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ABSTRACT: Classical continuum mechanics is used extensively to predict the properties of nanoscale materials such as
graphene. The bending rigidity, κ, is an important parameter that is used, for example, to predict the performance of graphene
nanoelectromechanical devices and also ripple formation. Despite its importance, there is a large spread in the theoretical
predictions of κ for few-layer graphene. We have used the snap-through behavior of convex buckled graphene membranes under
the application of electrostatic pressure to determine experimentally values of κ for double-layer graphene membranes. We
demonstrate how to prepare convex-buckled suspended graphene ribbons and fully clamped suspended membranes and show
how the determination of the curvature of the membranes and the critical snap-through voltage, using AFM, allows us to extract
κ. The bending rigidity of bilayer graphene membranes under ambient conditions was determined to be 35.5−15.0

+20.0 eV. Monolayers
are shown to have significantly lower κ than bilayers.
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The small mass and atomic-scale thickness of graphene
membranes make them highly suitable for nanoelectro-

mechanical devices such as, for example, mass sensors, high-
frequency resonators or memory elements. Although only
atomically thick, many of the mechanical properties of
graphene membranes can be described by classical continuum
mechanics.1,2 An important parameter for predicting the
performance and linearity of graphene nanoelectromechanical
devices3 as well as for describing ripple formation4 and other
properties such as electron scattering mechanisms,5 is the
bending rigidity, κ. Despite the importance of this parameter it
has so far only been estimated indirectly for monolayer
graphene from the phonon spectrum of graphite,6 estimated
from AFM measurements for multilayer graphene (>8
layers),7,8 or predicted from ab initio calculations1,9 or bond-
order potential models.3,10 Here, we employ a new approach to
the experimental determination of κ by exploiting the snap-
through instability in prebuckled graphene membranes. We
demonstrate the reproducible fabrication of convex buckled

graphene membranes by controlling the thermal stress during
the fabrication procedure and show the abrupt switching from
convex to concave geometry that occurs when electrostatic
pressure is applied via an underlying gate electrode and how
this can be used to extract κ. The value that we obtain for
bilayer graphene, κ = 35.5−15.0

+20.0 eV, lies between the two extreme
theoretical predictions of κ = 160 eV9 (from zero-temperature
ab initio calculations) and κ = 3 eV (assuming independent
monolayers at room temperature).11

For deformations on a scale large compared to the inter

atomic spacing, the mechanical properties of single-layer

graphene (SLG) as well as few-layer graphene (FLG) can be

modeled using the theory of two-dimensional (2D) mem-

branes. In this theory, the effective free energy is a functional of
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Here uαβ = (∂αuβ + ∂βuα + ∂αw∂βw)/2 is the strain tensor and
the indices α and β run over the Cartesian coordinates x and y
in the plane of the graphene sheet. Repeated indices are
summed over. The material parameters in (1) are the bending
rigidity κ and the Lame ́ coefficients μ and λ. Because of thermal
fluctuations, for instance ripples, these parameters will in
general depend on temperature T. While the combination C ≈
(λ + 2μ) corresponding to the 2D elastic modulus has been
measured at room temperature to be close to its predicted zero-
temperature value for graphene C ≈ 340 N m−1 1,13 a direct
measurement of the bending rigidity κ is lacking both for SLG
as well as FLG. The value often quoted for the bending rigidity
of monolayer graphene (κ = 1.2 eV) was estimated from the
phonon spectrum of graphite.6

Using eq 1 is equivalent to treating the suspended membrane
as a thin plate with a Young’s modulus E, Poisson’s ratio ν, and
thickness h, if we make the identifications
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The parameters Eh, ν, and h are then uniquely mapped onto
the parameters κ, μ, and λ of eq 1. Here, E is not independent
of h, rather it is the product Eh, which is determined. Often, as
in experiments on SLG and FLG nano resonators,14−16 in-plane
stress dominates and the first term in (1) can be disregarded. In
such cases one often sets h = 3.4 Å for SLG, the interplanar
distance between the atomic layers in graphite. As Eh ≈ 340 N
m−1,1,13 this leads to E ≈ 1 TPa. However, from eqs 2 these
values of E and h, together with ν ≈ 0.16,17 give κ ≈ 20 eV, an
order of magnitude larger than the ∼1 eV estimated from
phonon measurements and ab-initio calculations.
For SLG, the discrepancy stems from the different physical

