

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering

Göteborg, Sweden, April 2012

A Framework for Evaluating Regression Test

Selection Techniques in Industry

Master of Science Thesis Software Engineering and Technology

ALEX AUGUSTSSON

The Author grants to Chalmers University of Technology and University of Gothenburg

the non-exclusive right to publish the Work electronically and in a non-commercial

purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work

does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a

publisher or a company), acknowledge the third party about this agreement. If the Author

has signed a copyright agreement with a third party regarding the Work, the Author

warrants hereby that he/she has obtained any necessary permission from this third party to

let Chalmers University of Technology and University of Gothenburg store the Work

electronically and make it accessible on the Internet.

A Framework for Evaluating Regression Test Selection Techniques in Industry

ALEX AUGUSTSSON

© ALEX AUGUSTSSON, April 2012.

Examiner: Associate Professor Miroslav Staron

Supervisor: Associate Professor Robert Feldt

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

The cover page picture is a visualization of an excerpt of regression testing status data

where the x-axis represents execution sessions, the y-axis represents test cases and the

colors represent the test case status (fail/pass/etcetera).

Department of Computer Science and Engineering

Göteborg, Sweden, April 2012

Acknowledgements

The author is thankful to Associate Professor Robert Feldt at the Dept.

of Software Engineering, Chalmers Technical University and Dr.

Perolof Bengtsson and Bertil Aspernäs at Ericsson in Karlskrona for

their support.

A Framework for Evaluating Regression Test Selection Techniques in Industry

Alex Augustsson

MS Student, Software Engineering and Technology

Chalmers University of Technology

Göteborg, Sweden
alex.augustsson@gmail.com

Abstract— Background: Previous research in the area of

regression testing has mainly focused on different techniques

used to decrease the size of test suites. However, studies that

compare the techniques in authentic industrial contexts are

few. Aim: The aim of this paper is to introduce an efficient,

purposeful framework meant to evaluate regression test

selection techniques using only a limited selection of available

information. Method: In order to evaluate and compare

different regression testing techniques three realistic and

important scenarios were recognized and a framework was

developed. This was then utilized as a starting point for an

evaluation case study which compared regression test selection

techniques. Regression test data was collected from a software

developing site within Ericsson. Results: The framework

evaluation showed that a well-supported decision could be

made regarding which regression testing technique a software

development organization should use. The comparative case

study also showed that, compared to a random selection, a

technique based on historical test data improved the fail

detection. Conclusions: The contribution of this paper is the

framework which can be used as a basis for further research as

well as aid practitioners in the analysis and evaluation of

regression test selection techniques.

Keywords— regression testing; evaluation framework;

industrial context; regression test selection; historical test data;

information-constrained;

I. INTRODUCTION

Regression testing is conducted to find faults, or to assure
that faults does not exist, in currently existing software when
adding new code or modifying existing code. A typical
approach to regression testing is to retest all test cases
(retest-all) [1] and to allow the testing to be carried out
continuously during iterative development [2]. This is an
expensive activity as the amount of code increases
continuously, resulting in a growing number of test cases to
be executed. Studies indicate that regression testing can
stand for as much as 80% of the total testing cost [3]. This
amount can add up to as much as 50% of the total cost of the
software product [4]. Also, the execution time of the test
cases can impose a bottle-neck when developing large

software systems which could ultimately result in quality
issues.

Decreasing the number of executed test cases is thus one
possible way of reducing costs and execution time. In order
to accomplish this several different techniques has been
proposed. Yoo and Harman divide these techniques into
three categories [5]. To permanently reduce the test suite the
Test Suite Minimization (TSM) approach is used. The
second category, selecting a subset of test cases to be
executed for a given version of the software, is called
Regression Test Selection (RTS). The third category, the
Test Case Prioritization (TCP) technique, is not primarily
about decreasing the number of executed test cases. Instead it
prioritizes the test cases by fault detection likelihood.
However, a TCP can be considered as an RTS. For instance,
a test case selection can be made by setting a threshold value
(e.g. 20%) choosing only the most prioritized test cases for
execution.

Most regression techniques are based on the analysis of
code [5, 6]. However, in industry, the use of such techniques
is not always feasible due to the lack of access to the full
code [2]. Also, the techniques require certain data which can
be too expensive to both collect and maintain. One example
is the traceability between code and test cases. It might also
be the case that techniques which require more information
demand more advanced knowledge, thus making
practitioners disregard the techniques due to the learning
threshold.

Research indicates that there is no basis for choosing a
superior RTS technique [6, 23]. Moreover, the industry does
not seem to have either a method or a practice supporting
their choice of technique [3, 6]. In practice it is thinkable that
the knowledge and experience of the developers determine
the selection and that it is not a systematic approach [3].

In existing research the main focus has been on the
selection methods rather than on how to evaluate and
compare them. This presents a problem. Before selections
and evaluations can be discussed and optimized,
independently defined measures on how to evaluate different
selection schemes must be defined.

This paper aims to examine the possibility of creating a
framework which uses a minimal selection of information,

extracted from historical test data, to evaluate different RTS
techniques. This data is often a byproduct of the testing and
it is often easily accessible. A prototype tool was developed
in order to facilitate the collection and the preprocessing of
data. It implemented different RTS techniques and
evaluation schemes but it also supported regression test data
analysis and the evaluation of the framework itself. The
framework was developed through comparative studies of
different RTS techniques connected to different real-life
situations. These real-life situations are referred to as
scenarios.

