

SlideNoter
- Developing a notepad application for Android tablets
Kandidatarbete inom Data- och informationsteknik

Patrik Aldenvik

Robert Moberg

Axel Pelling

Jonas Scholander

Institutionen för Data- och informationsteknik

CHALMERS TEKNISKA HÖGSKOLA

Göteborg, Sverige 2012

Kandidatarbete/rapport nr 2012:024

i

Abstract

This report presents the process and thoughts behind the

development of an open source Android application; an

application for reading PDF-files and adding notes upon them.

The main purpose is to provide an alternative for students,

enabling them to take notes during lectures without pen and

paper.

The report covers the basic building blocks of the Android

graphical user interface, blocks that the application use, as well

as the integrated PDF-reader, VuDroid. As a software

engineering process called Spiral Model was applied to the

project, a chapter brings up how this affected work. Information

regarding the implementation choices and a few problems that

arose during the coding process as well as the solutions to them

can also be found within.

The result is an application that can read PDF-files, present

them for the user and have the ability to add a layer with text

and drawings. The resulting application and work process is

evaluated at the end of the project report.

ii

Sammanfattning

Den här rapporten presenterar processen och tankegångarna

kring utvecklingen av en Androidapplikation med öppen källkod;

en applikation för att läsa PDF-filer och lägga till anteckningar

på dem. Huvudsyftet är att ge studenter ett alternativ till penna

och papper.

Rapporten omfattar de grundläggande byggstenarna i Androids

grafiska användargränsnitt, byggstenar som applikationen

använder, såväl som den integrerade PDF-läsaren, VuDroid.

Eftersom en programutvecklingsmetodik som kallas

Spiralmetoden tillämpades i projektet, tilldelas detta ett kapitel i

rapporten. Information om implementationens val och ett par

problem som uppstod under kodningsprocessen, såväl som

lösningar till dessa problem finns också att hitta i rapporten.

Resultatet är en applikation som kan läsa PDF-filer, visa dem för

användaren och ge möjligheten att lägga till ett lager med

anteckningar. Den resulterande applikationen och

arbetsprocessen evaluerades i slutet av projektrapporten.

iii

Table of Contents

Glossary... 1

1. Introduction .. 3

1.1. Background ... 3

1.2. Purpose of the report ... 4

1.3. Limitations ... 4

2. Theory - Android, licenses and the Spiral Model .. 5

2.1. Android Building Blocks ... 5

2.1.1. Activity .. 5

2.1.2. Intent ... 6

2.2. Graphical components within Android .. 6

2.2.1. Bitmap ... 6

2.2.2. Canvas .. 6

2.2.3. Drawing Primitives .. 7

2.2.4. Paint .. 7

2.3. The View Package ... 7

2.3.1. ViewGroup .. 7

2.3.2. How Android Draws Views .. 8

2.3.3. SurfaceView .. 8

2.4. Open Source and Licenses.. 8

2.4.1. Copyright and Copyleft .. 8

2.4.2. GNU GPLv3 .. 9

2.5. The Spiral Model ..10

2.5.1. The Four Phases ..11

2.6. Version Control System ..11

3. Development methods and processes ..12

3.1. Choice of Software Engineering Process ..12

3.2. Choice of Platform and OS ...12

3.3. Choice of Programming Language ...13

3.4. Specification ...13

3.5. PDF-reader ...13

3.6. Version Control System ..14

3.7. Testing ...14

iv

3.8. How to satisfy the requirements ..14

3.8.1. User Testing ...15

4. Implementation ...16

4.1. The Program Structure ...16

4.1.1. VuDroid ..16

4.1.2. The Whiteboard..16

4.1.3. The SlideNoter Application ...16

4.2. Design of GUI ...17

4.3. Scroller ...17

4.3.1. Scrolling the Whiteboard ..18

4.3.2. Scrolling both Views at the same time ..18

4.4. Implementing textboxes ..18

4.4.1. EditText ..18

4.4.2. Canvas.drawText ...19

4.4.3. Text input ...19

4.4.4. Editing text ...20

4.5. Other issues ...20

4.5.1. Showing both Views at once ..20

4.5.2. Layout design ...20

4.5.3. Changing between modes ..21

5. Results ..22

5.1. The Application ...22

5.1.1. The Main Menu ..22

5.1.2. The Browser ...23

5.1.3. The PDF-Viewer ...24

5.1.4. The Whiteboard..25

5.2. Fulfillment of the functional requirements ..26

5.3. Fulfillment of the non-functional requirements...26

5.4. User tests ...26

6. Discussion ..27

6.1. Evaluation of the Specification ..27

6.2. Evaluation of major decisions ...27

6.2.1. Working with the Spiral Model ..27

v

6.2.2. Android as a Development Platform ...27

6.2.3. SurfaceView as Drawing Area ..28

6.2.4. VuDroid as the PDF-reader ..28

6.2.5. The Usage of a Version Control System ..28

6.3. Possible other uses of the application ...29

7. Conclusion ..30

7.1. Critical discussion ...30

7.2. Future work ..30

7.2.1. Fixing memory leak ..30

7.2.2. Support for more file extensions ...31

7.2.3. The ability to search for notes ..31

7.2.4. Cloud based storage and multiple user editing ...31

7.2.5. Word lookup ...31

Bibliography ..32

Appendixes ...34

Appendix A ..34

Iteration 1 - PDF-reader ...34

Iteration 2 - Whiteboard ..34

Iteration 3 - SlideNoter ...35

Iteration 4 - Continued Developments ..35

Appendix B - UML ...37

Appendix C - List of Contributions ...39

C.1. Fields of responsibility ..39

C.2. Presentations ...39

1

Glossary

Abstract function - Unimplemented function, any implementation of the class containing

an abstract method must implement it.

Alpha Testing - A very early test of the product with basic functionality designed to locate

and help flatten out the most apparent bugs. It also give the users a chance to make

developers aware of certain functions that should be changed or integrated.

Android - An Operating System developed by Google for mobile devices.

Android SDK - Android Software Development Kit. Tools to develop Android applications.

API - Application Programming Interface. A set of instructions how to use a class or a

library.

Beta Testing - A test later in the process where more people are invited to help locate the

more odd bugs that can be overlooked in the alpha testing.

Class - A collection of methods with a specific purpose. For example provide a User

Interface.

DMCA - Digital Millennium Copyright Act, a law in the US that make DRM breaking illegal.

Drawn Objects - All the lines, text boxes and highlighting the users has done.

DRM - Digital Rights Management, a combination of software protection designed to control

distribution and spreading of copies.

GUI - Graphical User Interface. A graphical UI. Allows interaction between humans and

machines on a graphical level, with images for example.

I/O - Input / Output. Refers to the inputs into the system a user makes and the systems

response/output.

iOS - formerly known as iPhone Operating System, it is now the name of the operating

system that apple use in their products.

Java - An object oriented programming language developed by Sun and is maintained by

Oracle.

MotionEvent - Object used to report movement. Including mouse, pen, finger and trackball

events.

MyHighlight - Help class to save coordinates and paint colour.

MyText - Help class to save coordinates, text string and paint colour.

2

MyPoint - Help class to save coordinates and paint colour.