origins of bending rigidity in SLG and continuum thin plates. In
thin plates, the nonzero κ originates from the compression/
extension of the medium on either side of the neutral surface.
In SLG, there is not a continuum in the direction perpendicular
to the membrane and bond-order models have indicated two
physical origins. One is due to the bond angle effect and the
other results from the bond-order term associated with the
dihedral angles.10 Indeed, bond-order calculations give for SLG
a T = 0 value κ ≈ 1.4 eV that is close to ab initio predictions of
1.461 or 1.6 eV9 and to the experimental value derived from the
phonon spectrum of graphite (1.2 eV).6 For T > 0, ripples in
SLG are predicted to increase κ at long wavelengths.4 For FLG,
one expects to approach the thin plate theory scaling, κ ∝ h3, as
the number of layers grows. For bilayer graphene (BLG) and
trilayer graphene (TLG), ab initio calculations and estimates
using bond-order potentials have, for T = 0 K, predicted κBLG ≈
160−180 eV and κTLG≈ 660−690 eV.9,11 In these calculations,
the contributions to κ come mainly from the energy required to
stretch/compress the upper/lower graphene layer as in thin
plate theory. However, in contrast to SLG, where thermal
fluctuations are predicted to increase κ, for FLG at T > 0 K,
local thermal interplane distance fluctuations have been
predicted to soften the bending rigidity,12 approaching κBLG
≈ 2κSLG ≈ 3 eV at room temperature. The large deviation
between κ(T = 0 K) ∼ 102 eV and the finite temperature

estimate of a few electronvolts makes it important to
experimentally determine the value of κ for T > 0 K.
Nanoindentation measurements have been used to extract

values for the bending rigidities of suspended multilayer
graphene (≥8 layers).7 In such experiments, a force versus
deflection curve is obtained by pushing the suspended part of
the sample with an AFM-tip. However, extracting κ in this way
is problematic for two reasons. The first comes from the large
in-plane stiffness of graphene that implies that a deformation of
w ∼ 1 Å will cause stretching contributions to dominate.
Second, suspended samples are commonly under finite tensile
strain due to electrode adhesion effects. Despite the inherent
difficulties with the technique, the extracted values fit
reasonably well to the results of modeling the suspended
membranes as thin plates. Using eq 2 to fit the data of Poot and
van der Zant7 yields (measuring h in nm) κ = 570h3 eV, E =
0.92 TPa and ν = 0.16. A second AFM technique studies the
deformation that graphene layers produce on a micro-
corrugated elastic surface.8 A model is then used to extract a
so-called flattening factor that can be related to the bending
rigidity as a function of the number of layers. This technique
also contains uncertainty with respect to the influence of
tension and interface strength. The best fit for the dependence
of κ on h, yields κ = 182h3 eV (with h in nm).
In this Letter, we exploit snap-through instabilities in

prebuckled graphene. In the fabrication of suspended samples
(beams and circular/elliptic drums), a controlled compressive
strain is built in before under-etching the devices to produce
the suspended SLG and FLG. When released, this leads to
convex buckled geometries with zero built-in strain. In most of
our samples, the suspended regions are buckled upward away
from the substrate. We attribute this to adhesive forces between
the graphene and the electrodes. This effect of adhesion to the
clamping points, which in our case is a result of under etching,
has been observed previously for graphene on top of holes.13

