

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering

Göteborg, Sweden, May 2012

Connecting AUTOSAR VFB to Simulink

Environment

Master of Science Thesis in the Master Degree Program, Networks and
Distributed Systems

NAVEEN MOHAN

HANNES ZÜGNER

II

The Author grants to Chalmers University of Technology and University of

Gothenburg, the non-exclusive right to publish the Work electronically and in a non-

commercial purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work

does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example

a publisher or a company), acknowledge the third party about this agreement. If the

Author has signed a copyright agreement with a third party regarding the Work, the

Author warrants hereby that he/she has obtained any necessary permission from this

third party to let Chalmers University of Technology and University of Gothenburg

store the Work electronically and make it accessible on the Internet.

Connecting AUTOSAR VFB to Simulink Environment.

NAVEEN MOHAN

HANNES ZÜGNER

© NAVEEN MOHAN, May 2012.

© HANNES ZÜGNER, May 2012

Examiner: ARNE DAHLBERG

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering

Göteborg, Sweden May 2012

III

Abstract

This thesis was conducted as a part of the Architecture For Future Electric-vehicles

(AFFE) project. AFFE project is a research project funded by VINNOVA to bring out

the next generation electric vehicles based on Automotive Open System Architecture

(AUTOSAR).

The primary aim of the thesis is to analyze and demonstrate the possibility of

connecting model-based design environments to the AUTOSAR Virtual Function Bus

(VFB) to make the process of development of complex automotive systems easier. The

tools chosen for this purpose were Mecel’s Picea suite for the VFB implementation and

Mathworks’ Simulink as the model-based design environment.

The outcome of the project is that a scalable solution to connect the two disparate

programs was created using two different Interprocess Communication (IPC) methods.

IV

Preface

This Master thesis proposal was made by Mecel AB who wished to investigate the

possibility of connecting the Simulink environment to the AUTOSAR VFB to test the

correctness of the models at an early stage in the development cycle.

We are grateful to Mathias Fritzson, Charles Wahlin and our examiner Arne Dahlberg

for their invaluable help in giving us useful feedback and helping us sort out our

technical issues during the course of the project.

We also wish to thank Karin Denti, Erik Hesslow and the others at Mecel who helped us

during all the stages of our work

V

Contents

Abstract ... 3
Preface .. 4
Contents .. 5
1 Introduction ... 1

1.1 Background .. 1
1.2 Purpose ... 1

1.2.1 Current implementation .. 2
1.2.2 Planned method of implementation .. 3

1.3 Problem statement .. 4
The problems can be stated as follows: .. 4
1.4 Scope and Delimitations .. 4

2 Theory ... 6

2.1 AUTOSAR ... 6

2.1.1 Application software components .. 7

2.1.2 The Virtual Function Bus ... 7
2.1.3 Runtime environment ... 8

2.1.4 Basic Software .. 8
2.1.5 Operating system .. 8

2.2 Model-based development and Simulink .. 8

2.3 IPC ... 9

2.3.1 File mapping and shared memory .. 9
2.3.2 Remote Procedure Call ... 9

2.3.3 Pipes ... 9
2.3.4 Mailslot ... 10
2.3.5 Socket Communication .. 10

2.3.6 Clipboard .. 10

3 Tools .. 11

3.1 Simulink ... 11
3.2 Visual C++ Express and Mecel Picea Demo ... 11
3.3 Mecel Picea Testbench .. 11

4 System overview ... 12

4.1 Control Unit ... 13
4.2 Wheel node .. 15

5 Design ... 16

5.1 Initial investigation .. 16
5.2 Requirements ... 16

VI

5.3 Methods chosen ... 16
5.4 Communication Protocol ... 17

6 Evolution of the Solution .. 18

6.1 Standalone programs .. 18
6.2 S-function builder blocks ... 18
6.3 Hand written C S-Functions in C ... 20

6.3.1 Defines and Include statements .. 22
6.3.2 Routines used .. 22
6.3.3 Compiling an S-function based C file. ... 23

6.3.4 Working .. 23

6.4 Final Implementation ... 24

6.4.1 Shared memory ... 25
6.4.2 TCP/IP communication .. 25

7 Testing and Results ... 27
8 Discussion ... 29
9 Conclusion and future work .. 31

References .. 33
Appendix .. 1

A. Code and function description for time function ... 1

B. List of Signals used .. 3
C. Routines used by shared memory .. 5

D. Routines used for TCP/IP .. 7

VII

List of abbreviations

AFFE Architect For Future Electric vehicles

API Application Programming Interface

AUTOSAR Automotive Open System Architecture

BSW Basic Software

CAN Controller Area Network

CU Control Unit

ECU Electronic Control Unit

HIL Hardware in the loop

HW Hardware

IDE Integrated Development Environment

IPC Inter-Process Communication

LIN Local Interconnect Network

MBD Model-based Development

MCAL Microcontroller Abstraction Layer

MIL Model In the Loop

OS Operating System

RPC Remote Procedure Call

RTE Run-Time Environment

SIL Software in the loop

SW Software

SW-C Software Component

VFB Virtual Function Bus

WN Wheel Node

1

1 Introduction

This section describes the purpose, scope and background of the project.

1.1 Background

The AUTOSAR project aims at creating a standard for automotive architecture that will

be used to provide basic infrastructure for the function of standard software and

applications. It was created by a large group of automotive manufactures together with

Tier 1 suppliers to increase co-operation between organizations and to standardize

interfaces such that code could be reused more easily [1].

In general cases testing the functionality of the system are of great importance at each

stage in the development of AUTOSAR systems. At this point, in the model-based

development method, simulations are done by creating models using a MBD tool and

code is generated and later integrated with the AUTOSAR platform. This is a time

consuming way to work. Because complex systems are hard to get right in one attempt,

one has to repeatedly go back to the Simulink model, make the appropriate changes,

regenerate the code and finally integrate it in the AUTOSAR environment again to

repeat the test.

While the application software components are unique to each project, the rest of the

architecture of AUTOSAR can be seen to be more or less the same for each project.

These parts can be purchased as a package from organizations such as Mecel. Mecel’s

AUTOSAR platform is the Picea suite and it is this product that was used in the thesis.