OOP - Object Oriented Programming. A programming style where you treat parts of your

codes like different objects.

OS - Operating System. The system that directs the operations of a computer and take user

input to do so. For example Android, Windows, OS X & Linux distributions.

Parent - A parent node in a tree structure refers to a node in the structure that has a child.

Superclass - A class that provides its properties and methods to its subclasses.

PDF - Portable Document Format. A file format that is widely used for documents.

PPT - PowerPoint. A file format made by Microsoft that is used for creating slide shows.

Revision - A collection of files on SVN connected to a specific number.

Subclass - A class that inherits properties and methods from its parent class.

SVN - Subversion. A Version Control System.

Top-down traversal - Traverse through a tree structure starting with the root and work

down towards the children.

Tree Structure - A tree structure is a way of representing the hierarchical nature of a

structure in graphical form.

Throwaway prototyping - A development method based on fast creating a prototype, find

flaws and see if it meets the requirements. Create a new prototype without the found flaws

and repeat.

UI - User Interface. The system where interaction between humans and machines occurs.

VCS - Version Control System, also known as reversion control. A way for multiple

programmers to code on a single project without the risk of overwriting the work of other

programmers.

View - A class used in Android OS for UI structures and components.

XML - eXtensible Markup Language. A markup language used to save data in a text based

format.

Z-ordered - Orders two-dimensional objects by the Z axis. Allows a programmer to choose

which components in a UI should appear on top of another.

3

1. Introduction

When the first Tablets was released everyone wanted one. If you asked them the question

“What are you going to use it for?” the answer was almost always the same. It was along

the lines of “I do not know, but I want one”. Since the first release the answer has not really

changed much; a tablet offers just about the same functionality as a smart phone with the

exception of a bigger screen. This report will document the development of an application

that will be a step in changing the answer to “I want one because...”.

1.1. Background

One answer to the aforementioned question could be to aid you in your education. Within

higher education, many lecturers use projectors and PowerPoint as a tool in their

presentations. Slides are often shown picturing what is discussed during the lecture. These

slides are usually uploaded to the Internet before the class, thus providing students the

ability to view and study them beforehand. The student can then choose to print the slides

and bring them to the lecture and write additional notes on them. At the moment there is a

very limited availability of electronic options to the pen and paper when it comes to writing

notes on these slides.

To tackle this problem an idea was formulated to develop an application for Android. An

application that could be used by the attendants at a lecture. With this application they

would be able to open PDF-files and scribble notes on them. The users would be able to

draw lines and add simple figures as well as type additional text and highlight existing text.

When the edits have been made the application should have the ability to save the

changes, enabling viewing at a later time. In order to be appealing the application had to

focus on a friendly user interface and a wide variety of useful functions.

To ensure that everyone who would like to use the application can use it and everyone who

wants to participate in the development can participate, the application will be licensed

under a open source licence. As of today there are similar applications (Google Play,

2012a,b,c) that already tackles this problem, yet none which is to licensed under an open

source licence.

4

1.2. Purpose of the report

This report serves as documentation for future developers, documentation which they can

read to familiarize themselves with the project; a project to develop an application for

Android tablets where you can write notes on PDF-files. The information which is covered

includes why some decisions were made, how they were executed, the results and

discussion about the results and certain choices.

1.3. Limitations

Tablets were chosen as the platform for development. The reason for this was the benefit of

them having larger screens than smartphones. Due to the relatively small screen of

smartphones they are not optimal for reading large pages of texts, nor for writing notes or

drawing pictures.

Due to the limited timeframe some of the possible features of the application will not be

implemented during the course of this project. Hence, one limitation is that PDF-files and

not PowerPoint files should be usable for this project. Another reason for this decision was

that PDF-format is an open standard (Adobe Systems Incorporated, 2006) whereas PPT is

a Microsoft license (Microsoft, 2012a). The implementation of support for PPT files among

other features may however be implemented in future releases of the application.

5

2. Theory - Android, licenses and the Spiral Model

This chapter describes Android packages and classes that are important building blocks in

the application. The packages and classes are native to Android and the understanding of

them is vital for the systemdesign. In addition to the information about Android classes,

there is sections about other tools used in the project: free software and their licences, the

Spiral Model, and Version Control Systems.

2.1. Android Building Blocks

In the following sections basic objects of the Android SDK will be described. An Android

developer needs to be familiar with these building blocks to understand and develop

applications. The first of these building blocks is the Activity.

2.1.1. Activity

Every time a user interacts with something on an Android device there is an Activity to take

care of the interaction. With few exceptions an Activity is always interacting with a user in

one way or another (Android, 2012b).

Figure 1. Lifecycle of an Android activity (AndroidTics, 2012)

6

When a user starts an application in Android, Android starts it and brings it to the

foreground so that the user is able to interact with it (Burnette, 2010). An application usually

has multiple Activities plus a Process which acts like a container for them. Each Activity has

its own life cycle, ilustrated in figure 1.

Beside the methods an Activity has to perform its purpose, it should also include the

methods described in figure 1. These methods are in charge of what will happen when an

application starts, is brought to the background, when it is resumed, and when the program

is closed or when Android kills it to reuse the resources the application uses.

2.1.2. Intent

Before the start of a new activity, there is an Intent which starts it. Brunette describes an

intent as “a mechanism for describing a specific action” (Brunette, 2010). Some examples of

an intent could be to: “send an email”, “take a photo” or “make a call”. The Intent is the part

of an application that stores information to be forwarded when a new activity should be

started. The intent also tell the application to start the activity.

2.2. Graphical components within Android

Within Android graphics there are four basic components for drawing objects, a Bitmap, a

Canvas, a drawing primitive and a Paint. All four have to be present to draw something on

the screen (Android, 2012c). These can all be found within the android.graphic package.

The section is based on information from the Android Developers documentation (Android,

2012c-f).

2.2.1. Bitmap

To enable an application to draw something on the screen, a Bitmap is required. A Bitmap

holds information on all the pixels that is rendered on the screen. The Bitmap has no native

drawing functions. Due to this, some other class is required to tell the Bitmap what pixels to

store. A Canvas is such a class.

2.2.2. Canvas

When an application's Canvas is first constructed, a Bitmap has to be specified before

anything can be done. When the Bitmap is set the Canvas can begin its work. The work it

performs is managing all calls to draw something. When a function should draw something

on the screen all calls go via the Canvas. The Canvas in turn forwards the information to the

Bitmap that store the pixels.

7

2.2.3. Drawing Primitives

The Canvas cannot simply draw anything, what it can draw must contain a drawing

primitive. Android supplies a range of predefined classes of drawing primitives. Two

examples of drawing primitives are a previously saved Bitmap and a Path. Unlike the

Bitmap described in 2.2.1. a Path only contains information about the position of the lines

and padding.

2.2.4. Paint

The drawing primitive does not contain colour information, styling, size and similar

properties. A fourth class is thus required to keep track of this information, which is called

Paint. If an application should have multiple drawable objects in multiple colours and size,

one Paint object must be created per drawable object, else all objects share the same

properties.