When creating the framework, data from a site within
Ericsson AB was used. Said site develops services to mobile
phone operating companies. During a time period of more
than two years, data was collected from one distinct system
consisting of millions of LOC.

The contribution of this paper is the proposed framework
which consists of foundations and building blocks for
analyses, visualizations, comparisons and evaluations of
different RTS techniques using only a minimum selection of
information. The introduced framework is intended to be
simple and undemanding for practitioners to understand and
implement. Furthermore the framework is required to
support a multitude of different analyses since the amount of
available data can vary during the lifecycle of a project.

This paper also aims to summarize the current state of art
when it comes to evaluation of the regression testing
applicable in industry. To accomplish this, the following
research questions are meant to be answered:

RQ1. What empirical studies, with a large scale
industrial perspective, have been conducted on
evaluation of RTS techniques?

RQ2. How can RTS techniques be evaluated
objectively?

RQ3. How can a framework, intended to evaluate
different RTS techniques on realistic data, be
created?

RQ4. How can RTS techniques be categorized based
on their effectiveness?

This paper is structured as follows; Section II introduces
the related work in this area. Section III presents the method
and Section IV the different building blocks of the proposed
framework. Section V presents a comparative study of
different RTS techniques. Section VI contains the discussion
of the results and in section VII the conclusion and further
work are presented. This is followed by references.

II. RELATED WORK

The area of regression testing is well researched. Two
extensive studies have been conducted, one regarding the
area in full [5] and one focusing on papers regarding RTS
[6].

A. Empirical evaluations

Comparative evaluation studies of regression testing
techniques are limited, in particular those conducted in an
industrial context. Most studies investigate small to medium
size systems, leaving the question whether the result is
applicable to larger systems unanswered.

There are, however, a couple of studies on evaluation of
RTS techniques regarding large systems. Orso et al. [7]
evaluates the use of a two-phase RTS technique on Java
programs and compares it to a high-level firewall technique,
an edge-level identification technique as well as retest-all.

The high-level firewall technique is, in turn, compared to
a change-based selection technique presented by Skoglund
and Runeson [8]. Skoglund and Runeson [8] also provide a
large-scale industrial validation.

Another large-scale industrial study is presented by
White et al. [9]. Two firewall approaches (procedural-design,
additional data-paths) are compared to the high-level firewall
technique previously mentioned. Furthermore, White and
Robinson [10] compare the high-level firewall and the
procedural-design firewall with an intuitive-based approach
respectively.

B. Evaluation frameworks

Rothermel and Harrold present a framework for
evaluation of regression test selections, introducing four
categories of evaluation; inclusiveness, precision, efficiency
and generality [11]. When comparing the most recent output
from a test case to that from a previous execution it may
have changed. Measuring how well a technique detects those
test cases is called inclusiveness. The second category,
precision, measures the capability to exclude test cases that
do not produce a different output between executions. The
third category, efficiency, provides the costs of the
computations for the selection. And the last category,
generality, provides an indication on how general the
technique is; whether it can handle different programming
languages, different degrees of complex code modifications
or realistic testing applications.

C. RTS technique categorization

Categorization of RTS techniques has also been dealt
with in research. Engström et al. [6] establish that RTS
techniques could be categorized in various ways, such as:
language applicability; which input is needed for different
methods; the used approach; level of granularity regarding
changes; different properties for methods such as
safe/unsafe, minimizing/not minimizing, dataflow-coverage-
based, ad hoc/random etcetera.

D. Metrics

Engström et al. summarize metrics used as evaluation
criteria for RTS techniques [6]. Reduction of cost is
commonly used as an evaluation criterion. To measure this,
test suite reduction is mostly used. The total time, i.e. the
time of test selection and test execution combined, is also
used. Metrics for effectiveness are divided into measures
relating to the number of failing test cases or the number of
faults found from selected test cases.

One metric that is used as a de facto standard for TCP
techniques is the Average Percentage Fault Detection
(AFPD) [12]. It measures the rate with which the TCP
techniques prioritize fault detecting test cases. Variations of
this metric are presented, including cost [13] and failing test
cases instead of faults [14].

Even though there are metrics regarded as standard-
metrics, there is no conclusion made as to for which situation
a specific metric is most suitable. It is stated that the use of a
certain metric is based on the design of the study [15].

III. METHOD

The following section describes the industrial context and
the methodology. The data is presented in detail and validity
threats to the conducted research are identified.

A. Industrial context

The work involved in the research process was executed
in collaboration with the development unit Revenue
Management of Ericsson AB, located in Karlskrona,
Sweden. Ericsson is a world-leading provider of
telecommunication equipment and data communication
systems. The Karlskrona division develops software systems
for mobile communication. The system that was studied is an
essential part of the mobile communication solutions.

Currently two versions of the product/system are
maintained. Both versions include specific product
customizations projects as well as integration projects
alongside the main systems. Regression testing is carried out
all nights throughout the week, with few exceptions, for
every project and each part of the system.

The test cases are logically grouped according to existent
communication interfaces. These groups are referred to as
test objects. Data from each test case is collected and stored
in a database.

B. Study design

The method used in this study is based on the Design
Research paradigm [16, 17]. Fig. 1 describes the general
process.

