr>
<tr>
<td>Satellitlockor</td>
<td>1,5 m</td>
</tr>
<tr>
<td>Banfel</td>
<td>2,5 m</td>
</tr>
<tr>
<td>Flervägsfel</td>
<td>0,8 m</td>
</tr>
<tr>
<td>Antenncentrumfel</td>
<td>0,005 m</td>
</tr>
</tbody>
</table>
4. Differentiell GPS

(Figur 4-1. Definitioner i Differentiell GPS)

4.1. Förutsättningar

För att möjliggöra DGPS krävs vissa förutsättningar. De två mottagarna måste använda sig av gemensamma satelliter. De satelliter som inte utnyttjas av båda mottagarna kan inte användas i DGPS positionering. Dessutom måste minst fyra gemensamma satelliter användas av båda mottagarna samtidigt.

Felen som uppmätts gäller endast vid referensmottagaren och kommer att ändra storlek med avståndet från referensmottagaren. Vid kortare baslinjer mellan referensmottagare och rovemottagare är dock felen så pass lika att en god positionsnoggrannhet kan uppnås.

DGPS används med kodmätning eller bårvågsmätning, se avsnitt 2.3 Positionering. Då bårvågsmätning används benämns metoden RTK (realtidskinematisk).

4.2. Korrektionsmetoder vid kodmätning

4.2.1. Vektorkorrektion

Referensmottagaren räknar fram positionsfelet i form av en vektor mellan beräknad och känd position. Vektorn överförs till rovemottagaren och adderas till den i rovemottagaren beräknade positionen, vilket medför en bättre position i rovern.
Figur 4.2. Vektorkorrektion

Vektorkorrigering är beroende av samma satellituppsättning vid referensmottagarens som vid rovermottagaren. Metoden fungerar bra vid korta avstånd mellan mottagarna, men ju större avståndet är mellan referensmottagare och rovermottagare, desto större blir skillnaden i signalväg och satellitgeometri mellan mottagarna vilket gör att korrektionen blir mindre giltig.

Vektorkorrigering begränsas i användbarhet av kravet på gemensam satellituppsättning, dessutom begränsas positionsnoggrannheten av att satelliterna behandlas kollektivt. Fördelen med metoden är den ringa datahastighet som krävs för att överföra korrektionerna.

4.2.2. Pseudoavståndskorrektioner

Pseudoavståndskorrektionerna beräknas utifrån skillnaden mellan pseudoavstånden och de verkliga avstånden mellan varje enskild satellit och referensmottagare. Korrektionerna för varje enskilt pseudoavstånd beräknas i referensmottagaren och skickas sedan till rovermottagaren. Rovermottagaren använder sedan de korrektioner som tagits emot från referensmottagaren till att beräkna korrigerade pseudoavstånd.

Figur 4.3. Pseudoavståndskorrektioner

Pseudoavståndskorrektionsmetoden är mer flexibel än vektorkorrektionsmetoden och resulterar i bättre positionsnoggrannhet. Den största fördelen med pseudoavståndskorrektion, förutom den förbättrade positionsnoggrannheten, är att rovermottagaren inte måste använda sig av alla satelliter som används av referensmottagaren.

* Det verkliga avståndet behöver inte vara det sanna avståndet, utan avser det beräknade avståndet mellan satellitens rapporterade position och referensstationens position. I realtid tar denna beräkning ingen hänsyn till det banfält som satelliten kan utatta för.
4.3. Korrektionsmetoder vid bärvågsmätning

Den allmänt använda korrektionsmetod som idag ger bäst positionsnoggrannhet baseras på korrektioner eller observationer på den uppmätta bärvågen. Denna metod kallas RTK (realtidskinematisk). Som namnet antyder ger RTK positionen i realtid och ger även möjlighet att förflytta rovemottagaren under pågående mätning.

4.3.1. Pseudoavståndskorrektioner

Pseudoavståndskorrektioner vid RTK fungerar i stort sett på samma sätt som vid kodmätning, skillnaden är att pseudoavståndskorrektionerna baseras på bärvågsmätningar.

4.3.2. Pseudoavståndsobservationer

Ett annat sätt att överföra korrektionsinformation från referensmottagare till rovemottagare är att skicka referensmottagarens fullständiga bärvågosobservationer. Denna metod kräver något större beräkningskapacitet i rovern.

4.3.3. Överföringshastighet

Ett krav för noggrann RTK är att korrektioner kan beräknas och sändas över till mottagaren i tät intervall, vanligen en gång per sekund. Överföringen får heller inte ha för stora fördjupningar eftersom korrektionerna måste appliceras på rovemottagarens mätningar för samma tidpunkt som de beräknades i referensmottagaren.

4.4. Fixlösning

Mottagaren kan under tiden som fixberäkningen sker ändock presentera en position, där alla heltalsbekanta inte har lösts. En position utan heltalslösning benämnas fortsättningsvis flytlösning. Denna position varierar kontinuerligt men positionsnoggrannheten är dock oftast mycket bättre än vid kodmätning.

4.4.1. Falsk fix

Under vissa omständigheter kommer mottagaren att hitta en heltalslösning som inte är den korrekta lösningen, detta innebär att en falsk position kommer att anges. Dessutom kommer denna lösning att tappas efter en kort tid, eftersom entydigheten i ekvationsystemet inte längre gäller då satellitterna förflyttat sig med tiden.

4.4.2. Cycle slip

Om det uppstår mottagarfel, till exempel om signalen tappas under en kort tid, måste sökandet efter den korrekta heltalslösningen startas om med en ny obekant heltalssparameter då signalen återupptas. Detta kallas en cycle slip.

4.5. Möjlighet till felkorrektion

Differentiell GPS klarar av att helt korrigera för icke rumsvariierande fel som till exempel SA eller banfel. Eftersom atmosfären varierar rumsligt kommer de korrektioner som beräknas i referensmottagaren endast att gälla i punkter nära denna. Med ökad baslinje kommer positionssfelen att öka, eftersom signalerna från satellitterna då får allt mer olika vägar genom atmosfären på sin väg till referensmottagare respektive rovemottagare. Den korrigerade positionen kommer dock ändå att vara betydligt bättre än den okorrigerade, främst eftersom effekterna av SA elimineras.
Vid långa baslinjer ökar dessutom tiden till fix, eftersom det är svårt att hitta den sanna fixlösningen då korrektionerna på pseudoavstånden är baserade på förhållande-
na vid referensmottagaren. Dessa korrektioner har sämre överensstämmdelse med för-
hållandena vid rovemottagaren.

4.5.1. Typiska felstorlekar i positionering

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kodmätning på C/A-koden</td>
<td>100 m</td>
</tr>
<tr>
<td>Kodmätning på P-koden</td>
<td>22 m</td>
</tr>
<tr>
<td>Pseudoavståndskorrigeringsdata</td>
<td>1-2 m</td>
</tr>
<tr>
<td>Teoretiskt 5 mm + 0,5 mm per km</td>
<td></td>
</tr>
<tr>
<td>Praktiskt 10 mm + någon mm per km</td>
<td></td>
</tr>
</tbody>
</table>

4.5.2. Översikt av fel

I vanlig civil GPS-mätning med kodmätning på C/A-koden, kommer ingen av felkällor-
na att kunna korrigeras. Vid mätning på både L1 och L2 kan viss korrigerings på jons-
färsfel och troposfärsfel ske.

I RTK korrigeras SA och banbel totalt då baslinjen är kortare än 500 km (Hofmann-
Wellenhof, 1997). Atmosfärsfel korrigeras bra nära referensmottagaren, men posi-
tionsnoggrannheten avtar med ökande längd på baslinjen.

En översikt över vilka fel som kan korrigeras i realtid presenteras i tabellen nedan.

| Tabell 4.2. Översikt över de fel som kan korrigeras i realtid. |
|-----------------|-----------------|-----------------|
| | Enfrekvensmätning | Tvåfrekvensmätning | RTK |
| Jonosfärsfel | Nej | Något | Avståndsberoende |
| Troposfärsfel | Nej | Något | Avståndsberoende |
| Klock | Nej | Nej | Ja |
| SA | Nej | Nej | Ja |
| Ban | Nej | Nej | Ja |

4.6. Nätverk

För att uppnå tillfredsställande positionsnoggrannhet även vid långa baslinjer, kan flera referensmottagare kopplas samman i nätverk. Detta gör att korrektionerna kan mo-
delleras eller interpoleras mellan de olika referensmottagarna, vilket gör att RTK-
mätningar kan utföras på längre avstånd från referensstationer med bibehållen posi-
tionsnoggrannhet.

Ytterligare fördelar med nätverksarbeide mellan referensmottagare är att det blir möjligt att täcka ytor där det är svårt att placera referensmottagare och att en god posi-
tionsnoggrannhet uppnås även om en referensstation av någon anledning slutar funge-
ra.

4.6.1. Felkorrektionsmodeller

Genom att unyttja data från flera referensstationer och flera satelliter, erhålls ett stör-
re antal signalvägar. Informationen för de olika signalvägarna kan sedan tas emot och
behandlas i en modell, en felkorrektionsmodell. Modellen skall kunna ge information
om hur avståndsberoende felet är samt beskriva felet som en funktion av koordinater-
na i ett koordinatsystem.
 Felkorrektionsmodeller kan göras på många olika sätt. En enkel modell är att rätlinigt interpolera korrektonerna mellan referensstationerna och på så sätt uppskatta felen. Modelleringen är dock ofta komplex och de fel som uppstår på grund av banfel och atmosfär korrigeras så att en felmodellering över hela områden kan ges.

Den fundamentala idén är alltså att bearbeta bärvägsinformation från flera referensstationer simultant med en mjukvara, och härleda parametrar i en lämplig felmodell som beskriver den avståndsberoende felsituationen i nätverksområdet. Modellparametrarna överförs sedan till användaren.

4.6.2. Reaktid

![Figur 4-4. Tvåvägskommunikation](image)

Figur 4-4. Tvåvägskommunikation

![Figur 4-5. Envägskommunikation](image)

Figur 4-5. Envägskommunikation

4.6.3. Virtuell referensstation

För att användaren skall kunna ha någon nytta av den felkorrektionsmodell som skickas ut, måste en ungefärlig position anges som indata eftersom felkorrektionsmodellen är positionsberoende. Den ungefärliga positionen anges till exempel med hjälp av kodmätning med en GPS mottagare. Konceptet brukar benämnas *virtuell referensstation*, eftersom det kan sägas skapas en referensstation i den position som användaren anger som sin ungefärliga. Det maximala avståndet till den virtuella referensstationen kommer, enligt avsnitt 2.2.2. *Störningar och kryptering*, att som mest bli 100 m i plan vilket medför att felen i den faktiska positionen kommer att vara näst intill identiska med felen vid den virtuella referensstationen. Under förutsättning att nätverkskorrektionerna är korrekt kommer därmed en mycket god position att erhållas, oberoende av baslinjelängd.
5. Referensstationer och koordinatsystem

5.1. Koordinatsystem

För att kunna bestämma inbördes lägen mellan punkter måste punkterna vara belägna i ett gemensamt väldefinierat koordinatsystem. Över små områden är det relativt enkelt att definiera ett koordinatsystem, men över större områden, nationellt eller globalt, måste hänsyn tas till faktorer som jordens form, kontinentaldrift och landhöjning.

5.1.1. Presentation av koordinater

Globala koordinater givna i X,Y,Z-form respektive i latitud, longitud och höjd över ellipsoiden är fultt utväxlingsbara, det vill säga exakta matematiska samband existerar mellan dem.

5.1.2. WGS 84

GPS använder sig av systemet World Geodetic System 1984 (WGS 84), vilket är ett system som uppfyller de ovan nämnda kriterierna för ett väldefinierat koordinatsystem. Eftersom jordytan förflyttar sig och koordinatsystemet är låst med avseende på kvasarer, kommer jordytan att förflytta sig i koordinatsystemet. Därmed förändras koordinaterna för en viss punkt med tiden (Reit, 1994).

5.1.3. EUREF 89

Ett förändrat koordinatsystem är inte alltid att föredra, därför beslutade Europa att låsa WGS 84-koordinatsystemet vid en viss tidpunkt. Detta nya koordinatsystem fick namnet EUREF 89. Resultatet blev ett koordinatsystem som inte rör sig på samma sätt som WGS 84.

5.1.4. SWEREF 93

Den i Sverige använda tillämpningen av EUREF 89 kallas SWEREF 93. Detta koordinatsystem skiljer sig från EUREF 89 på så sätt att det även tar hänsyn till landhöjningen.

Sedan SWEREF 93 definierades har lantmäteriverket mätt in ett antal punkter som skall möjliggöra anslutning av lokala (kommunala) koordinatsystem till SWEREF 93. Dessa inmätta punkter kallas SWEREF-punkter.
För praktisk lokal användning finns ofta ett lokalt koordinatssystem som inte är fullt utväxlingsbart med SWEREF, det vill säga endast empiriska samband med begränsad noggrannhet existerar mellan systemen.

5.1.4.1. Noggrannhet
SWEREF-punkter är inmätta med GPS-mottagare under 48 timmar och efterberäkna-de med ett kvalificerat beräkningsprogram. Detta ger en positionsnoggrannhet på 5 mm i plan och 10-15 mm i höjd (Lantmäteriverket, 2000).
SWEREF-punkternas påverkas av landhöjning och kontinentaldrift, vilket ger upp-hov till en förflyttning av punkten i storleksordningen någon millimeter per år.

5.2. Referensstationer
I alla koordinatssystem finns vissa punkter som används som referenspunkter. I de fall där referenspunkterna mätts kontinuerligt med en GPS-mottagare kallas de för referensstationer.