2.3. The View Package

In order to combine the graphical components into a User Interface the Android.view

package is required. This package includes methods to create and handle the layout of any

Android Application (Android, 2012g). The package contains dozens of classes which can

be used to create many types of UI‟s. This sub-chapter will explain a few classes of the

package which are vital for this project. The section is based on information from the

Android Developers documentation (Android, 2012e, g - k).

2.3.1. ViewGroup

Within the View package there is a class called ViewGroup. A ViewGroup is exactly what

the name implies, a group of Views. A ViewGroup is Z-ordered, the Z value of the View is

used to determine what Views should be on top. The Views in a ViewGroup are called

children. It is the parent class for layout and View containers. It also defines the

ViewGroup.LayoutParams class which is used by Views to tell their parents how they want

to be laid out.

Figure 2. A ViewGroup tree (Android, 2012j)

8

2.3.2. How Android Draws Views

When an Activity receives focus from an Application, it will receive a request to draw its

layout. Every Activity has its own layout hierarchy, usually defined in an XML layout file,

which is used by the Android framework that handles the drawing procedure. The Activity

provides the root of its layout hierarchy where the drawing begins. The tree is then

traversed to render each View that intersects the region in wwhich to draw. Each

ViewGroup is responsible for requesting its children to be drawn and each View is

responsible for drawing itself.

It is a process consisting of two cycles, where both of these are top-down traversals. The

first cycle is to collect measurements for the Views. During the second cycle the parents are

responsible for positioning their children according to the sizes received from the first cycle

2.3.3. SurfaceView

SurfaceView is a subclass to View, it provides a dedicated drawing surface within an

existing View hierarchy. The idea is that the surface will be “behind” the existing window

and when something is drawn on it, the SurfaceView will “punch a hole” in the window to

display its content. Interaction with a SurfaceView is not direct, instead the class use

an interface to handle the surface, called SurfaceHolder which can be acquired by using

the getHolder() method. The class has implementable methods to detect when the surface

is created and destroyed.

2.4. Open Source and Licenses

The following section describes the difference between Copyright and Copyleft and the

GNU GPL v3 license.

2.4.1. Copyright and Copyleft

The term copyright is defined at Dictionary.com as: “the exclusive right to make

copies, license, and otherwise exploit a literary, musical, or artistic work, whether printed,

audio, video, etc.” (Dictionary.com, 2012). Copyright is given to a person by default on

anything the person produces, be it text, music or video. As soon as text has been written

by a person, that person becomes the author and receives copyright for it. The text now

belongs to the author and he or she has the sole rights and may do whatever with it.

Copyleft is a general method for making a copyrighted work free, and requiring all modified

and extended versions of the program to be free as well (GNU, 2012b). What this mean is

that copyleft is a way for the author to retain the copyright, whilst still releasing the rights to

make alterations, copies and re-distribute the work. This release can be achieved in one of

9

two ways: the work can be released into the “Public Domain” directly. However, in some

countries it is not possible to release the rights to a work until after death of the author. In

these countries the work must be licensed using a copyleft license. In Sweden for example,

an author holds the right to his or her work until 70 years post mortem. In order to release

the copyrights prior to 70 years post death in Sweden the work therefore has to be

copylefted (Lagen.nu, 2011).

A copyleft license is based on the four freedoms of free software (GNU, 2012a). The user is

free to run the program for whatever purpose, and to modify the code to suit a specific need

and to re-distribute the code for others with similar needs. Furthermore, the user is free to

base completely different software that utilizes parts of the code from the first. The only

requirement of a copyleft license, is for the re-distributions to be under the same license

(GNU, 2012b).

2.4.2. GNU GPLv3

There are several different copyleft licenses that a developer can use. Among them, the

most widely used one is called GNU GPLv3, which is written by GNU and The Free

Software Foundation. As mentioned it is the most commonly used licenses to distribute free

software under. For example around 70% of the projects released on sourceforge.net are

licensed with one of the different GPL versions. (Sourceforge, 2012)

GNU was founded in 1984. Their goal was to release an operating system with similar

functions to UNIX, with the exception that it was to be based solely on free software. The

organization coded much of the functions themselves. They saw the need for a unique

license that everything would be released under so that the work would stay free in the

future. In February of 1989 the first version of GPL was released (GNU, 2012c), and unlike

for example BSD, GPL required that any further releases would also have to include the

same license, and thus the four freedoms.

10

2.5. The Spiral Model

The Spiral Model is a software development process defined by Barry Boehm in 1986

(Sommerville, 2011). The Spiral Model consists of several iterations, each divided in four

phases with incremental releases of the product, as seen in figure 3. The model was

originally intended for large, expensive and complicated projects.

Figure 3. An illustration of the Spiral Model (Wikimedia, 2008)

11

2.5.1. The Four Phases

Sommerville describes that during the first phase the objectives of the current iteration is

decided.(Sommerville, 2011) The objective constraints on product and process are also

identified, thus enabling a detailed management plan to be outlined. When the plan is

created the last part of this phase is conducted. A risk analysis identifies problems that may

occur and depending on the nature of these, alternative strategies are planned.

When the second phase starts, the risks identified in the first phase are analyzed in detail.

After the analyzing stage, steps are taken to reduce the risks. The third phase is when the

actual development and validation is done. However, before any development is done a

development model for the current iteration is chosen. The approach for the development

model varies depending on the nature of the project.

When the final phase is reached the project is reviewed. This requires a decision to be

made; whether to continue with another iteration or not. If another iteration is to be made,

plans are drawn up and the project re-enters the first phase once again (Sommerville,

2011).

2.6. Version Control System

A VCS is a tool which enables multiple users to work on the same project without

overwriting another user‟s code contribution. The users commit the files they are working on

while also being able to receive updated versions of parts of the project that others in the

group are working on. If the users have edited the same file then Subversion will try to

merge the files. If conflicts in the file occur on a text row based level, meaning the users

have made two different changes to the row, then the user will be prompted to decide if the

line of code located on the server, or the one he is trying to commit is correct (Chalmers

Insidan, 2012).

12

3. Development methods and processes

This chapter describes how the project was executed. It explains what software engineering

process was used during the project, how it works and why it was decided to use this

process. This chapter will also present a few of the challenges of the project and describe

how they were dealt with.

3.1. Choice of Software Engineering Process

Four major development phases were identified during the planning phase of the project. In

the first phase a PDF-reader application was to be found and implemented. The second

phase would consist of creating a basic paint application. The third phase would be to

integrate and combine the results of the previous two phases. The fourth and final phase

would be to implement more functionality and improve the GUI.

Each phase would require the completion of the previous phase before the new phase

could start. A development process which could deal with incremental steps was required.

Based on this information a decision was made to use the Spiral Model for the project.

There were many advantages using the Spiral Model for the project. Due to the linearity of

the project the phases needed to be executed in a specific order. As the Spiral Model is an

iteration through four phases, it was a suitable choice for the project. Even if the Spiral

Model initially was intended for projects larger than this, it provided the suitable tools for the

organisation of the project. These tools do not have the disadvantages of elaborate

documentation throughout the process, as for example the Waterfall Model (Waterfall

Model, 2012).