Figure 1. The general methodology of design research adapted by [17]

A tentative design was implemented in the development
phase and in this particular case the following steps were
taken:

1. Creating and defining fundamental concepts
regarding the proposed framework.

2. Identifying regression testing scenarios relevant
for industrial use.

3. Creating the framework.
4. Developing a tool suitable for analysis and

evaluation of regression testing techniques.
5. Collecting and preprocessing data.

Following the problem statement and suggested solution
the first step was to create taxonomy of different basic
metrics for analysis and evaluation as well as the actual
evaluations. Simultaneously, regression testing scenarios of
industrial importance were identified. The combined work of
the taxonomy creation and the scenario identification
resulted in the framework’s building blocks. The developed
tool was, in turn, based on the framework. Data was then
collected and used by the tool in order to analyze and
evaluate different RTS techniques. Fig. 2 shows the steps in
the development phase. The work within the development
phase was conducted in an iterative way.

Figure 2. Steps in the development phase.

The evaluation phase consisted of two stages. In the first
stage the framework, and its usage when comparing RTS
techniques, was described. The comparison mentioned above
was realized as a case study where two regression testing
techniques were set against each other. An industrial
scenario was then chosen and a step-by-step walk-through of
the parts in the framework was conducted in order to decide
the best technique for this scenario. The second stage
consisted of a broader review which introduced two more
scenarios.

The conclusion phase included elaboration about the
proposed framework and if it was fit for its purpose.

C. Data

The data used in this research was collected from one
project and one version of the software, in this paper it is
referred to as release A. It consisted of approximately 400
sessions which were executed between October 2010 and
August 2011. Primarily the sessions were executed during
the night i.e. once a day. In the beginning, roughly 2400 test
cases were executed and in the end of the period this number
had increased to almost 4100. This was also the maximum
number of executed test cases during any session. In total,
approximately 4600 distinct test cases were executed during
all sessions.

The execution data was stored in a database along with
test case descriptions. Data for the chosen project was
extracted and preprocessed. Then, the data was presented in
a matrix where each row represents a test case and each
column represents a session. Each cell contains a symbol P
(passed), F (failed), N (not applicable), 0 (null) or X (not
alive). A test case is set to X in the sessions before it has
come into existence and after it has seized to exist, whereas

Awareness of problem

Suggestion

Development

Evaluation

Conclusion

Circumscription

Creation and
definition of

fundamental

concepts

Identification of
regression testing

scenarios
important for

industry

Creation of

framework

Development

of tool

Collection and
preprocessing

of data

N represents a manual removal of a test case. The intention
of setting a test case to ‘not applicable’ is to permanently
remove the test case the next session. When a test case is 0 it
is either manually removed or the execution has halted. In
the first situation there are primarily two possible scenarios;
a test case can be in “quarantine” for a couple of sessions, for
instance because it is not properly designed or, a test case
can be removed permanently even though it has not been set
to N previously.

Minimal selection of information, as mentioned earlier,
suggests using only F, P and 0. The information used in this
paper also includes N and X as stated. The use of N is an
adaptation for the Ericsson case and the use of X is meant to
separate the not-alive test cases from those referred to as
null. This inclusion of N and X together with P, F and 0 is
called realistic minimal selection of information. The
suggested framework supports both approaches of
information selection.

The collected data was used together with the
implementation of the framework in order to analyze the data
and RTS techniques as well as to develop and evaluate the
framework.

D. Validity threats

In this study the validity threats are divided into four
aspects as explained by Runeson and Höst [18]; construct
validity, internal validity, external validity and reliability.

1) Construct validity

Construct validity refers the degree of which the actual
research conforms to its intention. The biggest threat to this
study is ambiguity in the presented terminology. Since it is a
framework, the parts need to be well defined. Further all test
cases are assumed to have the same execution time and cost.
This could impose a threat for the validity regarding
practicability in industry.

2) Internal validity

Internal validity refers to the accuracy of the
interpretation of the results, that no unknown factor is
affecting the result. In the process of developing the
framework, a tool implementing the framework is created.
The results are depending on the correct implementation.
Extensive verification on the tool is conducted to decrease
this risk. However erroneous results from specific
evaluations should not invalidate the framework as such.

3) External validity

External validity refers to the generalization of the
findings, outside the studied context. The framework in itself
is aimed to be general. But it is thinkable that there could be
scenarios that are best handled outside the extent of the
framework. Also the data used in this research might not be
representative, but that would more impose a threat to single
evaluations than to the framework itself.

4) Reliability

Reliability concerns the repeatability of the study. The
research in this study can be hard to replicate due to the
nature of the creative parts included in the design-science
research. It is also hard to administer evaluation in design-

science research [21, 22]. However given the proposed
framework the evaluations should be possible to replicate.

E. Alternative approaches

The identification of relevant regression testing scenarios
was conducted through discussions with two of the
employees with good insight in the regression testing at the
Ericsson site. However structured or semi-structured
interviews with different stakeholders would have been an
option. Since this thesis was carried out during the summer
this approach was rejected because of summer vacations.

Concerning the collected data, there were more projects
to gather information from. The number of projects used was
regarded not to influence the structure of the framework
itself but rather how good a RTS technique would perform.
However, since the framework is based on a statistical
approach, the amount of data within a project was of key
value. It was decided to use only the project with the largest
amount of information available.