By biasing the backgate, an electrostatic pressure is applied to
the membranes. Our method is based on relating the snap-
through voltage to the local curvature, measured by AFM, and
observing at what pressure the membrane undergoes a buckling
deformation.
To extract κ we note, from the analogy with thin plate theory,

that our buckled membranes are expected to show similar
deformation properties to those of convex shells. Fully clamped
shells display buckling instability under external pressure that is
observed as a snap-through from locally convex to locally
concave buckling18 at a critical pressure pc. The development of
a shell under external pressure is sketched in Figure 1a−c.
When pressure is applied, a shell with nonzero Gaussian
curvature deforms first locally in the region around the
structurally weakest point (see Figure 1a). While this
deformation lowers the energy due to pressure−volume (PV)
work, it is at the expense of increasing the contributions from
elastic energy (mainly stretching/compression). For small
deformations, the balance between the elastic energy and the
PV-term makes the system stable. For a deformed region larger
than a critical size however, it becomes energetically favorable
to form a large angle bend (Figure 1b) surrounding an inward
bulge. Following Pogorelov18 we assume that this inward bulge
forms a mirror reflection of the original surface in a plane
perpendicular to the symmetry axis. Inside the bulge, the
curvature of the deformed shell is then identical in magnitude
to the initial surface. Hence, in this region the elastic energy
density remains unchanged. The major contribution to it comes
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instead from a narrow region around the edge of the bulge, in
the figure denoted by Γ. This energy is given by U = (4κn(λ +
2μ))1/2∫ ds kn

2/kΓ, where kΓ is the curvature of Γ, n is the
number of graphene layers, and kn is the normal curvature of
the shell along Γ. As the work done by the pressure is
proportional to the area inside the bulge, this state is unstable
and the edge of the bulge propagates outward. This continues
until the propagation is hindered by the edges or defects in the
sample at which point the shell is said to have “snapped
through” (Figure 1c). A detailed calculation, following
Pogorelov,18 for our fully clamped structures gives the following
expression for the pressure at which the critical deformation is
reached

κ λ μ
=

+
p

n
R R

4 ( 2 )
c

1 2 (3)

Here R1 and R2 are the principal radii of curvature (in
orthogonal directions) at the point where the instability starts.
As (λ + 2μ) ≈ 340 Nm−1 we can use relation 3 to extract κ
from measured values of pc and R1,2. For the beams, the
inclusion of free edges makes the problem intractable
analytically. However, following the argumentation outlined
in Landau and Lifschitz,19 the scaling of the critical pressure can
still be obtained. We find that the scaling of the critical pressure
for the beams is
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∝

+
p

n

R R

( 2 )
c

1
3

2 (4)

where R1 is the curvature in the direction along the long axis of
the beam and R2 is the curvature in the perpendicular direction.
In order to prepare convex membranes, graphene was

obtained from mechanical exfoliation on silicon substrates with
295 nm oxide.20 Optical microscopy was used for finding the
location of flakes with a suitable shape and number of layers.
The number of layers was determined by the optical contrast
and confirmed by Raman spectroscopy on selected samples.
Graphene flakes were shaped into the desired geometry using
electron-beam lithography (EBL) to pattern a resist mask
(positive resist PMMA). The resist was typically baked at 160
°C to remove solvents after spin-coating. A low-power oxygen-
plasma that removed 10 nm of resist was used to etch the
nonmasked graphene. The resist mask was removed in acetone
leaving the patterned graphene. A bilayer resist composed of
bottom-layer copolymer MMA-MAA and top-layer PMMA was
used to pattern the electrodes used to clamp and electrically

contact the graphene structures. Evaporation of 3 nm Cr and
150 nm Au was done using e-gun evaporation. Cr was used as
adhesion layer since it is compatible with HF-etching. A
relatively thick layer of Au was used to avoid electrostatic
actuation of the suspended part of the electrodes. Bilayer resist
was used to ensure an under-cut, facilitating lift-off after
evaporation. Lift-off was done using ultrasonic agitation in hot
acetone. To suspend the graphene beams, the substrate was
wet-etched using HF. During etching the electrodes act as an
etch-mask. The etchant penetrates freely under the graphene
beam. Conditions were chosen to etch away 225 nm of the
underlying oxide under the entire patterned graphene structure,
including the graphene covered by the electrodes. Thus to
avoid excessive under-etching of electrodes, causing their
electrostatic actuation during the later experiments, graphene
patterns were formed first, making it possible to control the
overlap distance between the electrodes and the graphene.
Rinsing was done in milli-Q followed by IPA. After etching,
critical point drying was used to avoid collapse of the
membranes due to surface tension effects during drying. Care
was taken to ensure that there were no detectable resist
residues remaining on the graphene that may influence the
bending rigidity measurements. It was possible to observe resist
residue on supported graphene prior to substrate etching. This
showed up as bright spots in the AFM height image and as dark
spots in the AFM phase image. However, after etching in HF,
this structure was usually removed. In order to check that any
remaining resist residue did not influence the results of the
bending rigidity measurements, we also annealed some samples
in Ar/H2 and confirmed that there was no significant difference
in the determined bending rigidity.
Raman spectra were obtained using a Renishaw micro-