This thesis was conducted as part of the government founded project ‘Architecture For

Future Electric-vehicles (AFFE). The objectives of AFFE are to create and present

control system architecture for electrical hybrid vehicles including a drive-by-wire

system with an electric motors and wheels. It is important that the architecture fulfills

certain safety regulations as well as functional requirements needed for the integration

of different subsystems and components. The final solution requires the giving of a

proof of concept as well as guidelines, principles and solutions. It is also important that

the system be scalable and adaptable to different platform configurations [2].

1.2 Purpose

The purpose of this thesis is to create a connection between the AUTOSAR Virtual

Function Bus (VFB) and the Simulink environment. The aim is to make the Simulink

models execute in their natural environment so that, the steps of code generation and

(re)integration of the code in the AUTOSAR environment, can be avoided. As of now

the debugging is very time consuming and it lacks visibility. This thesis aims at

changing this and taking full advantage of the intuitive ease that comes with the design

of the system in a MBD environment. This is done shifting the steps of debugging and

optimization to the MBD environment and hence reducing the time and the cost to

develop the whole system by a significant factor. Another important factor to be taken

into account is that the solution should scale well so that it can be adapted to larger

2

projects and that the modified system should run within the time bounds required by the

project.

MBD, as of now, is just used to design components. In a medium to large project this

process can be relatively faster than using handwritten code. However using this

methodology implies a large reliance on the code generated by the code generator

integrated with the model-based. Although the reliance on the generated code is high, it

still needs to be verified. If such a reliance on the system exists though, this works quite

well. MBD is presently the method of choice depending on the functionality of the

application. The correctness of the code depends on the correctness of the model. If the

model is correct, then the code generated is so as well. But errors in logic etc. might

lead to faults in the functionality of the system itself and this number of errors increases

exponentially with the increase in complexity of the system. These faults are

inescapable in the early stages of design.

This leads to a fundamental problem; to test the functional correctness of a component,

one might have to simulate the whole system and the whole process of doing so from

using the code generated from the models and integrating it with the simulator to

running the tests is time consuming. Furthermore, the number of licenses required for

the code generating tools increases as the number of people using the licenses increases.

The process of debugging is slow as while the model itself is relatively easy to

understand, the code generated by an automatic code generator might be complex and

relatively harder to debug. The solution then, is to find some way so that the developer

can see the working of the model in graphical format and make changes to the model

without having to generate code and test the functionality for each change.

This is the focus of the master’s thesis. The primary aim is to connect two products

namely, the Mecel’s Picea suite for Windows in the shape of a VFB simulator and

Simulink. Picea’s VFB simulator encapsulates the functionality of the AUTOSAR

components below the application software level in the architecture and Simulink is the

most common tool used for the MBD of application SW-Cs. A proof of concept by

integrating the two using the AFFE-light system is presented and demonstrating that the

system runs within the timing bounds.

1.2.1 Current implementation

Figure 1.1 shows the logical structuring of the systems as is being used today. The

abbreviation SW-C, throughout this report, is used exclusively to indicate application

software components. In figure 1.1 it is shown how the SW-Cs are connected to the

RTE via standard interfaces within Picea. The SW-Cs are built in Simulink and code is

generated from them to be integrated into Picea. All communication between the SW-

Cs as well as the communication between the SW-Cs and the lower layers of the system

goes through the VFB.

3

Figure 1.1: Overview of the original system.

1.2.2 Planned method of implementation

Figure 1.2 shows the proposed implementation. Here it is seen that the SW-Cs have

been separated from the RTE. They now execute in the environment they were designed

in i.e. Simulink. Communication to and from the SW-Cs is still done through the RTE

but through the pseudo SW-Cs instead. Since the AUTOSAR architecture allows for a

separation between different layers, no major changes were expected to be made in the

layers below the VFB.

4

 Figure 1.2: Overview of the proposed implementation.

1.3 Problem statement

The problem can be stated as follows:

Use the AFFE-light system provided by Mecel to:

- Investigate which kind of Inter-process Communication (IPC) techniques can be

used between Simulink and the in house developed Picea AUTOSAR platform

and select two of the most significant ones.

- Compare and contrast performance of different techniques with each other and

with the original model which uses generated and compiled code.

- Design a framework that can be can be easily expanded upon in the future with

minimal configuration changes.

1.4 Scope and Delimitations

The project focuses on the VFB, Operating System (OS) and Application Layer of

AUTOSAR. The other layers of the architecture are not discussed further here. Software

Components (SW-C) developed in Simulink as well as a demo application of Picea was

made available by Mecel at the beginning of the project. These were used as baselines

to create the solution though the solution aims to be more generic.

5

All the tools and software obtained are assumed to be in working order. No further

testing is done with regards to the Picea demo product and the Simulink models

obtained. The justification for this is that the AFFE-project is quite mature and issues

with correctness are not anticipated.

Only two of the many IPCs possible will be chosen to be implemented. The

implementation of communication with other IPCs is out of the scope of the thesis.

6

2 Theory

In this chapter, a brief history and a review of AUTOSAR and Simulink will be

presented along with a few lines on how they are currently used in tandem by the

industry to develop software. This section will also discuss the different IPCs available

and give an overview of them.

2.1 AUTOSAR

The AUTOSAR platform is an open, standardized automotive software architecture

jointly developed by a consortium of automobile manufacturers, suppliers and tool

developers. The goals behind doing so were the following:

- Management of E/E complexity associated with growth in functional scope

- Flexibility for product modification, upgrade and update

- Scalability of solutions within and across product lines

- Improved quality and reliability of E/E systems

- Fulfillment of future vehicle requirements, such as, availability and safety, SW

upgrades/ updates and maintainability

- Increased scalability and flexibility to integrate and transfer functions

- Higher penetration of "Commercial off the Shelf" SW and HW components

across product lines

- Improved containment of product and process complexity and risk

- Cost optimization of scalable systems [1]

AUTOSAR aims to separate the application from the infrastructure. One of the design

goals is to provide a common basic infrastructure to all the developers of software so

that they are not vendor specific anymore, are more portable and reusable thus allowing

different vendors to cooperate on standards but compete on the implementation. Having

this basic infrastructure helps reduce costs by reusing parts of code across different

projects and if needed, organizations. It uses a component based software design model

for the design of a vehicular system. All the application software components interact

with each other through an entity called the Virtual Function Bus. The VFB abstracts

from the application software all the complexities of communication and provides a

standardized interfaces for inter component communication and with the operating

system itself. This separation is provided by adding extra layers of abstraction between

the components. Figure 2.1 shows the basic structure of AUTOSAR.