IV. FRAMEWORK FOUNDATIONS

In this section the parts of the framework is presented.
There are seven building blocks presented, each representing
a central part in the organization or the operation of the
framework. Data models are used to represent data in
different situations (i.e. analysis, selection, evaluation). Data
preprocessing is used to manipulate data so that it is fit for
analysis, selection or evaluation. Data analysis is used to
gather more information about the collected regression test
data and the testing environment. Scenarios state what the
selection shall comply to. For instance a selection is to be
made and a requirement could be that the selected test suite
shall be 40% of the original size. The selection must then be
made so that it adheres to this requirement. Scenarios also
provide criteria which the selection techniques are evaluated
on. In other words what the selection techniques try to
optimize. Test case selections are the techniques used to
select test cases for execution. Metrics are the measures used
to present the evaluation of a selection given a specific
scenario while evaluations present in what way RTS
techniques are evaluated.

A. Data models

The data models are a central part of the framework and
they are all presented as matrices. Each row represents a test
case, each column represents a session and each cell contains
a status value. When using historical test data four different
data models appear. These models are presented in this
section of the paper. Fig. 3 shows the relationships between
the models.

1) Raw status data

The raw status data is collected directly from the testing
environment. Depending on the storage of this data, data
rearranging might be necessary, e.g. pivoting of test cases,
replacing the notation of the test case status data, etcetera.
The data will have different properties depending on the
regression testing approach used, for instance if an RTS
technique is already implemented the data will have a high
amount of unexecuted test cases.

2) Status data

Preprocessing raw status data creates the status data
presented in this paragraph. When conducting RTS
evaluations continuously with the collected data the chosen
selection methods will change the status data by setting the
unselected test cases to null. For example if a selection is
done on the first session, a number of test cases are selected
and others are not. When making the next selection on the
second session the test case status data for the unselected test
cases from the first session will be set to null. These test
cases are regarded as not executed when the selection for the
second session is about to be conducted.

The question is now; what to do with failing test cases
that are “nulled” by a selection? Two approaches are
proposed. The first is to do nothing and the second is to let
the “nulled” fail be exposed the next time the corresponding
test case is executed. However this exposure is only valid
given two assumptions. The first assumption is that the test
environment is controlled and there are no non-deterministic
or time-dependent faults. The second is that each fault
correction only fixes one failing test case. This means that a
correction of another visible failing test case would not fix
the “nullified” fail. Since this “nullified” fail is not corrected
it will be shown next time the corresponding test case is
selected.

This is referred to as fail forwarding. Other approaches
are possible, for instance, a statistical approach or solutions
supported by a more extensive data analysis.

3) Selection data

The selection of test cases gives the selection data where
the selected and unselected test cases for each session are
presented as a matrix in the same manner as the raw status
and status data. The cells contain either S for selected test
cases, U for those not selected and X for non existing test
cases.

4) Evaluation data

RTS evaluation uses the evaluation data which is created
the same way as the status data but without having the
unselected test cases set to null for the current session. The
reason for this is that all available information is needed for a
proper evaluation. But if fail forwarding is used then the
forwarded fails must be used in both the evaluation- and the
status data.

Figure 3. Overview of data models.

B. Data preprocessing

In order to conduct proper analyses and evaluations,
preprocessing can be necessary. The data preprocessing can
be divided into two parts; filtering and patching.

Filtering is about limiting or removing situations which
have an unwanted effect on the analysis. For instance, test
cases that are not properly executed for a single session
might not be of interest and can therefore be removed.

When evaluating RTS techniques it is required to replace
unknown status data; namely test cases with null values. This
is referred to as patching. To accomplish patching an
assumption about the “true” status of the test case needs to
be made. Two basic approaches are presented, the ‘non-
faulty’ where an omitted test case is replaced by a pass status
and the ‘most-recent’ where the status from the previously
executed session for that test case is chosen as replacement.
These procedures are explained in [19] (however in a
different context).

C. Data analysis

The purpose of data analysis is to collect more
information about the data and the test environment. Basic
information of interest could be fail density, null density,
executed test cases per session, etcetera. There is an
abundance of different information that can be extracted and
this is just an excerpt.

The analysis can also function as a basis for the creation
of an RTS technique. One approach could be to analyze the
similarity between the test cases regarding their executions
and then divide them over several sessions putting similar
test cases in different runs.

D. Industrial scenarios

Industrial scenarios present realistic situations
practitioners could face when dealing with regression testing.
Scenarios state what requirements the selection technique
must fulfill and they also present the approach for the
evaluation as well as the chosen metric.

A scenario can be described in the following way:
1. A requirement that the selection must follow, for

instance a test suite reduction of a certain
percentage.

2. What criterion the evaluation shall be based on and
what type of metric is to be used.

It is important to note that the choice of RTS technique is
completely independent of the scenario. The scenario only
states what the selection shall do, not how it should be done.

E. Test case selection

The entire test suite may, for every session, be divided
into executed and non-executed test cases. One explanation
for the non-execution might be that the test case is manually
removed. Another reason could be that another RTS has
been applied earlier and that it has not selected this test case.
Yet another reason might be that the test execution have
halted, leaving test cases un-executed.

When applying an RTS technique test cases are selected
from the entire test suite (see Fig. 4) and therefore the

5. Possible fail
forwarding

4. Nulling

3. Test selection

2. Preprocessing

1. Data rearranging

Test data Raw status data

Status data

Evaluation data

Selection data

selection is expected to include both executed and non-
executed test cases. Then assumptions need to be made about
the non-executed test cases (both the selected and the
unselected) in order to perform a proper evaluation. This is
referred to, in earlier sections, as patching.

