

Institutionen för Vattenbyggnad Chalmers Tekniska Högskola

Department of Hydraulics Chalmers University of Technology

Analys av tänkbara numeriska modeller för naturliga vågtåg

av

Jonas Mårtensson

Examensarbete nr 1984:3

Göteborg 1984

Adress:

Institutionen för Vattenbyggnad Chalmers Tekniska Högskola 412 96 Göteborg

Telefon:

031/81 01 00

ABSTRACT

In this paper natural wave-trains are studied in order to obtain a reasonably simple method to analyse and synthesize time series with a certain content of wave characteristics. The main issue is to evaluate the possibilities to describe such characteristics within the linear Fourier analysis, especially regarding the, so assumed, random phase angles. A total number of 25 natural wave-trains were analysed, in the frequency domain, by means of an FFT-algorithm, as well as in the time domain. Wave characteristics as Significant wave height, $H_{\rm s}$, Zero-up-cross period $T_{\rm z}$ and the correlation coefficient $\emptyset_{\rm HH}$, which expresses the correlation between succeeding wave heights, were calculated in the time domain and compared with statistical parameters obtained in the frequency domain. For some of the time series the original phase spectra, recived by the Fouriertransform, were mixed and brought back into time domain by means of an invers Fouriertransform. New parameters were calculated and compared with the original data.

The inquiry shows that general statistical parameters as H_s and T_z , i.e. parameters that are applicable to the entire wave-train, could be handled within the linear theory with a sufficient accuracy, since the magnitude of these parameters correspond to the energy density spectrum almost exclusively, at least as long as the phase angles has the character of "white noise". On the other hand it is shown that the occurrence of "local" wave phenomena, as wave groups and jumps in wave heights, hardly can be treated correctly within the random wave model, since these wave characteristics will depend on the interaction between individual sinewaves separated by, in accordance with the theory, random phase angles. The absence of adequate parameters to describe these phenomena may also be noted.

The conclusion must be that specified sea states may be synthesized properly by means of the Fourier-analysis, in terms of e.g. H_s or/and T_z , but wave forms cannot be handled in a decent manner by this approach. Maybe non-linear approaches as the "Scattering transform" could be used to solve this problem.

FÖRORD

Detta examensarbete har utarbetats under perioden 1983-1984 vid Instutitionen för Vattenbyggnad, Chalmers tekniska högskola, Göteborg. Examensarbetet utgör för mig en vidareutbildning dels som en fortsättning på kursen "Vågor och vågkrafter", dels när det gäller att praktiskt hantera och programmera en dator.

Ett benäget bistånd vid genomförandet har givits främst av min handledare Nils Mårtensson samt av Lars Bergdahl och Technocean i Göteborg AB. Till dessa och till institutionen vill jag härmed rikta mitt varma tack! Samtidigt hoppas jag att mina erfarenheter ska kunna komma till användning även i framtiden.

Göteborg 1984-12-17.

Jonas Mårtensson

INNEHÅLLSFÖRTECKNING

AT T 37 A 3100
Δ1. L.M.Δ1V Γ
 TTTTTTTTTTTTTTT

- 1.1. SYFTE
- 1.2. ANLEDNING
- 1.3. VÅGPARAMETRAR
- 1.4. TIDSSERIER
- 2. UPPMÄTNING AV VÅGOR
- 2.1. MÄTNING AV VERTIKALACCELERATION
- 2.2. TRYCKMÄTNING

2.3. MÄTNING AV ELEKTRISK STRÖM

- 2.4. AKUSTISK MÄTNING
- 2.5. MÄTNING MED RADAR
- 2.6. BEHANDLING AV MÄTDATA

3. FOURIERANALYS

3.1. FOURIERSERIEN, PERIODISKA FUNKTIONER

3.2. FOURIERTRANSFORM, ICKE-PERIODISKA FUNKTIONER

3.3. DISKRET FOURIERTRANSFORM

3.4. SNABB FOURIERTRANSFORM, FFT

3.5. SYNPUNKTER PÅ FOURIERANALYSEN SOM ANALYSMETOD AV NATURLIGA VÅGOR

4. VÅGGRUPPER

4.1. ENVELOPPTEORI, TEORI OM VÅGSERIER, FREKVENSEGENSKAPER

4.2. KORRELATION, TIDSEGENSKAPER

5. GENOMFÖRANDE AV FOURIERANALYS MM

- 5.1. FOURIERTRANSFORM
- 5.2. FASVINKLAR
- 5.3. VÅGGRUPPER
- 5.4. ÖVRIGA FÖRSÖK

5.5. SLUTSATSER

6. REFERENSER

1. ALLMANT.

1.1. SYFTE

Den främsta avsikten med detta examensarbete är att öka kunskapen då det gäller att analysera och simulera naturliga vågtåg, samtidigt som en ökad träning i att hantera och programera en dator erhålls "på köpet". Utgångspunkten är att definiera viktiga egenskaper hos ett vågtåg, varefter möjligheterna att beskriva dessa undersöks, dels direkt ur tidsserien, dels med hjälp av s.k. Fourieranalys. Som slutmål ställs möjligheten att på ett rimligt enkelt sätt simulera en tidsserie med så många som möjligt på förhand bestämda egenskaper.

1.2. ANLEDNING

Konstruktioner till havs utsätts för helt andra miljökrafter än vad som är fallet för landkonstruktioner. Havskonstruktioner utsätts främst för en dynamisk vådbelastning vilken förändras i både tid och rum. Vid dimensionering är det därför nödvändigt att studera förhållandena på den plats där konstruktionen ska operera och därefter göra en bedömning av hur stora belastningar konstruktionen ska dimensioneras för. Bedömningen grundar sig främst på en avvägning mellan långtidsstatistik hos vågorna och konstruktionens förväntade livslängd. Sådan statistik utnyttjas t.ex. vid dimensionering av oljeplattformar i Nordsjön, där det bl.a. krävs att konstruktionen ska dimensioneras för den s.k. 100-års stormen, dvs. det sjötillstånd som förväntas uppträda en gång på 100 år. Dessutom måste konstruktionen kontrolleras för den utmattningsrisk som föreligger även vid mer "normala" sjötillstånd.

Det är sedan länge känt att "farligheten" hos vågbelastningen på en konstruktion påverkas av det sätt som vågorna angriper konstruktionen. Beroende på typ av konstruktion, Condeep-plattform, semi-submersible, fartyg, vågbrytare, vågkraftverk etc., och de olika krav som ställs på dessa, kan t.ex. en följd av "måttligt" höga vågor vara farligare än en ensam hög våg. I andra fall kan ömsom höga och ömsom låga vågor, "jumps" ge upphov till det farligaste lastfallet. Då det som regel inte går att mäta upp vågtåg med de egenskaper man önskar kontrollera sin konstruktion för, "en 100-års storm vid Tromsöflaket med ett stort innehåll av våggrupper", är det nödvändigt och önskvärt att man istället kan-simulera sådana vågtåg. Vid studium av vattenvågor är det nödvändigt att ha tillgång till väldefinierade parametrar som förmår att beskriva utmärkande egenskaper hos olika sjötillstånd. För att undvika missförstånd är det även lämpligt att anta någon form av konvention, då det är möjligt att definiera dessa parametrar på olika sätt. De två vanligaste parametrarna då det gäller att beskriva ett sjötillstånd ger ett mått på våghöjder respektive vågperioder.

En vanlig konvention är att definiera en våg som avståndet mellan två nolluppgenomgångar, fig. 1.1., varvid våghöjden beräknas som avståndet mellan högsta vågtopp och lägsta vågdal, samt vågperioden som tiden mellan två sådana nollkryssningar (zero-up-crossings). (Genom denna definition "missar man" vissa mindre vågor som inte skär den tänkta medelvattenytan.)

Figur 1.1. Vanlig definition av våghöjd H och vågperiod T.

För att dessa parametrar ska kunna beskriva en hel serie av vågor har man tillgripit medelvärdesbildning genom att definiera Signifikant våghöjd H_s och Nollkryssningsperiod T_r enligt:

> $H_s = (H_{1/3}) = medelvärdet av de N/3 högsta våghöjderna$ i en serie av N vågor.

 $T_z = medelvärdet$ av alla vågperioder T_i i vågtåget.

I den linjära teorin ges även samband mellan dessa parametrar och det i Fourieranalysen erhållna energispektrat S(f), eller Amplitudspektrat A(f) enligt:

$$H_s \approx 4 \cdot \sqrt{m_0}$$
, $T_z \approx 2\pi \cdot \sqrt{m_0/2}$

(1.1)

$$\dim m_n = \int_0^\infty f^n \cdot s(f) df$$

och speciellt
$$m_0 = \frac{1}{2} \sum A_n^2$$
.

Härvid antas att parametrarna endast är beroende av formen på energispektrat, vilket i detta sammanhang medför en låsning. H_s och T_z har därför beräknats enligt den ursprungliga definitionen, direkt ur tidsserierna.

En våggrupp definieras som en serie av vågor som överskrider en viss nivå, vanligen H_s, se fig. 1.2. Med hopp i våghöjder avses låga vågor, vanligen $\leq \overline{H}$, växelvis åtföljda av höga vågor, vanligen $\geq H_s$, Skillnaderna mellan olika vågformer visas i fig. 1.3.

Rye (11) har försökt beskriva våggrupper genom att beräkna korrelationen mellan efterföljande våghöjder. Han definierar en korrelationskoefficient $\emptyset_{_{\rm HH}}$, kap. 4, vilken beräknas för de här förekommande tidsserierna.

1.4. TIDSSERIER

Som arbetsunderlag för detta examensarbete fanns tillgång till sammanlagt 25 uppmätta tidsserier. Mätningarna har utförts av Technocean i Göteborg AB, dels i sjön Lygnern söder om Kungsbacka, tidsserierna 1-19, dels vid Trubaduren, tidsserierna 20-25. Tidsserierna består av 1024 resp. 4096 datapunkter med 0,3 resp. 0,2 s intervall, vilket ger en total registreringstid på 5,12 resp. 13,65 minuter. H_s varierar mellan ca 0,1 - 0,26 m resp. 0,4 - 1,4 m, och T_z mellan 1,4 - 3,8 s resp. 2.4 -4,1 s.

arin in the south and a second and the second and the second second water and the second second second second the	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	al advertige of many water from approximation of the second and the second of the second frequence of the frequence of the second s	- And how more and any and a second and a second and a second of the production of the address of the and the second s	wangagayayayayayayayayayayayayayayayayaya	neury-men-u-u-u-u-u-u-u-u-u-u/u/men-u/u/men-u/u/u-u-u/u/u-u/u/u-u/u/u-u/u/u-u/u/u/u/u/u/u/u/u/u/u/u/u/u/u/u/u/u	may/w/why/why/w/www.why/www.why/www.why/www.ww/w/w/w/w/w/w/w/w/w/w/w/w/w/w/w/w	with very many many many many many many many man	may may may we were and here were and any and any were a provinger of the	Month of the mean on the former of the second of the secon	and mererary NUMMerer Many Mary Mary Mary Mary Mary Mary Mary Mar
mp of a construction of a direction of the production of the produ	and marked multiply and marked and marked and and a second and a secon	are so myself of a second water of a flow from the after a second and the second se	of the first as the second way in the when the second of t	my way way way and a way and a way way way way way way way way way w	warangermanikanikananghalananganikanananananananan	www.www.werman.of. m. www.whentherman.	mondeners and the providence of the second o	www.hummlon.man.hummlon.man.hummlon.man.hummlon.	and the solution of the second solution of the solution of the second solution of the secon	when when you way he way have a will when we will way and a far

Figur 1.4. Tidsserierna 1-12.

.1.5

UPPMÄTNING AV VÅGOR

2.

Uppmätning av vågor kan ske efter ett antal olika principer/metoder. Vilken metod som väljs i det enskilda fallet är bland annat beroende av:

Vad tidsserien ska användas till.

Storleksordningen hos de vågor som ska mätas.

- * Vattendjup.
- Salthalt.

Avstånd till land eller plattform.

- Tillgång till plattform.
- Tillgång till \$.

I det här avsnittet ges en kortare beskrivning av principer och egenskaper hos några vanliga mätmetoder.

2.1 MÄTNING AV VERTIKALACCELERATION

Princip: En flytkropp tillåts följa vattenytans rörelser varvid en accelerometer inuti denna mäter den vertikala accelerationen. Genom att integrera vertikalaccelerationen två gånger kan våghöjden beräknas.

Den praktiska utformningen av de instrument som arbetar enligt principen varierar beroende på de lösningar man har valt för att minska vågbojens känslighet för horisontalaccelerationer, påverkan av förankring etc. Stora oceanografiska bojar kan väga som en ordinär personbil och ha en diameter på ca 2.5 m. Dessa kan innehålla utrustning för mätning av t.ex. salthalt, vindhastighet, strömmar mm. (...det finns stora och det finns små, och det finns några med flash-light på).

En väletablerad tillverkare av vågmätare är holländska Datawell som saluför sina instrument med varumärket "Waverider". Dessa finns i ett antal olika utföranden med olika kringutrustning och används mycket i Sverige av bl.a. SMHI. I grunden består en Waverider av en klotformad boj, vilken förutom accelerometer innehåller elektronisk utrustning för integration av signalen från denna, samt överföring av signalen till en landstation via radio. (VHF ca 27 MHz). Utrustningen drivs av batterier med en livslängd på minst nio månader. Bojen är kopplad till ett speciellt förankringssystem vilket är så utformat att påverkan på den vertikala rörelsen blir så liten som möjligt, se fig.2.2. De krafter som uppstår i förankringen resulterar i fel av storleksordningen ± 1.5%.

För vågor med våglängder under ca 5 m kommer bojen att sluta följa vågamplituden och ju mindre vågorna blir desto sämre blir bojens respons. För stora vågor är avvikelsen mellan bojens och vattenytans rörelser liten. Fördelarna med Waverider-bojen är att konstruktionen är relativt enkel vilket medför att bojen blir driftssäker och enkel att använda. Dessutom finns reservdelar att tillgå. En av de största begränsningarna med Waverider-bojen är dess korta räckvidd. Radiovågorna når ca 30-50 km beroende av väderlek mm och är känsliga för störningar. Bojen är dessutom känslig för extrema strömmar samt stark kyla.

2.2 TRYCKMÄTNING

Princip: Tryckförändringen i vattnet mäts vid en bestämd nivå under vattenytan, t.ex vid botten, varefter våghöjden kan beräknas.

Metoden används dels vid fasta bottenmonterade sensorer vilka överför tryckvariationerna via en kabel till en land- eller plattformsbaserad mottagare, dels till vågmätningar från faryg. Bottenmonterade sensorer är billiga och driftssäkra medan fartygsmätningar kräver en mer sofistikerad utrustning. Vattentrycket mäts på båda sidor om fartyget varefter en dator korrigerar för fartygets egen acceleration och vertikala rörelse. Våghöjden kan beräknas ur tryckamplituden:

(2.1) $\Delta p = \rho ga \cosh k(z+h)/(\cosh kh)$, där k=vågtalet och h=vattendjupet

Horisontella hastigheter ger upphov till tryckfält vilket leder till att "dalarna" i vågtågen stämmer bra medan "topparna" blir för låga. Om vattendjupet blir stort i förhållande till våghöjden, dvs

$$(2.2) \qquad \Delta p/p_{+ot} \longrightarrow 0$$

så kommer tryckförändringen på grund av vågorna att bli svåra att mäta. Detta innebär att tryckmätning med bottenmonterade sensorer begränsas av dels vattendjupet dels vågornas storlek. Ett alternativ är då att montera sensorerna vid en plattform om sådan finns tillgänglig.

··· .

n an Andreas (1997) a status ar an an Angrés An Angrés (1997) a status ar an Angrés (1997) An Angrés (1997) a status ar an Angrés (1997)

Elektr. vågstav (reg. Korr. hydrostat) Uppmätt hydrostatiskt tryck

Figur 2.3. Jämförelse mellan resultat från tryckgivare och elektrisk vågstav.

. .

. .