During the third phase, the development phase, a development approach called throwaway

prototyping was used. This approach was used since it is suited for projects where user

interface risks are dominant (Sommerville, 2011).

3.2. Choice of Platform and OS

When designing an application for a tablet there are three larger platforms to choose

between. These platforms are: Android, iOS, Windows. All platforms have their pros and

cons. One good thing about Android is that is a more open platform compared to the others.

In order to release products for iOS or Windows the applications needs to be approved by

Apple or Microsoft before they are published. Applications for Android does not need to be

approved in this way. Android is also supported by an increasing number of brands, while

Apple is the sole producer of products with iOS. Windows phones are not as widespread as

the other two at the moment.

13

One disadvantage with Android is that it is developed by a lot of different companies. This

makes most Android tablets and phones look slightly different and have different hardware,

which can impact the performance of some applications.

The programming language that Android applications are written in is Java, one of the

world‟s most used programming languages (Langpop, 2012). Due to this, a lot of

documentation and solutions to simple problems exist on the internet.

Taking these two pros into consideration, along with the fact that several project members

already had some experience developing applications for Android, the decision was taken

to develop for Android.

3.3. Choice of Programming Language

It is worth mentioning that there are other languages than Java that can be used on

Android. The support for these relies on third party software and require additional software

to either be included in the release or already present on the device. However, since the

group was used to Java and the fact that it is the native language of Android, no other

language was considered.

3.4. Specification

At the start of each iteration of the project a specification was created. If there were ideas

which could not be implemented in the current iteration or if new ideas were formulated,

they would be added to the draft of the next iterations specification. The first two iterations

through the Spiral Model were sub-projects with their own requirements. the third an

integration of the two sub-projects and the fourth was additional features. During the merge

all previous requirements had to be met, while also following the specification for the

requirements of the combined application. The specification with a complete list of

functional and non-functional goals can be found in Appendix A.

3.5. PDF-reader

After the initial research, a decision was made that building a PDF-reader from scratch

would not be possible, having the timeframe of the project in mind, as it would be a large

project in itself. Instead of writing the PDF-reader it was decided to make use of one of the

advantages of Free Software, the freedom to modify existing code for use in other projects.

Research was conducted about using an existing PDF-reader and the possibility of porting it

for use on Android. As Android applications are written in Java, the focus was on finding

PDF-reader projects written in Java. One of the projects found was PDF-renderer (PDF-

renderer 2012). PDF-renderer was a simple PDF-reader written in Java.

14

Another project that was considered was JPedal (JPedal 2012). This project was interesting

because it allowed you to convert PDF to images, which could potentially be a useful

feature. After looking through the code however, it was decided that porting a pure

javaproject to Android would nearly be as time consuming as writing a reader from scratch.

A new decision was made to find a project that was already available on Android and further

build upon that. The first one was a port of the PDF-renderer project, which had been

investigated earlier. Unfortunately this implementation was last updated in 2009 (Ferenc

Hechler 2012). It basically did what was needed, however it was too slow and the user

interface was not very appealing.

Other projects were investigated and it was decided that VuDroid (VuDroid 2012) met the

requirements. The renderer was relatively fast and UI was slick and easy to use. First and

foremost it worked well with tablets, which was vital. Secondly VuDroid was licensed under

GNU GPLv3, which means it fell under the category of free software mentioned in section

2.4.

3.6. Version Control System

To be able to manage using several work-stations when writing the code for the program a

VCS called Subversion was used. Subversion is a useful tool which enables programmers

to commit revisions of the project to a remote server. The user can then log onto another

work-station, connect to the server and download an updated revision of the project.

There are multiple choices of VCS‟s, the system used in this project was SVN. To this, a

shell extension for windows called TortoiseSVN was used. This was used for a simple

reason: Chalmers supplied a repository, and the guide on “Chalmers Insidan” suggested

TortoiseSVN for Windows.

3.7. Testing

When developing the application, the code was continuously tested for errors and bugs.

Finding the bugs at an early stage would consequently reduce the risk of them cascading

and causing more errors further down the line. At the start and middle of the project the

functions were tested individually while they were coded.

3.8. How to satisfy the requirements

At the end of each cycle of the project process the current implementation of the

application was put through a Quality Assurance process. This process consisted of testing

the application and going through all the specifications to verify that the specification had

been followed. Was it to be found that some part of the application did not follow the

15

specification a decision had to be made; whether the application should have been

changed so that it would have followed the specification, or if a change in the specification

would produce a better end result.

3.8.1. User Testing

Project plans were made to conduct user testing. The user testing would consist of sending

out a form to selected test users, along with a public link on facebook. A basic form with

information on how to download and install the application was created to aid the user

testing. Over the course of the project this form was consistently updated with instructions

and questions concerning the implemented functions.

16

4. Implementation

This chapter describes the most important parts of the application and why certain choices were

made.

4.1. The Program Structure

The program consists of two integrated parts. The already existing VuDroid project and the

WhiteBoard which is specifically developed for this project. A visual representation of the

class diagrams can be found in Appendix C.

4.1.1. VuDroid

The VuDroid project contained features which would not be used in SlideNoter. To minimize

the code and remove the risk of errors by unimplemented features VuDroid was scaled

down to fit the use of the application. The smaller version consists of eight packages. The

seven core packages contain the main components required to run the program. The last

package consists of subclasses of the core‟s codec package. Its purpose is to create a

class for the PDF, a class that has all the necessary information and variables, for example

how many pages a PDF-file contains. This information is then used to decode and render a

PDF document.

The classes that do the actual decoding had to be modified in order work together with the

WhiteBoard parts of the application. These modified classes were moved into the

WhiteBoard packages.

4.1.2. The Whiteboard

The slidenoter.whiteboard package contains the classes used for creating, rendering and

editing the notes. The main class of the package is WhiteboardView, which is a subclass to

SurfaceView. It uses the help classes MyText, MyHighlight and MyPoint to create and

maintain the notes that the user has written. When implemented, the WhiteBoard is a

transparent layer that is put on top of another application.

4.1.3. The SlideNoter Application

The SlideNoter application consists of a core package that handle UI, a package that

contains the Whiteboard area, a package that holds the modified VuDroid packages and the

remaining VuDroid packages that are left unchanged.

The slidenoter.core package contains the classes to start and operate the application.

These classes contain the main menu, the file browser and the PDF-viewer with the ability

to scribble notes. To be able to decode and render a PDF-file the slidenoter.vudroid

17

package is used. It is in this package that the classes which originate from the VuDroid

project are located. The third package is called slidenoter.whiteboard, which is described in

4.1.2.

4.2. Design of GUI

A minimalistic GUI design was chosen for the application. The UI is a straightforward

approach, with the idea that the user should not be able to missclick. Since the point of the

application is to create notes on a PDF document most of the screen should be used to

show the PDF. An in depth look at the UI can be found in chapter 5.1.

4.3. Scroller

In order to be able to navigate files that are large enough to not fit on one page, a scroll

function is required. This was implemented by enabling a scroll mode when none of the

drawing modes are activated. This scrolling function moves the drawings only along the y-

axis. Scrolling is accomplished with help of a method that is implemented in the

WhiteboardView class called onTouchEvent(). This method is inherited from SurfaceView.