7

Figure 2.1: Basic AUTOSAR architecture [1].

Above the RTE, the software architecture style changes from layered to component-

based from the application layer and downwards. The functionality of the system is

mainly encapsulated in application software components (SWCs) [1].

2.1.1 Application software components

A SW-C in AUTOSAR is an application or part of an application that is designed for a

specific purpose in a car e.g. to control a windshield wiper. Each component

encapsulates part or whole of an application. A large SW-C can be viewed either as

comprising many smaller components each designed with a single functionality in mind

or as an independent component itself [3].

2.1.1.1 Runnables

A SW-C consists of one or many runnables that perform certain tasks. These runnables

are called upon by the RTE. There are different commands, or events, sent from the

RTE to trigger a runnable. A timing event can be used to periodically execute a

runnable whereas a data received event triggers a runnable based on data received. This

behavior is as per the SW-C specification for AUTOSAR [3].

2.1.2 The Virtual Function Bus

In order to fulfill the goal of reliability, the SW-Cs are implemented completely

independent of hardware. All the communication in and out of the SW-C goes through

the standardized interfaces using the API provided by the VFB. The developer of the

SW-C can thus ignore the specifics of the underlying hardware and focus just on the

application itself. Thus parts of the work involved in integration can be done much

earlier than other comparable development processes in AUTOSAR [4].

8

2.1.3 Runtime environment

The RTE implements the VFB on ECU level. It provides communication capability

between SW-Cs as well as the necessary services for the SW-Cs to execute. It provides

capabilities for communication between SW-Cs on the same ECU as well as

communication between SW-Cs of different ECUs. Whether inter or intra

communication is applied the RTE provides a communication abstraction to the SW-Cs

attach to it. This is done by providing the same services and interfaces to the SW-Cs

whether using inter communication channels such as FlexRay, CAN, LIN, etc. or

simply intra-ECU communication. The RTE is generated on a per ECU basis [5].

2.1.4 Basic Software

The BSW is a layer located below the RTE in the architecture. The BSW allows the

RTE to communicate externally with other ECUs over a bus network like CAN,

FlexRay or LIN. The BSW contains both standard and ECU specific software

components. The standard components include for example the system service such as

NVRAM and memory management. It also includes a communication framework with

e.g. FlexRay, CAN and LIN. The BSW also includes the operating system and

input/output services [6].

2.1.5 Operating system

The AUTOSAR OS is based on the industry standard OSEK OS and shares many of its

characteristics. It is responsible for scheduling the tasks which the RTE has mapped

runnables to. The resources managed by a specific OS implementation are defined

within a configuration file of the OS [7].

2.2 Model-based development and Simulink

Model-based or model driven development is a modern way of developing complex

systems in the automotive world. A model-based system at the core increases the

visibility and increases understanding of the solution thus helping engineers detect

potential problems early on during the development phase. This greatly reduces the

development cost and time and increases functional safety. A model is usually in a

common format which can be comprehended much easier by any other person working

on the project and thus opens up new vistas for knowledge sharing and peer review. The

advantage in savings by using model-based development over hand written code can be

as much 36% according to some studies [8].

There are a few tools currently used to design models. However, the software used most

often by the industry is Simulink. Simulink offers a quick and easy design and an

optional licensed code generator that can be used to generate AUTOSAR compliant

code [9].

The code generated by Simulink’s ‘AUTOSAR target production package’ is integrated

with a simulator so that the system can be simulated on the whole and tested before

being implemented it into hardware.

9

Simulink has a graphical environment and provides many built-in as well as

customizable blocks as part of various libraries and toolboxes. It has sets of predefined

blocks for communication, signals, inputs/outputs, etc. [9].

With Simulink, it is possible to create different environment models and SW-Cs such as

Wheel Nodes (WN) and Control Units (CU). With the help of these models and add-ons

such as Simulink’s code generator, it is possible to generate C-code and implement into

real-time systems.

2.3 IPC

Interprocess Communication (IPC) methods are different ways in which data can be

exchanged between processes. The processes can be either on the same computer or on

different computers connected by a network. One of the requirements of the thesis was

to find one way to connect Picea and Simulink for communication between programs

running on the same computer as well as another for the programs to be able to

communicate in a distributed system.

2.3.1 File mapping and shared memory

Using file mapping gives the process the ability to look at the content of a file as if it

were a block of memory in the RAM. This is done by loading the contents of the file

provided using the file handle as an argument for the function that is used to create the

shared memory. The file on disk that is referred to by the handle is then loaded into the

memory and can be traversed in a way similar to a memory location. This provides for

the ability to modify or simply look at what data exists by the use of simple pointer

operations. If there is a multitasking environment it is important for the processes to

uses some kind of synchronization object such as a semaphore.

A special case of file mapping is called shared memory. In shared memory, a NULL is

passed in place of the file handle to the physical location of the file, indicating to

operating system that this file exists only on memory. Shared memory is an efficient

way of passing data between processes. One process creates a memory location which

the other process can then access. Shared memory is a very efficient way of passing

information between programs, since the shared memory method only utilizes the RAM

of the system. A drawback with this method is that the processes must exist on the same

computer [10]. This is one of the methods implemented in this project.

2.3.2 Remote Procedure Call

RPCs give applications the possibility to call function remotely. This IPC can be used

between computers in a network or on a single computer. RPCs can be used to connect

applications on different operating systems. RPCs have a high performance rate for a

network based system as the clients and server are tightly coupled [10].

2.3.3 Pipes

Pipes can be of two distinct kinds, anonymous or named pipes. Named pipes are used

when transferring information between processes that are not related or between

processes on different PCs. A named pipe server typically spawns a named pipe with a

10

common name or the name is sent to the clients. The named pipe server process is in

charge of access to the pipe. If a named pipe client process knows the name of the pipe

and has access to the pipe, it can open the other end and start communication. After a

successful connection between the server and the client they communicate using read

and write operations.