.

x

För vågor med våglängder under ca 5 m kommer bojen att sluta följa vågamplituden och ju mindre vågorna blir desto sämre blir bojens respons. För stora vågor är avvikelsen mellan bojens och vattenytans rörelser liten. Fördelarna med Waverider-bojen är att konstruktionen är relativt enkel vilket medför att bojen blir driftssäker och enkel att använda. Dessutom finns reservdelar att tillgå. En av de största begränsningarna med Waverider-bojen är dess korta räckvidd. Radiovågorna når ca 30-50 km beroende av väderlek mm och är känsliga för störningar. Bojen är dessutom känslig för extrema strömmar samt stark kyla.

2.2 TRYCKMÄTNING

Princip: Tryckförändringen i vattnet mäts vid en bestämd nivå under vattenytan, t.ex vid botten, varefter våghöjden kan beräknas.

Metoden används dels vid fasta bottenmonterade sensorer vilka överför tryckvariationerna via en kabel till en land- eller plattformsbaserad mottagare, dels till vågmätningar från faryg. Bottenmonterade sensorer är billiga och driftssäkra medan fartygsmätningar kräver en mer sofistikerad utrustning. Vattentrycket mäts på båda sidor om fartyget varefter en dator korrigerar för fartygets egen acceleration och vertikala rörelse. Våghöjden kan beräknas ur tryckamplituden:

(2.1) $\Delta p = \rho ga \cosh k(z+h)/(\cosh kh)$, där k=vågtalet och h=vattendjupet

Horisontella hastigheter ger upphov till tryckfält vilket leder till att "dalarna" i vågtågen stämmer bra medan "topparna" blir för låga. Om vattendjupet blir stort i förhållande till våghöjden, dvs

$$(2.2) \qquad \Delta p/p_{tot} \longrightarrow 0$$

så kommer tryckförändringen på grund av vågorna att bli svåra att mäta. Detta innebär att tryckmätning med bottenmonterade sensorer begränsas av dels vattendjupet dels vågornas storlek. Ett alternativ är då att montera sensorerna vid en plattform om sådan finns tillgänglig.

Elektr. vågstav ∧(reg. även skum) Korr. hydrostat ∧(tryck (Bernoulli) Uppmätt hydro-statiskt tryck

Figur 2.3. Jämförelse mellan resultat från tryckgivare och elektrisk vågstav.

Princip 1: En pelare försedd med elektroder står i vattnet. När en elektrod kommer i kontakt med vatten sluts en ström. Strömmen är proportionell mot antalet nerdoppade elektroder vilket ger våghöjden.

Metoden är enkel att kalibrera och signalen är lätt att digitalisera. Kan monteras till en plattform eller en stabil boj. Upplösningen är beroende av elektrodavstånden.

Princip 2: I en kabel ändras spänningen med vattnets varierande nivå. Spänningen är proportionell mot våghöjden. Metoden är billig och lämpar sig bäst för små vågor. Monteras till en plattform. Problem kan uppstå med beväxning och förorenat vatten.

Princip 3: Som 2 fast man här mäter resistansen. Denna är proportionell mot våghöjden enligt $R \approx 1/h$, där h = vattendjupet.

Princip 4: Som 2 och 3 fast man mäter här kapacitansen. C $\approx 1/h$.

Resistans och kapacitansmätarna monteras liksom de övriga till någon form av plattform. Resistansmätaren är att föredra framför kapacitansmätaren då den senare har problem med vidhäftning. Metoderna har en mycket hög känslighet och har en noggrannhet i storleksordningen 9-10 cm.

Figur 2.4. Resistans och kapacitansmätare.

2.4 AKUSTISK MÄTNING

H

Princip: Gångtiden för en akustik puls från botten till vattenytan och tillbaks igen är beroende av vattendjup + våghöjd.

Ett inverterekolod placeras på botten, dvs ett ekolod riktat mot vattenytan. Från detta sänds korta pulser, ca 56 µs, med en frekvens ca 710 kHz mot vattenytan där dessa reflekteras. För att signalen inte ska reflekteras mot flera delar av vågen samtidigt måste signalen vara mycket "smal", se fig.2.5. Den reflekterade pulsen registreras av ekolodet varefter signalen sänds via kabel till en land- eller plattformsbaserad mottagare. Nya pulser sänds var tionde sekund, dvs med en repetitionsfrekvens = 10 Hz. Noggrannheten hos metoden varierar med vattnets salthalt och temperatur. Grumlighet i vattnet på grund av suspenderade partiklar samt luftbubblor stör ekolodets funktion. Inverterekolod används bl.a. av SMHI och är vanliga på plattformar.

f=710 kHz

Kabel till landstation

max 100m

Inverterekolod

2

Typisk landstation för entusiastisk forskare.

2.5 MATNING MED RADAR

Princip: När en radarstråle träffar vattenytan sprids denna. Spridningen är direkt proportionell mot energin i vågspektrat.

Försöken att mäta vågegenskaper med hjälp av radar är ännu på utvecklingsstadiet. Det står redan nu klart att metoden kommer att bli dyrbar men att man i gengäld kan komma att erhålla betydligt mer information om vågorna än vad som är fallet med andra här beskrivna metoder.

Med en radar kan t.ex. uppmätas:

- Avstånd till ett "mål".
- Vinkel till ett "mål".

* "Målets" reflexionsegenskaper.

* Dopplerfrekvens.

Härigenom kan information erhållas om position, "måltyp" och hastighet. Reflexionsegenskaperna beror dels av radarns sändfrekvens, 0.1-100 GHz, våglängd, 3mm-3m, antennpolarisation, linjär, cirkulär eller blandad, samt av radarns upplösning, 1m-10km, dels av "målets" allmänna egenskaper:

- * Storlek.
- Form, komplexitet.
- * Ytstruktur.
- * Material.
- * Aspektvinkel mot radarn
- * Rörelse (dopplerskift).

Vattenytans radarreflexion påverkas speciellt av:

- * Vindstyrka, sjötillstånd.
- * 01.jeskikt.
- Bestrykningsvinkel.

samt i mindre grad av vindriktning, strömmar, vattentemperatur salthalt och föroreningar.

Radar kan i framtiden tänkas användas för sjötillståndsmätning, (tornradar, radarhöjdmätare eller scatterometer), eller mätning av vågspektrum, (dopp-lerradar).

De signaler som erhålls från en vågmätare representerar, i t.ex. analog eller digital form, numeriska värden på en fysikalisk kvantitet, t.ex. volt, vertikalacceleration etc., vilken mäts av instrumentet. Med s.k. signalbehandling kan en omvandling eller förändring ske av signalen genom att numeriska signalvärden kombineras med yttre värden och/eller andra signalvärden. Målet med signalbehandlingen är att erhålla en så korrekt bild av verkligheten som möjligt, i det här fallet alltså vattenytans elevation i tiden. Bland annat kan Fouriertransformen utnyttjas t.ex. för korrigering av instrumentets egen inverkan, "distorsion", på signalen och för beräkning av textur i bild för detektering av "särdrag" som kan utnyttjas i andra analysalgoritmer. Korrelation kan utnyttjas både för uppskattning av signalparametrar, "anpassat filter", och för bestämning av lokalisering (tid, rum). Vanligen brukar någon form av "rimlighetstest" läggas på de mätvärden som erhålls. SMHI gör t.ex. mätningar, "tar samples", med en frekvens av 10 Hz under ca 17 minuter varje timma. Felaktiga vågdata sorteras bort och efter rimlighetstesten har antalet vågdata reducerats från 10 per sekund till 2, $(\Delta = 0.5 \text{ s}).$

De värden x_r som slutligen ingår i den diskreta tidsserien $[x_r]$, se fig.2.6, har alltså genomgått en rad operationer. Dels har korrigeringar gjorts för distorsion i själva mätinstrumentet, jmf fig.2.3, dels för störningar vid överföringen från instrumentet till den dator som har att behandla signalen, exempelvis vid amplitud- eller frekvensmodulering vid överföring via radio.

Figur 2.6. Uppmätning av en kontinuerlig funktion i diskreta intervall. (Newland 1975)

3. FOURIERANALYS

När man vill analysera en tidsserie ligger det nära till hands att försöka uppdela denna i identifierbara komponenter. En beprövad metod är då Fourieranalys där man approximerar den uppmätta tidsserien med en trigonometrisk Fourierserie. Koefficienterna till denna kan beräknas med Fouriertransform och efter omskrivning kan dessa tolkas som amplituder och fasvinklar till de i Fourierserien ingående sinustermerna. Här ges en kortfattad beskrivning av teorin bakom Fourieranalysen.

3.1 FOURIERSERIEN, PERIODISKA FUNKTIONER

Villkoren för en Fourierserie ges av följande

KONVERGENSSATS FÖR FOURIERSERIER

Antag att funktionen f(t) är periodisk med perioden T, begränsad samt styckvis integrerbar. Då är dess Fourierserie konvergent med summan f(t) i alla de punkter t, där funktionen är deriverbar. I dessa punkter är:

(3.1)
$$f(t) = \frac{1}{2} a_0 + \sum_{n=1}^{\infty} a_n \cos n\Omega t + b_n \sin n\Omega t$$

Om funktionen f(t) är reell och uppfyller villkoren i konvergenssatsen, kan grunduttrycket för Fourierserien i ekvation 3.1 skrivas på så kallad Amplitud-

JEAN BAPTISTE JOSEPH FOURIER (1768-1830)

fasvinkelform:

(3.4)
$$f(t) = A_0 + \sum_{n=1}^{\infty} A_n \cos(n\Omega t + \Phi_n)$$

Med denna skrivform kan Fourierkoefficienterna lättare tolkas fysikaliskt. Här blir:

(3.5)
$$A_0 = a_0/2, A_n \cos \phi_n = a_n, -A_n \sin \phi_n = b_n \text{ for } n \ge 1$$

 $A_n \ge 0$ vilket medför att:

(3.6)
$$A_n e^{j\oplus n} = a_n - jb_n$$
, $A_n = \sqrt{a_n^2 + b_n^2}$ och $\oplus_n = \arctan(b_n/a_n)$

fig. 3.1.

Fourierutvecklingen (4) av en periodisk funktion f(t) innebär en uppdelning av funktionen i en konstant term, A_0 =medelvärdet av f(t), och sinusformade svängningar $A_n cos(n\Omega t + \Phi_n)$, n=1,2,3,..., med amplituder A_n , vinkelfrekvenser n Ω och fasvinklar Φ_n . Svängningarna bildar tillsammans med konstanttermen en <u>spektral uppdelning</u> av f(t), vilken kan återges grafiskt genom att A_n och Φ_n avsätts som sträckor mot tillhörande vinkelfrekvenser i ett diagram. Man erhåller då amplitudspektrum resp. fasspektrum.

Amplitudspektrum för en funktion med neg. medelvärde.

Man kan även skriva om Fourierserien i ekv. 3.1 med hjälp av Eulers formler och får då Fourierserien på komplex form:

(3.7)
$$f(t) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty}\frac{1}{2}(a_n - jb_n)e^{jn\Omega t} + \frac{1}{2}(a_n + jb_n)e^{-jn\Omega t}$$

Genom att införa komplexa Fourierkoefficienter

(3.8)
$$c_0 = a_0/2, c_n = (a_n - jb_n)/2$$
 och $c_{-n} = (a_n + jb_n)/2$

kan ekv. 3.7 skrivas:

(3.9)
$$f(t) = \sum_{-\infty}^{\infty} c_n e^{jn\Omega t}$$

Ekvationerna i 3.8 ger tillsammans med 3.2 och 3.3 att:

(3.10)
$$c_n = \frac{1}{T} \int_{a}^{a+1} f(t) e^{-j\Omega n t} dt$$
 $n=\pm 0, \pm 1, ...$

Om f(t) är reell har funktionen utöver den komplexa Fourierserien även en Fourierserie på amplitud-fasvinkelform, dvs ekv. 3.4 och 3.9 blir då ekvivalenta. Relationerna mellan dessa båda ekvationer blir då:

(3.11)
$$A_0 = c_0, A_n = 2|c_n|, \phi_n = \arg c_n$$

3.2 FOURIERTRANSFORM, ICKE-PERIODISKA FUNKTIONER.

FOURIERS INTEGRALSATS

Antag att f(t) är styckvis integrerbar och absolutintegrerbar i intervallet $(-\infty,\infty)$, dvs att $\int |f(t)| dt < \infty$. Om då

(3.12)
$$F(\omega) = \int f(t)e^{-j\omega t} dt$$
 så gäller att

 ∞

(3.13) $f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{j\omega t} d\omega \quad \text{i varje derivering spunkt till } f(t)$

Funktionen $F(\omega)$ som definieras i ekv. 3.12 kallas FOURIERTRANSFORMEN till f(t). Vid tillämpningarna i Fourieranalysen står t för tiden och variabeln ω är då vinkelfrekvensen. Tidsfunktionen f(t) och vinkelfrekvensfunktionen F(ω) bildar ett s.k. FOURIERPAR. Om man i stället för vinkelfrekvensen vill använda frekvensen $f=\omega/2\pi$, kan Fourierparet 3.12 och 3.13 skrivas:

(3.14)
$$f(t) = \int_{-\infty}^{\infty} g(f) e^{2\pi f j t} df, \ där \ g(f) = \int_{-\infty}^{\infty} f(t) e^{-2\pi f j t} dt$$

och $g(f) = F(2\pi f)$.

Genom formeln 3.13 uttrycks tidsfunktionen f(t) som ett slags summa av oscillationer, $e^{j\omega t}$, med vinkelfrekvenser ω och "infinitesimala" amplituder F(ω) $d\omega/2\pi$. Eftersom ω vid integrationen i 3.13 ska genomlöpa alla reella tal säger man att funktionen f(t) har ett kontinuerligt spektrum. Detta bör jämföras med motsvarande uppdelning 3.9 för en periodisk funktion. Här kan vinkelfrekvenserna in spektrat endast anta de diskreta värdena $\omega = 0, \pm 0, \pm 20, \pm 30, \ldots$ varför spektrat för en periodisk funktion sägs vara diskret.

I de flesta fall måste man emellertid i praktiken göra numeriska beräkningar av Fouriertransformerna. I både det kontinuerliga och det diskreta fallet måste man ersätta det oändliga integrations- eller summationsområdet med ett ändligt. I det kontinuerliga fallet måste man dessutom approximera integralen på det ändliga området med t.ex. Simpsons formel eller trapetsformeln. Man erhåller då en summa av termer som är precis likadan som i det diskreta fallet och den numeriska beräkningen kommer alltid att bli en beräkning av en diskret Fouriertransform med ett ändligt antal termer.

3.3 DISKRET FOURIERTRANSFORM

Antag att vi vill beräkna Fourierkoefficienterna till en uppmätt tidsserie vilken representeras av de diskreta värdena x_r , $r = 0,1,2,\ldots,N-1$, enligt fig.2.6. Här är $t = r\Delta$ och $\Delta = T/N$. ($[x_r]$ markerar här den diskreta tidsserien vilken är uppmätt från den kontinuerliga tidsserien f(t)). Om vi utgår från ekv.3.10 och sätter $\Omega = 2\pi/T$ erhålls:

n=0,1,2,...

(3.15)
$$c_n = \frac{1}{T} \int_{0}^{1} f(t) e^{-jn2\pi t/T} dt$$

Då vi har att göra med en diskret tidsserie måste vi enl. ovan approximera integralen i ekv.3.15 med en summation. Vi får då:

(3.16) $X_{k} = \frac{1}{T} \sum_{r=0}^{N-1} x_{r} e^{-j2\pi kt/T} \Delta$

Summan, vilken motsvaras av de skuggade staplarna i fig. 3.3., ska alltså approximera den totala arean under kurvan i figuren.

fig.3.3. Approximation vid diskretisering av en ursprungligen kontinuerlig kurva. (Newland 1975)

Genom att sätta $N\Delta = T$ erhålls:

(3.17)
$$X_{k} = \frac{1}{N} \sum_{r=0}^{N-1} x_{r} e^{-j2\pi kr/N}$$

 $k = 0, 1, 2, \dots, (N-1)$

Även om ekv.3.17 inte innehåller tillräckligt mycket information för att erhålla den kontinuerliga tidsserien f(t), så kan de diskreta värdena ur serien $[x_r]$ återfås <u>exakt</u>. Ett värde ur serien $[x_r]$ erhålls med den inversa formeln:

(3.18)
$$x_r = \sum_{k=0}^{N-1} x_k e^{j2\pi kr/N}$$
 $r = 0, 1, 2, ..., (N-1)$

Vi har nu den konventionella definitionen för Diskret Fouriertransform, DFT, ekv.3.17 och Invers Diskret Fouriertransform, IDFT, ekv. 3.18.