Raman spectrometer with a 514 nm excitation laser and
spectral resolution better than 1 cm−1. The shape of the 2D
peak was used to confirm the number of graphene layers,
estimated from the optical contrast. Raman spectra were also
measured in situ on the same graphene flake during heating
from room temperature to 200 °C and during cooling back to
room temperature to determine the extent of thermal stress.
The results are shown in the Supporting Information.
Electrostatic actuation of the suspended graphene was

achieved by applying a voltage, Vbg, to the silicon back-gate
while keeping the graphene grounded. The depth of etching
was chosen to leave some remaining insulating SiO2 (70 nm) to
avoid a short-circuit between the graphene and the back
electrode. Similar to previous studies of multiwalled carbon
nanotubes21 and multilayered graphene,22 electrostatic de-
flection was imaged in situ using AFM. The AFM was used in
noncontact mode and measurements were carried out in air at
22 °C. To reduce the interaction between the suspended
graphene and the AFM cantilever both were grounded. The
AFM is operated under conditions where the force of
interaction with the substrate is low and also operates at a
frequency approximately 2 orders of magnitude lower than the
resonant frequency of the membranes. We can therefore
discount the influence of tip interactions for the substrates
discussed in this paper.
Figure 2 shows two suspended BLG beams fabricated using

the techniques detailed above. It is easier to visualize the convex
buckling with beam geometries rather than the fully clamped
structures that are needed to compare quantitatively with the
model discussed above. Figure 2a shows an exaggerated
schematic illustrating the way in which the beams are attached

Figure 1. Schematic pictures showing the snap-through of a convex
shell. (Left) For pressure smaller than a critical pressure pc, a small
finite deformation is formed in the region Ω . (Middle) As the critical
pressure pc is reached it becomes energetically favorable to form a
concave region where the elastic energy is confined to a narrow region
around the annulus Γ. (Right) As the concave configuration in middle
panel is unstable, the deformation propagates outward, the membrane
“snaps-through”. By measuring the radii of curvature R1,2 and relating
the pressure to the applied backgate voltage when the membrane snaps
though, pc can be determined.
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to the electrodes and the convex curvature produced when the
substrate is etched away from the graphene. From the measured
AFM profile in Figure 2b it can be clearly seen that the beams
are buckled to give a convex geometry. In this example, the
lengths of the beams are on average 0.12% longer than the
horizontal end-to-end-distance.
The buckling is just detectable in the SEM picture in Figure

2c where it is also possible to observe the under-etching of the
electrodes. The abrupt snap-through predicted by the model for
the fully clamped geometry can also be seen with the beams.
Figure 2d shows line scans along one of the beams as a function
of increasing voltage applied to a back gate and thus increasing
electrostatic pressure applied to the suspended beam. The
abruptness of the transition is clearly seen in Figure 2e where
the height of the central position of the beam is plotted as a
function of the back gate voltage. The deflection curve shown
in Figure 2e is obtained by placing the AFM tip at a fixed
position in the center of the beam and sweeping Vbg while
measuring the deflection from the initial position. This shows
that there is a sharp snap-through from convex to concave
buckling where the beam deflects a large distance for a small
change in Vbg. This is quite different behavior to that observed
for suspended graphene beams that do not have this initial
buckled shape. As we have shown previously, in that case there
is a continuous deflection of the suspended membrane until it
snaps to contact with the underlying substrate when the pull-in
voltage has been exceeded.23

The observed buckling is a consequence of the mismatch
between the thermal expansion coefficients of the graphene and