Figure 4. Test case categorization.

In terms of choosing an RTS technique this is, as stated,
not dependent on the given scenario. Any selection technique
could be used whether it is based on code changes, historical
test data or if it derives from the knowledge of the
developers.

F. Metrics

Every evaluation needs a metric. In research there are a
couple of different metrics used and, as stated earlier, it is the
design of the study that determines the choice of metric. In
this study however, metrics are chosen based on what
evaluation criterion the selection should optimize. Since an
evaluation adapts to a given scenario, the metric also needs
to reflect this.

The starting point, for analyzing regression test data and
evaluating the selections, is metrics. Firstly there are atomic
metrics, for instance the number of fails for- and the size of a
given set of data. These can be combined into other base
metrics like for instance Fail Detection Ratio (FDR) and Fail
Detection Efficiency (FDE).

Base metrics are used to analyze test data, create RTS
techniques and to evaluate them. Some base metrics, such as
Fault Detection Efficiency [2] are used in previous research
when evaluating RTS techniques. In Table I an excerpt of
both common atomic and common base metrics is presented.

TABLE I. EXAMPLES OF ATOMIC AND BASE METRICS

Name Description

Fail Count
The number of failing test cases for a given set of

data.

Size The size of a given set of data.

Fail Detection Ratio (FDR)
The number of detected fails for a selection divided

by the total number of fails.

Fail Detection Efficiency (FDE)
The number of detected failing test cases for a

selection divided by the size of the selection.

Test Case Selection Ratio (TCSR)
The size of a selection divided by the total size of

the given set of data.

Fail Omission Quotient (FOQ)
The number of undetected failing test cases divided

by the size of the unselected test cases.

G. Evaluations

Evaluations can be divided into single-session and multi-
session evaluations. Single-session evaluations only assess
one execution of test cases while the multi-session equivalent
evaluates selections made on several consecutive sessions.

Base metrics are primarily used for single-session
evaluations.

Multi-session evaluations differ a bit from single-session
evaluations. The reason for evaluating consecutive
executions derives from the idea that it might not be crucial
to execute all test cases every time. Instead an evaluation can
indicate whether a selection technique has good or bad
coverage over multiple sessions. The challenge here is to
make the multi-session evaluation metrics dependable and
understandable.

Also connected to the evaluations is the concept of
sliding evaluation which is used to analyze both single-
session and multi-session evaluation over time. It may also
be used for aggregate measures of the historical test data, for
instance average or mean.

V. COMPARATIVE STUDY OF RTS TECHNIQUES

In order to evaluate the proposed framework a detailed,
comparative case study was conducted on two different RTS
techniques for a given scenario. This case study describes a
possible workflow when using the framework. To give
further substance to the evaluation, additional comparisons
were conducted and summarized. Two more scenarios were
explored for four RTS techniques together with a best-case
and a worst-case selection. These scenarios were identified
in collaboration with Ericsson and each of them is presented
with parameters regarded as relevant in the given context.
Table II presents the scenarios.

TABLE II. CASE STUDY SCENARIOS

IS1

Test Suite Reduction (TSR40)

Decrease the size of the test suite with 40%.
What percentage of the failing test cases is selected?

IS2

Fail Omission Risk (FOR20/20)

It is acceptable to have a 20% risk to miss 20% of the failing
test cases.

How large a percentage of the test cases would be selected?

IS3

Session Division (SD3)

Decrease the size of the test suite with one third.
Which test cases can be regarded as failed when examining
three sessions?

A. Case study

The workflow for the conducted case study is shown in
Fig. 5 below. It is suggested that this process is used in the
proposed framework.

Non-executed test cases

Executed test cases

Selected test cases

Figure 5. General workflow

The first step is to define a scenario which specifies the
objective the RTS techniques, is to reach or optimize. This
definition also stands as the basis for the choice of metric,
and later in the process the evaluation approach.

After the scenario definition, the next step is to analyze
the collected data and process it for further use. An analysis
commonly conducted is the distribution of the number of
fails each test case detects. This gives an indication of
whether there are a few test cases which stand for the
majority of the fails or if the fails are more evenly
distributed.

Preprocessing could be the removal of test cases that
have not been executed or the replacement of null values.

The next step is to choose the RTS technique or
techniques to be evaluated and then conduct the actual test
case selection. When that is completed the evaluation takes
place. The selected scenario sets the stage for the evaluation
and from that an analysis of the result is performed.

1) Scenario definition

In this comparative study the requirement given by the
scenario was to decrease the amount of executed test cases
by 40% (TSR40). The evaluation criterion was the
percentage of failing test cases detected.

2) Data analysis and preprocessing

The data from the system referred to as release A was
used. This data consisted of almost 400 sessions and there
were nearly 4100 distinct test cases. Analysis of the data
showed that there were four test cases that were null or not
applicable for an entire session. Those test cases were thus
removed. The data now had a null-status density of 3%. The
next step was to make an assumption about the null-valued
test cases. The most-recent patching approach was chosen.

3) RTS technique selection

The first RTS technique chosen was introduced by
Fazlalizadeh et al. [20]. The technique will be referred to as
Faz and was selected since it is based on the use of historical
test data, which was the data available for this study. Also,
the technique has been used in other studies [2].