För att erhålla symmetri mellan transformparet 3.17 och 3.18 är antalet Fourierkoefficienter begränsade till k = O-(N-1), dvs N st = antalet punkter r i tidsserien [x_r]. Om vi skulle försöka beräkna Fourierkoefficienter X_k för k större än N-1, t.ex k = N+m erhålls:

(3.19)
$$X_{N+m} = \frac{1}{N} \sum_{r=0}^{N-1} x_r e^{-j(2\pi r/N)(N+m)} = \frac{1}{N} \sum_{r=0}^{N-1} x_r e^{-j2\pi rm/N} \cdot e^{-j2\pi r}$$

vilket medför att $X_{N+m} = X_m$ då e^{-j2 πr} = 1 oberoende av r. Detta innebär att Fourierkoefficienterna X_k bara repeteras för k > (N-1), se fig. 3.4.

fig.3.4. Periodisk upprepning av Fourierkoeff. $|X_k|$. (Newland 1975)

Kurvan ifig.3.4 är symmetrisk kring frekvensen 0 och den unika delen av kurvan återfinns i frekvensområdet $|\omega| \leq \pi/\Delta$ rad/s. Högre frekvenser visar bara falska Fourierkoefficienter vilka är upprepningar av de äkta vid frekvenser under π/Δ rad/s. Detta betyder att Fourierkoefficienter beräknade med DFT endast är korrekta för frekvenser under $\omega_k = 2\pi k/N\Delta = \pi/\Delta$, dvs för k = 0, 1, 2..., N/2. Om det finns frekvenser över π/Δ i orginal-signalen orsakar dessa störningar i form av en "skuggeffekt", aliasing, se fig. 3.5.

fig.3.5. Störning uppkommen genom aliasing. (Newland 1975)

De högfrekventa komponenterna i orginal-signalen f(t) påverkar alltså den diskreta serien $[x_r]$ så att Fourierkoefficienterna beräknade med DFT blir felaktiga även för frekvenser under π/Δ rad/s. Om ω_0 är max-frekvensen i f(t) kan aliasing-effekt undvikas om tidsintervallet görs så litet att:

(3.20) $\omega_0 > \frac{\pi}{\Delta}$, eller med $f_0 = \omega_0 / 2\pi f_0 < \frac{1}{2\Delta}$

Frekvensen f_o kallas Nyquistfrekvensen och är den maximala frekvens som kan spåras ur en diskret tidsserie med tidsintervallet Δ . Denna frekvens måste vara tillräckligt stor för att täcka hela frekvensskalan i den kontinuerliga tidsserien f(t), dvs X_k \longrightarrow 0 då f \longrightarrow f_o. Den snabba Fouriertransformen, FFT, är en algoritm för beräkning av den diskreta Fouriertransformen, DFT. Enligt ekvationerna 3.17 och 3.18 ger en tillämpning av DFT för en serie $[x_n]$ med N st komponenter en annan serie $[x_n]$ med samma antal komponenter. För att beräkna <u>ett</u> X_k-värde skulle då erfordras N st multiplikationer och summationer, se ekv. 3.17, vilket för hela $[X_k]$ serien ger N² st multiplikationer och summationer. Med FFT kan antalet räkneoperationer avsevärt minskas, speciellt om N blir stort, då algoritmen eliminerar multiplikationerna i ekv. 3.17 på ett sätt som kommer att visas nedan. I stället kombineras termerna i [x_n]-serien på ett sådant sätt att antalet räkneoperationer kan nedbringas till i storleksordningen N·log,N st. Om t.ex N = 2^{15} så blir N² 1.1.10⁹, medan N.log₂N = $32768 \cdot 15 = 4.9 \cdot 10^{\frac{5}{5}}$. Med FFT kan alltså antalet räkneoperationer minskas till ca 0.05% av antalet operationer vid DFT. Detta innebär dels en starkt reducerad processtid i datorn, dels en ökad noggrannhet då uppkomna trunkeringsfel begränsas. FFT-algoritmen är uppbyggd så att serien $[x_r]$ delas upp i ett antal mindre serier för vilka DFT sedan beräknas. Genom att kombinera de värden som erhålls kan den slutgiltiga $[X_k]$ -serien bestämmas. Antag att vi har en serie $[x_n]$, r=0,1,2,...,(N-1) där N är ett jämnt tal, och delar upp denna i två kortare serier $[y_r]$ och $[z_r]$ så att $y_r = x_{2r}$ och $z_r = x_{2r+1}$, r=0,1,2,..., (N/2-1), enligt fig. 3.6.

DFT för dessa serier är:

(3.21)
$$Y_{k} = \frac{1}{(N/2)} \sum_{r=0}^{N/2-1} y_{r} e^{-j2\pi kr/(N/2)}$$
 $k=0,1,2,\ldots,(N/2-1)$

(3.22)
$$Z_{k} = \frac{1}{(N/2)} \sum_{r=0}^{N/2-1} z_{r} e^{-j2\pi kr/(N/2)}$$
 $k=0,1,2,\ldots,(N/2-1)$

Om DFT för den ursprungliga $[x_r]$ -serien delas upp i två summor, en med jämna och en med udda termer erhålls:

(3.23)
$$X_{k} = \frac{1}{N} \sum_{r=0}^{N-1} x_{r} e^{-j2\pi kr/N} = \frac{1}{N} \left\{ \sum_{r=0}^{N/2-1} x_{2r} e^{-j2\pi (2r)k/N} + \sum_{r=0}^{N/2-1} x_{2r+1} e^{-j2\pi (2r+1)k/N} \right\}$$

Genom att sätta in y_r och z_r enligt 3.21 och 3.22 fås:

(3.24)
$$X_k = \frac{1}{2}(Y_k + e^{-j2\pi k/N} \cdot Z_k)$$
 $k=0,1,2,\ldots,(N/2-1)$

Ekvation 3.24 beräknar här $[X_k]$ för k=0-(N/2-1) då $[Y_k]$ och $[Z_k]$ ju endast innehåller N/2 termer. FFT-algoritmen utnyttjar nu att $[Y_k]$ och $[Z_k]$ upprepas periodiskt med k (se ekv. 3.19), vilket medför att:

(3.25)
$$Y_{k-N/2} = Y_k$$
 och
 $Z_{k-N/2} = Z_k$ varefter hela $[X_k]$ -serien fås som:
(3.26) $X_k = \frac{1}{2}(Y_k + e^{-j2\pi k/N} \cdot Z_k)$ $k=0,1,2,\ldots,(N/2-1)$
 $X_k = \frac{1}{2}(Y_{k-N/2} + e^{-j2\pi k/N} \cdot Z_{k-N/2})$ $k=N/2,(N/2+1),\ldots,(N-1)$

eller om man hellre vill låta k variera mellan 0 och N/2:

(3.27)
$$X_{k} = \frac{1}{2}(Y_{k} + e^{-j2\pi k/N} \cdot Z_{k})$$

 $X_{k+N/2} = \frac{1}{2}(Y_{k} - e^{-j2\pi k/N} \cdot Z_{k})$

 $k=0,1,2,\ldots,(N/2-1)$

Genom att införa den komplexa variabeln

$$(3.28)$$
 W = $e^{-j2\pi/N}$

vilken benämns "den beräkningsmässiga fjärilen", "butterfly", erhålls:

(3.29)
$$X_{k} = \frac{1}{2}(Y_{k} + W^{k} \cdot Z_{k})$$

$$\mathbf{x}_{\mathbf{k}+\mathbf{N}/2} = \frac{1}{2}(\mathbf{y}_{\mathbf{k}} - \mathbf{w}^{\mathbf{k}} \cdot \mathbf{z}_{\mathbf{k}})$$

 $k=0,1,2,\ldots,(N/2-1)$

Om talet N är sådant att N = 2^{m} kan x_{r} -serien uppdelas i 2,4,8,16,... "underserier" tills dessa endast innehåller en term var. Då kan man utnyttja det faktum att DFT för en ensam term är lika med termen själv:

(3.30)
$$X_k = \frac{1}{N} \sum_{r=0}^{N-1} x_r e^{-j2\pi kr/N} = x_0$$
 för N = 1, r = 0 och k = 0

Fig. 3.7 visar den principiella beräkningsgången för en serie med fyra termer

Figur 3.7. Principiellt förfarande vid beräkning av FFT för en serie innehållande fyra termer. (Newland 1975)

Med beteckningar enl. figuren érhålls att $T_k = x_0$, $U_k = x_2$, $V_k = x_1$ och $W_k = x_3$. Dessa kombineras enl. ekv. 3.29 och leder till att

$$Y_0 = (x_0 + x_2)/2 \qquad Z_0 = (x_1 + x_3)/2$$
$$Y_1 = (x_0 - x_2)/2 \qquad Z_1 = (x_1 - x_3)/2$$

Genom ytterligare en kombination erhålls slutligen

$$X_{0} = (x_{0} + x_{2} + x_{1} + x_{3})/4$$

$$X_{1} = (x_{0} - x_{2} - j(x_{1} - x_{3}))/4$$

$$X_{2} = (x_{0} + x_{2} - (x_{1} + x_{3}))/4$$

$$X_{3} = (x_{0} - x_{2} + j(x_{1} - x_{3}))/4$$

Det som ovan nämnts om FFT-algoritmen utgör endast grundprinciperna för en dylik. Det finns ett otal varianter där man med olika knep kan modifiera FFT-algoritmerna, dels för att göra dessa effektivare, dels för att kunna använda indata där t.ex. N är ett godtyckligt tal.

3.5 SYNPUNKTER PÅ FOURIERANALYSEN SOM ANALYSMETOD AV NATURLIGA VÅGOR.

Den ovan beskrivna Fourieranalysen har blivit mycket populär vid analys och simulering av vågtåg, främst då utvecklingen av snabba FFT-algoritmer har gjort det möjligt att behandla stora datamängder på ett snabbt och relativt billigt sätt. Metoden har dock fått utstå en hel del kritik, riktad från olika håll. Haver & Moan (13) har efter analys av 4586 tidsserier ifrågasatt det i den linjära vågteorin grundläggande antagandet att havsytan under kortare tidsperioder kan ses som en stationär, normalfördelad slumpprocess. Tucker et.al. (15) utgår istället från detta antagande och menar att sättet att simulera vågtåg enligt

(3.31)
$$f(t) = \sum_{n=1}^{N} A_n \cos(2\pi\Delta f \cdot n \cdot t + \Upsilon_n)$$

endast resulterar i en slumpprocess då N $\longrightarrow \infty$, vilket skulle medföra att andra kombattanter på området, t.ex. Haver & Moan (13) och Rye (11) m.fl. har dragit felaktiga slutsatser vid sina analyser, främst vid undersökning av våggrupper, (kap.4).

Colman & Sobey (16) menar istället att hela Fourieranalysen är vad man betecknar som en "andra generationens beräkningsmetod", vilken duger bra för vissa enklare analyser, men kommer till korta vid icke-linjära problem, där analys av våggrupper sägs utgöra ett. I stället lanserar man en "tredje generationens beräkningsmetod". Denna bygger på den icke-linjära Schrödingerekvationen vilken beskriver förlopp och växelverkan hos svagt ickelinjära gravitationsvågor på djupt vatten, tillsammans med den s.k. Scattering transformen. 4.

Tendensen hos vågor att uppträda i grupper är av betydelse vid t.ex studium av långsamt drivande svängningar hos förankrade konstruktioner, vågbrytarstabilitet och kapsejsing av fartyg. Detta medför att man behöver information om förhållandet mellan de olika vågorna i tidsplanet. Den linjära vågmodellen förutsätter sinusvågor vilka propagerar utan ändring av form och ev. uppkomna våggrupper dispergeras på grund av sinusvågornas olika hastighet. Det är därför inte direkt uppenbart hur de linjära slumptalskombinationerna kan resultera i väldefinierade och konsistenta våggrupper av den typ som observeras i verkligheten.

I statistisk mening är en våggrupp, eller en serie av höga vågor, normalt definierad som ett antal vågor vars höjd överskrider en viss nivå över medelvattenytan. Detta innebär att det borde finnas en korrelation mellan efterföljande våghöjder, vilket har undersökts av bl.a Rye, (11). Undersökningar sammanställda i Colman & Sobey, (14), antyder att korrelationen ökar då den spektrala bandvidden minskar, vilket kan tolkas som att "våggruppighet" är en konsekvens av smalbandiga spektra. Våggrupper i den här meningen uppfattas som en nästan monokrom grupp av plana vågor där amplitudmodulering, vilken leder till gruppformering i vågtåget, antas vara ett resultat av s.k. "beat"fenomen. Detta fenomen härrör från den linjära superpositionen av två vågor med liknande frekvens, säg ω_1 och ω_2 , vilken leder till en tydlig bärvåg med medelfrekvensen ($\omega_1 + \omega_2$)/2 vilken är amplitudmodulerad vid den väsentligt lägre frekvensen ($\omega_1 - \omega_2$)/2. Detta beror på den trigonometriska likheten:

(4.1) $\sin\omega_1 t + \sin\omega_2 t = 2\sin(\frac{1}{2}(\omega_1 + \omega_2)t) \cdot \cos(\frac{1}{2}(\omega_1 + \omega_2)t)$

Resultatet blir här inte en ensam grupp utan en hel kedja av grupper. Vågkomponenterna nära "piken" i amplitudspektrat kommer att påverka varandra på ett likartat sätt vilket medför att det är osäkert om "beat"-fenomenet kan överleva utan någon form av låsning mellan de olika fasvinklarna, vilket ju står i motsats till antagandena om slumpmässiga fasvinklar i den linjära teorin. Det är i och för sig möjligt att det i ett linjärt vågtåg slumpar sig så att fasvinklarna sammanfaller för ett antal komponenter så att en lokal pik uppstår i vågenveloppen. Sådana fria våggrupper måste emellertid kunna förstöras, eventuellt genom dispersion då varje frekvenskomponent propagerar med en av de övriga oberoende hastighet, vilken resulterar i separation och oordning mellan faserna. Det är därför uppenbart att våggrupper är svåra att anpassa till den linjära teorin. En möjlig anledning till detta är att våggrupper är en konsekvens av den fundamentala olinjäriteten hos havsvågor och kan därför inte förklaras med linjär teori.

4.1 ENVELOPPTEORI, TEORI OM VÅGSERIER, FREKVENSEGENSKAPER

Statistiska kvantiteter som medellängd, varaktighet och sannolikhet för uppträdande av våggrupper, liksom statistik över serier av vågor vilka överskrider en viss nivå eller ej, är av intresse då man vill studera våggrupper. Analyser presenterade av Longuet-Higgins (17) och kallad enveloppteori, bygger på den linjära slumpvågsmodellen och koncentrerar sig till vågtågets envelopp, A:

(4.2)
$$\eta(t) = \operatorname{Real}(A(t)e^{-j\omega_0 t})$$
 $\omega_0 = m_0/m_1$

Teorin antar smalbandiga spektrum och beaktar överskridande av en viss nivå vilken generellt betecknas a'.

En alternativ metod är den s.k. "theory of runs" vilken har använts för vindvågor av bl.a. Sawhney (18), Goda (19), Nagai (20) och Rye (21). Teorin antar uttryckligen oberoende mellan efterföljande våghöjder vilket motsvarar en oändligt bred spektralvidd i enveloppteorin. För smalbandiga spektrum ingår dock en viss grad av beroende varför de två teorierna inte är helt separabla. För att jämföra de båda teorierna kan resp. teoris förutsägelse av medellängden hos en sekvens vågor, \overline{n} , jämföras med uppmätta resultat. För teorin om vågserier, t.o.v., gäller att medellängden, $\overline{n_1}$, för en serie vågor som överstiger en viss nivå a' fås ur:

(t.o.v.)

4.3)
$$\overline{n}_1 = 1/(1-e^{(a'^2/2m_0)})$$

(

där m_n är n:te momentet av energispektrat med avseende på origo:

(4.4)
$$m_n = \int_0^\infty S(\omega) \omega^n d\omega$$

Motsvarande medellängd \overline{n}_2 av en total sekvens, definierad som antalet vågor mellan succesiva överskridanden av a' är:

(4.5)
$$\overline{n}_2 = \overline{n}_1 + e^{(a^2/2m_0)}$$
 (t.o.v.)