Anonymous pipes are used when the processes are related. A common application of

anonymous pipes would be when they are used to take the standard input or output from

a child process and deliver it to the parent process. Since the pipes are one-way by

nature, in order to enable duplex communication, two pipes need to be used. The child

process reads from one pipe and writes on the other. Similarly the parent process reads

and writes on the opposite pipes. Anonymous pipes cannot be used between unrelated

processes or over a network [10].

2.3.4 Mailslot

This IPC is a one-way communication method. There are two distinct entities in this

method; mailslot clients and mailslot servers. Any application creating a mailslot is a

server. The clients send data to the server by writing in its mailslot. Any incoming

messages are queued up at the mailslot. They are saved at the mailslot until the server

has read them. For this kind of communication to work both ways, a process has to

function as both a server and a client i.e. each process should have at least two mailslots

open.

It is possible to use this kind of communication in many ways. The client can for

example send messages to its local computer or to a computer on a network. It is even

possible for the client to send broadcast messages. Broadcast messages are limited in

size where the messages to single host only have the restriction decided by the mailslot

server [10].

2.3.5 Socket Communication

Another type of IPC is the Socket Communication. A socket is characterized with an IP-

address and a port number. Based on this information the socket delivers the data packet

to the right thread or process [10].

2.3.6 Clipboard

Using the clipboard is a way to create a central storage for applications sharing data.

Whenever a copy or cut operation is done by a process, it stores the data on the

clipboard in application-defined or standard format. When any other application wants

to fetch data from the clipboard it chooses between the different formats it supports. The

applications need only to agree about which formats that are going to be used. This

makes the clipboard a very loosely coupled exchange board. The clipboard IPC can be

used between applications on the same computer as well as on different computers in a

network [10].

11

3 Tools

This chapter discusses the software tools used in this thesis.

3.1 Simulink

As mentioned earlier, Simulink is a commercial tool for modeling, simulating and

analyzing dynamic systems. It has a customizable set of blocks that can be used to

simulate a wide variety of systems. Simulink offers a tight integration with MATLAB

and can be scripted from it. In the automotive communications domain, Simulink is

used to model systems so that AUTOSAR code can be generated from it using the

embedded coder add-on [9].

3.2 Visual C++ Express and Mecel Picea Demo

Visual C++ Express is a free Integrated Development Environment (IDE) tool from

Microsoft [11]. It is a light weight version of the Microsoft Visual Studio product line.

The idea with the express edition is to provide an easy-to-use and easy-to-learn

environment. The full version of Visual C++ has to be paid for and offers many more

features. However, this was not required for the system. The Picea demo version used in

this project was developed and modified in Visual C++ Express.

The Picea demo was built using the Mecel Picea suite including its VFB simulator and

the code generated from the AFFE-light models. The final implementation comprised

about 13000 objects including all the archives used. The VC++ IDE is used to work

with these files to debug and modify the code as required.

3.3 Mecel Picea Testbench

Picea Testbench is a tool used to simulate, at a very basic level, the environment around

the vehicle and the actions of the driver. It does so by communicating with the vehicular

system itself. This is achieved by sending CAN frames to the Picea VFB simulation.

The CAN frame consists of a number of bytes which can specify as inputs. The CAN

frame in the AFFE-light system is used to communicate the following attributes of the

environment to the system:

- Angle of the steering wheel

- Max torque for the wheels

- Angle of depression of the gas pedal

The information in this frame is used to decide how the car is moving. The system

processes these inputs and gives as outputs the calculated values of

- Torque for left and right wheel

Thus though Picea Testbench does not give an elaborate replication of the environment,

it provides a basic testing ground for the logic used in the vehicle.

12

4 System overview

This chapter aims to give a description of the system used for the thesis.

The suggested AFFE project implementation consists of two control units (CU) and 4

wheel nodes (WN) as shown in figure 4.1.

Wheel
Node

Wheel
Node

Wheel
Node

Wheel
Node

Control Unit Control Unit

 Figure 4.1: The original AFFE system.

However, as the idea was still in the planning stage, the decision was made to keep the

solution simple and a smaller version of the system called the AFFE-light system was

used instead. The AFFE-light system is shown in figure 4.2.

13

Wheel
Node

Wheel
Node

Control Unit

 Figure 4.2: The smaller AFFE light system.

The AFFE-light system includes a CU and two WNs supported in software by the VFB

in Picea’s implementation of the AUTOSAR system. The CU as well as the WNs was

provided as is and their internal structure was not changed. The AFFE-light system that

was provided had about thirteen thousand files in total but only a few of these had to be

modified as most of them dealt with the lower layers of the architecture.

The models that are used in this thesis are discussed in detail in the following sections.

4.1 Control Unit

The Control Unit (CU) takes as input, the angle of depression of the gas pedal, the max

torque allowed for the Wheel Unit (WU) and angle of the steering wheel. Based on the

gas pedal angle and the max torque, the CU calculates the speed for the wheel and sends

it to the WUs. The steering angle is directly passed to the wheels. Inside the CU there

are three runnables as shown in figure 4.2. The first runnable checks the status of the

engine, if an error has been reported the engine is stopped but if not everything

continues as normal. The second runnable, as shown in figure 4.3, takes gas pedal angle

and max torque as input. It then uses a lookup table to convert the gas pedal angle to

obtain the right value of torque that should be applied. A third runnable uses the steering

wheel angle as input and just passes it on to the wheels.

14

Figure 4.2: Simulink model showing the runnables of the CU.

Figure 4.3: Inside a runnable of the CU.

15

4.2 Wheel node

Inside the Wheel Node (WN) a runnable calculates the torque that the wheel should

generate. The wheel node model is shown in figure 4.4. The torque is calculated based

on the value received from the CU as well as the inputted steering angle.

Figure 4.4: Overview of a wheel node in Simulink.

Inside the wheel node there is an algorithm to calculate the actual torque to give out.

This algorithm takes steering angle and torque as input. The steering angle is important

e.g. if the car is turning left the left wheel should output less torque because of a shorter

distance to travel. The runnable can be seen in figure 4.5.

Figure 4.5: Runnable in the wheel node.

16

5 Design

In this section, the requirements for the final solution are identified and the final

communication protocol is discussed.