Faz is originally presented as a prioritizing technique
where a test case is given high priority by a combination of
historical fault detection effectiveness, execution history and
the priority of the previous session. Each of these factors is
weighted by different parameters as can be seen in (1).

 (1)

In this study an adaptation had to be made since the
initial priority, as proposed by Fazlalizadeh et al., is based on
code coverage. This was not the case for this study; instead,
no initial prioritizing was performed, treating all test cases as
equals. The original technique also dealt with faults
occurring in each test case. In this study no such information
was available so one failing test case was regarded as one
fault. Furthermore the parameters were all set to 0.3, so no
tweaking of the technique was made.

Since a sliding evaluation was undertaken, the
assumption was made that fails “hidden” by the unselected
test cases became visible the next time these test cases were
executed.

The second technique used in this comparative study was
random selection, referred to as Ran.

4) Evaluation

The evaluation was based on a base metric; in this case
Fault Detection Ratio (FDR) i.e. the number of failing test
cases detected divided by the number of total fails in the
session. The metric was chosen based on the stated
evaluation criterion given by the scenario. A sliding single-
session evaluation with FDR was performed in all sessions
and an average of the single-session evaluation value was
calculated. This was performed on 60% of the test cases for
each session, both for Faz and Ran. In addition to this
selection, sizes of 10%, 20%, and so on, up to 90% were
evaluated for further analysis.

5) Results

Based on the evaluation results a graph showing the
average value of FDR for the different test selection sizes
was constructed. Both the Faz- and the Ran technique is
included (see Fig. 6).

Figure 6. Average fail detection ratio depending on size for Faz and Ran.

Scenario

definition

Data analysis and

preprocessing

RTS technique

selection

Evaluation

Result

analysis

Metric

Evaluation approach

First the results showed that Faz gave a higher average
fail detection ratio for almost all test selection sizes. The
biggest difference in fail detection ratio between the two
RTS techniques became noticeable where the size of the
selection was 60% of the original test suite. Furthermore,
each increase of the selection size gave a relatively higher
increase of the average FDR (except for 50%) up until a size
around 60%.

The distribution of the FDR in all sessions for Faz and
Ran respectively are plotted in Fig. 7. It shows that the
probability of at least a 40% fail detection ratio is high for
both Faz and Ran when the selection size is around 60%.
When pursuing a fail detection ratio of more than 50% Faz
was superior to Ran, as Faz had almost a 50% probability of
finding at least 90% of the failing test cases.

Figure 7. Probability for Faz and Ran to find at least a certain percentage

of fails when selecting 60% of the test cases.

B. Summary of comparison of RTS techniques

The scenarios that were specified in section IV was used
for the comparative study. The techniques used were Faz and
Ran together with a slightly tweaked version of Faz. Also
included was a selection scheme which divided the execution
of the test cases over three sessions. This scheme was
referred to as DivRan3. For comparative measures a best-
case and worst-case test case selection was included. These
were referred to as Best and Worst.

Yet again the data from release A was used. The same
configurations as in the comparative study were assumed,
namely a removal of test cases that were null or not
applicable on all sessions. The ‘null’ test cases were replaced
with the most recent test case status.

When it came to the tweaked version of Faz, it was
lightly based on analyses of the data. Since only a few test
cases were failing emphasis was made on the historical fault
detection effectiveness factor. The parameters were set to 0.9
for α, 0.05 for β, and 0.1 for γ. This approached is referred to
as Faz_tweak.

Scenario TSR40 was, as described in the previous sub-
section, using FDR as base metric. It was also using a sliding
evaluation in order to calculate an average FDR. The
evaluation was plotted with average FDR over the selection
size together with the fail detection distribution for a size
reduction of 40%.

The second scenario used TCSR as base metric. In order
to calculate this value several evaluations were conducted for
different selection sizes with FDR as the base metric. For
each selection size the risk of missing the given percentage

of failing test cases was taken from the FDR distribution. A
slight increase of the test selection size was used for each
evaluation until the risk value closest above the stated
acceptable risk was found.

In the third scenario, the base metric used was FDR; but,
it was defined differently. The evaluation was of multi-
session character and detection was noted when at least one
failed test case was selected in one of the, in this case three,
sessions. It was regarded an undetected failure if there was a
failing test case in one of the sessions and no detection of it
was made. This metric used for this scenario is referred to as
FDR-bin3. The value of the FDR-bin3 was calculated by
dividing the number of failing test cases detected with the
sum of both detected and undetected failing test cases. The
evaluation of scenario three was a sliding evaluation using
all values from the collected data.

The results of the evaluations are presented in Table III
which shows that the Faz_tweak technique presents the best
value for all three scenarios.

TABLE III. COMPARISON OF RTS TECHNIQUES

RTS

Scenario

TSR40 FOR(20/20) SD3

Avg. FDR TCSR Avg. FDR-bin3

Faz 0.86 ~0.68 0.86

Ran 0.59 ~0.86 0.64

Faz_tweak 0.94 ~0.52 0.87

DivRan3 N/A N/A 0.87

Best 1 ~0.01 1

Worst 0 ~0,99 0

VI. DISCUSSION

The expensive nature of regression testing forces
companies to search for more cost effective solutions. In case
the regression testing is a bottle-neck for development one
solution could be to acquire more hardware and in addition
test cases could be independently created. Consequently
allowing the test cases to run in parallel and thus decreasing
the execution time. However, this could introduce problems
of a pragmatic nature, such as where to put the hardware, as
well as how to provide electricity and sufficient cooling.
Buying more hardware is not sustainable in the long run and
could cause environmental as well as image concerns.