Enveloppteorin ger alternativa uttryck för parametrarna \overline{n}_1 och \overline{n}_2 för smal-

bandiga spektrum enligt:

(4.6)
$$\bar{n}_1 = \frac{1}{a} (m_0 \cdot m_2 / 2\pi \mu_2)^{1/2}$$
 (enveloppteori)

där μ_n är n:te momentet av energispektrat med avseende på medelfrekvensen:

(4.7)
$$\mu_{n} = \int_{0}^{\infty} S(\omega) (\omega - \overline{\omega})^{n} d\omega$$

(4.8)
$$\overline{n}_2 = \overline{n}_1 \cdot e^{(a^2/2m_0)}$$
 (enveloppteori)

Det följer av båda metoderna att medellängden hos sekvenser som <u>inte</u> överskrider a' är:

(4.9)
$$\overline{n}_3 = \overline{n}_2 - \overline{n}_1$$

Genom att använda ekvationerna 4.5 och 4.8 har Ewing (22) härlett asymptotiska former för $\overline{n_1}$ och $\overline{n_2}$ vid smalbandiga spektrum:

(4.10)
$$\overline{n}_1 = Q_p (m_0/2a')^{1/2}$$

(4.11)
$$\bar{n}_2 = \bar{n}_1 \cdot e^{(a'^2/2m_0)}$$

där Q_p är en "spektraltoppighetsparameter" definierad av Goda (23) som:

(4.12)
$$Q_{\rm p} = 2 \int_{0}^{\infty} \frac{fs^2(f)}{m_0^2} df$$

Goda (23) har jämfört de två teorierna med resultat från numeriskt simulerade vågtåg. Resultaten, se fig.4.1, utpekar passande områden för användning av de olika teorierna.

Ett antal forskare, bl. a. Rye (21), Wilson & Baird (24) och Siefert (25), har jämfört sannolikheterna för uppträdande av medellängder hos våggrupper ur fältmätningar med förutsagda enl. teorin om vågserier. Ett typiskt snitt ur deras resultat, utvalda från en stor mängd vågmätningar från olika sjötillstånd och vattendjup, presenteras i fig.4.2. Dessa sannolikhetsfördelningar, om än inte helt jämförbara, visar den typ av resultat som erhålls från verkliga vågor. Det bör noteras att den mätta förekomsten av våggrupper genomgående är högre än vad de teoretiska förutsägelserna indikerar.

Colman och Sobey (14) spekulerar i om detta är resultatet av eventuella olinjära aspekter hos gruppformationerna eller en konsekvens av att spektrum för verkliga vågor är smalare än de breda spektrum som representeras i "t.o.v".

4.2 KORRELATION, TIDSEGENSKAPER

Ett antal andra observerade egenskaper hos mätta fördelningar av våggrupper stöder Colman och Sobey's funderingar om gruppformering ur olinjäritet. Siefert, t.ex, noterar en "ökad sannolikhet för långa vågserier vid högre, och därmed mer olinjära vågor, vilket som regel leder till högre och toppigare spektrum, samtidigt som resultaten visar en minskning av långa vågserier vid grundare vatten, i motsats till förväntningarna". Vidare har Rye (11) i sina analyser av djupvattenvågor i Nordsjön indelat sina data i växande och avtagande sjötillstånd. Korrelationskoefficienterna $\emptyset_{\rm HH}$ för efterföljande vågor beräknades för de båda kategorierna enligt:

(4.13)
$$\phi_{\rm HH}(m) = \frac{1}{\phi_{\rm HH}(0) \cdot (N_z - m)} \cdot \sum_{i=1}^{N_z - m} (H_i - \overline{H})(H_{i+m} - \overline{H})$$

där N_z = antalet vågor i tidsserien, m = antal vågor mellan vilka \emptyset_{HH} ska beräkńas, H_i = individuell våghöjd enl. zero-up-cross-analys, \overline{H} = med.vågh. och

(4.14)
$$\phi_{\rm HH}(0) = \frac{1}{N_z} \sum_{i=1}^{N_z} (H_i - \overline{H})^2$$

Rye koncentrerar sina beräkningar till parametern $\emptyset_{\rm HH}$ (1), här kort $\vartheta_{\rm HH}$. Korrelationskoefficienten jämfördes sedan med olika värden på parametern γ i JON-SWAP-spektrat och val av max.frekvens i detta, se bil.1. Han fann att $\vartheta_{\rm HH}$ verkade vara oberoende av maxfrekvensen men varierade något med valet av γ , se fig.4.3 och 4.4. Vid dessa jämförelser med simulerade vågtåg fann han också att spektralupplösningen bör vara mindre än $2 \cdot 10^{-3}$ Hz för att de testade våggruppsparametrarna ska uppträda korrekt. Resultaten från de simulerade vågtågen jämfördes sedan med ett stort antal fältdata, uppmätta med Waverider vid Tromsöflaket där vattendjupet är ca 230 m, för vilka $\vartheta_{\rm HH}$ och den spektrala toppighetsparametern $Q_{\rm p}$ beräknades. Resultaten från de sammanlagt 120 mätningarna redovisas i fig.4.5. Huvuddelen av $\vartheta_{\rm HH}$ -värdena fanns ligga inom intervallet 0.1 - 0.5 med ett medelvärde nära 0.30. Parametern $\vartheta_{\rm HH}$ visade en tendens att öka med en ökande spektral toppighet. De heldragna linjerna härrör från resultaten av de simulerade vågtågen, där de tre markerade värdena motsvarar JONSWAP-spektrum med $\gamma = 1.0, 3.3$ och 7.0.

Fig.4.3. The wave group parameter $\phi_{\rm HH}(1)$ computed from time series generated from spectral information: JONSWAP spectrum, $\gamma = 1.0$, 3.3 and 7.0, respectively. $f_{\rm p} = 0.10 \, {\rm H_z}$. $\dot{a} = {\rm arbitrary}$. $\sigma_{\rm a} = 0.07$. $\sigma_{\rm b} = 0.09$. $f_{\rm HF} = {\rm variable}$. $f_{\rm LF} = 0.0 \, {\rm H_z}$. $\Delta f \approx 10^{-3} \, {\rm H_z}$. $N_0 = 2048$.

Figur 4.4. The wave group parameter $\phi_{HH}(1)$ computed from time series generated from spectral information. JONSWAP spectrum, with $\gamma = 1.0$, 3.3 and 7.0, respectively. $f_p = 0.10 H_z$. $a = arbitrary. \sigma_a = 0.07. \sigma_b = 0.09. f_{HF} = 0.8 f_p \cdot f_{LF} = 4.0 f_p \cdot \Delta f = variable. N_0 = 2048.$

Rye drar efter sina undersökningar slutsatsen att förekomsten av våggrupper i fältdata i hög grad är beroende av parametern Q_p och att den statistiska spridningen hos uppmätta våggruppsparametrar beror på att den analyserade tidsserien är ändlig. Ett ökat värde på Q_p indikerar ett toppigare energispektrum, dvs. en ökning av γ . Ett toppigt spektrum kommer därför enligt Rye att innehålla fler våggrupper än ett mjukare spektrum.

För att undersöka fasvinklarnas påverkan på förekomsten av våggrupper lät Rye byta ut alla de 120 fasspektra i sina fältdata mot vitt brus. Efter att åter ha beräknat våggruppsparametrarna fann han att resultatet blev ungefär det samma som tidigare, även om värdena för de enskilda tidsserierna var olika. Han drar därför slutsatsen att fasvinklarnas påverkan på förekomsten av våggrupper är obetydliga.

5.1 FOURIERTRANSFORM

Till Fourieranalysen av tidsserierna från Lygnern och Trubaduren har en FFT-rutin ur Göteborgs datacentrals NAG-bibliotek använts. Denna är på formen:

5.1)
$$z_k = \frac{1}{\sqrt{N}} \sum_{r=0}^{N-1} x_r e^{-j2\pi kr/N}$$

(5.2)
$$W_{k} = \frac{1}{\sqrt{N}} \sum_{r=0}^{N-1} x_{r} e^{j2\pi kr/N}$$

Ett datorprogram som behandlar in- och utdata till rutinen beskrivs i bil.2. De utdata som erhålls ur rutinen är $a_n\sqrt{N/4}$ och $b_n\sqrt{N/4}$. Efter division med $\sqrt{N/4}$ används ekvationerna i 3.6 för att beräkna amplituderna A_n och fasvinklarna Φ_n . Identifiering av tecknen på a_n och b_n avgör i vilken kvadrant i enhetscirkeln Φ_n hamnar.

Att FFT-rutinen ger koefficienter A_n och \oplus_n till en Fourierserie som är en mycket bra approximation till den ursprungliga tidsserien inses vid en jämförelse. Skillnaden blir i varje punkt i storleksordningen 10⁻¹³- 10⁻¹² eller mindre, vilket motsvarar datorns noggrannhet.

För att uppfylla villkoren i 3.20 kan endast 512 resp. 2048 amplituder och fasvinklar användas. Nyquistfrekvensen blir $1/2 \cdot 0.3 = 1.67$ resp. $1/2 \cdot 0.2 =$ 2.5 Hz och frekvensintervallen blir $1/T = 3.26 \cdot 10^{-3}$ resp. $1.22 \cdot 10^{-3}$ Hz. Med hjälp av enkla plotterprogram (bil.5) kan amplituder och fasvinklar ritas upp mot frekvensen alternativt mot varandra, fig. 5.1 - 5.5. De amplitudspektrum som erhålls kan enkelt överföras till energispektrum genom relationen:

(5.3) $S_n = A_n^2/2\Delta f$, där S_n har enheten energidensitet, m²s

Efter "glättning" kan dessa "råspektrum" anpassas till något av de standardspektrum som brukar användas vid generering av simulerade vågtåg. Exempel på sådana energispektrum, t.ex JONSWAP- eller PM-spektrum ges i bilaga 1.

k=0,1,2,...,N-1.

e de la compañía de l Compañía de la compañía

ζ.

Figur 5.2.b. Annan presentation av fig. 5.2.a.

5

ç

8

12

Vid långtidsmätningar av vågor brukar man, t.ex SMHI, presentera resultaten i form av energispektrum, ofta anpassat till något tillgängligt standardspektrum (bil.1), varvid den ursprungliga tidsserien och därmed fasvinklarna förfars. I stället antar man att fasvinklarna är slumpmässiga och likformigt fördelade varför dessa kan genereras med hjälp av slumptalsgeneratorer, filtrering av "vitt brus" etc. Ur ekv.(5.3) löses konstanta amplituder, A_n , varefter insättning i

(5.4)
$$\eta(t) = \sum_{n=1}^{N} A_n \cdot \cos(2\pi\Delta f \cdot n \cdot t + \Phi_n)$$

antas ge upphov till en tidsserie som överensstämmer med det i den linjära teorin generella antagandet att havsytan kan ses som en normalfördelad slumpprocess. Som tidigare nämnts i 3.5 menar Tucker et.al. (15) att metoden ovan inte ger en sådan slumpprocess då användandet av ekv.(5.3) i en tidsserie given av ekv.(5.4) alltid ger upphov till ett spektrum lika med S(f), varför en del av "slumpmässigheten hos det verkliga vågsystemet försvinner. För att simulera en slumpmässig normalfördelad vattenyta i frekvensplanet så menar Tucker att man måste generera normalfördelade variabler för var och en av sinus och cosinustermerna i

(5.5)
$$\eta(t) = \sum_{n=1}^{N} (a_n \cos 2\pi\Delta f \cdot n \cdot t + b_n \cdot \sin 2\pi\Delta f \cdot n \cdot t)$$

eller Rayleighfördelade slumpmässiga amplituder och slumpmässiga fasvinklar till ekv.(5.4), med totala antalet variabler lika med antalet datapunkter som ska genereras. Tucker menar vidare att problem förknippade med detta förfaringssätt kan undvikas genom att man övergår till att arbeta i tidsplanet där simulering av vågor kan ske genom filtrering av normalfördelat "vitt brus".

Det Tucker och andra ifrågasätter är alltså möjligheten, eller i vilken grad, som Fourieranalysen har att kunna beskriva naturliga vågtillstånd. Det står klart att Fourieranalysen som matematisk modell, ger en uppsättning amplituder och fasvinklar som är unika för den begränsade, diskreta tidsserie som analyseras. Denna uppsättning ska ju insatt i ekv.(5.4) ge den bästa approximationen till den ursprungliga tidsserien, dvs en vågrörelse vilken antas upprepas efter perioden T. Med detta synsätt är uppdelningen av en tidsserie i en Fourierserie endast ett annat sätt att presentera den erhållna informationen. Frågan blir då hur stor del av informationen som kan detekteras ur Fourierkomponenterna och vilken del av informationen som "försvinner" eller inte kan tydas.

Vid genomförandet av Fourieranalysen Fouriertransformerades först en enkel sinusvåg med amplituden 1., fig. 5.1 - 5.2. Detta för att studera uppträdandet av FFT-algoritmen. Här noteras att "piken" i fig. 5.1 inte uppnår värdet 1 eftersom amplitudspektrat är diskret, dessutom är språnget vid den dominerande frekvensen i fig. 5.2 av storleksordningen π . Därefter Fouriertransformeradea de 25 tidsserierna för vilka amplitud- och fasspektrum plottades, fig. 5.3 - 5.5. Då de fasspektrum som erhölls inte uppvisade några synbara tendenser till avvikelse från antagandet att fasvinklarna är slumpmässiga och likformigt fördelade, så beräknades ett antal statistiska parametrar för tidsserierna och dess Fourierkomponenter, i avsikt att undersöka fasvinklarnas påverkan på dessa parametrar. De parametrar som har studerats här är den signifikanta våghöjden H $_{\rm s}$ (=H $_{1/3}$), nollkryssningsperioden T₂, korrelationskoefficienten $\emptyset_{\mu\mu}$ enl. Rye (11), samt ett antal korrelations- och regressionskoefficienter mellan fasvinklar och frekvens respektive fasvinklar och amplituder. Resultaten framgår av tabell 1 och figurerna 5.6 - 5.11.

Inget av dessa försök eller försök att "glätta" fasspektrumen antyder att fasvinklarna skulle påverka någon av de undersökta parametrarna i en speciell riktning, snarare tvärt om. I ett sista försök att se om valet av fasvinklar påverkar parametrarna H och T i någon större utsträckning, så kombinerades amplitudspektrerna för tidsserierna 4,7,10,12 och 14 med fasspektrerna för tidsserierna 4,7,10,12,14,17 och 19, så att 30 "simulerade tidsserier bildades. En jämförelse mellan H_s och T₂ för orginalserierna och de simulerade vågtågen tyder på att valet av fasvinklar har liten inverkan på storleksordningen hos dessa, se fig. 5.12 - 5.13. Detta under förutsättning att fasspektrat ges formen av "vitt brus", eller om man så vill, är "slumpmässigt". Skulle faserna däremot sammanfalla, Ø konstant, kommer man vid tiden t=0 att få cosinustermen i ekv. (5.4) konstant. I extremfallen $\oplus_n=0$ och π blir första punkten i tidsserien + resp. – summan av amplituderna, vilket medför att tidsserien får karaktären av en puls. För andra konstanta värden på fasvinklarna blir storleken på pulsen mindre, men karaktären kvarstår. Detsamma gäller för andra uppsättningar fasvinklar där dessa varierar långsamt med frekvensen. Noteras kan också att signifikanta våghöjden blir mindre vid konstanta fasvinklar än vid slumpmässiga, samtidigt som storleksordningen hos T_ hålls oförändrad. Slutsatsen blir att ju mindre näraliggande fasvinklar sammanfaller, desto mindre blir pulskaraktären. Detta innebär att om man endast är

intresserad av att studera tidsserier med hänsyn till parametrar som H_s och T_z , så kan Fourieranalysen anses vara en tillfredsställande metod. Detta eftersom värdet på de olika amplituderna, och i förlängningen energispektrat, kommer att avgöra storleksordningen hos dessa parametrar tämligen oberoende av fasvinklarna.