5.2.1. SWEPOS
SWEPOS är ett nationellt nät av referensstationer som byggs upp i samarbete mellan bland andra Lantmäteriverket (LMV) och Onsala Rymdobservatorium. Dessa referensstationer tillhandahåller data från GPS-satellitterna till ett flertal olika tillämpningar, exempelvis navigering, geografisk information samt jordskorparns rörelse.

Stationerna är strategiskt placerade över landet för att ge så stort nationellt mätun-derlag som möjligt med få stationer. Som resultat av detta är avståndet mellan två när-belägna referensstationer alltid mindre än 200 km. Dessutom förekommer förstär-kningar i vissa tätbebyggda områden, exempelvis Göteborg och Malmö.
Idag (februari 2000) finns totalt 26 stationer i landet men systemet kompletteras kontinuerligt med fler referensstationer.

![Figuur 5.1. SWEPOS-stationer](image-url)
6. Korektioner

6.1. RTCM-korektioner

Version 2.2 av RTCM SC-104 innehåller inget stöd för utsändning av nätverkskorektioner.

En komplett beskrivning av de olika meddelandetyperna och deras innehåll finns i bilaga G.

6.2. Distribution

För att kunna användas i praktiska RTK-tillämpningar måste korrektionerna från referensstationen kunna sändas till mottagaren i realtid på ett tillförlitligt sätt. Ofta saknas möjlighet till fast koppling mellan referensmottagare och användare. Därför finns ofta inga andra alternativ än att föra över korrektionerna via någon form av radiokommunikation, exempelvis rundradio eller mobiltelefoni.

Den typ av distribution som kanske lämpar sig allra bäst är rundradio, dels därför att en befintlig infrastruktur redan finns uppbryggd, dels därför att många mottagare kan dela på samma information och att denna typ av radio når stora områden.

6.2.1. FM-nätet

![Figur 6.1. Frekvenspektrum för FM-sändningar](image-url)
6.2.1.1. RDS

Bruttoöverföringshastigheten i RDS är 1187,5 bps, vilket netto ger cirka 400 bps (Teracom, 1999).

6.2.1.2. DARC
DARC (Data Radio Channel) är, liksom RDS, en underbårgskanal på FM-bandet. DARC antogs 1995 som standard av International Telecommunication Union. Kanalen möjliggör en betydligt högre överföringshastighet via FM-nätet än RDS.

Bruttoöverföringshastigheten i DARC är 16000 bps, vilket sjunker till mellan 6800-9800 bps netto beroende på korrektionsmetod (Teracom, 1999).

6.3. Tjänster

6.3.1. Epos

Eftersom korrektionerna som sänds ut är kodkorrektioner blir mängden data som överförs till användaren begränsad.

6.3.2. Ciceron

Tidiga utvärderingar av positionsnoggrannheten med Ciceron tyder på att felten ökar från någon centimeter nära referensstationen upp till några centimeter på avstånd över 20 km från referensstationerna (Johansson, 1999). På längre avstånd från referensstationerna ökar tiden till fix och dessutom kan inte centimeterprecision garanteras.
7. Testplattform

Detta kapitel beskriver uppbyggnaden av en testplattform för nätverks-RTK där information från ett antal referensstationer samlas in, bearbetas och sänds ut.

7.1. Kriterier

Uppbyggnaden och lokaliseringen av en testplattform för nätverks-RTK baseras på ett antal kriterier.

7.1.1. Drift

För att kunna driva en nätverks-RTK-tjänst måste vissa grundläggande krav vara uppfyllda:

- Tillförlitliga referensstationer.
- Säkert dataflöde i realtid från referensstationer.
- En dator som kan hantera dataflödet från referensstationerna samt beräkna korrekter i realtid.
- Tillförlitlig distribution av korrekter i realtid.

7.1.2. Befintlig infrastruktur

Vid skapandet av ett nätverks-RTK-system bör befintlig infrastruktur utnyttjas i största möjliga mån. I praktiken innebär detta att:

- SWEPOS stationerna används som referensstationer.
- Utsändningen av korrekter sker via DARC i befintliga rundradiosändningar.
- Kaksnästornet är beräknings- och distributionscentral.

7.1.3. Lokalisering av testplattform

Testplattformen lokaliseras i Västsverige, baserat på följande:

- God täthet av referensstationer.
- Korrektionsutsändning kan ske via Borås FM-sändare, som inte ingår i Ciceron.
- Närmhet till Onsala Rymdobservatorium vid Chalmers tekniska högskola, där expertkunskap om GPS och atmosfären finns.

Den goda tätheten av referensstationer i Västsverige är en förutsättning för att utföra tester med varierande baslinjekonfiguration. I Västsverige finns fem SWEPOS-
stationer, vilka ingår i testplattformen: Borås, Göteborg, Jönköping, Onsala och Vänersborg.

![Figur 7.1. SWEPOS-stationer och SWEREF-punkter samt täckningsområde för Borås FM-station](image)

7.2. Dataflöde

![Figur 7.2. Dataflöde](image)
7.3. Roversidan

Korrektionerna i DARC-signalen från Borås FM-sändare tas emot och avkodas med hjälp av en DARC-avkodare. Därefter kan korrektioner och position utnyttjas i en nätverkskorrektionstolk, enligt principen för virtuell referensstation i avsnitt 4.6.3. Virtuell referensstation.

Figur 7.4. Princip för nätverks-RTK på roversidan
8. Måtpunkter

För att kunna utvärdera positionsnoggrannheten i ett nätverks-RTK-system, måste testmätningar utföras i kända punkter. Mätningar bör dessutom göras i olika punkter för att belysa olika fall. Ju fler fall som belyses och ju fler mätningar som görs desto bättre blir bedömningsunderlaget.

8.1. Urval

Inom täckningsområdet för Borås FM-station finns ett stort antal redan inmätta måtpunkter. De punkter som bör väljas i första hand är SWEREF-punkter, inmätta av Lantmätteriverket, då dessa är de bäst bestämda punkterna i koordinatssystemet SWEREF 93 som finns i Sverige. I andra hand kan kommunala punkter inmätta med GPS övervägas. En sista möjlighet är att själv etablera en ny måtpunkt, då förslagsvis enligt SWEREF-standard, se bilaga E.

Då tätheten av SWEREF-punkter i Västsvårgör är god har endast dessa punkter kommit att vara aktuella.

8.1.1. Urvalskriterier

Vid valet av måtpunkter bör följande kriterier vara uppfyllda:
- God DARC-mottagning.
- Lämplighet för GPS-mottagning.
- Kända koordinater med hög noggrannhet.
- God tillgänglighet.
- Lämpliga avstånd och riktningar till SWEPPOS-stationerna.

8.2. Urvalsgranskning

Det viktigaste kriteriet för att en måtpunkt skall kunna användas är att DARC-mottagningen är fullständigt korrekt. I ett första skede mättes denna i de SWEREF-punkter som finns tillgängliga inom täckningsområdet för Borås FM-sändare. Samtidigt observerades lämpligheten för GPS-mottagning samt tillgänglighet i dessa punkter. Resultaten av denna utvärdering återfinns som bilaga F.

I nästa steg utvärderades möjligheten att i vissa punkter göra mätningar med olika uppsättningar referensstationer. Genom att variera användningen av antalet referensstationer vid olika mätningar kan ett större antal mäteresultat fås i färre punkter. Detta är effektivt då restid och uppställningstid minskas. Samtidigt blir jämförelser mellan olika referensstationsuppsättningar mer relevant och fler och bättre slutsatser kan dras om nätverksprogramvarans prestanda.

Således koncentreras mätningarna till få punkter där flera olika referensstationsuppsättningar används.

8.3. Data för utvalda punkter

Efter ovanstående kriterier har tre måtpunkter valts ut: SWEREF Annelund, SWEREF Landvetter samt Borås SWEPPOS-station.

8.3.1. SWEREF Annelund

8.3.1.1. Punktdata

<table>
<thead>
<tr>
<th>DARC-mottagning</th>
<th>Fullgod.</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPS-mottagning</td>
<td>Punkten ligger på ett öppet fält. Lämpligheten för GPS har bedömts som bra i Lantmätteriverkets punktbeskrivning.</td>
</tr>
<tr>
<td>Koordinatnoggrannhet</td>
<td>SWEREF-punkt, inmätt 1996.</td>
</tr>
</tbody>
</table>
8.3.1.2. Avstånd till referensstationer

Tabell 8.1. Avstånd från Annelund till referensstationer

<table>
<thead>
<tr>
<th>Borås</th>
<th>Göteborg</th>
<th>Jönköping</th>
<th>Onsala</th>
<th>Vänernsborg</th>
</tr>
</thead>
<tbody>
<tr>
<td>33 km</td>
<td>74 km</td>
<td>63 km</td>
<td>96 km</td>
<td>101 km</td>
</tr>
</tbody>
</table>

8.3.1.3. Mätvarianter

Annelund A

![Diagram of Annelund A]

Figur 8.5. Annelund A

I denna mätvariant är alla referensstationer inkopplade, referensstationen i Borås ligger närmast och borde bidra mest till positionsbestämningen.

Annelund B

![Diagram of Annelund B]

Figur 8.6. Annelund B

Denna variant kan ses som ett normalfall för det svenska referensstationsnätet utanför storstäderna, endast tre stationer med långa baslinjer till alla.
Annelund C

Denna mätvariant påminner geometriskt om Annelund B, men den längre baslinjen till Onsala har bytts ut mot en kortare till Borås.

Annelund D

I denna variant saknas referensstationer i ostlig riktning, dock ligger referensstationen i Borås ganska nära. Denna variant kan ge en indikation på systemets funktion vid extrapolation.

8.3.2. SWEREF Landvetter

8.3.2.1. Punktdata

<table>
<thead>
<tr>
<th>DARC-mottagning</th>
<th>Fullgod.</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPS-mottagning</td>
<td>Punkten ligger på ett öppet fält. Lämpligheten för GPS har bedömts som mycket bra i Lantmäteriverkets punktbeskrivning.</td>
</tr>
</tbody>
</table>

SWEREF-beteckning: 761988

Tillgänglighet: Punkten ligger 10 m från en parkeringsplats.
Då avståndet från Landvetter till Göteborgs SWEPOS-station, som ingår i Ciceron, endast är 20 km kan Ciceronkorrekctioner tas emot från Göteborg, vilket möjliggör en direkt jämförelse mellan Ciceron och den nätverks-RTK-programvara som utvärderas.

8.3.2.2. Avstånd till referensstationer

<table>
<thead>
<tr>
<th>Borås</th>
<th>Göteborg</th>
<th>Jönköping</th>
<th>Onsala</th>
<th>Vännersborg</th>
</tr>
</thead>
<tbody>
<tr>
<td>35 km</td>
<td>20 km</td>
<td>105 km</td>
<td>38 km</td>
<td>115 km</td>
</tr>
</tbody>
</table>

8.3.2.3. Mätvarianter

Landvetter A

![Diagram av Landvetter A]

Figur 8-9. Landvetter A

Alla referensstationer är inkopplade, men Jönköping och Vännersborg torde inte bidra mycket till positionsberäkningen.

Landvetter B

![Diagram av Landvetter B]

Figur 8-10. Landvetter B

Detta fall kan jämföras med Landvetter A, här torde emellertid Jönköping och Vännersborg betydligt större inverkan på positionsberäkningen.
Landvetter C

![Diagram of Landvetter C](image)

Figur 8.11. Landvetter C

Denna mätvariant med endast korta baslinjer och en bra geometri bör ge en bra positionsnoggrannhet. Varianten liknar baslinjeförhållandena i Kontinentaleuropa.

Landvetter D

![Diagram of Landvetter D](image)

Figur 8.12. Landvetter D

Mätvarianten kan ge information om hur nätverksprogramvaran hanterar en referensstation på långt avstånd då två andra referensstationer finns relativt nära.

8.3.3. SWEPOS Borås

8.3.3.1. Punktdata

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Beskrivning</th>
</tr>
</thead>
<tbody>
<tr>
<td>DARC-mottagning</td>
<td>Fullgod.</td>
</tr>
<tr>
<td>GPS-mottagning</td>
<td>GPS-antennen för SWEPOS-stationen används, vilket innebär att GPS-mottagningen är mycket bra.</td>
</tr>
<tr>
<td>Koordinatnoggrannhet</td>
<td>SWEPOS-station under kontinuerlig övervakning, vilket innebär extremt hög noggrannhet.</td>
</tr>
<tr>
<td>Tillgänglighet</td>
<td>Mätningar kan ske inomhus i Statens provnings- och forskningsinstituts lokaler.</td>
</tr>
</tbody>
</table>
De mätningar som utförs i Borås använder inte Borås som en referensstation. Det finns dock möjlighet att inkludera Borås i kontrollsyfte eller under felsökning.

8.3.3.2. Avstånd till referensstationer

<table>
<thead>
<tr>
<th>Borås</th>
<th>Göteborg</th>
<th>Jönköping</th>
<th>Onsala</th>
<th>Vänernsberg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>55 km</td>
<td>69 km</td>
<td>67 km</td>
<td>120 km</td>
</tr>
</tbody>
</table>

8.3.3.3. Mätvarianter

Borås A

Figur 8-13. Borås A

Denna mätvariant använder fyra referensstationer med en lång och tre medellånga baslinjer.