5.1 Initial investigation

To get an understanding of the project an initial literature study of AUTOSAR,

Simulink and the concepts of AFFE was done. Information about AUTOSAR itself,

how the AUTOSAR VFB works as well as information about how AUTOSAR uses

SW-Cs had to be studied.

Since Simulink is one of the two major applications used in this thesis, a more detailed

study about Simulink was needed. Information about how Simulink works and what its

capabilities and limitations are was provided by Mathworks [9].

5.2 Requirements

The following requirements were identified for the final solution.

1) Control of the order of execution of the components should remain within Picea.

2) Of the original system, only the runnable files should be changed. No outside

modifications to the RTE or the BSW are permitted.

3) Picea and Simulink should execute mutually exclusively. There should be no

competition between Picea and Simulink for use of the processor since the

simulated system only uses one core.

4) The solution should be scalable and it must be possible to reuse the work done in

this project on much bigger projects without heavy configuration and huge

changes in the logic.

5) The Simulink models should not be altered in any fashion which may cause the

logic in the runnables to change.

5.3 Methods chosen

The requirement was to choose one method optimized for running the whole system in

one computer and a distributed method. The two methods chosen to be implemented

were shared memory using file mapping and the TCP/IP method.

Shared memory was chosen because it was shown in documentation to be one of the

fastest methods of IPCs because the data is never written to disk and stays in the

memory.

TCP/IP was chosen as it was the simplest of the distributed method. Some of the other

IPCs discussed, used TCP/IP at a lower level themselves and thus would have been

slower.

17

5.4 Communication Protocol

In order for Picea to be able to distinguish between the information and know which

functions to call every message from Simulink to Picea includes an ID. The S-functions

in Simulink, as will be explained in more detail later, are mapped to specific functions

in Picea through unique IDs.

The communication protocol used between the two programs viz. Simulink and Picea is

as follows:

Only a single integer of data is sent between the two programs. Pointers are used to

address specific bytes of the integer and modify them. The contents of the individual

bytes are shown in the table 5.1.

Byte Position Significance

1 ID of the function in question

2 Used to send data from the block to Picea if applicable.

3 Used to send data from the block to Picea if applicable. (Currently used

only by 16 bit data types)

4 Currently unused.

 Table 5.1: Content of the different bytes in the frame sent

The first byte is used by all the communication blocks in the Simulink system. The

second is used only if it is connected to one of the output ports of the model while the

third is used only if the data type that the model outputs is of more than 8 bits.

In the AFFE-light project, a maximum of 16 bits were used by any port. Thus there was

no need to use more than 2 bytes of data for carrying the content of the processing done

by Simulink. However, this byte can be used in the future, with minimal changes, to

carry some extra information e.g. carry error codes or to carry larger data types.

In the protocol used in the initial versions of the system, to test proof of concept etc.,

character strings were used as they were the most comfortable to work with. The newer

protocol was chosen to avoid the overhead of using string functions in C and because

characters are not a datatype native to Simulink.

18

6 Evolution of the Solution

This section describes the phases in the development of the solution and tries to explain

the reasoning behind the structuring of the final solution. The routines used in shared

memory communication as well as in the TCP/IP solution can be found in appendix C

and D.

6.1 Standalone programs

To begin with, two standalone programs using the windows API for C which could

interact with each other were created using the selected IPC methods. The idea was to

keep the code as close as possible to the final version and reuse it with minor

modifications as and when required in the next iteration of development and integration.

These programs were used as baselines for testing the correctness of the code integrated

with Simulink and the modifications made within Picea.

The next step after the creation of the programs was to use them to send and receive

simple data from Simulink and Picea individually. To do this in Picea was relatively

easy as the code could be reused with little modifications by editing the rte.c file to call

the server function as well. Nonetheless, one problem that was noticed was that Picea

could not handle a blocking call in the RTE thread for more than a small period of time.

This problem was temporarily solved by using a polling type were RTE periodically

checks for signals set rather than a blocking solution.

To test Simulink for data communication however was a little harder. Although there

are built-in blocks in the Instrument Control Toolbox of Simulink which can be used for

socket communication, they had limited flexibility. Simulink for example does not have

any built-in block that can act as a TCP/IP server. Thus it was tested only as a client in

the initial stages.

6.2 S-function builder blocks

System-functions, or S-functions, are computer language description of a Simulink

block. This block can be used to extend the use of Simulink environment. The S-

function can be written in C, C++, FORTRAN, ADA or MATLAB [12].

Writing an S-function is much like writing a normal function in for example C. The S-

function includes definitions, initial conditions, input and output, termination conditions

as well as normal #includes. Every time the S-function is reached in the block diagram

the function inside is called and executed.

The first proof of concept was shown by using Simulink as server for the component for

the control unit runnables and as a client for the other runnables in the wheels. This was

done by the S-function builder block method and using the outputs field in the GUI for

running the logic of the system. Picea was used as a server for the other runnables to

contact, and process data.

19

Though hand written S-function provides the largest feature set to aid the integration of

generic C code, it is a relatively complex task to write one. The S-function builder block

allows for a smaller set of features but a much faster way of integrating existing C code

with Simulink.

 Figure 6.1: Basic S-function builder overview.

The S-function builder block in Simulink allows the user to place a block in the

Simulink model that will incorporate normal C code [13]. It also allows the user

1) A place to assign a unique name for the function.

2) To select the number of input and output ports and their datatypes.

3) To select the number of states in a system and their types.

4) A specific place to enter the paths or the names of the header files required.

5) A specific place to enter the logic to calculate the output for the block for each

stage of the process.

6) A place to select whether a mdlStart() and mdlTerminate() function should also

be generated. These can be edited later by the user directly as required.

The block, when run, would use the logic provided by the user to generate outputs [14].

S-function builder block was by far the easiest method to implement the system.

However, it did not give the fine grained control required for optimizing the solution

20

and the values of the IDs had to be hardcoded into the files. The implementation

obtained by using this method was inconvenient to use because the end-user had to

manually copy in code per block, choose the data types for each block and compile by

clicking on the build button in the block. This step could not be scripted easily and

would be very time consuming for larger systems.

There was some work required to ensure that the sockets shutdown immediately as

windows was prone to let the port linger for some time after a closesocket() was called

and a lack of persistent memory meant that the program could not dynamically assign a

new port for itself. This problem was solved by explicitly calling shutdown() with

instruction to end both sending and receiving on the socket before the closesocket() call.