5.3 VÅGGRUPPER

För beräkning av den av Rye (11) föreslagna korrelationskoefficienten $\emptyset_{\rm HH}$ mellan på varandra följande våghöjder, samt ett antal andra parametrar i tidsplanet, tillverkades ett datorprogram, redovisat i bilaga 3. Värdena på $\emptyset_{\rm HH}$, tab. 1, jämfördes med andra beräknade parametrar för att utröna om några samband mellan dessa kunde urskiljas, fig. 5.10-5.11, samt försök att relatera ett visst $\emptyset_{\rm HH}$ -värde med ett visst innehåll av våggrupper.

Då dessa försök visade sig vara ofruktsamma beräknades slutligen $\emptyset_{\rm HH}$ för de i 5.2 beskrivna 30 "simulerade" tidsserierna, varefter en jämförelse gjordes med de ursprungliga tidsserierna, fig. 5.14. Resultatet visar en betydande spridning hos $\emptyset_{\rm HH}$ vid val av olika fasspektrum, en spridning som även framgår av Ryes egen undersökning, se fig. 4.5.

Burcharth (12) har i en undersökning visat att våggruppsstatistiken under en och samma storm uppvisar en betydande spridning och att våggruppsstatistken för två olika, men jämförbara, mätplatser innehåller signifikativa skillnader. Dessutom finner han att vågstatistik för höga vågor och våggrupper innehållande höga vågor, beror på om våghöjd definieras som nolluppkryssningar eller nollnedkryssningar, varvid nolluppkryssningsdefinitionen genomgående ger högre våghöjder.

Rye drar i sina undersökningar slutsatsen att det är toppigheten hos energispektrat, uttryckt i parametern Q_p , som är avgörande för förekomsten av våggrupper, uttryckt i \emptyset_{HH} . Detta kan inte vara hela sanningen då \emptyset_{HH} varierar betänkligt för varierande fasspektrum. Även om man i fig. 4.5 kan finna en viss tendens, så är spridningen för stor för att \emptyset_{HH} eller Q_p ska kunna användas som en styrande parameter vid simulering av en tidsserie med ett visst innehåll av våggrupper.

Slutsatsen, vilken förstärks av Burcharthś undersökning, måste bli att den linjära teorin, och Fourieranalysen, är otillräcklig för att beskriva fenomenet våggrupper. Likaså måste nyttan av parametern $\emptyset_{\rm HH}$ ifrågasättas. Enligt Colman & Sobey (16) kan istället den icke-linjära Scattering transformen och Schrödingerekvationen ligga till grund för en mer förfinad analysmodell, vilken även kan användas vid studium av ickelinjära problem där våggrupper anses höra hemma.

5.4 ÖVRIGA FÖRSÖK.

I frekvensplanet undersöktes förutom amplituder och fasvinklar även Fourierkoefficienterna a_n och b_n. Dessa innehåller information om både A_n och ϕ_n enligt ekv. (3.6) och relateras till energispektrat S(f) enl.

(5.6)
$$S(f) = (a_n^2 + b_n^2)/2\Delta f$$

Koefficienterna plottades mot frekvensen, fig. 5.15-5.16. Efter en jämförelse med motsvarande amplitudspektrum, t.ex. figurerna 5.16 och 5.3, förefaller det osannolikt att det går att detektera mer information ur a_n och b_n än vad som är möjligt ur A_n och Φ_n .

I tidsplanet gjordes försök att kvadrera tidsserierna varefter "topparna" sammanbands, fig. 5.17. Genom att lägga in linjen $(H_s/2)^2$ blir det enkelt att urskilja de vågor som överskrider H_s och därmed också förekommande våggrupper.

Försök att approximera tidsseriernas "envelopper" utfördes, fig. 5.18, för att på detta sätt kunna studera t.ex. våggrupper.

De "kurvor" som erhölls vid dessa försök Fourieranalyserades, dock utan att några "revolutionerande" upptäckter lät sig göras. Huruvida det är möjligt att på något annat sätt beskriva t.ex. våggrupper utifrån dessa försök är oklart.

5.5 SLUTSATSER.

Den linjära Fourieranalysen är en utmärkt metod för analys och simulering av tidsserier under förutsättning att kraven på dessa tidsseriers egenskaper inte sätts alltför höga. Genom användandet av standardspektrum, bil. 1, vilka kombineras med slumpmässiga fasvinklar, är det möjligt att på ett relativt enkelt sätt simulera vågtåg för olika sjötillstånd. Dessa vågtåg, som styrs av parametrar som signifikant våghöjd, nollkryssningsperiod, vindhastighet etc., kan sedan användas vid t.ex. utmattningsanalys av offshore-konstruktioner. Om man istället vill att tidsserien ska innehålla vågor av ett visst utseende eller med en viss ordningsföljd, t.ex våggruper eller hopp i våghöjder, så hänvisas man till att antingen generera många vågtåg och välja ut de som "ser bra ut", eller arrangera fasvinklarna så att det i tidsserien uppstår lokala höga vågor.

Det senare förfaringssättet innebär att fasvinklarna för ett antal höga amplituder väljs så att dessa kommer i fas någonstans i tidsserien och kan utnyttjas om man vill studera en konstruktions respons för t.ex. en "maxvåg". För att simulera tidsserier med t.ex. ett flertal våggrupper, är man idag tvungen att tillgripa det förra förfaringssättet, varvid man dock kan ha nytta av de studier som visar en tendens till ökad förekomst av våggrupper vid en ökad toppighet hos energispektrat.

Avsaknaden av lämpliga parametrar, om sådana överhuvud taget går att uppbringa, medför att det idag i Fourieranalysen saknas möjligheter att entydigt beskriva våggruppsfenomenet på motsvarande sätt som man kan beskriva ett sjötillstånds signifikanta våghöjd och nollkryssningsperiod. Vad som därför erfordras är mer forskning på området, och om man finner att Fourieranalysen är otillräcklig måste andra metoder tillgripas. Möjligen kan den icke-linjära Scattering Transformen vara ett steg i rätt riktning.

TABELL 1. STATISTISKA DATA FÖR UPPMÄTTA VÅGTÅG

		·····	2.					
VAGTAG	H (m) S	$T_z(s)$	A (m/s ⁻)	Nz	Ø _{HH}	R _f	A A	$\beta_{\rm f}$
1	0.102	1.427	0.050	214	0.389	0.007	0.097	0.469
2	0.103	3.445	0,009	87	0.096	0.054	-0.017	0.523
3	0.112	1.478	0.051	206	0.360	-0.084	-0.053	-0.360
4	·0.109	1.477	0.050	207	0.318	0.071	0.090	0.265
5	0.130	1.572	0.053	195	0.378	-0.015	0.018	0.335
6	0.143	1.595	0.056	192	0.268	0.129	0.030	-0.076
7	0.151	1.518	0.066	201	0.373	0.114	-0.054	0.449
8	0.154	1.697	0.053	180	0.397	-0.013	-0.005	0.104
9	0.160	1.541	0.067	198	0.321	0.040	-0.030	0.042
10	0.168	1.591	0.066	192	0.259	-0.017	-0.001	-0.062
11	0.198	1.670	0.071	183	0.322	-0.150	0.012	-0.148
12	0.203	1.811	0.062	168	0.418	-0.005	0.012	-0.020
13	0.213	1.809	0.065	168	0.282	-0.054	-0.021	0.119
14	0.219	1.713	0.075	179	0.409	0.028	0.035	0.097
15	0.239	1.857	0.069	164	0.331	0.069	0.036	0.110
16	0.242	1.874	0.069	163	0.283		-0.039	0.119
17	0.266	2.004	0.066	153	0.369		-0.008	-0.137
18	0.258	3.839	0.018	79	0.404		-0.005	0.101
19	0.257	1.856	0.075	165	0.344		-0.006	-0.023
20	0.551	2.902	0.065	281	0.445		-0.115	0.039
21	0.607	3.245	0.058	252	0.470		0.062	0.004
22	1.179	3.803	0.082	214	0.425		-0.002	0.023
23	1.375	4.127	0.081	198	0.439		0.047	-0.054
24	0.502	2.799	0.064	291	0.395	Į	-0.242	0.168
25	0.386	2.433	0.065	336	0.386		-0.196	0.003
_								
X					0.355		-0.014	0.081

 $H_s = Signifikant våghöjd = H_{1/3}$

 $T_z = Nollkryssningsperiod$

 $A = H_{s}/T_{z}^{2}$

 N_z = Antalet vågor i tidsserien

 $\emptyset_{\rm HH}$ = Korrelationskoefficienten mellan efterföljande våghöjder enl. Rye. R_f = Korrelationskoefficienten mellan fasvinklar och frekvens.

 β_A och β_f = Regressionskoeff. mellan fas och amplitud resp. frekvens.

$$\Phi = R + \beta_A \cdot A$$

$$\beta_A = \frac{N \cdot \Sigma \Phi_i \cdot A_i - \Sigma \Phi_i \cdot \Sigma A_i}{N \cdot \Sigma (A_i)^2 - (\Sigma A_i)^2}$$

$$R = \frac{1}{N} (\Sigma \Phi_i - \beta \cdot \Sigma A_i)$$

Figur 5.6. Linjär regression mellan @ och A.

Figur 5.7.

Linjär regression mellan fasvinkel och frekvens.

$$R = \frac{N \cdot \Sigma \Phi_{i} \cdot f_{i} - \Sigma \Phi_{i} \cdot \Sigma f_{i}}{\sqrt{(N \cdot \Sigma (f_{i})^{2} - (\Sigma f_{i})^{2})(N \cdot \Sigma (\Phi_{i})^{2} - (\Sigma \Phi_{i})^{2})}} = Korrelationskoeff. mellan \oplus och f enl. SMT.$$

N = Antalet fasvinklar

Ett beräknat medelvärde på korrelationskoeff. ger \overline{R} = 0.01165

Figur 5.8. Sambandet mellan R och H_s resp. T_z .

▲= Tidsserier från Lygnern □= Tidsserier från Trubaduren

$$\beta_{\mathbf{f}} = \frac{N \sum f_{\mathbf{i}} \cdot \Phi_{\mathbf{i}} - (\sum f_{\mathbf{i}})(\sum \Phi_{\mathbf{i}})}{N \cdot \sum f_{\mathbf{i}}^2 - (\sum f_{\mathbf{i}})^2}$$

$$\boldsymbol{\beta}_{A} = \frac{N \cdot \boldsymbol{\Sigma} A_{i} \cdot \boldsymbol{\Phi}_{i} - (\boldsymbol{\Sigma} A_{i}) (\boldsymbol{\Sigma} \boldsymbol{\Phi}_{i})}{N \boldsymbol{\Sigma} A_{i}^{2} - (\boldsymbol{\Sigma} A_{i})^{2}}$$

- N = Antalet punkter i tidsserien
- A = Amplitud
- Φ = Fasvinkel
- f = Frekvens

Figur 5.9. Sambandet mellan regressionskoefficienterna β_A och β_f .

 $\beta_{\mathbf{f}} = \frac{\mathbf{N} \cdot \mathbf{\Sigma} \mathbf{f}_{\mathbf{i}} \cdot \mathbf{\Phi}_{\mathbf{i}} - (\mathbf{\Sigma} \mathbf{f}_{\mathbf{i}}) (\mathbf{\Sigma} \cdot \mathbf{\Phi}_{\mathbf{i}})}{\mathbf{N} \cdot \mathbf{\Sigma} \mathbf{f}_{\mathbf{i}}^{2} - (\mathbf{\Sigma} \mathbf{f}_{\mathbf{i}})^{2}} = \text{Regressionskoefficienten mellan } \mathbf{\Phi} \text{ och } \mathbf{f}.$

$$\phi_{\rm HH}(0) = \frac{1}{N_z} \cdot \sum_{i=1}^{2} (H_i - \overline{H})^2$$

 \overline{H} = Medelvåghöjden.

H_i= Våghöjder beräknade enl. zero-up-cross analys.

- N_z = Antalet vågor i tidsserien
- m = Antalet vågor mellan vilka korrelationen ska beräknas.
- N = Antalet punkter i tidsserien.

Figur 5.10. Sambandet mellan $\beta_{\rm f}$ och $\varphi_{\rm HH}$.

Figur 5.11. Sambandet mellan H_s/T_z^2 och ϕ_{HH} .

X = Uppmätt tidsserie $\mathbf{x} =$ Simulerad tidsserie

 $\{ (,) \}$

Figur 5.13. Förändring av H och T vid olika val av fasspektrum.

FREKVENSSTEG

300

224

28

ì,

5, 082, 1100 0

-18

-26

1.90

10

400

รย์ฮ

152009

1 6051013

5808

Figur 5.17. Kvadrering av tidsserie 1

8

Sekunder*8, 3

- (1) Torsethaugen K., Claesson L. Sammanställda föredrag från seminarium om vågdata för vågenergi i Trondheim 1-3 dec. 1980.
 Gruppen för vågenergiforskning, CTH rapport GR:36, Trondheim/ Göteborg 1981.
- Mårtensson N., Bergdahl L. "On the Wave Climate of the Southern Baltic". The group for Wave Energy Research, CTH report GR:46, Göteborg sept. 1983.
- (3) Mårtensson N. "Wind generated Waves". Inst. för vattenbyggnad, CTH, rapport C21, Göteborg 1983.
- (4) Holm S. "Stokastiska processer för E". Matematiska inst. CTH, undervisningsskrift, Göteborg 1982.
- (5) Petersson J. "Fourieranalys". Matematiska inst., undervisningsskrift CTH, Göteborg 1982.
- (6) Newland D.E. "An introduction to random vibrations and spectral analysis". Longman, London 1975.
- (7) Robinson . "Time series analysis and applications".
- (8) Brigham E.O. "The fast Fourier Transform". Prentice-Hall, Englewood Cliffs, N.J. USA, 1974.
- Hudspeth R.T., Borgman L.E. "Efficiant FFT simulation of Digital Time Sequences". Journal of the Engineering Mechanics Division, Vol. 105, No 2, april 1979.
- (10) Bendant J.S., Piersol A.G. "Random Data". Wiley-Interscience, New York, N.J., USA, 1971.
- (11) Rye H., Lervik E. "Wave grouping studies by means of correlation techniques". Norwegian Maritime Research, No 4 1981, pp 181-190.

- (12) Burcharth H.F. "A comparision of nature waves and model waves with special reference to wave grouping". Coastal Engineering 1980.
- (13) Haver S., Moan T. "On some uncertainties related to the short term stochastic modelling of ocean waves". Applied Ocean Research, 1983, Vol. 5, No 2, pp 93-108.
- (14) Colman E.J., Sobey R.J. "Analysis and synthesis of natural wave trains in deep water". Research bulletin No CS23, Dept. of civil and systems engineering, James Cook Univ. of North Queensland, Townsville, Australia 1982.
- (15) Tucker M.J., Challenor P.G., Carter D.J.T. "Numerical simulation of a random sea: a common error and its effect upon wave group statistics". Applied Ocean Research, Vol. 6, No 2 1984, pp 118-122.
- (16) Sobey R.J., Colman E.J. "Natural Wave Trains and Scattering Transform". Journal of the Waterway, Port, Coastal and Ocean Division. Proceedings of the ASCE, Vol. 108, No WW3, aug 1982.
- (17) Longuet-Higgins M.S. "The Statistical Analysis of a Random, Moving surface". Philosopical Transactions of the Royal Society of London, Series A, 249, 1957, pp 321-387.
- (18) Sawhney M.O. "A study of Ocean Wave Amplitudes in Terms of the Theory of Runs and a Markov Chain Process". Tech. Report, New York univ., 1962.
- (19) Goda Y. "On Wave Groups". Proceedings, 1st Int. Conf. on the Behaviour of Offshore Structures, Trondheim, aug 1976, <u>1</u>, pp 115– 128.
- (20) Nagai K. "Runs of the Maxima of the Irregular Sea". Coastal Eng. in Japan, 16, 1973, pp 13-18.
- (21) Rye H. "Wave Group Formation Among Storm Waves". Proceedings, 14th Coastal Eng. Conf., Copenhagen, june 1974, pp 164-183.