Borås B

Figur 8-14. Borås B

Precis som Annelund B, kan denna mätvariant ses som ett vanligt förekommande fall i Sverige.
8.3.4. Sammanställning av mätpunkter

I de fall där tre referensstationer används, ger de olika mätvarianterna en bra spridning på baslinjernas längd. Även riktningarna till referensstationerna är väl spridda eftersom vinklarna mellan baslinjerna aldrig underskrider 180 grader och är till övervägande delen större än 90 grader.

Baslinjernas längder illustreras i följande diagram:

![Diagram av baslinjernas längder](image)

Figur 8-15. Sammanställning av mätvarianter

8.4. Representativitet för verkliga förhållanden

De mätvarianter som beskrivs ovan är representativa för större delen av Sverige, undantaget väster om linjen Karlstad - Östersund - Kiruna, där referensstationer endast finns i östliga riktningar. Dessutom förekommer längre baslinjer i vissa delar av Norrland.

![Diagram över Sverige med baslinjer](image)

Figur 8-16. Baslinjer mellan alla SWEPOS-stationer i Sverige
En annan skillnad är att det i verkligheten finns tillgång till fler än tre referensstationer, dock kommer vissa att befina sig på mycket låga avstånd från användaren.

Med de fem referensstationer som används i mätvarianterna ovan finns ingen möjlighet att utvärdera mätningar med riktigt långa basliner. Det finns dock möjlighet att göra mätvarianter med riktigt långa basliner om ytterligare referensstationer kopplas in. Mätningarna kan då göras i Jönköpings SWEPOS-station, där möjlighet finns att välja basliner mellan 140 km (Borås endast 70 km) och 200 km i olika riktningar genom att använda valfria kombinationer av SWEPOS-stationerna Borås, Göteborg, Hässleholm, Karlstad, Norrköping, Onsala, Oskarshamn och Vänersborg.

Figur 8-17. Baslinjer från Jönköpings SWEPOS-station

8.5. Mätningsoförfarande

8.5.1. Mätprocedur

För att kunna utvärdera mätningar i en test av nätverks-RTK-system bör mätningar ske enligt ett noggrant specificerat förfarande. Om detta förfarande följs, kan dessutom jämförelser mellan olika typer av system följas, eftersom många möjliga källor till olikheter då elimineras.

Den mätprocedur som används vid mätningar återfinns som bilaga C.

8.5.2. Mätråd

Vid implementeringen av ett nätverks-RTK-system är det inte helt otroligt att vissa problem kan uppstå i startskeden. För att minimera arbetet vid felsökning och gruvkorrigering av systemet rekommenderas att de första mätningarna görs i Borås. Ingen onödig tid kommer då att spelas på uppställning av mätutrustning, eftersom såväl GPS-antenn som FM-antenn redan finns på plats.

Beroende på hur nätverks-RTK-systemet är uppbryggt kan vissa mätfall komma att bli mindre intressanta. Vilka av mätfallen som skall genomföras och vilka som inte antras bidrager med några relevanta resultat är i så fall en avvägning som får göras från fall till fall.

Mätningarna bör hela tiden vara en adaptiv process beroende på hur mätresultaten verka. Troligen kan tidigt slutsatser dras om vilka mätningar som är intressanta och om något ytterligare fall skall utvärderas eller kompletteras. Eventuellt kommer det också vara möjligt att utesluta några mätfall utan att för den sakens skull föröra viktig information.

Det krävs kontinuerligt bedömning i syfte att minimera mätarbetet och fortfarande få ut tillräckligt med utväderingsunderlag.
9. Nätverksprogramvara

För att kontrollera testplattformen under verliga förhållanden, har en kommersiell nätverksprogramvara implementerats i plattformen. Detta har dessutom möjliggjort en utvärdering av den använda nätverksprogramvaran under de svenska förhållanden som tidigare beskrivits, det vill säga de glast placerade referensstationerna och den fluktuerande atmosfären samt den sämre satellitgeometrin. Utvärderingen kan även ge en indikation på möjligheterna och svårigheterna med nätverks-RTK-system i Sverige.

Den nätverksprogramvara som har använts är ett system skapat av det tyska företaget Geo++. Systemet har testats på ett flertal platser i Kontinentaleuropa, men inte under förhållanden liknande de svenska.

9.1. Metod

På serversidan följer metoden helt principbeskrivningen i kap 7.2. Dataflöde, det vill säga de referensstationsdata som kommer in i Kaknästornet bearbetas i en server med Geo++ programvara. Denna programvara beräknar korrektioner som sänds ut via FM-sändaren i Borås.

Figur 9-1. Databehandling på roversidan
9.1.1. Server

9.1.1.1. Felmodellering

Alla kombinationer av satelliter och referensmottagare ger ett stort antal signalvägar genom atmosfären. Genom att utnyttja alla dessa signalvägar, kan modellen bli mer realistisk. För att kunna ta emot så mycket information som möjligt om jonosfären använder programmet noll grader elevationsmask.

9.1.1.2. FKP

De satelliter för vilka FKP har beräknats benämns hädanefter FKP-justerade satelliter.

9.1.1.3. Korrektionsformat

Korrektionerna sänds ut i RTCM-format, de vanliga DGPS-korrektionerna (typ 1, typ 2 och typ 3) sänds okodat, medan bärvägsinformationen, typerna 20 och 21, komprimeras tillsammans med FKP och läggs in på typ 59. Detta är tillåtet enligt RTCM-standarden, då typ 59 får innehålla information specificerad av användaren. Förfarandet kräver att en avkodare finns på mottagarsidan för att kunna separera och använda typerna 20 och 21 samt FKP.
Figur 9.2. Innehåll i RTCM typ 59 i Geo++ metod

Korrekationerna av typ 20 och 21 sänds varje sekund, detta är nödvändigt för att erhålla hög precision. FKP, som varierar främst med avseende på atmosfären, är mindre dynamisk och sänds därför endast ut var tioande sekund, och på ett sådant sätt att en tiondel av FKP-korrektionen sänds varje sekund. En användare behöver därför ta emot korrekctioner i minst tio sekunder innan en positionsbestämning med FKP är möjlig.

9.1.1.4. Huvudreferensstation

Skapandet av RTCM sker genom att en station väljs som huvudreferensstation, från vilken meddelandetyperna 20 och 21 alstras. Vilken station som helst kan användas som huvudreferensstation, resultatet kommer ändå alltid att vara detsamma eftersom dessa meddelandetyper korrigeras med hjälp av FKP (Wübben, 1996). Dessutom medför detta att systemet kan användas även utan FKP, då övergår systemet dock till att bli enstations-RTK.

9.1.2. Rover

Rovernas huvuduppgift att beräkna en position med hjälp av bärvägsobservationerna från en GPS-mottagare och korrekctionerna från servern. Positions noggrannheten skall enligt Geo++ vara homogen över hela nätverksområdet.

9.1.2.1. Korrekctioner

De komprimerade korrekctionerna i typ 59 packas upp på roversidan. Typerna 20 och 21 lägeskorrigeras för den aktuella positionen med hjälp av FKP och kan därmed användas i RTK-bäräkningen.

9.1.2.2. Adaptiv jonosfärskmodell

I roverdatorn beräknas kontinuerligt en adaptiv jonosfärskmodell, baserad på observationerna från huvudreferensstationen samt observationerna i roermottagaren. Denna modell uppdateras och används varje epok oavsett om FKP tas emot eller inte.

9.1.2.3. Fixbestämning

9.2. Lakttagelser

9.2.1. Serversidan

Servern fungerar direkt efter starten som en enstations-RTK-server, det vill säga enstations-RTK-lösningar beräknas och sänds ut omedelbart. Detta sker utgående från den förvalda huvudreferensstationen. Samtidigt börjar servern även beräkna FKP.

9.2.1.1. Beräkning av FKP

Programmet är designat för att beräkna FKP för de satellituppsättningar som förekommer vid observationer i Kontinentaleuropa och med korta baslinjer mellan referensstationerna. Under svenska förhållanden, med den satellitstruktur som observeras här och de långa avstånden som finns mellan referensstationerna hade programmet
svårt att beräkna FKP. Då fem referensstationer användes lyckades programmet ofta beräkna FKP för ett flertal satelliter (3-7), då färre referensstationer användes lyckades programmet endast i undantagsfall beräkna FKP, och då endast för ett fåtal satelliter (1-3).

Beräkningen av FKP tog generellt sett mycket lång tid, dessutom förlorade programmet ofta redan beräkna FKP och började om från början. Detta kan vara ett tecken på att FKP beräknas felaktigt, i likhet med en falsk fixlösning som förloras.

9.2.1.2. Datorkapacitet

Eftersom servern hade problem att beräkna FKP, övervakades processoranvändningen i servern. Denna utnyttjades inte fullt ut, vilket tyder på att problemen med att beräkna FKP inte hörer från otillräcklig beräkningskapacitet.

9.2.1.3. Distribution av korrektioner

RTC-överföringen fungerade generellt bra, men i Kaknäs uppstod ibland problem vilket medförde kortare uppehåll i utsändningen av RTCM. Problemen hörde dock inte från Geo++ server.

9.2.1.4. Stabilitet

Geo++ server har haft få störningar och det har varit lätt att uppdatera eller ändra programvaran i servern utan att ha allt för långa driftavbrott. Kontakten mellan server och rover har fungerat bra via DARC.

Vissa problem har funnits med leveransen av indata från referensstationerna. Anledningen till detta har ofta varit problem med demultiplexeringen i Kaknästornet.

De driftavbrott som har förekommit i utsändningen av RTCM har uppstått i samband med störningar i Kaknäs.

9.2.2. Roversidan

Målsättningen var att göra en komplett utvärdering av Geo++ system enligt de mätvarianter som föreslagits i kapitel 8. Mätpunkter. På grund av fel i programvaran som inte kunnat åtgärdas, trots upprepad försök från programtilverkaren, Geo++, har endast vissa mätningar kunnat utföras. Felen i programvaran har förhindrat korrekt beräkning av FKP och medfört orimligt långa tider till fixlösning, vilket har minskat antalet utförda mätningar.

Öförmågan att kunna beräkna FKP i servern har resulterat i att de mätningar som gjorts kan delas upp i tre olika kategorier: Mätningar utan FKP, kombinerade mätningar och mätningar med endast FKP. Resultaten från mätningarna återfinns i bilaga B.

9.2.2.1. Mätningar utan FKP

I de fall där endast tre referensstationer används, har programmet endast undantagsvis lyckats beräkna någon FKP. Dessa mätningar har därför genomförts som enstations-RTK-mätningar, med det mycket viktiga undantaget att den adaptiva jonasfärsmodel-
len används. Positionsnoggrannheten har i dessa fall varit bra, en mindre spridning och bättre precision jämfört med Ciceron har iakttagits.

9.2.2.2. Kombinerade mätningar
I de fall där fem referensstationer har använts, har servern ofta lyckats beräkna FKP för åtminstone någon eller några satelliter. De flesta av mätserierna är därför utförda med några FKP-justerade satelliter kombinerat med några satelliter utan FKP. Antalet FKP-justerade satelliter har varierat mellan en och fem, med ett vanligaste värde på tre. Dessa mätningar har visat sig ge korta tider till fix samtidigt som positionsnoggrannheten har varit god. Tiden till fix har ökat med antalet FKP-justerade satelliter utan att positionsnoggrannheten har förbättrats.

9.2.2.3. Mätningar med endast FKP
Eftersom programvaran i servern inte klarade av att beräkna FKP kontinuerligt var det mycket svårt att göra mätningar med endast FKP-justerade satelliter. En sådan mätserie gjordes dock i Borås. Då inkluderades även Borås som referensstation för att få tillgång till fem referensstationer och därmed erhålla fler satelliter med FKP. I denna mätserie uppnåddes endast en fixlösning, då med god positionsnoggrannhet. Övriga mätförsök resulterade endast i flytlösningar.

9.2.2.4. Datorkapacitet
Då fler än åtta satelliter används, blir beräkningsbördan i roverdatorn lite för stor. Eftersom en bra dator användes, kan beräkningsbördan i roverdelen anses vara mycket stor. Om det skall vara möjligt att använda GPS-mottagaren istället för en fristående dator till att beräkna korrektioner måste beräkningsbördan begränsas för roverdelen.
10. slutsatser

Slutsatserna baseras på iakttagelser och erfarenheter under implementeringen och användandet av nätverkspogramvaran från Geo++.

10.1. Testplattform

- Den testplattform som byggs upp fungerar bra och kan användas vid utveckling och utvärdering av ett nätverks-RTK-system.
- Befintlig infrastruktur i Sverige möjliggör implementerandet av ett rikstäckande nätverks-RTK-system.
- En framtida nätverks-RTK-server bör stå i Kaknästornet.
- Utsändningen av korrektioner kan i testskedet med fördel ske från Borås FM-station.

10.2. Måtpunkter

- Testmätningar kan med fördel göras i SWEPOS Borås, SWEREF Landvetter och SWEREF Annelund.
- Mätningar med extrema baslinjer kan utföras i SWEPOS Jönköping.

10.3. Nätverksprogram

- Nätverks-RTK-programvaror som fungerar i övriga delar av världen behöver inte nödvändigtvis fungera i Sverige.

10.4. Geo++ nätverksprogram

- Geo++ system kan i sin nuvarande utformning inte användas i Sverige.
- Programmet har mycket svårt att beräkna FKP.
- Mätningar med endast FKP-justerade satelliter ger ett mycket dåligt resultat, detta beror på att programmet beräknar felaktiga FKP, vilka försvamar snarare än förbättrar systemet jämfört med Ciceron.
- Tiden till fix är oberäknelig, ofta är den dock kortare än för Ciceron.
- Det som gör att Geo++ system under vissa omständigheter ger en bättre positionsnoggrannhet och kortare tider till fix än Ciceron verkar till största delen bero på den adaptiva jonasfärsmodellen som används i roermottagaren.