Though this successfully demonstrated the objective of the system i.e. to connect

Simulink and Picea, the system itself was slow as the program opened and shutdown

sockets for each block for each run of the Simulink model. There were also other

problems with the requirements set that control of execution should lie with Picea which

said that Simulink should at no point act as a server since in the control unit, a server

was required in Simulink to communicate which runnable has to be run in this system..

Since the whole system had 14 S-Function Build blocks in total, this gave 14 different

files that had to be modified for each change and built at every run, by manually

clicking on the ‘build’ button in the S-function dialog boxes. This way of working got

after a while too complicated and was not deemed to be scalable.

An additional problem was that because access to the other functions of the Simulink

block was not available, the program had to be designed to be stateless. This meant that

at each execution cycle, a variety of steps that should ideally have been only done once

per simulation had to be repeated. Hence there was a lot of overhead which

considerably slowed down the system.

 Thus, though this method was used to implement the system and show sufficient proof

of concept, the final system implementation was done using hand written C S-functions

for better performance.

6.3 Hand written C S-Functions in C

The slow performance seen required an overhaul of the system as it was at that point. A

decision was also made, after a meeting with the supervisor of the project, to change

from the S-function builder block method to another method that would not involve

manual building of files per block.

The different methods to do so were looked into and the one selected was using pure C

S-function files [12]. These allowed access to parameters of the whole Simulink block

and allowed doing nearly everything that a native Simulink block would do. It also

came up that as this method involved compiling the function into a MEX file at the

beginning of the project, this was actually faster to use than the S-function builder block

method which involved opening each block and compiling it once. The fact that the

same file could be reused for multiple blocks using this method, would greatly enhance

maintainability.

21

It is possible to ‘mask’ the S-function making it more user friendly with definition of a

custom interface for the user.

Figure 6.2: Order of execution by the Simulink engine [15].

Figure 6.2 shows the order in which the Simulink engine calls the implemented

functions during the course of execution. A Simulink model is executed in stages. The

first phase is the initialization phase where the signal widths, data types and sample

times are propagated. The block execution order and memory allocation are also

performed at this stage. Each simulation step involves executing the blocks in the order

determined initially. These simulation steps are performed in a cycle till the simulation

is complete. The MEX S-function consists of a set of methods that can be invoked by

the Simulink engine directly during the different phases of execution. The S-function

22

methods have to comply with naming conventions as they are called directly by the

engine.

6.3.1 Defines and Include statements

The S-function code starts with the following #define statements.

#define S_FUNCTION_NAME <name of the S function>

This is used to define the name of the S-function.

#define S_FUNCTION_LEVEL 2

This is used to define that the code will use the S-function level-2 format.

#include "simstruc.h"

This header is used to access the SimStruct data structure’s and the MATLAB

application’s API functions.

The headers that are used in the program, such as the windows.h for the shared memory

block and the winsock.h for the TCP/IP block are included after these lines.

6.3.2 Routines used

mdlInitializesizes()

The Simulink engine calls this function to gather information about the number of input

and output ports and their datatypes. It is also used to set the number of parameters to be

accepted by the function [12].

mdlStart()

The use of this function is optional. It need not be implemented for the block to be

compiled or executed. However, it is used in this implementation to perform steps that

are ideally done only once. For e.g. in the TCP/IP block, the mdlStart method is used to

set up the otherwise expensive connections between the Server at Picea and the blocks

at the start of the execution. This step would otherwise have to be performed once per

execution cycle in the S-function builder block method [12].

mdlOutputs()

The implementation of this function is mandatory and it is called by the engine at the

beginning of each time step to calculate the outputs of the block. This incorporates the

core logic of the block and is presumably the most important function in the program.

The implementation chosen relies heavily on this function and the most part of all

communication between Picea and Simulink is handled here [12].

mdlTerminate()

This function is used to perform tasks at the end of the simulation. The routine can be

used to free up resources, break connections and generally restore the system to the pre

simulation state [12].

23

6.3.3 Compiling an S-function based C file.

A complete S-function C file can be compiled from the Matlab interface using the

following command once the compiler is set up correctly.

mex <function_name> [13]

6.3.4 Working

Each block in the model acts as a client to the server that Picea has started. Therefore it

is essential that Picea is started before the Simulink model.

The mdlStart() method in Simulink is used to initialize the variables and establish the

connection to Picea. Since Simulink executes each block of a model in a specific order,

there is no danger of any block executing out of turn within a model Simulink but there

is no synchronization between the models open in different instances of Simulink. Thus

there may be incorrect ordering between blocks from different models. This condition is

handled using the server at Picea to synchronize order of execution between the threads.

When each block gets its turn to execute, it calls the mdlOutput() function which

executes the bare minimum set of instructions that are required as most of the work is

done exactly once when the model’s execution starts.

This new general block used is instead simply called S-Function. This block takes the

name of the S-function C file as input. With access to the full S-function API, it became

possible to homogenize the whole solution and reuse the same C file for each block.

The block was then masked so that the details of the block would be abstracted away

from the user. The following section explains the reason behind and the details of the

masking mechanism.

Parameters and masks

In the builder block method, the project IDs were hard coded into the S-Function

Builder. This was suitable for testing and for verifying the mapping of the IDs to

functions in Picea. This way of working could obviously not scale and had to be

changed to a more user friendly interface. Simulink masks were used to minimize the

configuration by the user and to centralize the location where the changes are to be

made.

In both the IPC methodologies selected, to be able to handle the mapping of IDs to

Picea the user is prompted to input the ID for the particular block and what data type the

block uses as well. There are also specific options to be selected based on the

methodology. For example, the shared memory block also has a signal type option that

can be used to select which set of signals or memory would be used and the TCP/IP

block allows for entering the IP address and the port of the server at Picea.

By selecting what type of SW-C the block is a part of, different settings will be loaded.

Figure 6.3 shows the customized user interface of the shared memory blocks.

24

Figure 6.3: Original and modified user interfaces.

Using masks abstracts away details of the block that the user need not modify. It gives

one central point for all the changes to the block to be done and makes the configuring

of the system much faster [16].