In research there is a great range of proposed solutions
regarding RTS techniques but the focus has been on RTS
techniques which demand information about the connections
between code and test cases. Such information is not always
available and the maintenance of such information could be a
problem in itself.

RTS techniques are most often only compared to a
reference method such as retest-all or random selection [6,
15] which does not provide sufficient material to compare
techniques. Furthermore, several studies are using small
systems which might invalidate the generality of the results.
There is a lack of large-scale evaluation in real situations as

well as thorough comparisons of different RTS techniques.
Engström et al. state [15] that it is hard for practitioners to
make decisions based on research since most existing
techniques are not sufficiently evaluated.

Studies conducted on evaluation of RTS techniques in
industrial context (RQ1) are rare. The few that has been
carried out have mainly focused on firewall approaches [7, 8,
9, 10]. In the four studies a total of six different RTS
techniques were evaluated and one technique, the high-level
firewall approach, appeared in three of them.

Metrics used for evaluation are either based merely on
the structure of the conducted study [15] or on what is used
as a de-facto standard in research. This paper suggests that
the metrics used should be based on the criterion that test
selections are evaluated on. This is the justification behind
the definition of base metrics in this study.

The proposed framework is based on a statistical analysis
(RQ3) and a comparative study shows that evaluations can
be made independent of the technique used for selection
(RQ2). Also, after evaluating the framework, examples were
constructed on how RTS can be compared and evaluated
(RQ4) which would imply that practitioners can profit using
this framework. Besides the comparisons of RTS techniques
there are possibilities for practitioners to increase their
knowledge about the testing environment through analysis of
the historical test data.

The case study had a two-sided objective; evaluating the
framework and comparing RTS techniques. Insight in how a
historical-based RTS technique, in form of Faz, performs
was presented. In Table III it is shown that more than 90 %
of the failing test cases are detected on average when the test
suite is reduced with 40 %. This is achieved using only
historical test data.

With easily accessible regression test data a quite high
FDR is achieved and the question at hand here is how much
more it will cost in order to get those last percentages of the
FDR.

There are limitations to this framework. It is not able to
categorize safe and unsafe RTS techniques since it is based
on a statistical taxonomy and not one that is code-based.
However the framework can give indications whether a
technique shows such a behavior. With that said, extra
measures would be needed for safety-critical systems.

The framework requires only the tests in the test suite
without a connection to specifications or requirements. This
means that the issue whether a test suite has a good coverage
or not is not supported by the framework.

One problem is when an RTS technique has already been
implemented in a real operation; the amount of information
for each test case will then decrease. If a new RTS technique
is to be evaluated, it demands that well educated assumptions
about the missing information are made. An introduction of a
risk measurement regarding the missing information would
be a necessity. The possibility to evaluate RTS techniques on
just the executed data (disregarding the non-executed) is one
possibility, but whether the result from such an evaluation is
adaptable to the whole data set is unclear.

Since the framework is based on statistics the amount of
available data is of importance. However, this would not

imply a limitation when using the framework; it just
emphasizes the importance of continuous collection of data.

VII. CONCLUSION AND FURTHER WORK

This paper was intended to review what empirical studies
had been conducted on how to evaluate RTS techniques with
an industrial perspective, to explore if such techniques could
be objectively evaluated, to examine how a framework could
be created to support this evaluation and to study how a
categorization could be made based on the effectiveness of
the selection approach.

Based on statistics, the proposed framework and its
implementation open a possibility to analyze regression test
data along with evaluation and analysis of different RTS
techniques. Through comparative studies coupled with
different realistic scenarios the framework was evaluated. In
addition, the framework decreased the gap between
academia and research in the sense that RTS techniques can
now be evaluated based on information easily obtainable in
an industrial context. Given the results it is now possible to
state that one RTS technique is better than another in certain
situations given specific criteria. This provides software
developing organizations with a cost-effective and practical
way to improve their regression testing. During the
evaluation of the framework it was showed that the RTS
technique proposed by Fazlalizadeh et al. [20] gave better
average fail detection ratio for any size of the selected test
cases compared to a random selection. When analyzing the
data and tweaking the parameters given in Faz an even better
average fail detection ratio was achieved.

The approach to divide the test cases over a couple of
sessions has its justification. However, how to measure this
conclusively is still not clear. The presence of non-
deterministic or time-dependent faults is not supported in the
framework and can impose a limitation to the test case
division approach.

Regarding future research more information can be added
as input data to the framework. For instance introducing the
cost for each test case improves the framework and makes it
more applicable. The relevance for industrial use is of utmost
importance so a qualitative study over which regression
testing scenarios are relevant could improve the validity of
the framework.

Further studies on how test data analysis correlates to
different regression testing situations with respect to
granularity, test case dependency, etcetera, could be initiated
and statistical models could be created. With a successful
study in this area, practitioners could be aided in their choice
of regression testing technique. Also the exploration of test
executions profiles could give correlative behavior among
test cases and be the basis of a division scheme.