10.4.1. Problemdiskussion

Det har inte varit möjligt att se hur programvaran är uppbyggd, då programkod och algoritmer för denna inte är tillgängliga av kommersiella skäl. Problemdiskussionen baseras därför på iakttagelser samt muntlig kontakt med den tyska tillverkaren Geo++.

Enligt Geo++ beror långa tider till fix ofta på att samma typ av antenner inte använts i roermottagare respektive referensmottagare. Denna felkälla har dock kunnat elimineras genom att använda en SWEPOS-antenn som roverantenn i måttfallen i Borås. Dessa testmätningar visar dock ingen skillnad i tiden till fix, och således är olika antenner i detta fall inte en källa till långa tider till fix.

Enligt Geo++ är det svårt att beräkna FKP då baslinjerna är långa. Konsekvensen blir att det inte alltid går ut tillräckligt med FKP till roermottagaren. Mätningarna har därför genomförts med så många FKP som har funnits tillgängliga. Typiskt antal är
mellan två och fem. Storleken på nätverket (baslinjerna) gör att FKP dessutom blir osäkra.

10.5. Framtida nätverks-RTK-system

10.5.1. Krav

Förutom kravet på god positionsnoggrannhet, bör dessutom följande gälla:
- Antennoberoende.
- Mottagaroberoende.
- Tid till fix inom rimliga gränser.
- Ökanslighet för störningar i korrektionsöverföringen.

10.5.2. Synpunkter vid utveckling av nätverks-RTK-system

Korrek tionerna i nätverks-RTK-systemet kan med fördel utformas som ett komplement till Ciceron, där nätverkskorrektionerna korrigerar Cicerons RTCM-data, eftersom systemet då kan fungera som ett enstations-RTK-system om nätverksdelen går ner.

För ett framtida RTK-system som använder principen för virtuell referensstation, se avsnitt 4.6 Nätverk, är det inte nödvändigt med en användarvänlig server om användaren inte har någon återkoppling till servern. Vid testmätning är det dock bra om det finns möjlighet att ha tillgång till servern via nätverk eller modem för att underlätta vid omkonfigurering. Det är även önskvärt att status för in- och utdata framgår i både server och rover för att underlätta vid felsökning.

Korrek tionerna skall vara sådana att fixlösning kan nås inom rimlig tid. En användare kan tänkas vilja vänta i maximalt 5 minuter innan fix nås.

För att möjliggöra en RTK-tjänst dygnet runt krävs ett stabilt system. Det är önskvärt att minimera övervakningen av systemet och därmed minska driftkostnaderna. För att uppnå en bra stabilitet är det bra om bitöverföringen inte har några toppar utan att informationen går ut med ett ganska konstant antal bitar per sekund.

Det finns idag många olika antenner på marknaden och olika användare har olika antenner. Dessutom finns det idag olika antenner i olika SWEP0S-stationer. Därför är det viktigt att systemet inte är beroende av att likadana GPS-antenner används i referens- och rovermottagare.

Antennfasecentrumpel får inte leda till att fix inte kan beräknas. Det är däremot acceptabelt att antennfelen ger en felaktig position av samma storlek som antennfelen eftersom detta fel kan korrigeras i efterhand.

11. Referenser

Han, S., Carrier phase-based long-range GPS kinematic positioning, University of New South Wales, Sydney, 1997.

Office of Assistant Secretary of Defense, DOT and DOD assure GPS access for civil users, News release 095-97, Department of Defense, Washington D. C., 1997

Övriga referenser

Auerswald, F., Auszüge einer Diplomarbeit zum Thema HEPS im Netz.

E-post och telefonkontakt med Andreas Bagge och Thomas Hoppe, Geo++ GmbH.

Figurer

Figur 2-1. Principiell skiss av en satellitbana kring jorden 4
Figur 2-2. Principiell skiss av de sex omloppsbananom över jorden 4
Figur 2-3. En satellit 5
Figur 2-4. Två satelliter 5
Figur 2-5. Tre satelliter 5
Figur 2-6. Kodmätning 8
Figur 2-7. Bärvägsmätning 9
Figur 3-1. Viktiga delar av atmosfärens lager i GPS-sammanhang 10
Figur 4-1. Definitioner i Differentiell GPS 13
Figur 4-2. Vektorkorrektion 14
Figur 4-3. Pseudoavståndskorrektioner 14
Figur 4-4. Tvåvägskommunikation 17
Figur 4-5. Envägskommunikation 17
Figur 5-1. SWEPPOS-stationer 19
Figur 6-1. Frekvensspektrum för FM-sändningar 20
Figur 7-1. SWEPPOS-stationer och SWEREF-punkter samt täckningsområde för Borås FM-station 23
Figur 7-2. Dataflöde 23
Figur 7-3. Detailj. Dataflöde i Känäs 24
Figur 7-4. Princip för nätverks-RTK på roversidan 24
Figur 8-5. Annelund A 26
Figur 8-6. Annelund B 26
Figur 8-7. Annelund C 27
Figur 8-8. Annelund D 27
Figur 8-9. Landvetter A 28
Figur 8-10. Landvetter B 28
Figur 8-11. Landvetter C 29
Figur 8-12. Landvetter D 29
Figur 8-13. Borås A 30
Figur 8-14. Borås B 30
Figur 8-15. Sammanställning av mätvarianter 31
Figur 8-16. Baslinjer mellan alla SWEPPOS-stationer i Sverige 31
Figur 8-17. Baslinjer från Jönköpings SWEPPOS-station 32
Figur 9-1. Databehandling på roversidan 33
Figur 9-2. Innehåll i RTCM typ 59 i Geo++ metod 35

Tabeller

Tabell 2-1. Kodkaraktäristik (Hofmann-Wellenhof, 1997) 7
Tabell 3-1. Exempel på jonosfärens inverkan på signalvägen (Kaplan, 1996) 10
Tabell 3-2. Exempel på troposfärens inverkan på signalvägen (Kaplan, 1996) 11
Tabell 3-3. Exempel på felens inverkan på positionen i plan (Sundberg, 1995) 12
Tabell 4-1. Typiska nögrannheter (Hofmann-Wellenhof, 1997 och Jonsson, 1997) 16
Tabell 4-2. Översikt över de fel som kan korrigeras i realtid. 16
Tabell 8-1. Avstånd från Annelund till referensstationer 26
Tabell 8-2. Avstånd från Landvetter till referensstationer 28
Tabell 8-3. Avstånd från Borås till referensstationer 30
Ordlista

A-S
Anti Spoofing, en kryptering av P-koden.

Asimut
Den horisontella vinkeln mellan mottagare och satellit. (En vinkel mätt medhurs från den södra punkten i horisontlinjen, till den punkt där en vertikal cirkel tangerar satellit och mottagaren och skär horisontlinjen vinkelrätt).

Bandbredd
Tillgängligt frekvensområde.

Baslinje
Avståndet mellan referensmottagare och rovemottagare.

Bärvåg
En radiovåg där antingen frekvensen, amplituden eller fasen kan ändras från ett känt referensvärde med hjälp av modulering. Den underliggande radiovågen i GPS-signalen.

Bärvågsmätning
GPS mätning baserad bärvågor.

C/A-koden
Coarse acquisition-koden, en kod modulerad endast på L1. Även kallad civilkoden eftersom den inte är krypterad.

Cycle slip
Temporär störning mellan satellit och mottagare, vilket medför en diskontinuitet i bärvågsmätningen.

DGPS
Differentiell GPS, relativ positioneringsmetod där en GPS-mottagare i en känd punkt utnyttjas för att bättre bestämma positionen på en GPS-mottagare i en okänd punkt.

Demultiplexer
Separering av en gemensam dataström innehållande flera olika typer av data till flera olika strömmar innehållande vardera en typ av data.

Dopplerskiftade signaler
Förändring i frekvens på grund av den relativa rörelsen mellan sändare och mottagare. Frekvensskillnaden ökar mellan en statisk referenssignal och en mottagen signal utstånd av en satellit, då hastigheten på satelliten ökar. (jfr med den akustiska versionen av dopplereffekten)

Elevation
Höjden över havsmedelytan (vertikalt avstånd ovanför geoiden)

Elevationsmask
Den minsta elevationsvinkel som används.

Elevationsvinkel
Den vertikala vinkeln mellan mottagare och satellit. (Vinkeln mellan horisontalplanet vid mottagaren och satelliten).

Ellipsoid
Den matematiska figur som bildas då en ellips roteras runt sin minsta axel. En bra matematisk beskrivning av jorden.
Epok
Mätintervall eller upprepningsstiden för datauppdatering.

Fasmodulering
Ett sätt att lägga information på en bärväg:

![Diagram](image)

FKP
Flächenkorrekturparameter, ytkorrektionsparameter, en benämning som det tyska företaget Geo++ använder för sina nätverks-RTK-korrekktioner.

Flerväg
Signaler som tas emot i mottagaren härstammar från en signal som har tagit flera olika vägar på grund av reflektorer i marken eller andra objekt i närheten

Geodesi
Vetenskap baserad på bestämningen av jordens (geoidens) form och storlek genom direkta mätningar.

Geoid
Den yta som sammanfaller med havsmedelytan och som kan tänkas löpa över alla kontinenter. Denna yta är alltid vinkelrätt mot gravitationen.

Höjd över ellipsoid
Det vertikala avståndet från ellipsoidens yta. (inte samma sak som elevationen)

Höjd över geoid
Samma sak som elevationen.

Inklination
Vinkel mellan två plan, där det ena planet innehåller en omlöpssbana.

Kodmätning
GPS-mätning baserad på C/A-koden eller P-koden.

Kvasar
Himlakropp som befinner sig på extremt långt avstånd från jorden och innehåller så mycket energi att den lätt kan uppståckas från jorden. Det extrema avståndet medför att en kvasar upplevs stå helt stilla och blir således en fast punkt från jorden sett.

L1
Signal med frekvensen 1575,42 MHz som sänds ut av alla GPS-satelliter. L1 moduleras med navigationsmeddelandet, C/A-koden och P-koden.
L2
Signal med frekvensen 1227,60 MHz som sänds ut av alla GPS-satelliter. L2 moduleras med navigationsmeddelandet och P-koden.

Navigationsmeddelandet
Meddelande modulerat på både L1 och L2, innehållande bland annat information om satelliternas interna tid,バンドタとstatus.

P-koden
Precise-koden, en kod modulerad på både L1 och L2. P-koden är som regel krypterad och kallas då Y-koden.

PDOP
Position dilution of precision, PDOP är proportionellt mot inversen av volymen av volymen av den tänkta pyramid som bildas mellan linjerna av GPS-mottagaren och tre satelliter. Ju större volymen är desto bättre är satellitkonfigurationen, således blir positioneringen generellt sett bättre med ett lägre PDOP-värde.

Pseudoavstånd
Ett avstånd mellan mottagaren och satelliten, definierat som satellitens signalens löptid multiplicerat med ljusets hastighet.

RTK
Realtidskinematik. Differentiell GPS-mätning där pseudo-avstånden mäts på bärvägorna korrigeras.

SA
Selective Availability, en kodning som förvränger satelliternas interna tid och trunkerar bandata för att förhindra en allt för bra positionsgenomhållighet.

SWEREF 93
Det svenska koordinatsystem som används i GPS-sammanhang.

WGS 84
World Geodetic System 1984, den matematiska ellipsoiden som används i GPS-sammanhang.

Y-koden
Den krypterade versionen av P-koden, endast tillgänglig för den amerikanska försvarsmakten.
Mätresultat

Mätningarna har genomförts enligt förfarandet i bilaga C. Målsättningen var att mäta med så många av de utvalda mätvarianterna som möjligt. På grund av brister i Geo++ programvaran, har det varit svårt att beräkna FKP. Programmets oförmåga att beräkna FKP har medfört mycket långa tider till fixlösning, vilket har reducerat antalet kompletta mätserier radikalt. De mätserier som utförts har delats upp i tre olika kategorier: Mätningar utan FKP, kombinerade mätningar och mätningar med endast FKP.

Varje mätserie innehåller tio mätningar. Vid varje ny mätning har systemet startats om och en ny beräkning av positionen har påbörjats.

Hela beräkningsförloppet har loggats och en position har beräknats utifrån medelvärdet av positionerna i de efterföljande 30 sekunderna efter erhållen fixlösning.

De mätningar som inte har uppnått fixlösning efter 600 s har avbrutits och betraktats som flyttlösningar. Flyttlösningar ingår dock inte i statistiken för fel i plan, fel i höjd och standardavvikelse emedan de är alltför osäkra. Flyttlösningar ingår däremot i statistiken över tid till fixlösning eftersom det är en viktig del ur användarsynpunkt.

Mätserier

Annelund A

Endast kombinerade mätningar utfördes, dessa har generellt en bra positionsnoggrannhet och korta tider till fix.

Huvudreferensstation var Borås.

Landvetter A

Endast kombinerade mätningar utfördes, dessa har generellt en bra positionsnoggrannhet och korta tider till fix. I samma punkt utfördes även Ciceronmätningar och det visade sig att mätningarna med Geo++ hade kortare tid till fixlösning och en betydligt bättre positionsnoggrannhet jämfört med Ciceron.

Huvudreferensstation var Borås

Landvetter B

Tre fullständiga mätserier gjordes, tiderna till fixlösning varierade kraftigt och många mätningar hade dålig positionsnoggrannhet.