6.4 Final Implementation

The final implementation uses S-functions written in C. Each input and output port in

the models are replaced with one of the new Simulink blocks created. These blocks are

assigned unique IDs and the datatypes to be used by them are selected from the

dropdown menus on their GUIs. Settings specific to the methodologies such as the IP

address for the server for TCP/IP or the type of Software component for the shared

memory system are then entered into the GUI. This completes the work to be done in

configuring Simulink.

In Picea, the following modifications are done.

i. From the StartOS() method or earlier in the execution of the program, the

TCP/IP server is started.

ii. The mapping of the IDs used by a runnable is implemented in a separate file for

each runnable. These runnables are called by the run function based on the ID

received.

iii. All signals used in the system are reset in the StartOS() function. This is to

prevent unintended behavior of the system.

iv. Picea was given entire control over the scheduling of the system. The earlier

versions of the solution had Simulink acting as a server that the RTE thread

communicated with to pass the ID of the runnable to be run. This could not be

possible once the Simulink blocks were homogenized and necessitated this

change.

v. The threads that were started by the alarms originally used the

THREAD_PRIORITY_TIME_CRITICAL priority. However, while the solution

was not yet completed, this caused the PC to become non responsive. To counter

this, the THREAD_BASE_PRIORITY_MAX priority was use instead during

the development phase.

25

vi. In the initial phases of the project, the RTE was modified to call the

communicate files directly. But to get to the goal limiting modification in

existing files to the runnable files, this had to be changed to be called from the

runnables itself.

vii. Earlier, the memory locations for the shared memory system were kept open by

running an external program. This was no longer required in the final

implementation as the Simulink model would leave these locations open.

6.4.1 Shared memory

Communication using shared memory was the first method implemented for the project.

The motivation behind the choosing of this method was that shared memory is known to

be the fastest way for two processes to communicate whilst on the same physical

computer. The shared memory location stays on the RAM of the system and utilizes

lightweight windows events called signals to synchronize data transfer between the

programs. This methodology has some shortcomings in that the processes must be

located on the same computer and that this system is platform specific and is native to

Windows only. However as said before, the advantage gained is in the speed. There are

no protocol stacks to deal with and communication remains very simple and fast.

The shared memory system works in the following fashion. Both Picea and Simulink

are started and Simulink creates the memory locations needed to communicate in the

initialize phase. Following this, each block in the model executes its output method one

by one. In the output method, the Simulink blocks first wait for Picea’s signal Signal3 to

start executing. Once the signal is obtained, the blocks identify themselves by ID to

Picea. In case the executing block is an output block, it also sends the output of the

processing of the model. Picea is signaled by using the signal Signal1 while Simulink

waits on Signal2. Picea then uses the ID that was given to call the RTE function

associated with this ID and sends the value returned by the function to Simulink. It then

signals the availability of the data by using Signal2. The Simulink block retrieves the

data, passes it to the model and then Signals to Picea using Signal1 that it can continue.

The Signal1 indicates the end of the execution of a communication block and signals

Picea to read from the memory. Picea knows, based on the ID, if this is the end of the

runnable and proceeds.

There are thus, three signals that are used to synchronize the communication. This

Signal set is specific per model. This along with the fact that a unique memory location

is chosen, ensures that there is no inter-model interference in the system.

To aid this, the Simulink block designed allows for the selection of the SW-C from the

GUI. Selecting from the drop down menu allows for a unique memory location and a

signal set to be selected.

6.4.2 TCP/IP communication

This was the second method of implementation for the project chosen. Since Windows

Signals and shared memory are limited to use on a single computer, a system that could

be distributed over multiple computers was deemed to be desirable as well. This would

26

reduce the processor and memory load that would otherwise have to be handled by a

single computer.

As per the requirement set for the project, Picea should remain in control of the system

at all times. Thus the server is set on the Picea side of the system. This is done by

starting a separate thread for the server which listens on the assigned port and waits for

incoming connections. The server thread spawns a new thread for each of the incoming

connections from the blocks used in Simulink. The reason for using different threads is

that by doing this the management of the system becomes easier. The individual threads

make use of blocking calls and sleep till the operating system informs them that there is

data to be processed. This makes for an efficient system but leaves the problem of co-

coordinating the threads so that the Simulink processes wait and do not get a chance to

process their data till the VFB calls for them. A basic level of ordering is received

directly from Simulink as it allows only one block of a model to execute at one point of

time. However, since different instances of Simulink needed to be run at one time, there

would be at exactly the same number of blocks running simultaneously as the number of

instances of Simulink. Thus there had to be some differentiation done in Picea to ensure

that the order of processing was what the RTE required it to be. To achieve this,

windows signals were used from the calls to the run() function of the runnables to

control the order of processing. All the Software Components have access to a global

signal which is set when there is any runnable running. In addition to this, for every

Software Component, there exists a pair of Signals to signal the start and end of the

execution of the software component to the RTE. A further set of 3 signals are used

within the Servers threads so that the block used for scheduling in the Simulink model

gets a different value sent to it from the server. It must be noted that all signals used in

the TCP/IP method are relevant and used only at the Picea side. These signals are used

only for the purposes of co-ordination between the different threads at Picea. Simulink

does not participate in this.

On the Simulink side, during the initialization phase, each of the blocks connects to the

server in Picea using TCP/IP sockets. They identify themselves with the unique ID

assigned to them then wait for data to be received from Picea to process. The Input

blocks use this to provide data to the model while the output data blocks merely send

the processed data to Picea.

When each server thread is allowed to execute, it receives the ID from the specific

Simulink block and executes the corresponding RTE call, processes it and returns a

result to Simulink. The result is then read by Simulink, reflected onto the model and the

next block in sequence is allowed to run and receive data from Picea.

27

7 Testing and Results

This section presents the reasoning behind the development of the test as well as the

design and the results.

In order to test and verify the two different solutions that were implemented, a test to

measure the performance of the system was designed and incorporated into the solution.

The performance of the implemented solutions was then compared to that of the original

one.

The system has a total of five runnables, 3 for the CU and 1 for each of the WNs. These

are called in order from the RTE.

In the original program the code for the runnables were implemented in Picea which

would give none or little process switching and overhead. In the other solutions

proposed in the thesis, the runnables run in their natural environment of Simulink. This

would force the system to switch process and therefore generate some overhead. Since

these would cause the new solutions to run slower, it was decided to use time taken for

runnable calls as a measure of performance.