Each time the user touches the screen on the device and it is in a region of the

WhiteboardView, a MotionEvent is generated and sent to the onTouchEvent method

belonging to the WhiteboardView. From a MotionEvent it is possible to get the information

about where the event occurred, what kind of action was made, among others. To get the

scrolling working, the two aforementioned parts of information are essential. There are three

different MotionEvents used in the scroller ACTION_DOWN, ACTION_MOVE and

ACTION_UP.

● ACTION_DOWN is when the user makes the first contact with the screen.

● ACTION_MOVE is when the finger is dragged along the screen.

● ACTION_UP is when the user removes the finger from the screen.

To get the scroll to work, certain methods had to be called upon depending on the action.

When an ACTION_DOWN action occurred, the coordinates of that event was saved to a

variable. An ACTION_MOVE then continuously calculates the offset from the last known

position and redraws the Whiteboard with this new offset. The move action also overwrites

last known position. When the user lifts the finger from the screen, the ACTION_UP is

invoked, and a final redraw of the screen is made. This is done to ensure that the

application has the very last touch event as a saved state.

18

4.3.1. Scrolling the Whiteboard

During the implementation of the scrolling function two related problems occurred.

Firstly, when a user scrolled the drawn objects, the position of the objects changed, yet

they were never rendered on the canvas. The solution was to send the drawn objects to the

canvas to be rendered every time they changed position. Secondly; an artifact originating

from the solution to the first problem. While scrolling the View, all the drawn objects left a

path of copies after itself. What had happened was that the scroll function painted the drawn

objects on the canvas every time they were moved, without removing the existing objects.

To solve this problem the canvas was cleared before rendering the moved object.

4.3.2. Scrolling both Views at the same time

The two parts of the application, drawing and viewing PDF, were separate from each other.

When the time came for putting the Views on top of each other a problem arose. An Android

application only allow the top view of a layout to be manipulated at any given time. Thus a

way to manipulate both Views using only the top one had to be devised.

Due to how the Views were implemented, the Whiteboard viewer is always on “top”. This

made for a simple solution. A variable was added to the Whiteboard in which a reference to

the VuDroid PDF-viewer was stored. Whenever a scroll is called for in the Whiteboard, the

Whiteboard scrolls first, and then invokes a call to the referenced viewer. The viewer is then

turned active and is scrolled.

Since both of the Views are scrolled individually, there was a need to limit how long it

should be possible to scroll. VuDroid already had these limit values stored. The VuDroid

reference was used again, in order to get the limit values used in VuDroid and make sure

that the Whiteboard stops its scrolling at these values.

4.4. Implementing textboxes

This section discuss the choice and implementation of textboxes.

4.4.1. EditText

There were several options for an application to display text. The application had the

requirement that the text should be editable. Therefore the View EditText appeared as a

good choice. It had many desirable properties, for example movability, background

transparency, changing text colour, et cetera. An attempt was made to implement a method

that created and then added a EditText to the ViewGroup. The main problem with this

implementation was focus. As mentioned earlier the ViewGroup is Z-ordered. So the latest

EditText were on “top” of the previous Views added. If a user was to write a whole

19

paragraph of text inside the EditText, it covered a lot of space and the user was not able to

access anything underneath it.

4.4.2. Canvas.drawText

The focus problem was solved by using a method that the Canvas class provided,

drawText(). Instead of writing some text into an EditText this method is given a string of text

and then makes sure it will be drawn. The method could however not handle the newline

sign, „\n‟. All text was drawn on a single line. Instead of a newline a symbol, ‟[]‟, was drawn.

To draw the right amount of lines, a split at every „\n‟ symbol was implemented splitting the

string into several smaller strings. Then draw them one by one with a y-offset of the text

size.

How the Canvas should know what text to draw was solved by creating objects of the

MyText class and adding them to a list. Then the onDraw method of the canvas iterates

through this list and draws them. MyText holds a String, coordinates and a TextPaint object

that contains attributes as size, colour et cetera.

4.4.3. Text input

The next step was to find a way to get a string from the user. Again, EditText had a lot of

the desired properties. A relevant question arose: how would a user want this to work? Of

the different designs tried, the simplest one was to make a transparent EditText that the

user could move around and write text in. When the user was done writing, a string

containing the content and the coordinates of the EditText was sent to the drawing method.

The text was then drawn in the exact same place on the Canvas as the EditText.

Unfortunately this was not as easy as anticipated, especially to fit the text in the transparent

EditText with the drawn text on the Canvas. At first the font of the two were different.

Fortunately there was a subclass to Paint named TextPaint that solved this problem.

Another problem which still has to be resolved is the offset between lines. There is a small

difference between the EditText and the text that is drawn. This is made more obvious when

a string of text uses a large text size and is a couple of lines long. A further issue was the

difference in how text was placed, something that had a rather simple solution. EditText

always placed itself with its upper left corner at the coordinate where the user pressed.

Whilst the drawText() method placed the lower left corner of its first line at the coordinate.

To compensate for this difference, the y coordinate is decreased by 1x of the text size. With

this compensation the text ends up in the correct area.

20

4.4.4. Editing text

Once the text had been drawn on the Canvas it is not editable. A fix was to add some kind

of point on the screen that corresponds to the text. When pressed the text is loaded into the

EditText and removed from the list of MyTexts. The text could then be edited and when the

user is done it is added to the MyText list again and then redrawn into the Canvas.

4.5. Other issues

This section describes a few issues the project group encountered during the

implementation of SlideNoter.

4.5.1. Showing both Views at once

As mentioned the application has been developed in two different parts. A part that shows a

PDF document and a drawing part. Both of them were developed as Views in order to be

able to put them in the same ViewGroup. A suitable layout had to be found making it

possible to view both views at the same time. Multiple layouts were tested a, however most

of them presented an issue when it came to scrolling. In the end a FrameLayout was

chosen, a layout that Z-order the Views added to it. Because the DocumentView, the PDF

part, could have many different layouts. For exapmle it could consist of images, it is hard to

make it transparent therefore it was placed as the first child of the FrameLayout.

WhiteboardView, the drawing part, was then added as a second child to the FrameLayout.

Since WhiteboardView was placed “on top” of the DocumentView, it was made transparent

so both of them were shown.

4.5.2. Layout design

Android has a system using XML files for creating the layout of an application. While in

theory the usage of the building blocks that was provided is simple, problems occurred in

strange ways. The layout included a bar on the right side of the screen where tools are

located. During the implementation of the layout the code android:layout_gravity=”right” was

used without success. To solve the problem a simple workaround was found. When the

layout is rendered it goes through the layout in a sequential manner. To solve the problem a

reordering of the objects was made in the XML which resulted in the fields being shown in

the correct location.

21

4.5.3. Changing between modes

Changing between drawing and scrolling was easily solved by using a so called Enum type

that was simply named mode. When the user touched the screen different method calls

were made depending on what mode was active. Modes could easily be added on as

development proceeded: just add the mode to the Enum list, then add methods for a touch

event. For example, Text mode was added this way.

In order to clarify what mode the user is in, when a user clicks a button to change mode, the

text on it changes and an indicator on it is lit. Some extra buttons appear below the active

mode indicating there are other options available in the new mode compared to the

previous one. For example, the button for changing text size only appear while in Text

Mode.