6.2

- (22) Ewing J.A. "Mean Lengths of Runs of High Waves". Journal of Geophysical Research, 78, No. 12, 1973, pp 1933-1936.
- (23) Goda Y. "Numerical Experiments on Wave Statistics with Spectral Simulation". Report of the Port and Harbour Institute, <u>9</u>, No 3, 1970, pp 3-57.
- (24) Wilson J.R. and Baird W.F. "A discussion of some Measured Wave Data" Proceedings, 13th Coastal Eng. Conf., Vancouver, 1973.
- (25) Siefert W. "Consecutive High Waves in Coastal Waters". Proceedings
 15th Coastal Eng. Conf., Honolulu, july 1976, 1, pp 171-182.
- (26) Rye H. "Ocean Wave Groups, their relation to spectral information and their reproduction by means of laboratory or numerical simulation". Proceedings, Int. Conf. on Coastal and Port Engineering in Developing Countries, Colombo, March 20-26, 1983.
- (27) Chakrabarti S.K. "Impact of Analytical, Model and Field studies on the Design of Offshore Structures". Int. Symposium on Ocean Engineering Ship Handling 1980, Swedish Maritime Research Centre, SSPA, Gothenburg 1980.

BILAGOR

1.	ENERGISPEKTRUM

1.A Pierson-Moskowitz spektrum

1.B Liu spektrum

1.C Scott spektrum

1.D ITTC-spektrum

1.E JONSWAP-spektrum

1.F Ochi-spektrum

1.G Bretschneider spektrum

2. BERÄKNING AV DISKRET FOURIERTRANSFORM MED FFT-ALGORITM

3. BERÄKNING AV VÅGDATA I TIDSPLANET

4. BERÄKNING AV INVERS FOURIERTRANSFORM MED FFT-ALGORITM

5. PLOTTERPROGRAM

5.A Fasvinklar-Frekvens

5.B Amplitud-Frekvena

5.C Amplitud-Fasvinkel

6. PROGRAM FÖR BERÄKNING AV KORRELATION OCH REGRESSION
6.A Linjär regression mellan fasvinklar och amplituder
6.B Linjär regression mellan fasvinklar och frekvenser
6.C Korrelation mellan fasvinklar och frekvenser

7. APPROXIMATION AV TIDSSERIENS ENVELOPP

BILAGA 1. ENERGISPEKTRUM

Pierson-Moskowitz spektrum

PM-spektrat beskriver ett fullt utvecklat sjötillstånd och är i sin ursprungsform endast beroende av vindhastigheten. Fetch och varaktighet antas oändlig.

(A) $S(\omega) = \alpha g^2 \omega^{-5} \exp(-1.25 (\omega/\omega_0)^{-4})$

där $\alpha = 0.0081$ och ω_0 = vinkelfrekvensen för piken i spektrat. ω_0 är relaterad till H_s enligt $\omega_0^2 = 0.161$ g/H_s. Dessutom gäller för PM-spektrat att $\omega_0 = 0.714 \omega_z$, där ω_z = nollkryssningsfrekvensen = $\sqrt{m_2/m_0}$. Dessa samband medför att PM-spektrat kan ges alternativa formuleringar såsom t.ex ISSC-spektrat:

(A')
$$S(f) = 0.11 H_s^2 / (T_z^4 f^5) \cdot exp(-0.44/(T_z f)^4)$$

Liu spektrum

Liu-spektrat liknar PM-spektrat men inkluderar även ett fetch-beroende

(B)
$$S(\omega) = \alpha g^2(X_0)^{-0.25} \omega^{-5} \exp(-\beta \omega_0^4 \omega^{-4} X_0^{-8/15})$$

där $\alpha = 0.0081$, $\beta = 5.5 \cdot 10^3$, $X_0 = gX/U_*^2$, $U_* = U_W^{5/3}/(gX)^{1/3}$, $X = \text{fetch} = \text{stryklängd och } U_W = \text{vindhastigheten vid 10 m.}$

Scott spektrum

Scott-spektrat är oberoende av vindhastighet, fetch och varaktighet och representerar därför ett fullt utvecklat sjötillstånd. Scott-spektrat är tvåparametrigt och ges av:

(C)
$$S(\omega) = 0.214 H_s^2 \exp(-((\omega - \omega_0)^2 / 0.065(\omega - \omega_0 + 0.26))^{1/2})$$

för $-0.26 < (\omega - \omega_0) < 1.65$, i övrigt är $S(\omega) = 0.0$

ITTC-spektrum

ITTC-spektrat är en modifiering av PM-spektrat. De två parametrar som används är H_s och $\omega_z = 1/T_z = \sqrt{m_2/m_0}$.

(D)
$$S(\omega) = \alpha g^2 \omega^{-5} exp(-B\omega^{-4})$$

där B = $\alpha g^2 / 4\sigma^2$ och $\alpha = 0.0081/k^2$ Kvantiteterna σ och k vilka bestämmer spektralformen är relaterade till H_s och ω_z enl. H_s = 4σ och k = $\omega_z (g/\sigma)^{1/2} / 3.54$

JONSWAP-spektrum

JONSWAP-spektrat kan skrivas genom en modifiering av PM-spektrat enl.

(E)
$$S(\omega) = S(\omega)_{PM} \cdot \gamma \exp(-((\omega - \omega_0)^2/(2\tau^2 \omega_0^2)))$$

där γ = toppighetsparameter, τ = formparameter (τ_a för $\omega \le \omega_0$ och τ_b för $\omega > \omega_0$), ω_0 = pikfrekvensen. Med hänsyn till fetch ges medelvärdet för dessa kvantiteter enl.

$$Y = 3.30$$
 $\mathcal{C}_{b} = 0.09$ $\omega_{0} = 7\pi (g/U_{W}) (X_{0})^{-0.33}$
 $\mathcal{T}_{c} = 0.07$ $\alpha = 0.076 (X_{0})^{-0.22}$ $X_{0} = gX/U_{W}^{2}$

där X = fetch och U_W = vindhastigheten. γ -värdet sätts samma som i PM-spektrat för de fall man är oberoende av stryklängden. γ -värdet 3.30 gäller för ett medelspektrum vid en viss vindhastighet U_W och en viss stryklängd X. Värdet på γ kommer emellertid att variera även för en konstant vindhastighet, beroende på varaktighet hos vinden och om stormen är under tillväxt eller avtagande. γ värdena tycks följa en normalfördelning.

Ochi-spektrum

Ochi-spektrat är ett sex-parametrigt spektrum bestående av en låg- och en högfrekvent del, vilket ger två pikar. Detta skulle motsvara vindvågor tillsammans med dyningar.

(F)
$$S(\omega) = \frac{1}{4} \sum_{j=1}^{2} \frac{((\lambda_j + 0.25)\omega_{0j}^4)^{\lambda_j} H_{sj}^2}{\Gamma(\lambda_j) \omega^{4\lambda_j} + 1} \exp(-(\lambda_j + 0.25)(\omega_{0j}/\omega)^4)$$

där j = 1 anger värdena för de lågfrekventerna komponenterna och j = 2 de högfrekventa komponenterna i spektrat. λ = formfaktor.

Bretschneiders spektrum

Genom att anta att energispektrat är smalbandigt och att individuella våghöjder och perioder följer Rayleigh-fördelningen, har Bretschneider formulerat spektralmodellen såsom

(G)
$$S(\omega) = 0.3375 H_{s}^{2} \frac{\omega_{s}}{\omega^{5}} \exp(-0.675 \omega_{s}/\omega)$$

där $\omega_s = 2\pi/T_s$, T_s = signifikant vågperiod, definierad som medelperioden hos de signifikanta vågorna, vilkas medelv. ger H_s.

Om medelperiodenskiljer sig från den signifikanta perioden och r är korrelationskoefficienten mellan våghöjden, H, och perioden i kvadrat, T², så föreslår Bretschneider följande formulering:

(G')
$$S(\omega) = \alpha g \omega^{-5} \frac{(1-r+0.925(\overline{\omega}/\omega)^2)^2}{1+0.237r^2} \exp(-0.675(\overline{\omega}/\omega)^4)$$

där $\overline{\omega} = 2\pi/\overline{T}$.
BILAGA 2. BERÄKNING AV DISKRET FOURIERTRANSFORM MED FFT-ALGORITM

INTEGER I, IFAIL, J, JM1, N, N2, NJ, J1, J2, L С DOUBLE PRECISION A(4100), B(4100), D(4100), E(4100), *X(4100),AK,ALFA,C,F,G С READ(5,*) N G=N С N=ANTALET PUNKTER I TIDSSERIEN С DO 10 L=1,256 J1=(L-1)*16+1J2=L*16 READ(5,996) (X(J), J=J1, J2) 10 CONTINUE 10-SNURRAN LÄSER IN PUNKTERNA I TIDSSERIEN OCH С С ORDNAR DESSA I VEKTORN X(J). С WRITE(6,999) С ورو باب راند. هم هم آند. وی بری بری بابار ها ها ها وی پی میز، ها ها ها ان از از از این هم ها و با این از از ا 999 FORMAT('1+ ŧ 46 FFT ' ! ¥ === 11/ ' ! ETT DATORPROGRAM FÖR BERÄKNING AV ' ! DISKRET FOURIERTRANSFORM MED HJÄLP × ' ! AV NAG-BIBLIOTEKETS FFT-ALGORITM. 11 ' ! UTFORMAT AV J MÅRTENSSON '! VID 11/ CHALMERS TEKNISKA HÖGSKOLA С IFAIL=0 INGÅNGSVÄRDE TILL FFT-RUTINEN CO6EAF С CALL CO6EAF(X,N,IFAIL) Ċ WRITE(6,995) WRITE(6.997) С A(1) = X(1)B(1)=0.0N2 = (N+1)/2С DO 20 J=2,N2 NJ=N-J+2 (L)X=(L)A(L)X=(LN)AB(J) = X(NJ)B(NJ) = -X(NJ)60 CONTINUE 20-SNURRAN SORTERAR UTDATA FRÅN FFT-RUTINEN С С IF(MOD(N,2).NE.0)GOTO 70 A(N2+1)=X(N2+1)B(N2+1)=0.0С

```
F#DSQRT(G/4.)
70
С
      F=FAKTOR SOM GER RÄTT STORLEK TILL FOURIERKOEFF.
С
      DO 30 J=1,N
         D(J)=A(J)/F
         E(J)=8(J)/F
      CONTINUE
30
С
      G=INT(G/2.)
С
      D0_40 J=1,G
         1-i=1ML
         AK = DSQRT(D(J) * *2 + E(J) * *2)
         C = E(J) / D(J)
         ALFA=DATAN(C)
         IF(E(J).LT.O.AND.D(J).LT.O.)ALFA=ALFA+3.14159265
         IF(E(J).GE.O.AND.D(J).LT.O.)ALFA=ALFA+3.14159265
         IF(E(J).LT.O.AND.D(J).GE.O.)ALFA=ALFA+6.28318531
         WRITE(6,994) JM1,D(J),E(J),AK,ALFA
40
      CONTINUE
С
      AK OCH ALFA=AMPLITUD RESP. FASVINKEL
С
      STOP
      FORMAT( ' COMPONENTS OF DISCRETE FOURIERTRANSFORM')
995
996
      FORMAT(16F4.0)
      FORMAT('
                                                         ALFA' )
997
                K=N-1 REAL
                                    IMAG
                                                AK
      FORMAT(1X, 15, 4F10.5)
994
      END
//SYSIN
          DD
4096
```

/INC VÅG22

C06EAF – NAG FORTRAN Library Routine Document

NOTE: before using this routine, please read the appropriate implementation document to check the interpretation of bold *italicised* terms and other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

C06EAF calculates the discrete Fourier transform of a sequence of N real data values. (No extra workspace required.)

2. Specification

SUBROUTINE CO6EAF (X, N, IFAIL)

C INTEGER N, IFAIL

C real X(N)

3. Description

Given a sequence of N real data values x_j , j = 0,1,...,N-1, this routine calculates their discrete Fourier transform defined by:

$$\hat{z}_{k} = \frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} x_{j} \times \exp\left(-i\frac{2\pi jk}{N}\right),$$

 $k = 0, 1, \dots, N-1$

(Note the scale factor of $\frac{1}{\sqrt{N}}$ in this definition.)

The transformed values \hat{z}_k are complex, but they form a Hermitian sequence (i.e. \hat{z}_{N-k} is the complex conjugate of \hat{z}_k), so they are completely determined by N real numbers (see also Chapter Introduction).

To compute the inverse discrete Fourier transform defined by:

$$\hat{w}_k = \frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} x_j \times \exp\left(+i \frac{2\pi jk}{N}\right),$$

C06EAF should be followed by a call of C06GBF to form the complex conjugates of the \hat{z}_k .

The routine uses the Fast Fourier Transform algorithm [1]. There are some restrictions on the value of N (see Section 5).

4. References

 BRIGHAM, E.O. The Fast Fourier Transform. Prentice-Hall, 1973.

5. Parameters

X - real array of DIMENSION at least (N).

Before entry, X must contain the data values x_j , with the j(th) value stored in X(j+1) for j = 0, 1, ..., N-1.

On successful exit, X contains the discrete Fourier transform stored in Hermitian form; i.e. if the components of the transform \hat{z}_k are written as $a_k + ib_k$, then for $0 \le k \le N/2$, X(k+1)contains a_k (= a_{N-k}), while for $N/2 < k \le$ N-1, X(k+1) contains $-b_k$ (= b_{N-k}).

N-INTEGER.

On entry, N must specify the number of data values. N > 1. The largest prime factor of N must not exceed 19, and the total number of prime factors of N, counting repetitions, must not exceed 20.

Unchanged on exit.

IFAIL - INTEGER.

Before entry, IFAIL must be assigned a value. For users not familiar with this parameter (described in Chapter P01) the recommended value is 0.

Unless the routine detects an error (see next section), IFAIL contains 0 on exit.

6. Error Indicators and Warnings

Errors detected by the routine:-

IFAIL = 1

At least one of the prime factors of N is greater than 19.

IFAIL = 2

N has more than 20 prime factors.

1FAIL = 3

 $N \leq 1$.

7. Auxiliary Routines

This routine calls the NAG Library routines C06EAQ, C06EAR, C06EAS, C06EAT, C06EAU, C06EAV, C06EAW, C06EAX, C06EAY, C06EAZ, P01AAF and X01AAF.

8. Timing

The time taken is approximately proportional to N log N, but also depends on the factorisation of N. The routine is somewhat faster than average if the only prime factors of N are 2, 3 or 5; and fastest of all if N is a power of 2.

On the other hand, the routine is particularly slow if N has several unpaired prime factors, i.e. if the 'square-free' part of N has several factors. For such values of N, the routine C06FAF (which requires an additional N elements of workspace) is considerably faster.

9. Storage

The storage required by internally declared arrays, including those of auxiliary routines, is 108 *real* elements and 173 INTEGER elements.

10. Accuracy

Basic precision arithmetic is used throughout. Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing the results with the original sequence (in exact arithmetic they would be identical).

11. Further Comments

None.

12. Keywords

Discrete Fourier Transform, Fast Fourier Transform, Real Fourier Transform.

13. Example

This program reads in a sequence of real data values, and prints their discrete Fourier transform as computed by C06EAF, after expanding it from Hermitian form into a full complex sequence.

It then performs an inverse transform, using C06GBF and C06EBF, and prints the errors in the sequence so obtained.

WARNING: This single precision example program may require amendment for certain implementations. The results produced may not be the same. If in doubt, please seek further advice (see Essential Introduction to the Library Manual).