Endast en av serierna utfördes då systemet i sin helhet fungerade tillfredsställande. Problemen härörde bland annat från fel i RTCM-överföringen samt experimenterande med olika alternativ i roverdatorn.

Olika huvudreferensstationer valdes för att se om någon skillnad kunde ses mellan fallen.

Landvetter D

I Landvetter D gjordes tre mätserier. Dessa visade en stor variation i tid till fix och positionsnoggrannhet.

Huvudreferensstation var Borås.

Borås A

Ett komplett mätserie utfördes, men alla mätningar utom en var flyttlösningar. Den mätning som erhöll en fixlösning, hade en dålig positionsnoggrannhet, och kan antagligen betraktas som en falsk fixlösning.

Huvudreferensstation var Göteborg.
Borås A + SWEPOS Borås
I detta fall med alla fem referensstationer inkopplade användes Borås SWEPOS-antenn. Fem mätningar utfördes med endast FKP, fyra av dem var flytlösningar men den femte var en fixlösning med bra positionsnoggrannhet. Dock var tiden till fixlösningen lång, över nio minuter.

Huvudreferensstation var i detta fall Göteborg. Ytterligare testmätningar gjordes och då sattes Borås som huvudreferensstation, resultatet blev då omedelbar fix med extremt hög precision.

Mätningarna i Borås ledde till slutsatsen att FKP beräknas felaktigt eftersom mätresultaten skilde sig då Göteborg var huvudreferensstation jämfört med när Borås var huvudreferensstation.

Resultat
Mätresultaten från Annelund A och Landvetter A, B och D presenteras grafiskt på följande sidor. I syfte att underlätta tolkningen av mätresultaten, visas först en nyckel med förklaringar till den grafiska presentationen.
Nyckel A
Namn på mätvariant, enligt kapitel 7

Belägningsättning

Bilden visar de använda referensstationerna, enligt kapitel 7

Fel i plan (mm)
Felet i plan anges i mm: latitud uppfat/nedåt, longitud åt höger/vänster.

Fel i höjd (mm)
Fel i höjd anges i mm. Fel större än 500 mm representeras av att stapeln går utanför skalan.

Tid till fix (s)
Tid till fix anges i sekunder. Flytlösning representeras av att stapeln går utanför skalan.

Standardavviukelser (mm)
Medelvärde differens: \(\frac{\sum x_i}{n} \)
Standardavvikelse för en differens: \(\sqrt{\frac{\sum (x_i - \bar{x})^2}{n - 1}} \)
Standardavvikelse för medelvärde av differenserna: \(\sqrt{\frac{\sum (x_i - x_{med})^2}{n - 1}} \)
Noggrannhet: \(\sqrt{\frac{\sum (x_i - x_{med})^2}{n}} \)

\(n = \) antal mätningar
\(x_i = \) måtning i
\(\bar{x} = \) medelvärde
\(x_{med} = \) sant värde
Nycket A

Sanna koordinater
(officiala SWEREF-
koordinater)

<table>
<thead>
<tr>
<th>Tid (s)</th>
<th>Latitud (himmels)</th>
<th>Longitud (himmels)</th>
<th>Höjd (m o ell h)</th>
<th>Antal sat</th>
<th>Fel Lat (mm)</th>
<th>Fel Long (mm)</th>
<th>Fel Höjd (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Mätserie 1. 1 januari 2000 kl. 0:00-0:30

Mätserie 2. 2 januari 2000 kl. 0:00-0:30

Mätserie 3. 3 januari 2000 kl. 0:00-0:30
Annelund A

Baslinjeuppsättning

Fel i plan (mm)

Tid till fix (s)

Fel i höjd (mm)

Standardavvikelsar (mm)

<table>
<thead>
<tr>
<th></th>
<th>Serie 1</th>
<th>Serie 2</th>
<th>Serie 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lat</td>
<td>Long</td>
<td>Höjd</td>
</tr>
<tr>
<td>Medelvärde differens</td>
<td>2</td>
<td>-1</td>
<td>6</td>
</tr>
<tr>
<td>St. avv. en differens</td>
<td>5</td>
<td>11</td>
<td>77</td>
</tr>
<tr>
<td>St. avv. för medelv. av diff.</td>
<td>2</td>
<td>-4</td>
<td>26</td>
</tr>
<tr>
<td>Noggrannhet</td>
<td>5</td>
<td>10</td>
<td>73</td>
</tr>
</tbody>
</table>
Annelund A

<table>
<thead>
<tr>
<th>Latitud</th>
<th>Longitud</th>
<th>Höjd</th>
</tr>
</thead>
<tbody>
<tr>
<td>(himmel)</td>
<td>(himmel)</td>
<td>(m o ell h)</td>
</tr>
<tr>
<td>575912.91227</td>
<td>130553.43083</td>
<td>198.254</td>
</tr>
</tbody>
</table>

Mätserie 1. 28 januari 2000 kl. 09:00-09:45

<table>
<thead>
<tr>
<th>Mätin</th>
<th>Tid till fix (s)</th>
<th>Medel Latitud (himmel)</th>
<th>Medel Longitud (himmel)</th>
<th>Medel Höjd (m o ell h)</th>
<th>PDOP</th>
<th>Antal sat</th>
<th>Fel Lat (mm)</th>
<th>Fel Long (mm)</th>
<th>Fel Höjd (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>599</td>
<td>575912.91209</td>
<td>130553.42904</td>
<td>198.058</td>
<td>1.6</td>
<td>7</td>
<td>-6</td>
<td>-29</td>
<td>-196</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>575912.91102</td>
<td>130553.43280</td>
<td>198.385</td>
<td>2.2</td>
<td>7</td>
<td>-93</td>
<td>32</td>
<td>131</td>
</tr>
<tr>
<td>3</td>
<td>167</td>
<td>575912.91210</td>
<td>130553.43074</td>
<td>198.284</td>
<td>2.4</td>
<td>7</td>
<td>-5</td>
<td>-1</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>428</td>
<td>575912.91248</td>
<td>130553.43087</td>
<td>198.287</td>
<td>3.0</td>
<td>7</td>
<td>6</td>
<td>1</td>
<td>33</td>
</tr>
<tr>
<td>5</td>
<td>157</td>
<td>575912.91238</td>
<td>130553.43106</td>
<td>198.294</td>
<td>3.0</td>
<td>8</td>
<td>3</td>
<td>4</td>
<td>40</td>
</tr>
<tr>
<td>6</td>
<td>74</td>
<td>575912.91254</td>
<td>130553.43107</td>
<td>198.305</td>
<td>3.2</td>
<td>8</td>
<td>8</td>
<td>4</td>
<td>51</td>
</tr>
<tr>
<td>7</td>
<td>72</td>
<td>575912.91225</td>
<td>130553.43096</td>
<td>198.281</td>
<td>3.2</td>
<td>8</td>
<td>-1</td>
<td>2</td>
<td>27</td>
</tr>
<tr>
<td>8</td>
<td>70</td>
<td>575912.91253</td>
<td>130553.43114</td>
<td>198.282</td>
<td>3.3</td>
<td>8</td>
<td>8</td>
<td>5</td>
<td>28</td>
</tr>
<tr>
<td>9</td>
<td>36</td>
<td>575912.91228</td>
<td>130553.43095</td>
<td>198.264</td>
<td>3.4</td>
<td>8</td>
<td>0</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>77</td>
<td>575912.91238</td>
<td>130553.43110</td>
<td>198.287</td>
<td>3.5</td>
<td>8</td>
<td>3</td>
<td>4</td>
<td>33</td>
</tr>
</tbody>
</table>

Mätserie 2. 28 januari 2000 kl. 10:30-12:00

<table>
<thead>
<tr>
<th>Mätin</th>
<th>Tid till fix (s)</th>
<th>Medel Latitud (himmel)</th>
<th>Medel Longitud (himmel)</th>
<th>Medel Höjd (m o ell h)</th>
<th>PDOP</th>
<th>Antal sat</th>
<th>Fel Lat (mm)</th>
<th>Fel Long (mm)</th>
<th>Fel Höjd (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>78</td>
<td>575912.71652</td>
<td>130553.17078</td>
<td>204.588</td>
<td>1.7</td>
<td>9</td>
<td>-6056</td>
<td>-264</td>
<td>6334</td>
</tr>
<tr>
<td>2</td>
<td>72</td>
<td>575912.91216</td>
<td>130553.43094</td>
<td>198.291</td>
<td>1.7</td>
<td>9</td>
<td>-3</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>90</td>
<td>575912.91228</td>
<td>130553.43098</td>
<td>198.266</td>
<td>1.7</td>
<td>9</td>
<td>0</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>235</td>
<td>575912.91204</td>
<td>130553.43101</td>
<td>198.259</td>
<td>1.6</td>
<td>9</td>
<td>-7</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>348</td>
<td>575912.90635</td>
<td>130553.43717</td>
<td>198.164</td>
<td>1.5</td>
<td>9</td>
<td>-183</td>
<td>104</td>
<td>-90</td>
</tr>
<tr>
<td>6</td>
<td>372</td>
<td>575912.91419</td>
<td>130553.42785</td>
<td>198.544</td>
<td>1.7</td>
<td>7</td>
<td>99</td>
<td>-49</td>
<td>290</td>
</tr>
<tr>
<td>7</td>
<td>347</td>
<td>575912.91204</td>
<td>130553.43097</td>
<td>198.234</td>
<td>1.4</td>
<td>8</td>
<td>-7</td>
<td>2</td>
<td>-20</td>
</tr>
<tr>
<td>8</td>
<td>144</td>
<td>575912.91204</td>
<td>130553.43090</td>
<td>198.249</td>
<td>1.6</td>
<td>7</td>
<td>-7</td>
<td>1</td>
<td>-5</td>
</tr>
<tr>
<td>9</td>
<td>-</td>
<td>575912.91173</td>
<td>130553.43838</td>
<td>198.169</td>
<td>1.7</td>
<td>6</td>
<td>-17</td>
<td>124</td>
<td>-66</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>575912.90583</td>
<td>130553.45184</td>
<td>198.239</td>
<td>1.2</td>
<td>6</td>
<td>-199</td>
<td>344</td>
<td>-15</td>
</tr>
</tbody>
</table>

Mätserie 3. 28 januari 2000 kl. 12:00-13:45

<table>
<thead>
<tr>
<th>Mätin</th>
<th>Tid till fix (s)</th>
<th>Medel Latitud (himmel)</th>
<th>Medel Longitud (himmel)</th>
<th>Medel Höjd (m o ell h)</th>
<th>PDOP</th>
<th>Antal sat</th>
<th>Fel Lat (mm)</th>
<th>Fel Long (mm)</th>
<th>Fel Höjd (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>291</td>
<td>575912.91272</td>
<td>130553.43135</td>
<td>198.263</td>
<td>1.6</td>
<td>8</td>
<td>14</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>110</td>
<td>575912.91272</td>
<td>130553.43127</td>
<td>198.261</td>
<td>1.6</td>
<td>8</td>
<td>14</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>38</td>
<td>575912.91265</td>
<td>130553.43161</td>
<td>198.276</td>
<td>1.6</td>
<td>8</td>
<td>12</td>
<td>13</td>
<td>22</td>
</tr>
<tr>
<td>4</td>
<td>110</td>
<td>575912.91256</td>
<td>130553.43174</td>
<td>198.268</td>
<td>1.6</td>
<td>8</td>
<td>9</td>
<td>15</td>
<td>14</td>
</tr>
<tr>
<td>5</td>
<td>88</td>
<td>575912.91237</td>
<td>130553.43141</td>
<td>198.272</td>
<td>1.6</td>
<td>8</td>
<td>3</td>
<td>10</td>
<td>18</td>
</tr>
<tr>
<td>6</td>
<td>62</td>
<td>575912.94284</td>
<td>130553.37394</td>
<td>198.414</td>
<td>1.6</td>
<td>8</td>
<td>946</td>
<td>-934</td>
<td>160</td>
</tr>
<tr>
<td>7</td>
<td>94</td>
<td>575912.90670</td>
<td>130553.43916</td>
<td>198.250</td>
<td>1.7</td>
<td>8</td>
<td>-110</td>
<td>137</td>
<td>-4</td>
</tr>
<tr>
<td>8</td>
<td>146</td>
<td>575912.90673</td>
<td>130553.43937</td>
<td>198.258</td>
<td>1.7</td>
<td>8</td>
<td>-110</td>
<td>140</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>87</td>
<td>575912.91263</td>
<td>130553.43105</td>
<td>198.270</td>
<td>1.7</td>
<td>8</td>
<td>11</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>10</td>
<td>106</td>
<td>575912.90665</td>
<td>130553.43920</td>
<td>198.238</td>
<td>1.7</td>
<td>8</td>
<td>-112</td>
<td>137</td>
<td>-16</td>
</tr>
</tbody>
</table>
Landvetter A

![Graph showing baseline setup](image)

![Graph showing plan error (mm)](image)

![Graph showing time to fix (s)](image)

![Graph showing height error (mm)](image)

<table>
<thead>
<tr>
<th>Standardavvikelse (mm)</th>
<th>Serie 1</th>
<th>Serie 2</th>
<th>Serie 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medelvärde differens</td>
<td>Lat</td>
<td>Long</td>
<td>Höjd</td>
</tr>
<tr>
<td></td>
<td>-26</td>
<td>60</td>
<td>-46</td>
</tr>
<tr>
<td>Std. avv. en differens</td>
<td>Lat</td>
<td>Long</td>
<td>Höjd</td>
</tr>
<tr>
<td></td>
<td>67</td>
<td>100</td>
<td>210</td>
</tr>
<tr>
<td>Std. avv. för medelv. av diff.</td>
<td>Lat</td>
<td>Long</td>
<td>Höjd</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>33</td>
<td>70</td>
</tr>
<tr>
<td>Noggrannhet</td>
<td>Lat</td>
<td>Long</td>
<td>Höjd</td>
</tr>
<tr>
<td></td>
<td>68</td>
<td>111</td>
<td>203</td>
</tr>
</tbody>
</table>
Landvetter A