22

5. Results

In this chapter a prototype of the application is presented. The prototype is a working copy

of the application, yet not the finished product. This chapter is dedicated to present this

prototype, its functions and if it fulfills the requirements. This will be presented with text and

pictures of the running prototype.

5.1. The Application

The user experience of the application consists of four different sections. These four

sections are described in their respective section.

5.1.1. The Main Menu

The main menu is the first view a user sees when starting the program. In figure 4 you can

see three buttons. The first one let the users browse through the hard drive to locate PDF-

files. The second button opens up a blank Whiteboard without an underlying PDF. The last

button is simply an exit button that shuts the program down.

Figure 4. The Main Menu

23

5.1.2. The Browser

When a user presses the browse button he or she is taken to the browser view. This is a

view used to find the PDF-file the user would like to open. As shown in figure 5, the browser

contains two tabs. The first tab is called Browse. It is in the browse tab the entire folder

hierarchy of the filesystem is shown; the user can browse through the folders until the

desired PDF-file is found. When a PDF-file is selected the browser redirects the user to the

PDF-Viewer and Whiteboard.

The second tab is called Recent. As the name implies it shows the PDF-files which the user

recently have opened.

Figure 5. The Browser

24

5.1.3. The PDF-Viewer

When a User has opened a PDF-file via the browser, the application will change view to the

PDF-view. In this view the PDF-file will be rendered and the user is able to scribble notes

upon the PDF. The Whiteboard currently has four modes. The modes are selected through

the use of three buttons located in a menu bar on the right hand side. Scroll mode is the

default mode and it is automatically selected if none of the buttons are pressed.

The Draw mode lets the user draw freely by hand. The pen size and colour can be changed

with buttons that appear on the left when this mode is selected. An erase tool is to be found

here as well. In figure 6, lines are drawn to point out where the text comments are pointed

to.

The Text mode lets the user add text comments by pressing where he wants them on the

screen. The font size and colour can be changed by buttons that are only visible when in

Text mode. Once the text is placed, a little square appear in the top left corner. When

clicking the square the user can edit the text string, move the text box around on the screen

or remove the comment all together. As seen in figure 6, two text comments have been

made.

Figure 6. A PDF-file with a few notes on it

25

In the Highlight mode, the user is presented with the possibility to highlight areas. In order

for areas to be highlighted the user must press and hold down a finger, then drag it

diagonally from corner to corner of the area to be highlighted. The current implementation

adds an opaque layer of yellow on the area selected. It is used in figure 6 to highlight an

important note.

5.1.4. The Whiteboard

If the user has pressed the New Whiteboard button of the main menu page, the application

renders a blank view with the mode buttons on the right hand side. This view is the very

same as described in section 5.1.3 above, with the exception that this has no underlying

PDF-file. All of the aforementioned functions are shown in figure 7.

Figure 7. A demostration of the Whiteboard

26

5.2. Fulfillment of the functional requirements

The functional requirements of the first three iterations have all been met. At the end of the

specified time for the project, work on implementing and fulfilling the requirements of the

fourth iteration had begun. These implementations were however cut out from the release of

the prototype as they were not yet finished. As a consequence none of the functional

requirements from the fourth iteration have been fulfilled.

5.3. Fulfillment of the non-functional requirements

Unlike the functional requirements, the non-functional ones cannot be measured. As an

example, the definition of “User-friendly UI” is in the eyes of the beholder. While certain

users may think a UI is easy to navigate, others might experience the opposite. Hence, it is

hard to decide if a requirement is fulfilled or not. A good way to decide the fulfillment of non-

functional requirements is to let the customer or end-users test and evaluate the application.

However, since grand scale testing was left out of the project, the non-functional

requirements have been evaluated by the project members instead. Due to this, the

evaluations are not unbiased and before a release of the application an unbiased evaluation

would be desirable

At the start of the third iteration the non-functional requirements of the previous iterations

were fulfilled. However, with the integration of the two parts together of the application a bug

occurred causing a memory leak. This caused the PDF to stop rendering after extensive

scrolling. This problem left the requirement “it should be stable, even after long uses”

unfulfilled. Of the requirements from the third iteration the “Fast and responsive UI” was

met. As the work from iteration four was cut out, no work on fulfilling those requirements has

been done.

5.4. User tests

Due to the development process requiring more time than planned, the project group

agreed that it would be more beneficial to conduct public user tests when the application is

closer to its final release. Therefore the focus lay upon implementing more functionality and

solving the current bugs instead of conducting the user testing.

27

6. Discussion

This chapter will discuss the pros and cons of the specification and major decisions that

were made throughout the project process, as well as discuss possible uses outside of

education.

6.1. Evaluation of the Specification

Before the project started a basic specification was formulated. What the finished product

would contain, and what would be ideas for future development. From the above mentioned

specification, some of the functions were selected for each iteration. After considering the

time required for each part, the decision was taken to add some extra time for each

component to compensate for bugs and problems that might occur.

At the end of the project time, iteration three was near complete. The application was not

yet complete according to the initial specification. The application fulfilled all the

specifications for what a finished product would contain, except for saving and loading.

6.2. Evaluation of major decisions

This section describes and evaluates the major decisions of the project in their respective

sub-chapter.

6.2.1. Working with the Spiral Model

Working with the Spiral Model was causing work to only progress on the functions included

in each iteration. It provided a solid structure for the development of the application, without

requiring a lot of time for formalities. There were always clear goals on what to be finished

and when. The time schedule held rather well throughout the whole process. Some of the

problems described in chapters 4.3-4.5 required a bit more time then was expected,

therefore saving and loading had to be cut from the third iteration and put into the fourth.

The fact that the Spiral Model was developed for larger projects was not an issue for the

project. By dividing the project into four small parts and applying the Spiral Model on them,

a more agile approach was created which gave good results for the project.

6.2.2. Android as a Development Platform

As stated in 3.3. Android application programming is based on one of the world's most used

programming languages, Java, and a lot of documentation and solutions to problems exist.

Google also provides excellent documentation on everything that they themselves have

added to the Java Language via their developer web page. All this in unison made Android

an easy platform to adapt to and develop for.

28

As the layout is kept separate from the actual code, this allowed for code and layout to be

developed simultaneously. While one person focused on code, the other could focus on the

UI, without the need for the functions to be fully coded yet. As code for layout and UI are

kept separate from the java code, the one working on UI does not have to know how to

code functions, and vice versa. This feature proved to be beneficial since two project

members could work on the layout while the other who could work on the contents. Quite a

few problems occurred when making the UI as no one in the group really was well oriented

when it came to UI, and layout.

6.2.3. SurfaceView as Drawing Area

During the research phase the SurfaceView class was found. The advantages of the class

were many and it was decided to use it. However, later on in the project the choice of

SurfaceView proved to be less than ideal. During the implementation it was discovered that

SurfaceView is used ideally only when a smaller drawing surface is required. Since the

drawing surface in SlideNoter may span over dozens of pages this proved to be an issue,

an issue which may be the cause of a memory leak. Beside this, it turned out that all of the

features used in SlideNoter could be achieved with some tricks with the regular View class.