13.1. Program Text

```
C06EAF EXAMPLE PROGRAM TEXT
MARK 8 RELEASE, NAG COPYRIGHT 1980.
C
C
С
         LOCAL SCALARS .
      INTEGER I, IFAIL, J, JM1, N2, N, NIN, NJ, NOUT
С
         LOCAL ARRAYS ..
       REAL A(20), B(20), EX(20), TITLE(7), X(20), XX(20)
         SUBROUTINE REFERENCES ..
С
Č
C
       C06EAF, C06EBF, C06GBF
      DATA NIN /5/, NOUT /6/
READ (NIN,99999) TITLE
WRITE (NOUT,99998) (TITLE(I),I=1,6)
   20 READ (NIN,99997) N
       IF (N.LE.1) STOP
       DO 40 J=1,N
          READ (NIN,99996) X(J)
          XX(J) = X(J)
   40 CONTINUE
      \begin{array}{l} \text{IFAIL} = 0 \\ \text{CALL C06EAF}(X, N, \text{IFAIL}) \end{array}
       WRITE (NOUT,99995)
       A(1) = X(1)
       B(1) = 0.0
       N2 = (N+1)/2
       DO 60 J=2,N2
          NJ = N - J + 2
          A(J) = X(J)
          A(NJ) = X(J)
          B(J) = X(NJ)
```

B(NJ) = -X(NJ)60 CONTINUE IF (MOD(N,2).NE.0) GO TO 80 A(N2+1) = X(N2+1)B(N2+1) = 0.080 DO 100 J=1 N JMI = J - IWRITE (NOUT,99994) JM1, A(J), B(J) 100 CONTINUE CALL CO6GBF(X, N, IFAIL) CALL CO6EBF(X, N, IFAIL) WRITE (NOUT,99993) DO 120 J=1,N $\mathbf{E}\mathbf{X}(\mathbf{J}) = \mathbf{X}(\mathbf{J}) - \mathbf{X}\mathbf{X}(\mathbf{J})$ $J\dot{M}I = J - I$ WRITE (NOUT,99992) JM1, EX(J) 120 CONTINUE GO TO 20 99999 FORMAT (6A4, 1A3) 99998 FORMAT (4(1X/), 1H, 5A4, 1A3, 7HRESULTS/1X) 99997 FORMAT (15) 99996 FORMAT (F10.5) 99995 FORMAT (41H0COMPONENTS OF DISCRETE FOURIER TRANSFORM/1H0, * 11X, 14HREAL IMAG) 99994 FORMAT (1X, 15, 2F10.5) 99993 FORMAT (50H0ABSOLUTE ERRORS IN ORIGINAL SEQUENCE AS RESTORED, * 20HBY INVERSE TRANSFORM/21H (MACHINE-DEPENDENT)/) 99992 FORMAT (1X, 15, 1PE10.1) END

13.2. Program Data

COGEAF EXAMPLE PROGRAM DATA

0.34907 0.54890 0.74776 0.94459 1.13850 1.32850 1.51370 0

13.3. Program Results

C06EAF EXAMPLE PROGRAM RESULTS

COMPONENTS OF DISCRETE FOURIER TRANSFORM

REAL IMAG

0	2.48361	0.00000
1	-0.26599	0.53090
2	-0.25768	0.20298
3	-0.25636	0.05806
4	-0.25636	0.05806
5	0.25768	-0.20298
6	0 76500	0 \$3000

ABSOLUTE ERRORS IN ORIGINAL SEQUENCE AS RESTORED BY INVERSE TRANSFORM

(MACHINE-DEPENDENT)

0 4.7E-11 1 0.0E 00 2 0.0E 00 3 -7.3E-12 4 0.0E 00 5 -1.5E-11

6 -1.5E-11

[NAGFLIB:1813/0:Mk8:13th January 1981]

BILAGA 3. BERÄKNING AV VÅGDATA I TIDSPLANET

INTEGER B, I, J, J1, J2, K, L, M, N, NZ, P, Q(600), A, S, SUM, T, TT, ZUC(600), *W,Y,NS,IETT,NETT C REAL A,C,D,E,FIHHM,FIHHO,FISUM,H(600),HMED,HSUM,V(50),X(4100), *MAX,MIN,HS,TA,TZ,BLA,U(600),KVOT,DELTA,SORT С READ(5,*) N,M,DELTA,SORT N=ANTALET PUNKTER I TIDSSERIEN C M=ANTALET VÅGOR MELLAN VILKA KORRELATION SKA BERÄKNAS С С M=1 GER KORRELATIONEN MELLAN TVÅ PÅ VARANDRA EFTER-С FÖLJANDE VÅGOR, DELTA=TIDSSTEG,SORT ANGER I VILKEN ENHET С PUNKTERNA I TIDSSERIEN HAR MÄTTS. MM GER SORT=1000, CM GER 100. R=N/2С DO 10 L=1,256 J1=(L-1)*16+1J2=L*16 $READ(5,999) \cdot (X(J), J=J1, J2)$ 10 CONTINUE С 10-SNURRAN LÄSER IN PUNKTERNA I TIDSSERIEN OCH ORDNAR DESSA I VEKTORN X(J). С С READ(5,*) W,YС W=AMPLITUDSPEKTRUM NUMMER W INGÅR I TIDSSERIEN С Y=FASSPEKTRUM NUMMER Y INGÅR I TIDSSERIEN С Q(1) = 1DO 20 K=2,R I=Q(K-1)+1DO 30 J=1,N IF(X(J-1).LT.O.AND.X(J).GE.O.)GOTO 888 CONTINUE 30 888 Q(K)=J IF(Q(K).EQ.N)GOTO 887. CONTINUE 20 С 887 Q(K)=0 IF(X(N-1).LT.O.AND.X(N).GE.O.)Q(K)=N C SUM=0 С DO 40 J=1,R ZUC(J) = Q(J+1)SUM=SUM+1 IF(Q(J+2).EQ.0)GOTO 886 IF(Q(J+2).EQ.N)GOTO 885 40 CONTINUE 40-SNURRAN LETAR REDA PÅ DE PUNKTER I TIDSSERIEN DÄR С С NOLLKRYSSNING JUST HAR SKETT OCH LAGRAR DESSA PUNKTER I VEKTORN ZUC(J). DESSUTOM BESTÄMS ANTALET VÅGOR I С С TIDSSERIEN, NZ. С ZUC(SUM+1)=N 885 NZ=SUM GOTO 884

С

886 NZ=SUM-1 884 HSUM=0. · TT=NZ+1 TA = ZUC(TT) - ZUC(1)TZ=DELTA*TA/NZ TZ=NOLLKRYSSNINGSPERIODEN DELTA=TIDSSTEG I SEKUNDER DO 50 I=1,NZ P≠O DO 53 J=1,50 V(J)=O. 53 CONTINUE S=ZUC(I) T=ZUC(I+1)-1DO 55 J=S,T P=P+1 V(P) = X(J)55 CONTINUE MAX = 0. MIN=0. DO 58 J=1,50 IF(V(J).GE.MAX)MAX=V(J)
IF(V(J).LT.MIN)MIN=V(J) CONTINUE 58 H(I)=MAX+ABS(MIN) HSUM=HSUM+H(I) 50 CONTINUE 50-SNURRAN BERÄKNAR DE INDIVIDUELLA VÅGHÖJDERNA I VÅGTÅGET OCH SUMMERAR DESSA HMED=HSUM/NZ HMED=MEDELVÅGHÖJDEN NS=NZ/3 DO 60 J=1,NZ U(J)=H(J)60 CONTINUE NETT=NZ-1 DO 62 I=1,NETT MAX=U(I) J=I IETT=I+1 DO 64 K=IETT,NZ IF(U(K).LE.MAX)GOTO 64 MAX=U(K)J=K 64 CONTINUE

3

С

C

С

С

С

С

С

С C

С С

С

С

C

С

ł

,•

C 62 C	BLA=U(I) U(I)=U(J) U(J)=BLA CONTINUE 62-SNURRAN SORTERAR VÅGHÖJDERNA EFTER STORLEK
66	HSUM=0. D0 66 J=1,NS HSUM=HSUM+U(J) CONTINUE
C	HS=HSUM/(NS*SORT) HS=SIGNIFIKANT VÅGHÖJD
C	KVOT≃HS/(TZ**2)
C.	FISUM=0.
70	DO 70 I=1,NZ A=(H(I)-HMED)**2 FISUM=FISUM+A CONTINUE
с С	FIHHO=FISUM/NZ FIHHO=KORRELATIONSKOEFF. FÖR M=O
	FISUM=0. B=NZ-M
80	DO 80 I=1,8 C=H(I)-HMED D=H(I+M)-HMED E=C*D FISUM=FISUM+E CONTINUE
	FIHHM=FISUM/(FIHHO*B) FIHHM=DEN SÖKTA KORRELATIONSKOEFFICIENTEN ENL. RYE.
	WRITE(6,900) WRITE(6,995) W WRITE(6,994) Y WRITE(6,998) FIHHM WRITE(6,997) M WRITE(6,996) HS WRITE(6,993) TZ WRITE(6,992) NZ WRITE(6,991) KVOT
C	STOP

900	FORMAT(· 1 ***********************************	/
	*	· * *	1
	×	' * VÅGDATA *'	1
	*	' * ====== * *!	1
	*	' * ETT DATORPROGRAM FÖR BERÄKNING AV *'	1
	×	' * VÅGPARAMETRAR I TIDSPLANET *'	1
	*	1 Å	1
	*	* KONSTRUERAT AV J MÅRTENSSON *'	1
	*	' * VID *'	1
	¥	' * CHALMERS TEKNISKA HÖGSKOLA *'	1
	首	* **** *******************************)
С			ĺ
999	FORMAT(16F4.0}	
998	FORMAT	1X, 'CORRELATION COEFF,: FIHHM ='.F5.3)	
997	FORMAT	1X, 'NUMBER OF LAGS APPLIED: M =', I2)	
996	FORMAT	1X, 'SIGNIFICANT WAVE HEIGHT: HS =', F6.3.1X.'M')	
995	FORMAT	1X, 'AMPLITUDE NO.'. 1X, 12)	
994	FORMAT	1X, 'PHASE ANGLE NO. ', 1X, 12)	•
993	FORMAT	1X, 'AVERAGE WAVE PERIOD: TZ =', F6.3, 1X, 'S')	
992	FORMAT	1X, NUMBER OF WAVES IN THE WAVE TRAIN: NZ =', IS)	
991	FORMAT	1X, 'H/(TZ**2) =',F6.4)	
C	,		
	END		
//sys	SIN DD	*	
4096.	1.0.2.10		
/INC	VÅG25		
25.25	5		
,			

i de la composita de la compos

Om indatafilen inte är ordnad på det sätt som här förutsätts, kan inläsningen enkelt ändras efter den indatafil man har, t.ex fri inmatning.

BILAGA 4. BERÄKNING AV INVERS FOURIERTRANSFORM MED FFT-ALGORITM

С INTEGER IFAIL, J, N, NJ, R С DOUBLE PRECISION A(4100), B(4100), X(4100), D, E, *AK(2050),ALFA(2050),C,F,G,P,T С READ(5, *) NC N=ANTALET PUNKTER I TIDSSERIEN С G=N. R=N/2C $D0^{-}40 J=1,R$ READ(5,*) AK(J)40 CONTINUE DO 50 J=1,R READ(5,*) ALFA(J)50 CONTINUE С 40- OCH 50-SNURRORNA LÄSER IN AMPLITUDERNA AK(J) С RESP. FASVINKLARNA ALFA(J) С F=DSQRT(G/4.)С DO 60 J=1,R T=ALFA(J)P=(DTAN(T))**2D=DSQRT(AK(J)**2/(1+P)) IF(T.GT.1.570796327.AND.T.LT.4.71238898)D=-D E=DTAN(T)*DA(J)=D*F B(J)=E*F 60 CONTINUE С 60-SNURRAN SKRIVER OM AMPLITUDER OCH FASVINKLAR С TILL FOURIERKOEFFICIENTER PÅ KOMPLEX FORM SAMT 'SKALAR' DESSA FÖR ATT PASSA FFT-RUTINEN. С С X(1) = A(1)X(R+1) = B(1)С DO 70 J=2,R NJ=N-J+2 (L)A=(L)XX(NJ)=B(J)70 CONTINUE С 70-SNURRAN ORDNAR TERMERNA TILLL INDATA I FFT-RUTINEN C IFAIL=0 С CALL CO6GBF(X,N,IFAIL) CALL COGEBF(X,N, IFAIL) С WRITE(6,900) С DO 80 J=1,N WRITE(6,999) X(J) 80 CONTINUE

С		

í for	MAT('1×=		-==X
*			ti
¥	l ti	INVERS FFT	f1
*	£ 19	*****	11
₩	1 0	ETT DATORPROGRAM FÖR BERÄKNING	71
*	1 11	AV INVERS FOURIERTRANSFORM MED	H
₩	1 11	HJÄLP AV NAG-BIBLIOTEKETS FFT-	11
*	1 11	RUTINER.	11
*	1 11		0
*	1 11	UTFORMAT AV J MÅRTENSSON	17
*	ttt	VID	
*	1 11	CHALMERS TEKNISKA HÖGSKOLA	11
٭	' ×=		===X

С END //SYSIN DD * 1024 /INC AMP15 /INC FAS17

BILAGA 5. PLOTTERPROGRAM

A PROGRAM FÖR PLOTTNING AV FASVINKLAR MOT FREKVENSEN.

```
//CVHJMA
           JOB (XXXXXX,E6),'
\Pi
               MSGCLASS=A, MSGLEVEL=(2,0), REGION=0896K, USER=CVHJM
//EX
         EXEC FORTGRUN
            DD UNIT=SYSSQ,DSN=&&GRAPH,DISP=(,PASS),
//SYSGRAF
               SPACE=(CYL, (10,5), RLSE), DCB=BUFNO=16
\Pi
//COMPIN
          DD *
/FTG
/INC FCMF
      INTEGER ICURV
С
      COMMON /PCM/ ICURV
      DIMENSION X4(512)
      DIMENSION Y4(512)
C
      DO 10 I=1,512
         READ(5,*) Y4(I)
10
      CONTINUE
С
      10-SNURRAN LÄSER IN FASVINKLARNA
Ċ
      DO 20 J=1,512
         ل=(ل)X4
20
      CONTINUE
С
С
      ANTAL SMÅ SKALSTRECK MELLAN STORA
      NSTCX=5
      NSTCY=5
      ICURV=TYP AV LINJE SOM PLOTTAS (O=LINJER, -1=KRYSS)
C
      ICURV = -1
С
      AVSTÅND MELLAN STORA SKALSTRECK
      BTCA3X=70.
      BTCA3Y=30.
      STORLEK PÅ TEXT LÄNGS X- OCH Y-AXLAR
\mathbb{C}^{r}
      TXTS3X=2
      TXT53Y=2
С
      MAXIÅALT VÄRDE PÅ Y-AXELN
      YHPCM=7.
C
      PAREA=DEF AV STORLEK OCH LÄGE AV BILD
      CALL PLOPEN
      CALL PAREA(380.,250.,0.,10.)
      PXAXL ANGER 1) VID VILKA JÄMNA INTERVALL SIFFROR SKA
С
С
      SKRIVAS LÄNGS X-AXELN, 2) MED BÖRJAN VID, 3) AVSTÅND
      MELLAN INTERVALLEN (MM), 4) X-AXELNS LÄNGD, 5) OCH
C
С
      6) KOORDINATERNA HOS PLOTTERN DÄR ORIGO SKA VARA.
      MOTSVARANDE FÖR PYAXL
С
С
      CALL PXAXL(100.,0.,70.,360.,20.,20.)
      CALL PYAXL(1.,0.,30.,220.,20.,20.)
      PX- OCH PYLAB ANGER TEXT LÄNGS AXLARNA
С
      CALL PXLAB('FREKVENSSTEG', 12)
      CALL PYLAB ('FASVINLEL-4', 11)
      CALL PDATA(X4,Y4,512)
      CALL PLCLOS
      STOP
```

С

END

//SYSIN DD *
/INC RES26
//GUTSGEN EXEC GUTSGEN,NAME='JAS',INCR=1,
// COND=(4,LT),REPLACE=
//SYSIN DD DSN=&&GRAPH,DISP=(OLD,DELETE)

B PROGRAM FÖR PLOTTNING AV AMPLITUD MOT FREKVENS.