<table>
<thead>
<tr>
<th>Latitud (hhmms)</th>
<th>Longitud (hhmms)</th>
<th>Höjd (m ö el h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>574010.16548</td>
<td>121804.18947</td>
<td>197.594</td>
</tr>
</tbody>
</table>

Mätserie 1. 21 januari 2000 kl. 15:30-16:45

<table>
<thead>
<tr>
<th>Mätnr</th>
<th>Tid till fix (s)</th>
<th>Medel Latitud (hhmms)</th>
<th>Medel Longitud (hhmmss)</th>
<th>Medel Höjd (m ö el h)</th>
<th>PDOP</th>
<th>Antal sat</th>
<th>Fel Lat (mm)</th>
<th>Fel Long (mm)</th>
<th>Fel Höjd (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>103</td>
<td>574010.16555</td>
<td>121804.19024</td>
<td>197.627</td>
<td>1.6</td>
<td>7</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>164</td>
<td>574010.16476</td>
<td>121804.19002</td>
<td>197.619</td>
<td>1.2</td>
<td>8</td>
<td>-22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>222</td>
<td>574010.16506</td>
<td>121804.18979</td>
<td>197.628</td>
<td>1.2</td>
<td>9</td>
<td>-13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>467</td>
<td>574010.16150</td>
<td>121804.20761</td>
<td>197.129</td>
<td>1.3</td>
<td>9</td>
<td>-123</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>379</td>
<td>574010.16611</td>
<td>121804.19584</td>
<td>197.716</td>
<td>1.7</td>
<td>8</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>277</td>
<td>574010.16492</td>
<td>121804.19028</td>
<td>197.612</td>
<td>1.9</td>
<td>8</td>
<td>-17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>121</td>
<td>574010.16815</td>
<td>121804.19016</td>
<td>197.432</td>
<td>2.0</td>
<td>8</td>
<td>83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>300</td>
<td>574010.16123</td>
<td>121804.19533</td>
<td>197.622</td>
<td>2.0</td>
<td>8</td>
<td>-131</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>75</td>
<td>574010.13413</td>
<td>121804.23661</td>
<td>199.666</td>
<td>2.0</td>
<td>8</td>
<td>-870</td>
<td>780</td>
<td>1.972</td>
</tr>
<tr>
<td>10</td>
<td>55</td>
<td>574010.16451</td>
<td>121804.18836</td>
<td>197.350</td>
<td>2.0</td>
<td>8</td>
<td>-30</td>
<td>-18</td>
<td>-244</td>
</tr>
</tbody>
</table>

Mätserie 2. 26 januari 2000 kl. 13:45-14:15

<table>
<thead>
<tr>
<th>Mätnr</th>
<th>Tid till fix (s)</th>
<th>Medel Latitud (hhmms)</th>
<th>Medel Longitud (hhmmss)</th>
<th>Medel Höjd (m ö el h)</th>
<th>PDOP</th>
<th>Antal sat</th>
<th>Fel Lat (mm)</th>
<th>Fel Long (mm)</th>
<th>Fel Höjd (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>69</td>
<td>574010.16539</td>
<td>121804.19043</td>
<td>197.592</td>
<td>1.6</td>
<td>8</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>35</td>
<td>574010.16561</td>
<td>121804.19048</td>
<td>197.589</td>
<td>1.6</td>
<td>8</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>40</td>
<td>574010.16555</td>
<td>121804.19058</td>
<td>197.588</td>
<td>1.6</td>
<td>8</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>103</td>
<td>574010.16529</td>
<td>121804.19038</td>
<td>197.594</td>
<td>1.6</td>
<td>8</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>74</td>
<td>574010.16543</td>
<td>121804.19019</td>
<td>197.612</td>
<td>1.6</td>
<td>8</td>
<td>-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>60</td>
<td>574010.16543</td>
<td>121804.19052</td>
<td>197.611</td>
<td>1.5</td>
<td>8</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>183</td>
<td>574010.16500</td>
<td>121804.19046</td>
<td>197.592</td>
<td>1.5</td>
<td>8</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>574010.15974</td>
<td>121804.18091</td>
<td>197.486</td>
<td>1.7</td>
<td>7</td>
<td>7</td>
<td>-179</td>
<td>-114</td>
</tr>
<tr>
<td>9</td>
<td>38</td>
<td>574010.16501</td>
<td>121804.19046</td>
<td>197.592</td>
<td>1.7</td>
<td>7</td>
<td>14</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>153</td>
<td>574010.16306</td>
<td>121804.18583</td>
<td>197.411</td>
<td>1.8</td>
<td>7</td>
<td>7</td>
<td>-75</td>
<td>-60</td>
</tr>
</tbody>
</table>

Mätserie 3. 26 januari 2000 kl. 14:15-15:00

<table>
<thead>
<tr>
<th>Mätnr</th>
<th>Tid till fix (s)</th>
<th>Medel Latitud (hhmms)</th>
<th>Medel Longitud (hhmmss)</th>
<th>Medel Höjd (m ö el h)</th>
<th>PDOP</th>
<th>Antal sat</th>
<th>Fel Lat (mm)</th>
<th>Fel Long (mm)</th>
<th>Fel Höjd (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>97</td>
<td>574010.16306</td>
<td>121804.18548</td>
<td>197.419</td>
<td>1.7</td>
<td>7</td>
<td>-75</td>
<td>-66</td>
<td>-175</td>
</tr>
<tr>
<td>2</td>
<td>102</td>
<td>574010.16520</td>
<td>121804.19093</td>
<td>197.595</td>
<td>3.7</td>
<td>6</td>
<td>-9</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>56</td>
<td>574010.16514</td>
<td>121804.19083</td>
<td>197.590</td>
<td>3.7</td>
<td>6</td>
<td>-10</td>
<td>23</td>
<td>-4</td>
</tr>
<tr>
<td>4</td>
<td>26</td>
<td>574010.16544</td>
<td>121804.19061</td>
<td>197.592</td>
<td>3.7</td>
<td>6</td>
<td>-1</td>
<td>-19</td>
<td>-2</td>
</tr>
<tr>
<td>5</td>
<td>49</td>
<td>574010.16516</td>
<td>121804.19073</td>
<td>197.595</td>
<td>3.7</td>
<td>6</td>
<td>-10</td>
<td>21</td>
<td>-1</td>
</tr>
<tr>
<td>6</td>
<td>84</td>
<td>574010.16531</td>
<td>121804.19102</td>
<td>197.577</td>
<td>3.7</td>
<td>6</td>
<td>-8</td>
<td>26</td>
<td>-17</td>
</tr>
<tr>
<td>7</td>
<td>570</td>
<td>574010.16543</td>
<td>121804.19090</td>
<td>197.576</td>
<td>1.7</td>
<td>6</td>
<td>-2</td>
<td>22</td>
<td>-18</td>
</tr>
<tr>
<td>8</td>
<td>472</td>
<td>574010.16534</td>
<td>121804.19084</td>
<td>197.624</td>
<td>3</td>
<td>6</td>
<td>4</td>
<td>23</td>
<td>30</td>
</tr>
<tr>
<td>9</td>
<td>34</td>
<td>574010.16587</td>
<td>121804.19074</td>
<td>197.629</td>
<td>3</td>
<td>6</td>
<td>12</td>
<td>21</td>
<td>35</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>574010.16785</td>
<td>121804.18569</td>
<td>197.674</td>
<td>3</td>
<td>6</td>
<td>73</td>
<td>-96</td>
<td>80</td>
</tr>
</tbody>
</table>
Landvetter B

Baslinjeuppsättning

Fel i plan (mm)

Tid till fix (s)

Fel i höjd (mm)

Standardavvikelse (mm)

<table>
<thead>
<tr>
<th></th>
<th>Serie 1</th>
<th></th>
<th>Serie 2</th>
<th></th>
<th>Serie 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lat</td>
<td>Long</td>
<td>Höjd</td>
<td>Lat</td>
<td>Long</td>
</tr>
<tr>
<td>Medelvärde differens</td>
<td>-42</td>
<td>-15</td>
<td>230</td>
<td>91</td>
<td>8</td>
</tr>
<tr>
<td>Std. avv. en differens</td>
<td>195</td>
<td>342</td>
<td>198</td>
<td>151</td>
<td>48</td>
</tr>
<tr>
<td>Std. avv. för medelv. av diff.</td>
<td>65</td>
<td>114</td>
<td>66</td>
<td>67</td>
<td>21</td>
</tr>
<tr>
<td>Noggrannhet</td>
<td>188</td>
<td>323</td>
<td>296</td>
<td>163</td>
<td>43</td>
</tr>
</tbody>
</table>
Landvetter B

<table>
<thead>
<tr>
<th>Latitud (himmss)</th>
<th>Longitud (himmss)</th>
<th>Höjd (m ö ell h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>574010.16548</td>
<td>121804.18947</td>
<td>197.594</td>
</tr>
</tbody>
</table>

Mätserie 1.

<table>
<thead>
<tr>
<th>Mättnummer</th>
<th>Tid till fix (s)</th>
<th>Medel Latitud (himmss)</th>
<th>Medel Longitud (himmss)</th>
<th>Medel Höjd (m ö ell h)</th>
<th>PDOP</th>
<th>Antal sat</th>
<th>Fel Lat (mm)</th>
<th>Fel Long (mm)</th>
<th>Fel Höjd (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>137</td>
<td>574010.16855</td>
<td>121804.17855</td>
<td>197.804</td>
<td>3.0</td>
<td>5</td>
<td>33</td>
<td>-214</td>
<td>270</td>
</tr>
<tr>
<td>2</td>
<td>36</td>
<td>574010.16610</td>
<td>121804.17662</td>
<td>197.841</td>
<td>3.0</td>
<td>5</td>
<td>19</td>
<td>-212</td>
<td>247</td>
</tr>
<tr>
<td>3</td>
<td>49</td>
<td>574010.16518</td>
<td>121804.17687</td>
<td>197.786</td>
<td>2.3</td>
<td>6</td>
<td>-9</td>
<td>-208</td>
<td>192</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>574010.15724</td>
<td>121804.19111</td>
<td>197.727</td>
<td>1.6</td>
<td>7</td>
<td>-256</td>
<td>27</td>
<td>133</td>
</tr>
<tr>
<td>5</td>
<td>305</td>
<td>574010.15110</td>
<td>121804.23949</td>
<td>198.113</td>
<td>1.6</td>
<td>7</td>
<td>-445</td>
<td>827</td>
<td>519</td>
</tr>
<tr>
<td>6</td>
<td>411</td>
<td>574010.17164</td>
<td>121804.17344</td>
<td>198.586</td>
<td>1.2</td>
<td>9</td>
<td>191</td>
<td>-265</td>
<td>-8</td>
</tr>
<tr>
<td>7</td>
<td>438</td>
<td>574010.16581</td>
<td>121804.19283</td>
<td>198.105</td>
<td>1.3</td>
<td>9</td>
<td>-278</td>
<td>56</td>
<td>511</td>
</tr>
<tr>
<td>8</td>
<td>457</td>
<td>574010.16802</td>
<td>121804.19001</td>
<td>197.532</td>
<td>1.4</td>
<td>9</td>
<td>79</td>
<td>9</td>
<td>-62</td>
</tr>
<tr>
<td>9</td>
<td>469</td>
<td>574010.16560</td>
<td>121804.17745</td>
<td>197.844</td>
<td>1.7</td>
<td>8</td>
<td>4</td>
<td>-199</td>
<td>250</td>
</tr>
<tr>
<td>10</td>
<td>491</td>
<td>574010.16632</td>
<td>121804.19365</td>
<td>197.743</td>
<td>1.9</td>
<td>8</td>
<td>26</td>
<td>69</td>
<td>149</td>
</tr>
</tbody>
</table>

Mätserie 2.