6.2.4. VuDroid as the PDF-reader

VuDroid was chosen based on primarily two factors. Firstly, it had a nice UI and was easy to

use. Secondly, it was the fastest of the projects that the project group looked at. The project

lacked in one key area though, documentation, which proved to be a problem during the

process. In order to be able to use VuDroid as a base, all the different parts had to be

understood, which was fairly time consuming. In hindsight, if any of the other projects had

been better documented, they would probably have been a better choice in the end, at least

regarding time.

Altogether though, VuDroid was a good choice to build the application on. The browser was

already in place and it was well structured to allow other file extensions in the future. After

the initial understanding of VuDroid, it did not require too much work to integrate it into the

application and have it work together with the Whiteboard.

6.2.5. The Usage of a Version Control System

The use of some kind of Version Control System is required for a project of larger size with

multiple developers. As section 3.6. brings up VCS are a way for multiple users to

effectively code together. The usage of TortoiseSVN and the repository supplied by

Chalmers were at the beginning confusing. However, when all the project members had

29

learnt to use tool efficialty it proved to be a valuable tool for the project, especially when a

need to revert changes to a previous revision emerged.

Working with SVN instead of cloud based storage areas such as Dropbox, or simply mailing

code back and forth proved to be positive. This is mainly because SVN provided a relatively

easy way to synchronize the project files and allows for a revision history. Thus providing

the team with the means to revert changes to an earlier state if something went wrong.

While this could have been achieved with mail as well, SVN was much more structured and

easy to navigate.

6.3. Possible other uses of the application

During the project the focus has been to develop an application for scribbling notes on

lecture slides. However, with added functionality there are other possible fields of

application for the application. One example could be when reading a document and the

user encounters a word it does not understand. If there is a function which enables word

lookup or translation, then the reader could use it to grasp the meaning of the word. Building

on this feature the application could add the explanation to the document, so that the next

time the user encounters the word there is already an explanation for it.

30

7. Conclusion

The following section describes experiences learnt during the project and how it could have

been done differently. It also contains a section on further improvements that could be

made in future by the project members or other developers.

7.1. Critical discussion

One initial criticism is that the software engineering process could have been smoother.

Looking back at it, more emphasis should have been put on the research phase in the

beginning of the project. If a more extensive research phase was conducted, with

documentation of which parts of the Android SDK that were suitable for the project‟s goal,

this could potentially have avoided some of the problems that occurred. For example the

SurfaceView as discussed in 6.2.3.

One of the toughest problems of the project was handling both writing code and the report

simultaneously. When working on the project, the time was usually spent working several

days on the code, followed by several days on the report. A better solution would have been

to manage our time differently; to work a few hours with coding followed by a few hours of

writing the report every day or week. This would have led to the project progressing in a

more even pace where it would have been easier to keep to a time schedule.

One of the biggest flaws of the application is the fact that the save function is not

implemented properly. Without it, there is little reason to actually use the application, since

the comments you add will not be saved for the next time you open the PDF. The main

reason for it being left out was because it was overshadowed by the other functions. Since it

was fairly low priority in the requirements specification, time did not allow for it to be

implemented. This was a planning failure; the project group underestimated the time some

parts of the application would take, for example getting the PDF-reader to work and

integrating it with our application.

7.2. Future work

There are improvements to the application that can be considered for future development,

following is a short selection with brief descriptions.

7.2.1. Fixing memory leak

When a user has opened a PDF-file and has scrolled down a sufficient amount, the

document stops rendering. According to Log Cat, this is due to insufficient memory. VuDroid

alone can scroll much farther than with an added layer of Whiteboard.

31

7.2.2. Support for more file extensions

Taking the allocated time frame for this project into consideration, it was decided that an

open source solution VuDroid was to be used. The choice of VuDroid currently limits the

application to reading PDF-files. Thus future work on this project is adding support for other

file extensions, for example PPT.

7.2.3. The ability to search for notes

As the application works right now the user cannot search for specific text written in notes or

on the PDF. Further development on either the reader or on the Whiteboard would result in

the ability to search for text on the slides, or within the text boxes. The best solution for the

latter would be integrating the Whiteboard with a SQLite database which Android has built

in support for.

7.2.4. Cloud based storage and multiple user editing

Storage of files is slowly being moved from the user to a cloud based server. Further

development of this application could allow users to connect to a web server and load files

from there. Along with a cloud based solution multiple users have the ability to read the

same file. With further work this could enable multiple users to edit simultaneously in real

time.

7.2.5. Word lookup

When the user is reading a large document in a foreign language, for example an E-book.

The user may want to lookup a word in a dictionary. A dictionary plugin is therefore a

possible thing to implement.

32

Bibliography
Adobe Systems Incorporated. (2006) PDF Reference. Sixth edition.
http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/PDFs/PDF_reference_1-

7.PDF (2012-03-16).
Android (2012a) Android 3.0 Platform Highlights. Android Developers.
http://developer.android.com/sdk/android-3.0-highlights.html (2012-03-19).
Android (2012b) Activity. Android Developers.
http://developer.android.com/reference/android/app/Activity.html (2012-05-05).
Android (2012c) Canvas. Android developers.
http://developer.android.com/reference/android/graphics/Canvas.html (2012-05-05).
Android (2012d) Paint. Android developers.
http://developer.android.com/reference/android/graphics/Paint.html (2012-05-05).
Android (2012e) Android 2d graphics. Android developers.
http://developer.android.com/guide/topics/graphics/2d-graphics.htm (2012-05-05).
Android (2012f) Drawable. Android developers.
http://developer.android.com/reference/android/graphics/drawable/package-summary.html

(2012-05-05).
Android (2012g) Packages. Android Developers.
http://developer.android.com/reference/android/view/package-summary.html (2012-05-05).
Android (2012h) ViewGroup. Android Developers.
http://developer.android.com/reference/android/view/ViewGroup.html (2012-03-20).
Android (2012i) How Android Draws Views. Android Developers.
http://developer.android.com/guide/topics/ui/how-android-draws.html (2012-03-19).
Android (2012j) User Interface. Android Developers.
http://developer.android.com/guide/topics/ui/index.html (2012-03-19).
Android (2012k) SurfaceView. Android Developers.
http://developer.android.com/reference/android/view/SurfaceView.html (2012-03-14).
AndroidTics (2012) Android Activity and Intent.
http://androidtics.com/ActivityIntent.php (2012-05-14).
Burnette, E (2010). Hello, Android. Introducing Google’s Mobile Development Platform.