//SYSGRAF DD UNIT=SYSSQ, SPACE=(CYL, (10, 5)), DISP=(,PASS),DCB=BUFNO=16 ////COMPIN DD * /FTG /INC PCMF С INTEGER ICURV DIMENSION X4(512) DIMENSION Y4(512) С COMMON /PCM/ ICURV С DO 10 I=1,512 READ(5,*) Y4(I)10 CONTINUE С FORMAT(F7.4) DO 20 J=1,512 L=(L)4X 20 CONTINUE ANTAL SMÅ SKALSTRECK MELLAN STORA С NSTCX=0 NSTCY=5 С ICURV=TYP AV LINJE SOM PLOTTAS ICURV=0 С AVSTAND MELLAN STORA SKALSTRECK BTCA3X=70. BTCA3Y=50. STORLEK PÅ TEXT LÄNGS AXLARNA С TXT53X=2. TXTS3Y=2. С MAXIMALT VÄRDE, PÅ Y-AXELN YHPCM=20. С PAREA=DEF AV STORLEK OCH LÄGE AV BILD CALL PLOPEN CALL PAREA(380.,250.,0.,20.) CALL PXAXL(100.,0.,70.,370.,20.,20.) CALL PYAXL(5.,0.,50.,230.,20.,20.) CALL PXLAB ('FREKVENSSTEG', 12) CALL PYLAB ('AMPLITUD-4', 10) CALL PDATA(X4, Y4, 512)CALL PLCLOS STOP END //SYSIN DD * /INC RES26 //CONV EXEC GUTSGEN, NAME='BILD', INCR=1, REPLACE= //SYSIN DD DSN=*.EX.GO.SYSGRAF,DISP=(OLD,DELETE)

C PROGRAM FÖR PLOTTNING AV AMPLITUD MOT FASVINKEL

styrkort; se program A

٠	•
Ċ,	

6
DIMENSION X4(512)
DIMENSION Y4(512)
DO 10 I=1.512
BFAD(5,*) Y4(I)
D0 20 J=1.512
BEAD(5.*) X4(J)
NSTCX=10
NSTCY=5
TCI/BV = -1
BTCA3X=50.
BTCA3Y=3D.
TXT53X=2.
TXTS3Y=2.
YHPCM=7.
CALL PLOPEN
CALL PAREA (380, 250, 0, 10,)
CALL PXAXL(5.,0.,50.,360.,20.,20.)
CALL PYAXL(1.,0.,30,,220,,20,,20,)
CALL PXLAB('AMPLITUD-2',10)
CALL PYLAB ('FASVINKEL-2', 11)
CALL PDATA(X4,Y4,512)
CALL PLCLOS
STOP
END
//SYSIN DD *
/INC RES26
//GUTSGEN EXEC GUTSGEN,NAME='FIG',INCR=1,
// COND=(4,LT),REPLACE=
//SYSIN DD DSN=&&GRAPH,DISP=(OLD,DELETE)

A LINJÄR REGRESSION MELLAN FASVINKLAR OCH AMPLITUDER.

$$\begin{aligned} & \alpha = R + \beta_{A} \cdot A \\ \beta_{A} &= \frac{N \cdot \Sigma A_{i} \cdot \alpha_{i} - (\Sigma A_{i})(\Sigma \alpha_{i})}{N \cdot \Sigma A_{i}^{2} - (\Sigma A_{i})^{2}} \\ R &= \frac{1}{N} (\Sigma \alpha_{i} - \beta_{A} \cdot \Sigma A_{i}) \end{aligned}$$

INTEGER I,N,Q С REAL ALFA(2050), ASUM, BSUM, DFSUM, FSUM, R, S, T, *A(2050),BETA С DO 10 I=1,N READ(5,*) ALFA(I)10 CONTINUE С DO 15 I=1,N READ(5,*) A(I)15 CONTINUE С ASUM=0. BSUM=0. DFSUM=0. FSUM=0. С DO 20 I=1,N ASUM=ASUM+ALFA(I) FSUM=FSUM+A(I) DFSUM=DFSUM+(A(I)**2) BSUM=BSUM+(ALFA(I)*A(I)) 20 CONTINUE С . s=(N*BSUM)-(ASUM*FSUM) С T = (N * DFSUM - FSUM * * 2)C BETA=S/T С R=(ASUM/N)-BETA*FSUM/N С WRITE(6,900) WRITE(6,50) Q WRITE(6,100) BETA WRITE(6,200) R,BETA C STOP С FORMAT(1X, 'FASVINKEL', 1X, I2) 50 100 FORMAT(1X, 'REGRESSIONSKOEFFICIENTEN BETA=', F9.6)

200 .	FORMAT	(1)	x,'	RÄTA LINJEN; ALFA =',F9.6,'+',F9.6,'A')	
900	FORMAT	('	186	}3333333333333333333333333333333333333	38 '	/
	*	Ţ	§		§ '	1
	*	9	§	FAS-AMPLITUD REGRESSION	-§ !	1
	* •	1	§	リリドネリリロネポルリコドボルドのようしゅう	- § +	1
	*	ı	§	ETT DATORPROGRAM FÖR BERÄKNING AV	- § 1	1
	*	1	§	LINJÄR REGRESSION MELLAN AMPLITUDER	۶,	1
	¥	,	§.	OCH FASVINKLAR	- § I	1
	×	Т	ş		ιğ	1
	¥	ī	8	KONSTRUERAT AV J MÅRTENSSON	۰ş	1
	¥.	,	Š	VID	- ξ !	1
	*	I	š	CHALMERS TEKNISKA HÖGSKOLA	ιğ	1
	*	1	ନ୍ୟ	133333333333333333333333333333333333333	së'	ĺ)
C	-					1
	END					

//SYSIN DD * 2048,22 /INC RES26

B LINJÄR REGRESSION MELLAN FASVINKLAR OCH FREKVENSER.

$$\beta_{f} = \frac{N \cdot \Sigma \times_{i} \cdot f_{i} - (\Sigma \times_{i})(\Sigma f_{i})}{N \cdot \Sigma f_{i}^{2} - (\Sigma f_{i})^{2}}$$
$$R = \frac{1}{N} (\Sigma \times_{i} - \beta_{f} \cdot \Sigma f_{i})$$

INTEGER I,N,Q

REAL ALFA(2050),DELTAF,ASUM,BSUM,DFSUM,FSUM,R,S,T, *F(2050),BETA

READ(5,*) N,DELTAF,Q

DO 10 I=1,N READ(5,*) ALFA(I) CONTINUE

ASUM=0. BSUM=0. DFSUM=0.

FSUM=0.

С

÷

С

C

С

10

C

4945

BETA=S/T С R=(ASUM/N)-BETA*FSUM/N С WRITE(6,900) WRITE(6,50) Q WRITE(6,100) BETA WRITE(6,200) R,BETA С STOP С FORMAT(1X, 'FASVINKEL', 1X, I2) 50 FORMAT(1X, 'REGRESSIONSKOEFFICIENTEN BETA=', F9.6) 100 FORMAT(1X, 'RATA LINJEN; ALFA =', F9.6, '+', F9.6, 'F') 200 900 FORMAT('1+ × F1/ × FAS-FREKVENS REGRESSION *======================= ETT DATORPROGRAM FÖR BERÄKNING AV ¥ LINJÄR REGRESSION MELLAN FASVINKLAR × OCH FREKVENSER ¥ * KONSTRUERAT AV J MÅRTENSSON ¥ 1 Ť VID CHALMERS TEKNISKA HÖGSKOLA × ţ ×

С

END //SYSIN DD * 2048,1.2207031E-03,22 /INC RES26

C KORRELATION MELLAN FASVINKLAR OCH FREKVENSER.

$$R = \frac{N \cdot \Sigma_{\alpha_{i}} \cdot f_{i} - (\Sigma_{\alpha_{i}})(\Sigma_{f_{i}})}{\sqrt{(N \cdot \Sigma_{i}f_{i}^{2} - (\Sigma_{i}f_{i})^{2})(N \cdot \Sigma_{\alpha_{i}}^{2} - (\Sigma_{\alpha_{i}})^{2}}}$$

INTEGER I,N,Q

REAL ALFA(2050),DELTAF,ASUM,BSUM,DASUM,DFSUM,FSUM,R,S,T, *F(2050)

READ(5,*) N,DELTAF,Q

DO 10 I=1,N

READ(5,*) ALFA(I)

10 CONTINUE C

С

C

С

ASUM=0. BSUM=0. DASUM=0. DFSUM=0.

	r	FSUM=0.
•	20	DD 20 I=1,N F(I)=DELTAF*I ASUM=ASUM+ALFA(I) FSUM=FSUM+F(I) DASUM=DASUM+(ALFA(I)**2) DFSUM=DFSUM+(F(I)**2) BSUM=BSUM+(ALFA(I)*F(I)) CONTINUE
	U	S=(N*BSUM)−(ASUM*FSUM)
	С .	T=(N*DFSUM-FSUM**2)*(N*DASUM-ASUM**2)
	C C	R=S/(SQRT(T))
	L	WRITE(6,900) WRITE(6,50) Q WRITE(6,100) R
	C	STOP
	50 100 90(0	FORMAT(1X,'FASVINKEL',1X,I2) FORMAT(1X,'KORRELATIONSKOEFFICIENTEN R=',F8.6) FORMAT('1************************************
		* '* CHALMERS TEKNISKA HÖGSKOLA *'/
	С	

END //SYSIN DD * 512,3.2552083E-03,16 /INC RES26

9.232

BILAGA 7. APPROXIMATION AV TIDSSERIENS ENVELOPP

4.5

Programmet beräknar de punkter i tidsserien där zero-up-crossing sker. En våg definieras därefter som avståndet mellan två sådana nollkryssningar. Vågens max.- och min.-värden beräknas och koordinaterna för dessa lagras. I denna första approximation till tidsseriens envelopp dras räta linjer mellan max. och min.-punkterna. Kriteriet för att enveloppen ksa passera x-axeln är att vågorna på båda sidor om den våg där "nollkryssning" ska ske är större än denna. Programmet ger två envelopper vilka båda antas börja och sluta med värdet 0.

-	<pre>INTEGER A1,A2,A4,A5,B1,B2,C1,C2,HMAX,HMIN,I,J,J1,J2,K,L, *N,N0,NZ,Q(600),R,S,SUM,T,U,W,XMAX(600),XMIN(600),XNOLL(200), *ZUC(600) REAL A3,B3,C3,MAX,MIN,P,V,X(4100),Y(4100),YY(4100),Z(4100), *ZZ(4100)</pre>
C C	READ(5,*) N
С	R=N/2 D0 10 L=1,64 $J1=(L-1)*16+1$ $J2=L*16$ $READ(5,999) (X(J)) = J1, J2$
10 C	CONTINUE
C .	$ \begin{array}{c} Q(1) = 1 \\ DO \ 2O \ K = 2, R \\ I = Q(K-1) + 1 \\ DO \ 3O \ J = 1, N \\ \end{array} $
30 222 20	IF(X(J-1).LT.U.AND.X(J).GE.U.)GUTU 222 CONTINUE Q(K)=J IF(Q(K).EQ.N)GOTO 223 CONTINUE
C 223	Q(K)=0 IF(X(N-1).LT.O.AND.X(N).GE.O.)Q(K)=N
C 40	SUM=0
	DO 40 J=1,R ZUC(J)=Q(J+1) SUM=SUM+1 IF(Q(J+2).EQ.0)GOTO 2244 IF(Q(J+2).EQ.N)GOTO 225 CONTINUE
C C C	ZUC=DE PUNKTER I TIDSSERIEN DÄR NOLLKRYSSNING SKER

225 ZUC(SUM+1)=N NZ=SUM GOTO 226 С. NZ=ANTALET VÅGOR I VÅGTÅGET 224 NZ=SUM-1 226 DO 50 I≕1,NZ MAX=0. MIN=0. S=ZUC(I) T=ZUC(I+1)-100 55 J=S,T IF(X(J).GE.MAX)GOTO 777 IF(X(J).LT.MIN)GOTO 666 GOTO 55 777 MAX=X(J) HMAX⇒J GOTO 55 666 MIN=X(J)HMIN⊶J CONTINUE 55 XMAX(I)=HMAX XMIN(I)=HMIN XMAX OCH XMIN INNEHÅLLER LÄGESKOORDINATERNA FÖR DE ENSKILDA VÅGORNAS MAX OCH MIN-PUNKTER ENL. ZUC-TEORI. 50 CONTINUE L=NZ-1 DO 60 I=2,L A1 = XMAX(I)B1=XMAX(I-1)C1=XMAX(I+1)A2=XMIN(I) B2=XMIN(I-1)C2=XMIN(I+1)A3=X(A1)-X(A2)B3=X(B1)-X(B2)C3 = X(C1) - X(C2)IF(B3.GE.A3.AND.C3.GE.A3)GOTO 444 ₩=-1 V = X(A1) - X(B1)U=A1-B1 DO 70 J=81,A1 W = W + 1Y(J) = X(B1) + V W/U70 CONTINUE W = -1V=X(A2)-X(B2)U=A2-B2 DO 75 J=B2,A2 W=₩+1 Z(J)=X(B2)+V*W/U 75 CONTINUE GOTO 60

С С

С

С С

С С

С

an the Hill

444

A4=INT((A2-A1)/2.)+A1

Y(J)=X(B1)+V*W/U

Z(J)=X(B2)+V*W/U

XMAX(I) = A4XMIN(I) = A4X(A4)=0. W = -1V=-X(81). U=A4-81

DO 80 J=B1,A4 ₩=₩+1

DO 85 J=B2,A4 W=W+1

CONTINUE W = -1V=-X(B2) U**=**A4−B2

CONTINUE

CONTINUE

₩**=**-1 V=X(A1) U=A1-1

A1=XMAX(1)

DO 90 J=1,A1 ₩=₩+1

80

Ċ

85

60

95

Y(J)=V*W/U 90 CONTINUE A2 = XMIN(1)W=-1 V=X(A2)U=A2-1 DO 95 J=1,A2 W = W + 1Z(J)=V*₩/Ü CONTINUE A1=XMAX(NZ) B1=XMAX(L)₩=-1 V=X(A1)-X(B1)U=A1-81 DO 100 J=81,A1 -W=W+1 Y(J)=X(B!)+V*W/U 100 CONTINUE A2=XMIN(NZ) B2=XMIN(L) ₩=-1 V = X(A2) - X(B2)U=A2-B2 DO 105 J=B2,A2 W=W+1Z(J)=X(B2)+V*W/U 105 CONTINUE B1 = XMAX(NZ)W = -1V=-X(B1) U=N-81 00.110 J=B1,N W = W + 1

Y(J)=X(B1)+V*W/U 110 CONTINUE B2=XMIN(NZ) ₩=-1 V = -X(82)U=N--82 DO 115 J=B2,N W=₩+1 Z(J)=X(B2)+V*W/U115 CONTINUE С L=1 XNOLL(1)=1С XNOLL INNEHÅLLER LÄGESKOORDINATERNA FÖR DE PUNKTER С С DÄR ENVELOPPERNA SKÄR X-AXELN. С DO 120 I=1,NZ : A5=XMAX(I). IF(X(A5).EQ.0.)GOTO 333 GOTO 120 333 L**≃L**+1 ; XNOLL(L) = A5120 CONTINUE С NO≕L+1 XNOLL(NO)=N С DO 130 I=2,NO S=XNOLL(I--1) T=XNOLL(I) P=MOD(1,2)IF(P.EQ.O.)GOTO 111 DO 140 J=5,T YY(J) = Z(J)ZZ(J)=Y(J)CONTINUE 140 GOTO 130 DO 150 J=S,T 111 (L)Y=(L)YYZZ(J)=Z(J)150 CONTINUE - CONTINUE 130 С WRITE(6,900) С DO 160 J=1,N WRITE(6,*) YY(J) 160 CONTINUE DO 170 J=1,N WRITE(6,*) ZZ(J) 170 CONTINUE С STOP FORMAT(16F4.0) 999

900	FORMAT(1	**+	*****************	·* 1	/
	*	Ŧ	!		11	/
	*	•	!	ENVELOPP	11	Ι
•	*	Ŧ	!	****	11	/
		r	!	ETT DATORPROGRAM FÖR APPROXIMATION AV	11	/
	*	, F	!	TIDSSERIENS ENVELOPP. PROGRAMMET BERÄK-	i ,	1
	*	١	1	NAR POSITIONEN I TIDSSERIEN FÖR VÅG-	! '	1
	¥	t	i	TOPPAR OCH VÅGDALAR ENL. ZUC-TEORI,	11	/
	*	I.	ļ	VAREFTER DESSA SAMMANBINDS MED RÄTA	11	1
	¥	1	!	LINJER. ENVELOPPEN KORSAR X-AXELN OM	11	/
	*	1	!	EN VÅGHÖJD BEFINNS VARA MINDRE ÄN DE	11	/
	*	,	!	TVÅ NÄRMAST INTILLIGGANDE.	11	/
	¥	t	I		11	1
	¥	ίŧ.	!	KONSTRUERAT AV J MÅRTENSSON	11	/
-	*	, t	!	VID	11	/
	¥	ł	!	CHALMERS TEKNISKA HÖGSKOLA	! '	1
	*	ı	**	**********	÷* ')
//sys	END SIN DD	Ķ-				
1024						

/INC VÅG1

, nixn

황금의

ze-≧tie