ACKNOWLEDGMENT

The author is thankful to Associate Professor Robert
Feldt at the Dept. of Software Engineering, Chalmers
Technical University and Dr. Perolof Bengtsson and Bertil
Aspernäs at Ericsson in Karlskrona for their support.

REFERENCES

[1] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, “Test case
prioritization: an empirical study,” in Proceedings of the
International Conference on Software Maintenance, Sep. 1999, pp.
179-188.

[2] E. Engström, P. Runeson, and A. Ljung, ”Improving regression
testing transparency and efficiency with history-based prioritization –
an industrial case study,” in Proceedings of the 4th International
Conference on Software Testing, Verification and Validation, Mar.
2011, pp. 367-376.

[3] E. Engström and P. Runeson, “A qualitative survey of regression
testing practices,” in Proceedings of the 11th International Conference
on Product Focused Software Development and Process
Improvement (PROFES ’10), June 2010, pp. 3-16.

[4] H. K. N. Leung and L. White, “Insights into regression testing,” in
Proceedings of the Conference on Software Maintenance, Oct. 1989,
pp. 60-69.

[5] S. Yoo and M. Harman, “Regression testing minimization, selection
and prioritization: a survey,” Software Testing, Verification and
Reliability, vol. 21, no. n/a, pp. n/a, Apr. 2010.

[6] E. Engström, P. Runeson, and M. Skoglund, “A systematic review on
regression test selection techniques,” Information and Software
Technology, vol. 52, no. 1, pp. 14-30, Jan. 2010.

[7] A. Orso, N. Shi, and M. J. Harrold, “Scaling Regression Testing to
Large software Systems,” in Proceedings of the 12th ACM SIGSOFT
International Symposium on Foundations of Software Engineering,
Nov. 2004, pp. 241-251.

[8] M. Skoglund and P. Runeson, “A Case Study of The Class Firewall
Regression Test Selection Technique on a Large Scale Distributed
Software System,” in 2005 International Symposium on Empirical
Software Engineering, Dec. 2005, pp. 74-83.

[9] L. White, K. Jaber, and B. Robinson, “Utilizations of Extended
Firewall for Object-Oriented Regression Testing,” in Proceedings of
the 21st IEEE International Conference on Software Maintenance,
Nov. 2005, pp. 695-698.

[10] L. White and B. Robinson, “Industrial Real-Time Regression Testing
and Analysis Using Firewalls,” in Proceedings of the 20th IEEE
International Conference on Software Maintenance, Nov. 2004, pp.
18-27

[11] G. Rothermel and M. J. Harrold, “Analyzing regression test selection
techniques,” IEEE Transactions on Software Engineering, vol. 22,
no. 8, pp. 529-552, Aug. 1996.

[12] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, “Prioritizing
test cases for regression testing,” IEEE Transactions on Software
Engineering, vol. 27, no. 10, pp. 929-948, Oct. 2001.

[13] A. G. Malishevsky, J. R. Ruthruff, G. Rothermel, and S. Elbaum,
“Cost-cognizant test case prioritization,” Technical Report TR-UNL-
CSE-2006-0004, Mar. 2006.

[14] B. Qu, C. Nie, B. Xu, and X. Zhang, “Test case prioritization for
black box testing,” in proceedings of the 31st Annual International
Computer Software and Applications Conference, vol. 1, Jul 2007,,
pp. 465-474.

[15] E. Engström, M. Skoglund, and P. Runeson, “Empirical evaluations
of regression test selection techniques: a systematic review,” in
Proceedings Second ACM-IEEE international symposium on
Empirical software engineering and measurement, Oct. 2008, pp. 22-
31.

[16] A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design science in
information system research,” MIS Quarterly, vol. 28, no. 1, pp. 75-
105, Mar. 2004.

[17] W. Kuechler and V. Vaishnavi, “Design [science] research in
information systems,” Jan. 20, 2004, last updated Aug. 16, 2009,
[Online]. Available: http://desrist.org/design-research-in-information-
systems [Accessed: June 15 2011]. (Also published as work in
progress: in Proceedings of 2nd International Conference on Design
Science Research in Information Systems and Technology (DESRIST
‘07), vol. n/a, no. n/a, pp. n/a, May 2007.)

[18] P. Runeson and M. Höst, “Guidelines for conducting and reporting
case study research in software engineering,” Empirical Software
Engineering, vol. 14, no. 2, pp. 131-164, 2009.

[19] M. Rashid, “Evaluation of regression test effectiveness,” MS Thesis,
Chalmers University of Technology, Göteborg, Mar. 2011, final draft,
unpublished.

[20] Y. Fazlalizadeh, A. Khalilian, M. Azgomi, and S. Parsa, “Prioritizing
test cases for resource constraint environments using historical test
case performance data,” 2009 2nd IEEE International Conference on
Computer Science and Information Technology, pp. 190-195, Aug
2009.

[21] M. V. Zelkowitz and D. R. Wallace, “Experimental models for
validating technology,” Computer, vol. 31, no. 5, pp. 23-31, May
1998.

[22] W. F. Tichy, “Should computer scientist experiment more?,”
Computer, vol. 31, no. 5, pp. 32-40, May 1998.

[23] T. L. Graves, M. J. Harrold, J.-M. Kim, A. Porter, and G. Rothermel,
“An empirical study of regression test selection techniques,”
Transactions on Software Engineering and Methodology (TOSEM),
vol. 10, no. 2, pp. 184-208, Apr. 2001.