Third Edition. Raleigh, North Carolina. The Pragmatic Bookshelf
Chalmers Insidan (2012) Versionshantering.
http://www.chalmers.se/insidan/SV/arbetsredskap/it/bastjanster/versionshantering
 (2012-05-05).
Copyright Directive (2001) European Union law, European Union
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2001:167:0010:0019:EN:PDF

(2012-05-05).
Dictionary.com (2012) Unabridged. Copyright.

 http://dictionary.reference.com/browse/copyright (2012-05-05).
DMCA (1998) U.S. Copyright Office. US Government
http://www.copyright.gov/legislation/dmca.PDF (2012-05-05).
Ferenc Hechler (2012) Android PDF-Viewer. http://andPDF.sourceforge.net/ (2012-03-16).
GNU (2012a) What is free software? http://www.gnu.org/philosophy/free-sw.html

(2012-03-19).
GNU (2012b) GNU Project, Free software Foundation.

http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/pdf_reference_1-7.pdf
http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/pdf_reference_1-7.pdf
http://developer.android.com/sdk/android-3.0-highlights.html
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/graphics/Canvas.html
http://developer.android.com/reference/android/graphics/Paint.html
http://developer.android.com/guide/topics/graphics/2d-graphics.htm
http://developer.android.com/reference/android/graphics/drawable/package-summary.html
http://developer.android.com/reference/android/view/package-summary.html
http://developer.android.com/reference/android/view/ViewGroup.html
http://developer.android.com/guide/topics/ui/how-android-draws.html
http://developer.android.com/guide/topics/ui/index.html
http://developer.android.com/reference/android/view/SurfaceView.html
http://androidtics.com/ActivityIntent.php
http://www.chalmers.se/insidan/SV/arbetsredskap/it/bastjanster/versionshantering
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2001:167:0010:0019:EN:PDF
http://dictionary.reference.com/browse/copyright
http://www.copyright.gov/legislation/dmca.pdf
http://andpdf.sourceforge.net/
http://www.gnu.org/philosophy/free-sw.html

33

http://www.gnu.org/copyleft/copyleft.html (2012-05-05).
GNU (2012c) GNU Project, Free software Foundation
http://www.gnu.org/licenses/gpl-1.0.html (2012-05-05).
GNU (2012d) GNU Project, Free software Foundation
http://www.gnu.org/licenses/gpl-3.0.html (2012-05-05).
Google Play (2012a) qPDF Notes, Qoppa Software.
https://play.google.com/store/apps/details?id=com.qoppa.activities.noteskey (2012-05-05).
Google Play (2012b) ezPDF Reader, Unidocs Inc.
https://play.google.com/store/apps/details?id=udk.android.reader (2012-05-05).
Google Play (2012c) RepliGo Reader, Cerience Corporation.
https://play.google.com/store/apps/details?id=com.cerience.reader.app (2012-05-05).
JPedal (2012) http://www.jpedal.org/ (2012-03-16).
Lagen.nu (2011) Lag (1960:729) om upphovsrätt till litterära och konstnärliga verk.
https://lagen.nu/1960:729#P43 (2012-05-05).
Langpop.com (2012) Programming Language Popularity. http://langpop.com/ (2012-05-06).
Microsoft (2012a) Microsoft Trademarks. Legal and Corporate Affairs.
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx

(2012-03-19).
Microsoft (2012b) Save as PDF.
http://office.microsoft.com/en-us/powerpoint-help/save-as-PDF-HA010064992.aspx
 (2012-03-19).
PDF-renderer (2012) http://java.net/projects/PDF-renderer/ (2012-03-16).
Sommerville, I (2011). Software engineering. Ninth Edition, p.48-49. Boston. Pearson.
Sourceforge (2012). http://sourceforge.net/directory/license:osi-approved-open-source/
(2012-05-05)
VuDroid (2012) http://code.google.com/p/vudroid/ (2012-03-16).
Waterfall Model (2012) All about the Waterfall Model. http://www.waterfall-model.com/
(2012-05-05)
Wikimedia (2008) Spiral model (Boehm, 1988).
http://commons.wikimedia.org/wiki/File:Spiral_model_%28Boehm,_1988%29.png
 (2012-05-14)

http://www.gnu.org/copyleft/copyleft.html
http://www.gnu.org/licenses/gpl-1.0.html
http://www.gnu.org/licenses/gpl-3.0.html
https://play.google.com/store/apps/details?id=com.qoppa.activities.noteskey
https://play.google.com/store/apps/details?id=udk.android.reader)
https://play.google.com/store/apps/details?id=com.cerience.reader.app)
http://www.jpedal.org/
https://lagen.nu/1960:729#P43
http://langpop.com/
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx
http://office.microsoft.com/en-us/powerpoint-help/save-as-pdf-HA010064992.aspx
http://java.net/projects/pdf-renderer/
http://sourceforge.net/directory/license:osi-approved-open-source/
http://code.google.com/p/vudroid/
http://www.waterfall-model.com/
http://commons.wikimedia.org/wiki/File:Spiral_model_%28Boehm,_1988%29.png

34

Appendixes

Appendix A

When specifying the specification requirements the following form was used.

ID: ###

Use case / scenario: The use case

Trigger: What triggers this case

Precondition: A precondition for the case to trigger

Basic path:

A basic path that the user follows in order to trigger

Exception path:

What cases should trigger an exception and what kind of exception should be triggered

Post condition:

What happens after a successful case

Author: Author name

Compact list of the specification requirements, divided on the iterations where they were set.

Iteration 1 - PDF-reader

Functional Goals

Usable on Android OS.

Read and draw a PDF file.

A basic interface containing open/options/exit etc.

Non-Functional Goals

 Should open and show a PDF file fast.

 It should be stable, even after long uses.

Iteration 2 - Whiteboard

Functional Goals

 Usable on Android OS.

35

 Draw basic figures.

 Scroll the figures (so they can follow the PDF-page later).

UI for all current functions with room for new functions.

Non-Functional Goals

 Good structured object oriented code for easy maintenance

Iteration 3 - SlideNoter

Functional Goals

 Scroll the PDF-file along with the notes.

 Draw basic figures on a PDF-file.

Highlight

Text boxes

Draw figures/lines/arrows

Non-Functional Goals

 If the application crashes then the notes should not be lost.

 Fast and responsive UI.

Iteration 4 - Continued Developments

Functional Goals

Prio 1.

 Save your notes in a stand-alone file.

 Load a PDF file along with the file containing the notes.

Text formatting boxes (bold etc)

Prio 2.

 Search among the notes

 Symbol recognition

Search among symbols

Voice recording

Bind voice recording playback to specific pages

36

Support for PPT

Server-based storage

Add notes to a database

Spellchecker

Tabbed browsing

Non-Functional Goals

A very user-friendly UI.

Should be able to handle PDF files with 1000 pages

37

Appendix B - UML

Figure 8. A UML diagram of the SlideNoter package

38

 Figure 9. A UML diagram of the Whiteboard package

39

Appendix C - List of Contributions

C.1. Fields of responsibility

Background research - Everyone

Project Description - Everyone

Choice of methods - Robert Moberg

Design of poster - Axel Pelling

Graphical User Interface - Everyone

Integration of VuDroid - Everyone

Interaction between VuDroid and the Whiteboard - Patrik Aldenvik, Jonas Scholander

Lead Editor - Robert Moberg

Lead Programmer - Patrik Aldenvik

Planning - Robert Moberg

Project Log - Everyone

Whiteboard - Everyone

Project Report - Everyone

C.2. Presentations

Midterm presentation: Axel Pelling, Jonas Scholander

Final presentation: Robert Moberg, Patrik Aldenvik

Verbal opposition: Axel Pelling, Jonas Scholander