<table>
<thead>
<tr>
<th>Mättnummer</th>
<th>Tid till fix (s)</th>
<th>Medel Latitud (himmss)</th>
<th>Medel Longitud (himmss)</th>
<th>Medel Höjd (m ö ell h)</th>
<th>PDOP</th>
<th>Antal sat</th>
<th>Fel Lat (mm)</th>
<th>Fel Long (mm)</th>
<th>Fel Höjd (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>142</td>
<td>574010.16504</td>
<td>121804.19053</td>
<td>197.636</td>
<td>2.8</td>
<td>6</td>
<td>-14</td>
<td>18</td>
<td>42</td>
</tr>
<tr>
<td>2</td>
<td>242</td>
<td>574010.16980</td>
<td>121804.19316</td>
<td>197.516</td>
<td>2.7</td>
<td>6</td>
<td>134</td>
<td>61</td>
<td>-78</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>574010.16361</td>
<td>121804.19815</td>
<td>197.652</td>
<td>2.3</td>
<td>6</td>
<td>-56</td>
<td>144</td>
<td>58</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>574010.25083</td>
<td>121804.41451</td>
<td>197.064</td>
<td>1.6</td>
<td>7</td>
<td>2640</td>
<td>3722</td>
<td>-530</td>
</tr>
<tr>
<td>5</td>
<td>341</td>
<td>574010.16531</td>
<td>121804.19098</td>
<td>197.614</td>
<td>1.5</td>
<td>7</td>
<td>-5</td>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>574010.16382</td>
<td>121804.22272</td>
<td>197.664</td>
<td>1.7</td>
<td>6</td>
<td>-51</td>
<td>550</td>
<td>70</td>
</tr>
<tr>
<td>7</td>
<td>341</td>
<td>574010.17642</td>
<td>121804.18527</td>
<td>198.068</td>
<td>1.6</td>
<td>6</td>
<td>339</td>
<td>-70</td>
<td>474</td>
</tr>
<tr>
<td>8</td>
<td>32</td>
<td>574010.14585</td>
<td>121804.40559</td>
<td>204.385</td>
<td>1.6</td>
<td>6</td>
<td>-607</td>
<td>3575</td>
<td>6791</td>
</tr>
<tr>
<td>9</td>
<td>-</td>
<td>574010.16387</td>
<td>121804.20700</td>
<td>197.528</td>
<td>1.6</td>
<td>6</td>
<td>-50</td>
<td>290</td>
<td>-66</td>
</tr>
<tr>
<td>10</td>
<td>361</td>
<td>574010.16562</td>
<td>121804.19037</td>
<td>197.608</td>
<td>1.6</td>
<td>8</td>
<td>4</td>
<td>15</td>
<td>14</td>
</tr>
</tbody>
</table>

Mätserie 3.

<table>
<thead>
<tr>
<th>Mättnummer</th>
<th>Tid till fix (s)</th>
<th>Medel Latitud (himmss)</th>
<th>Medel Longitud (himmss)</th>
<th>Medel Höjd (m ö ell h)</th>
<th>PDOP</th>
<th>Antal sat</th>
<th>Fel Lat (mm)</th>
<th>Fel Long (mm)</th>
<th>Fel Höjd (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>88</td>
<td>574010.16517</td>
<td>121804.19046</td>
<td>197.530</td>
<td>2.8</td>
<td>7</td>
<td>-10</td>
<td>16</td>
<td>-64</td>
</tr>
<tr>
<td>2</td>
<td>43</td>
<td>574010.16479</td>
<td>121804.19062</td>
<td>197.517</td>
<td>2</td>
<td>8</td>
<td>-21</td>
<td>19</td>
<td>-77</td>
</tr>
<tr>
<td>3</td>
<td>105</td>
<td>574010.16490</td>
<td>121804.19036</td>
<td>197.528</td>
<td>2</td>
<td>8</td>
<td>-18</td>
<td>15</td>
<td>-66</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
<td>574010.16514</td>
<td>121804.19038</td>
<td>197.524</td>
<td>2</td>
<td>8</td>
<td>-10</td>
<td>15</td>
<td>-70</td>
</tr>
<tr>
<td>5</td>
<td>136</td>
<td>574010.16495</td>
<td>121804.19053</td>
<td>197.514</td>
<td>2</td>
<td>8</td>
<td>-16</td>
<td>18</td>
<td>-80</td>
</tr>
<tr>
<td>6</td>
<td>97</td>
<td>574010.16499</td>
<td>121804.19051</td>
<td>197.518</td>
<td>2</td>
<td>8</td>
<td>-15</td>
<td>17</td>
<td>-76</td>
</tr>
<tr>
<td>7</td>
<td>126</td>
<td>574010.16501</td>
<td>121804.19048</td>
<td>197.509</td>
<td>1.9</td>
<td>8</td>
<td>-15</td>
<td>17</td>
<td>-85</td>
</tr>
<tr>
<td>8</td>
<td>51</td>
<td>574010.16496</td>
<td>121804.19078</td>
<td>197.514</td>
<td>1.9</td>
<td>8</td>
<td>-16</td>
<td>22</td>
<td>-80</td>
</tr>
<tr>
<td>9</td>
<td>29</td>
<td>574010.16494</td>
<td>121804.19072</td>
<td>197.518</td>
<td>1.9</td>
<td>8</td>
<td>-17</td>
<td>21</td>
<td>-76</td>
</tr>
<tr>
<td>10</td>
<td>36</td>
<td>574010.16478</td>
<td>121804.19053</td>
<td>197.518</td>
<td>1.9</td>
<td>8</td>
<td>-22</td>
<td>18</td>
<td>-76</td>
</tr>
</tbody>
</table>

Jönköping huvudreferensstation

Onsala huvudreferensstation

Önska huvudreferensstation
Landvetter D

Baselineuppsättning

Fel i plan (mm)

Tid till fix (s)

Fel i höjd (mm)

Standardavvikelser (mm)

<table>
<thead>
<tr>
<th></th>
<th>Serie 1</th>
<th></th>
<th></th>
<th>Series 2</th>
<th></th>
<th></th>
<th>Serie 3</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lat</td>
<td>Long</td>
<td>Höjd</td>
<td>Lat</td>
<td>Long</td>
<td>Höjd</td>
<td>Lat</td>
<td>Long</td>
<td>Höjd</td>
</tr>
<tr>
<td>Medelvärde differens</td>
<td>18</td>
<td>-3</td>
<td>-14</td>
<td>6</td>
<td>0</td>
<td>36</td>
<td>-20</td>
<td>7</td>
<td>-3</td>
</tr>
<tr>
<td>Std. avv. en differens</td>
<td>83</td>
<td>49</td>
<td>72</td>
<td>49</td>
<td>49</td>
<td>70</td>
<td>46</td>
<td>43</td>
<td>112</td>
</tr>
<tr>
<td>Std. avv. för medelv. av diff.</td>
<td>28</td>
<td>18</td>
<td>24</td>
<td>15</td>
<td>15</td>
<td>25</td>
<td>15</td>
<td>14</td>
<td>37</td>
</tr>
<tr>
<td>Noggrannhet</td>
<td>80</td>
<td>46</td>
<td>69</td>
<td>46</td>
<td>46</td>
<td>83</td>
<td>47</td>
<td>42</td>
<td>106</td>
</tr>
</tbody>
</table>
Landvetter D

<table>
<thead>
<tr>
<th>Latitud (hhmmss)</th>
<th>Longitud (hhmmss)</th>
<th>Höjd (m ö ell h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>574010.16549</td>
<td>121804.18947</td>
<td>197.594</td>
</tr>
</tbody>
</table>

Mätserie 1. 24 januari 2000 kl. 11:00-13:15

<table>
<thead>
<tr>
<th>Mättnr</th>
<th>Tid till fix (s)</th>
<th>Medel Latitud (hhmmss)</th>
<th>Medel Longitud (hhmmss)</th>
<th>Medel Höjd (m ö ell h)</th>
<th>PDOP</th>
<th>Antal sat</th>
<th>Fel Lat (mm)</th>
<th>Fel Long (mm)</th>
<th>Fel Höjd (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>283</td>
<td>574010.16526</td>
<td>121804.19077</td>
<td>197.573</td>
<td>1,5</td>
<td>9</td>
<td>-7</td>
<td>22</td>
<td>-19</td>
</tr>
<tr>
<td>2</td>
<td>315</td>
<td>574010.16545</td>
<td>121804.18512</td>
<td>197.712</td>
<td>1,7</td>
<td>7</td>
<td>-1</td>
<td>-72</td>
<td>118</td>
</tr>
<tr>
<td>3</td>
<td>420</td>
<td>574010.16491</td>
<td>121804.19102</td>
<td>197.594</td>
<td>2,1</td>
<td>6</td>
<td>-18</td>
<td>26</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>282</td>
<td>574010.16502</td>
<td>121804.19076</td>
<td>197.584</td>
<td>2,2</td>
<td>6</td>
<td>-14</td>
<td>22</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>574010.16523</td>
<td>121804.18148</td>
<td>197.842</td>
<td>1,4</td>
<td>7</td>
<td>23</td>
<td>-132</td>
<td>248</td>
</tr>
<tr>
<td>6</td>
<td>561</td>
<td>574010.16499</td>
<td>121804.19035</td>
<td>197.594</td>
<td>1,2</td>
<td>6</td>
<td>-15</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>290</td>
<td>574010.17209</td>
<td>121804.18364</td>
<td>197.435</td>
<td>1,4</td>
<td>6</td>
<td>235</td>
<td>-96</td>
<td>-159</td>
</tr>
<tr>
<td>8</td>
<td>394</td>
<td>574010.16514</td>
<td>121804.18292</td>
<td>197.540</td>
<td>1,6</td>
<td>6</td>
<td>-11</td>
<td>57</td>
<td>-54</td>
</tr>
<tr>
<td>9</td>
<td>427</td>
<td>574010.16448</td>
<td>121804.18967</td>
<td>197.590</td>
<td>1,3</td>
<td>7</td>
<td>-31</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>289</td>
<td>574010.16506</td>
<td>121804.19007</td>
<td>197.590</td>
<td>1,5</td>
<td>7</td>
<td>-13</td>
<td>10</td>
<td>-4</td>
</tr>
</tbody>
</table>

Mätserie 2. 24 januari 2000 kl. 14:30-15:00

<table>
<thead>
<tr>
<th>Mättnr</th>
<th>Tid till fix (s)</th>
<th>Medel Latitud (hhmmss)</th>
<th>Medel Longitud (hhmmss)</th>
<th>Medel Höjd (m ö ell h)</th>
<th>PDOP</th>
<th>Antal sat</th>
<th>Fel Lat (mm)</th>
<th>Fel Long (mm)</th>
<th>Fel Höjd (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>70</td>
<td>574010.16526</td>
<td>121804.19031</td>
<td>197.608</td>
<td>3,4</td>
<td>6</td>
<td>-7</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>41</td>
<td>574010.16486</td>
<td>121804.19014</td>
<td>197.601</td>
<td>1,7</td>
<td>7</td>
<td>-18</td>
<td>11</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>40</td>
<td>574010.16473</td>
<td>121804.19042</td>
<td>197.598</td>
<td>1,7</td>
<td>7</td>
<td>-23</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>93</td>
<td>574010.16483</td>
<td>121804.19031</td>
<td>197.593</td>
<td>1,7</td>
<td>7</td>
<td>-26</td>
<td>14</td>
<td>-1</td>
</tr>
<tr>
<td>5</td>
<td>50</td>
<td>574010.16549</td>
<td>121804.19065</td>
<td>197.619</td>
<td>1,7</td>
<td>6</td>
<td>0</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>6</td>
<td>44</td>
<td>574010.16529</td>
<td>121804.19044</td>
<td>197.603</td>
<td>3,7</td>
<td>6</td>
<td>-6</td>
<td>16</td>
<td>11</td>
</tr>
<tr>
<td>7</td>
<td>190</td>
<td>574010.16563</td>
<td>121804.19063</td>
<td>197.599</td>
<td>3,6</td>
<td>6</td>
<td>5</td>
<td>19</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>119</td>
<td>574010.17004</td>
<td>121804.18111</td>
<td>197.853</td>
<td>3,6</td>
<td>6</td>
<td>141</td>
<td>-138</td>
<td>259</td>
</tr>
<tr>
<td>9</td>
<td>65</td>
<td>574010.16556</td>
<td>121804.19032</td>
<td>197.607</td>
<td>3,5</td>
<td>6</td>
<td>3</td>
<td>14</td>
<td>13</td>
</tr>
<tr>
<td>10</td>
<td>95</td>
<td>574010.16529</td>
<td>121804.19040</td>
<td>197.618</td>
<td>3,5</td>
<td>6</td>
<td>-6</td>
<td>15</td>
<td>24</td>
</tr>
</tbody>
</table>

Mätserie 3. 25 januari 2000 kl. 13:00-14:45

<table>
<thead>
<tr>
<th>Mättnr</th>
<th>Tid till fix (s)</th>
<th>Medel Latitud (hhmmss)</th>
<th>Medel Longitud (hhmmss)</th>
<th>Medel Höjd (m ö ell h)</th>
<th>PDOP</th>
<th>Antal sat</th>
<th>Fel Lat (mm)</th>
<th>Fel Long (mm)</th>
<th>Fel Höjd (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>58</td>
<td>574010.16555</td>
<td>121804.19028</td>
<td>197.596</td>
<td>1,5</td>
<td>8</td>
<td>2</td>
<td>13</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>116</td>
<td>574010.16526</td>
<td>121804.18999</td>
<td>197.615</td>
<td>1,5</td>
<td>9</td>
<td>7</td>
<td>9</td>
<td>21</td>
</tr>
<tr>
<td>3</td>
<td>95</td>
<td>574009.98421</td>
<td>121803.67810</td>
<td>202.811</td>
<td>1,7</td>
<td>8</td>
<td>-6.608</td>
<td>-8.458</td>
<td>5.217</td>
</tr>
<tr>
<td>4</td>
<td>43</td>
<td>574010.16456</td>
<td>121804.19094</td>
<td>197.584</td>
<td>1,5</td>
<td>8</td>
<td>-28</td>
<td>24</td>
<td>-10</td>
</tr>
<tr>
<td>5</td>
<td>47</td>
<td>574010.16453</td>
<td>121804.19108</td>
<td>197.576</td>
<td>1,5</td>
<td>8</td>
<td>-29</td>
<td>27</td>
<td>-16</td>
</tr>
<tr>
<td>6</td>
<td>139</td>
<td>574010.16494</td>
<td>121804.19065</td>
<td>197.603</td>
<td>1,9</td>
<td>7</td>
<td>-20</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>219</td>
<td>574010.16126</td>
<td>121804.19405</td>
<td>197.330</td>
<td>1,7</td>
<td>7</td>
<td>-130</td>
<td>76</td>
<td>-264</td>
</tr>
<tr>
<td>8</td>
<td>506</td>
<td>574010.16577</td>
<td>121804.19068</td>
<td>197.621</td>
<td>3,7</td>
<td>6</td>
<td>9</td>
<td>20</td>
<td>27</td>
</tr>
<tr>
<td>9</td>
<td>110</td>
<td>574010.16650</td>
<td>121804.18600</td>
<td>197.762</td>
<td>3,7</td>
<td>6</td>
<td>32</td>
<td>-57</td>
<td>168</td>
</tr>
<tr>
<td>10</td>
<td>533</td>
<td>574010.16532</td>
<td>121804.18556</td>
<td>197.628</td>
<td>3,5</td>
<td>5</td>
<td>-5</td>
<td>-65</td>
<td>34</td>
</tr>
</tbody>
</table>
Mätningsförfarande

Allmänt
Vid varje måtpunkt utförs mätningar vid tre tillfällen under olika dagar. Dessa tillfällen bör fördelas över dygnet så att en mätning sker på morgonen, en mitt på dagen och en på eftermiddagen. Lämpliga datum och tidpunkter bestäms utgående från satellitkonfigurationer. Det är önskvärt att belysa fall med olika antal satelliter synliga.