Figure 2. (a) Schematic picture of under-etched suspended graphene
beams. When the graphene is under-etched it is released. The built-in
compressive strain together with the adhesion to the electrodes will
result in a buckled shape with the graphene curving away from the
substrate. (b) AFM scan of two suspended bilayer beams showing
convex buckled shapes. The length of the beams is 2 μm and the
center of the beam is ca. 25 nm higher than the clamped edges. (c)
SEM image of a suspended beam with visible upward buckling. The
scale bar is 1 μm. (d) Line scans along the center of one of the beams
as a function of Vbg. (e) Deflection versus Vbg plot for the same beam
measured at the center of the beam, position indicated by the arrow in
(d). The deflection is defined as the deviation from the equilibrium
distance at Vbg = 0 V.

Figure 3. (a) Graphene “frying pan” pattern used to fabricate fully clamped circular membranes. (b) A square electrode with a hole in the middle is
patterned on top of the graphene, light-gray in figure. The graphene is clamped by the electrode in the midgray areas and left exposed in dark-gray
areas. When the substrate is etched, the bottom-side of the handle of the “frying pan” is exposed outside the electrode. The etchant is able to
penetrate freely under the graphene all the way underneath the shape of the “frying pan” and continues to under-etch the electrode, thus suspending
the whole area inside the dashed line in Figure 5b. (c) AFM scan of a suspended circular membrane. (d) Line scan across the center of the
suspended membrane corresponding to the dashed line in (b). The smooth line illustrates the fitted curvature. (e) Deflection versus Vbg curve
obtained with the AFM tip at the center of the suspended fully clamped BLG membrane. The deflection is defined as the deviation from the
equilibrium distance at Vbg = 0 V measured at the center of the beam.
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the underlying SiO2 substrate due to thermal cycling prior to
etching (see above). Hence, before under-etching the thermal
cycling results in a compressive strain in the graphene lying on
the SiO2. The buckling arises upon release (etching) as the
built-in compressive strain causes the suspended sheet to be
slightly larger than the exposed hole. Evidence for this is
provided in the form of temperature-dependent Raman
measurements detailed in the Supporting Information. The
results are very reproducible in the sense that suspended
membranes made from the same graphene sheet and having
undergone the same thermal cycling show the same amount of
built-in compressive strain before under etching and the same
relative extension after under-etching. Hence, the buckling in
our samples could be controlled by the extent of thermal
cycling to which the substrate was exposed. In particular, for
samples where thermal cycling was avoided during lithography
no buckling was observed (see Supporting Information).
The beam structures clearly show a curvature along the long

axis of the beam (measured between the two clamping
electrodes) as is most apparent in Figure 2c and the rapid
snap-through predicted for convex shells. However, since the
beams are not fully clamped around their circumference, it is
not possible to apply the model as developed by Pogorelov to
extract an absolute value of κ. For this reason, we have also
fabricated fully clamped membranes of circular or elliptical
shape. In this case, the membranes clearly show radii of
curvature in two orthogonal directions and it is possible to treat
them as deforming convex shells using eq 3. An example of a
circular suspended BLG membrane is shown in Figure 3.
The electrostatic pressure applied in the experiments can be

calculated from the parallel plate model. Then, from eq 3 the
bending rigidity κ is given by

κ
ε
λ μ

=
+
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⎝

⎞
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R R
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n64 ( 2 )

1 2
2

2
0
2
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where d is the effective distance to the gate (243 nm,
accounting for the dielectric constant of the remaining oxide
layer), ε0 is the vacuum permittivity, and Vc is the critical
voltage at which snap-through occurs. The validity of the
parallel plate model has been checked with FEM simulations
(Supporting Information). Using (λ + 2μ) = 340 Nm−1 we plot
in Figure 4 log[(ε0Vc