Utrustning
GPS-mottagare Ashtech Z-12.
Chokeringantenn Ashtech.
Trefot med optiskt lod och vridbar rörlibell.
Laptop med nätverks-RTK-mjukvara från Geo++.
DARC-mottagare Lucas från SECTRA.
FM-antenn som klarar av att ta emot hundraprocentig DARC-signal i den punkt där positioneringsmätningar utförs.

Förkontroll
Utrustningen kontrolleras innan avfärd till uppställningsplatsen.

Uppställning
FM-antennen ställs upp och riktas in så att bra DARC-kvalitet erhålls. Mottagningen övervakas under minst en minut med hundraprocentig DARC-mottagning innan positioneringsmätning påbörjas.
Trefoten ställs upp över punkten med hjälp av optiskt lod. Trefotens horisontering kontrolleras.
Höjden mellan måtpunkt och underkant på chokeringantennens fläns mäts tre gånger före och tre gånger efter positioneringsmätningen.

Positioneringsmätning
Vid varje tillfälle utförs tio mätningar enligt nedan:
• Mottagaren sätts på
• Positionen loggas under 30 sekunder efter fix.
• Mottagaren stängs av

Protokoll
Vid varje mätserie skall ett protokoll enligt nästa sida nedskrivas.

Loggning
Följande parametrar loggas:
• Tid till fix.
• PDOP (PDOP>4 förkastas).
• Positionen under 30 sekunder efter fix. Medelvärdet under denna tid ger upphov till den position som används i statistiken. Medelvärdesbildningens syfte är att eliminera tillfälliga fel.
• Standardavvikelsen enligt nätverks-RTK-mjukvaran.
MÄTPROTOKOLL

Punkt

Datum

Använda referensstationer

- Borås
- Göteborg
- Jönköping
- Onsala
- Vänersborg

GPS-Mottagare

Väder

Övriga kommentarer

Antennhöjd före mätning (mm)

Mätningens start (kl)

Mätningens slut (kl)

Antennhöjd efter mätning (mm)
Tekniska specifikationer

Serverdator Dell PowerEdge 1300
- **Processor**: Pentium III 500 MHz
- **Processorcache**: 512 KB
- **Internminne**: 128 MB
- **Hårddisk**: 9 GB Ultra2/LDV SCSI
- **SCSI-Controller**: Integrerad Adaptec 7890 Ultra2/LVD
- **Operativsystem**: OS/2 WARP 4

Roverdator Dell Latitude Xpi
- **Processor**: Pentium 133 MHz
- **Processorcache**: 256 KB
- **Internminne**: 24 MB
- **Hårddisk**: 1216 MB IDE
- **Extra serieport**: PCMCIA Socket Serial I/O Adapter
- **Operativsystem**: OS/2 WARP 4

Övrig utrustning
- **GPS-mottagare**: Ashtech Z-12
 - Serienummer: LP05203
 - Firmware: 6J00-1C63
- **GPS-antenn**: Ashtech Choke Ring Antenna 700936 Rev. F
 - Serienummer: CR1998380119
- **DARC-mottagare**: SECTRA Lucas 2.0 1-112-1.0
 - Serienummer: 159834036
- **FM-antenn**: Dipolantenn WISI UA05 UKW
Inmätning av SWEREF-punkter

Ur Lantmätariverkets *RIX 95 Teknisk specifikation*, v.1.0, 1997-02-18.

Mätning
I det följande beskrivs dels utrustning, såväl kravmässigt som hanteringsmässigt, dels mätningen i fält.

Utrustning

GPS-mottagare och antenn:

Trefötter: (med rörlibell)
Trefötterna påverkar nöggrannheten i punktbestämningen. De skall därför kontrolleras inför varje projekt. Dessutom skall de vara försett med en vridbar rörlibell, för kontroll av horisontering.

Master:
Ibland krävs mast på befintliga punkter. Med 12 m klaras de flesta situationer, men i en del fall krävs det en 20 m mast för att nå upp till trädtopphöjd.

Stativ:
Stativen kontrolleras regelbundet inför varje projekt liksom trefötterna.

Teodoliter:
Teodoliter för enbart lodning av master behöver inte ha särskilt hög prestanda, dock skall de kontinuerligt kontrolleras och vid behov justeras.

Avvägningsinstrument:

Instrumentkontroll
Alla mätinstrument som skall användas i ett projekt, skall naturligtvis kontrolleras regelbundet och kontrollera skall dokumenteras. Särskilt viktigt är det att trefötterna hanteras varsamt och kontrolleras kontinuerligt. Kontroll och justering av instrument m.m. görs enligt HMK-Ge:S respektive HMK-Ge:GPS.

Mätning i fält

SWEREF-punkt:
För bestämning av SWEREF-punkt skall särskilt måtförfarrande användas, se särskilt avsnitt nedan.

Måtmetod: Statisk mätning tillämpas. 15 s loggningsintervall, 15 ° elevationsmask och observationstid 45 - 120 minuter, beroende på satellittillgång och eventuella sikthinder. Det är svårt att bestämt säga hur lång observationstid som skall tillämpas.

Erfarenheten visar att 45 minuter/15 s räcker för att beräkna L1-fixlösningar av baslinjer ≤ 15 km om alla mottagarna har helt ostörd satellitmottagning.

För perioder med tidvis få satelliter, är det lätt hänt att en något skyms antenn tidvis endast har kontakt med 3 satelliter. Detta innebär att observationstiderna måste förlängas för dessa sessioner.

Sikthinder: (Röjning) År sikthindren alltför störande måste detta åtgärdes. Detta kräver omdöme och kontakt med markägarna.

Sikthinder: (Mastbygge) En annan metod är att bygga en mast som når över/upp till trädtopparna. Mastbygge ger bättre mottagningsförhållanden men däremot införs osäkerhet i centreringen, speciellt i höjd.

Antennorientering: Antennerna orienteras mot norr.

Höjdbestämning: Försök att höjdbestämma så många punkter som möjligt inom området, i första hand genom avvägning, jfr avsnitt 7.1. År avvägningsavstånden för långa så använd GPS-
teknik från flera utgångsfixar.
Alla nypunkter skall höjdbestämmas.

Felkällor:
I huvudsak två felkällor förekommer vid mätning; centrer-
ing i plan respektive höjd. Noggrannheten bestäms av
trefötterna, antennutformningen och antennhöjdsmät-
ningen.

"Måtprotokoll": Datum, punktnamn, punktnummer, uppställningspunkt,
instrumenthöjd före och efter mätning, instrument- och
antennummer, sessionsnummer, av- och påslagstid och
projektbeteckning antecknas i en protokollbok.

Måtprogram: Måtprogrammen sparas (1 omgång).
Punktdata

![Map of SWEPOS stations in Sweden](image)

<table>
<thead>
<tr>
<th>Avstånd till referensstationer (km)</th>
<th>Signalstyrka</th>
<th>DARC %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Höjd</td>
<td>m
 dBm
 Okorr
 Korr
 Tillgänglighet</td>
<td></td>
</tr>
<tr>
<td>Bords Borås</td>
<td>70 176</td>
<td>53 65 100</td>
</tr>
<tr>
<td>Göteborg</td>
<td>86 70 65</td>
<td>53 65 100</td>
</tr>
<tr>
<td>Jönköping</td>
<td>85 70 65</td>
<td>53 65 100</td>
</tr>
<tr>
<td>Onsala</td>
<td>117 70 65</td>
<td>53 65 100</td>
</tr>
<tr>
<td>Vänersborg</td>
<td>117 70 65</td>
<td>53 65 100</td>
</tr>
<tr>
<td>Rel</td>
<td>ej uppmätt</td>
<td></td>
</tr>
<tr>
<td>dBm</td>
<td>ej uppmätt</td>
<td></td>
</tr>
<tr>
<td>Okorr</td>
<td>ej uppmätt</td>
<td></td>
</tr>
<tr>
<td>Korr</td>
<td>ej uppmätt</td>
<td></td>
</tr>
<tr>
<td>Tillgänglighet</td>
<td>fullgod</td>
<td></td>
</tr>
</tbody>
</table>

SWEPOS Borås 220 0 55 69 67 120 fullgod Mycket bra
RTCM SC-104 v2.2

Ur RTCM Recommended standards for differential GNSS (Global navigation satellite systems) service version 2.2, RTCM Paper 11-98/SC104-STD.

To date there are 33 of a possible 64 message types defined, either tentatively or in final fixed form retired, or reserved. They are given in table 4-3.

Table 4-3. Message types

<table>
<thead>
<tr>
<th>Message Type No.</th>
<th>Current Status</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fixed</td>
<td>Differential GPS Corrections</td>
</tr>
<tr>
<td>2</td>
<td>Fixed</td>
<td>Delta Differential GPS Corrections</td>
</tr>
<tr>
<td>3</td>
<td>Fixed</td>
<td>GPS Reference Station Parameters</td>
</tr>
<tr>
<td>4</td>
<td>Tentative</td>
<td>Reference Station Datum</td>
</tr>
<tr>
<td>5</td>
<td>Fixed</td>
<td>GPS Constellation Health</td>
</tr>
<tr>
<td>6</td>
<td>Fixed</td>
<td>GPS Null Frame</td>
</tr>
<tr>
<td>7</td>
<td>Fixed</td>
<td>DGPS Radio beacon Almanac</td>
</tr>
<tr>
<td>8</td>
<td>Tentative</td>
<td>Pseudolite Almanac</td>
</tr>
<tr>
<td>9</td>
<td>Fixed</td>
<td>GPS Partial Correction Set</td>
</tr>
<tr>
<td>10</td>
<td>Reserved</td>
<td>P-Code Differential Corrections</td>
</tr>
<tr>
<td>11</td>
<td>Reserved</td>
<td>C/A-Code L1, L2 Delta Corrections</td>
</tr>
<tr>
<td>12</td>
<td>Reserved</td>
<td>Pseudolite Station Parameters</td>
</tr>
<tr>
<td>13</td>
<td>Tentative</td>
<td>Ground Transmitter Parameters</td>
</tr>
<tr>
<td>14</td>
<td>Tentative</td>
<td>GPS Time of Week</td>
</tr>
<tr>
<td>15</td>
<td>Tentative</td>
<td>Ionospheric Delay Message</td>
</tr>
<tr>
<td>16</td>
<td>Fixed</td>
<td>GPS Special Message</td>
</tr>
<tr>
<td>17</td>
<td>Tentative</td>
<td>GPS Ephemerides</td>
</tr>
<tr>
<td>18</td>
<td>Fixed</td>
<td>RTK Uncorrected Carrier Phases</td>
</tr>
<tr>
<td>19</td>
<td>Fixed</td>
<td>RTK Uncorrected Pseudoranges</td>
</tr>
<tr>
<td>20</td>
<td>Tentative</td>
<td>RTK Carrier Phase Corrections</td>
</tr>
<tr>
<td>21</td>
<td>Tentative</td>
<td>RTK /Hi-Acc. Pseudorange Corrections</td>
</tr>
<tr>
<td>22</td>
<td>Tentative</td>
<td>Extended Reference Station Parameters</td>
</tr>
<tr>
<td>23-30</td>
<td>--</td>
<td>Undefined</td>
</tr>
<tr>
<td>31</td>
<td>Tentative</td>
<td>Differential GLONASS Corrections</td>
</tr>
<tr>
<td>32</td>
<td>Tentative</td>
<td>Differential GLONASS Reference Station Parameters</td>
</tr>
<tr>
<td>33</td>
<td>Tentative</td>
<td>GLONASS Constellation Health</td>
</tr>
<tr>
<td>34</td>
<td>Tentative</td>
<td>GLONASS Partial Differential Correction set (N > 1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GLONASS Null Frame (nNs 1)</td>
</tr>
<tr>
<td>35</td>
<td>Tentative</td>
<td>GLONASS Radio beacon Almanac</td>
</tr>
<tr>
<td>36</td>
<td>Tentative</td>
<td>GLONASS Special Message</td>
</tr>
<tr>
<td>37</td>
<td>Tentative</td>
<td>GNSS System Time Offset</td>
</tr>
<tr>
<td>38-58</td>
<td>--</td>
<td>Undefined</td>
</tr>
<tr>
<td>59</td>
<td>Fixed</td>
<td>Proprietary Message</td>
</tr>
<tr>
<td>60-63</td>
<td>Reserved</td>
<td>Multipurpose Usage</td>
</tr>
</tbody>
</table>