4)/64n(λ+2 μ)] against log[d2/R1R2]
2 for

the experimental devices. According to the model, the points

should then fall along a straight line with unit slope. The
bending rigidity can then be determined from the value of the
y-axis intercept.
The results in Figure 4 are for fully clamped circular and

elliptical BLG membranes. We attempted to produce similar
structures with SLG membranes but this proved to be very
difficult and the membranes typically broke or did not show a
well-defined curvature making the analysis extremely unreliable.
The principal curvatures of the BLG membranes were
determined by fitting the deflection data from the AFM
measurements in orthogonal directions, similar to the example
shown in Figure 3d. The results are tabulated in the Supporting
Information along with the values determined for the snap-
through voltage, Vc. The stated radii are the average values
obtained from fitting at least six AFM line scans for each
membrane with the error bars given by the standard deviation
of the fitted radii. In order to extract κ, the gradient was
constrained to be 1 (as expected from eq 4 and consistent with
a fitted value of 1.1 ± 0.16) and the intercept was determined
from a least-squares fit. The fit line is shown as a full line in
Figure 4 with the estimated error limits indicated by dashed
lines. The value obtained for the bending rigidity is κ = 35.5−15.0

+20.0

eV. This value is significantly lower than the value estimated
from eq 2, using E = 0.92 TPa and h = 6.8 Å (giving κBLG = 155
eV), and the values obtained from zero-temperature ab initio
calculations for BLG (κBLG = 160−180 eV9,11). It is, however,
considerably higher than the predicted value that assumes two
independent monolayers at room temperature (κBLG = 3 eV).11

The agreement between continuum theory and the exper-
imental results presented here (eq 5) provides convincing
evidence that the continuum theory approach (eq 1) is valid for
BLG membranes under ambient conditions provided that one
adopts a value of κ that falls between the two extremes of the
theoretical predictions.
We have also analyzed the radii of curvature (along the long-

axis of the beam) and critical switching voltages for a number of
doubly clamped graphene beams including SLG, BLG, and
TLG (data included in Supporting Information). For the
beams, the expression analogous to eq 5 is

κ
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The beam data has been plotted in Figure 5 in a plot of
log(Vc

4) versus log(R1
−3), following eq 6. The data from the

BLG doubly clamped beams fall on a straight line in this plot.
Assuming that the bending rigidity for the beams is identical to
that for the BLG fully clamped membranes, we can estimate the
value of κ for the monolayer beams by comparing the values of
the y-intercept on this plot. The comparison yields an estimate
of κSLG = 7.1−3.0

+4.0 eV for the monolayer and κTLG = 126−53
+71 eV for

the trilayer; however, it should be stressed that this is a very
rough estimate due to the limited number of data points used
to extract the values.
By studying the voltage-induced snap-through of convex

buckled membranes and beams of suspended graphene, we
have shown that the mechanical behavior of BLG membranes
can be described within continuum theory by treating them as
convex shells but we also show that care must be taken in the
choice of the parameters to be used and it is not always
appropriate to scale-down from the bulk values. The value that
we obtain for the bending rigidity of BLG at room temperature
under ambient conditions (35.5−15.0

+20.0 eV) is the first

Figure 4. Plot used to determine κ for fully clamped BLG. κ is
determined from the value of the y- intercept at x = 0. Diamonds:
average experimental values obtained from fitting the radii of curvature
from at least six AFM line scans on each substrate, error bars indicate
the standard deviation of the fitted radii. The full line is a straight-line
fit to the data and the dashed lines indicate the stated error limits.
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experimental determination of this parameter for BLG. The
value lies in between the two extreme theoretical predictions
for two completely independent monolayers at finite temper-
ature and for bilayers at 0 K. An accurate experimental
determination of κ is crucial for understanding and correctly
modeling the mechanical behavior of this important new
material. The method that we present here is straightforward
and can easily be extended to thicker graphene layers or other
thin layer materials that can be fabricated to give similar
geometries.
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Figure 5. Data for doubly clamped beams showing the expected linear
behavior for a plot of log(Vc) versus log(R1

−3), see eqs 4 and 6. Filled
diamonds, doubly clamped BLG; open diamonds, SLG; open square,
TLG. The full line is a least-squares fit to the BLG data yielding an
intercept of 5.5. The dashed lines show the estimated fits for the SLG
(intercept 4.8) and TLG (intercept 6.05) data. The bending rigidity
can be extracted by assuming that the bending rigidity of the doubly
clamped BLG ribbons is identical to that of the fully clamped
membranes. This yields estimated values of κSLG = 7.1−3.0

+4.0 eV and κTLG
= 126−53

+71 eV.
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