To make the timing as accurate as possible each runnables execution time was measured

and then added with weights to the average. A cycle consists of all 5 runnables

executing once each. In order to get as accurate results as possible the system ran 30000

cycles for each test run. A total of five test runs for each solution was performed and an

average value was calculated. Both the new and the old solutions were tested on two

different systems, one DELL Inspiron PC with an i5 processor clocked at 2.40 GHz and

one DELL Studio PC with an i7 processor clocked at 1.6 GHz. These systems had 4GB

of RAM installed. Figures 7.1 and 7.2 show the outcome of the tests. The results seen

are average times of execution for a single runnable.

Run Original (time in

us)

Shared Memory

(time in us)

TCP/IP (time in

us)

1 4.750243 297.784798 684.335962

2 4.738396 296.058547 635.680373

3 4.835660 297.023139 689.455095

4 4.806832 299.727421 659.746134

5 4.876847 299.504264 654.943754

Average 4.801556 298.019633 664.832263

 Figure 7.1: Table of results from DELL Inspiron (intel i5 processor).

28

Run Original (time in

us)

Shared Memory

(time in us)

TCP/IP (time in

us)

1 7.282058 527.242404 1699.509549

2 7.168050 533.386413 1675.742360

3 7.122712 510.399304 1695.908078

4 7.468927 528.337446 1698.702238

5 7.481844 536.467410 1660.177948

Average 7.304718 527.166595 1687.608034

 Figure 7.2: Table of results from DELL Studio (intel i7 processor).

The tests were implemented in the following fashion, a function call measures the

number of processor tics before the runnable starts and the number of processor tics at

the point when the runnable returns. The difference is obtained and used in conjunction

with the systems clock frequency to calculate the time elapsed. The resolution chosen to

display the results is in microseconds.

At certain points extremely high values were seen in the tests. To be able to determine

whether these values were a valid reflection of the quality of the solution, an analysis of

the values was done in order to see how frequently they showed up. It was seen that

they represent less than 2% of the total values. An assumption was thus made that they

are results from the PC’s internal behavior such as process switching possibly because

of other programs being run as well. Hence, they are to be treated as noise and need not

be added to the results. Thus, after determining the range of values that could be seen as

valid representations of system time, the other outliers were excluded from the final

calculations.

The functions used to measure the performance of the system and the code used is

documented in appendix A.

Results

As seen in tables 7.1 and 7.2 the average time taken per call is higher than the original

version. These results were expected since a lot of process switching is introduced

compared to the original system where the execution only contains one process.

29

8 Discussion

This section discusses the issues faced during development. It also discusses the results

from the previous chapter and explains how they were interpreted.

As mentioned during the discussion of the S-function builder block method, one major

problem encountered during the initial stages was that Picea could not handle infinite

waits and would crash or hang when these were used. This problem was given a

temporary solution by using a polling method to check for the signal instead of using

infinite waits. The main drawback with polling is that a lot of processor time is wasted;

processor time which can instead be more productively used for the running of Simulink

while Picea sleeps waiting for Simulink to signal it to start again.

The issue was related to the OS simulator currently used in the Picea demo. As this was

designed to simulate a real time system, it expected all the tasks assigned by it to have

completed by specific times and did not handle delays or blocking calls well and would

cause the system to crash. This was a problem that needed to be solved as both the

shared memory and the TCP/IP communication methods require the use of blocking

calls. Another factor was the requirement set that only Picea or Simulink would execute

mutually exclusively. Thus the implementation of the OS simulator had to be modified

to handle blocking calls more effectively.

The solution to the problem was to create two routines as outlined below. The first

function called a function created for the purposes of this thesis i.e. EveryoneSleeps()

that would suspend every alarm threads in the system except the RTE thread. Signals

within the OS simulator were used to ensure that the creation of any new threads would

wait while the RTE thread was running. The other function called EveryoneWakes()

could be used to reawaken the alarm threads of the system and enable the creation of the

new threads as well. This essentially set a lock on the system to stop the creation and

scheduling of new threads in Picea while Simulink was being run. The net effect of the

steps mentioned above was that the blocking calls required for the communication

methods could now be handled by the system.

In order for the system to run in real time, for this project, the execution of one cycle

has to be lower than 10ms. The results from the measurements show that the new

solutions both run faster than that specified by the timing requirement. This is based on

how fast the environment models that will be used for the system will expect a response

from the system. The TCP/IP model however comes close to the deadline on the i7

processor.

It is also shown from the results how the i5 PC outperforms the i7 PC. Because of

license issues for Simulink it was not possible to test the solutions on dedicated

computers and hence, the tests had to be performed on the personal PCs of the authors.

These PCs had different types of programs and services running in the background

which could not be stopped. The results are therefore a pointer to what performance is

to be expected when testing on dedicated PCs. To have any relevance, the timing of the

different methods is compared within the same system. This meaning that the

comparison is done between the shared memory solution and the TCPIP solution within

30

either the i7 PC or within the i5 PC. One important thing to notice though is how the

performance changes at approximately the same rate on the different PCs. The

execution time increases 2.2 times for the TCPIP implementation compared to the

shared memory implementation for the i7 PC and with 1.2 times for the i5 PC. Likewise

the execution time increases 71 times for the original implementation compared to the

shared memory implementation for the i7 PC and with 61 times for the i5 PC. This is

consistent with the view of the models. The TCP/IP system being more complex from

the system’s point of view with more threads etc. would be expected to have higher

performance degradation on a busier system.

It is envisioned that using the solutions proposed in this thesis, will lead to software

engineers designing the SW-Cs without being delayed by the bottleneck of shared code

generator computers. This will lead to engineers being able to act more independently

and save man-hours as well. This solution can also enable greater co-operation between

different organizations as the Simulink models would be executed on different systems

at different organization’s local sites; something that was not possible till now.

31

9 Conclusion and future work

This chapter deals with the conclusions made as a result of the testing and review of the

solution and the future work that may be performed in this field.

Conclusions

As has been said before, the solution and its implementation were well within timing

requirements of the AFFE-light system as the highest average value was only about 1.6

milliseconds. It must be noted that these were measured on PCs not dedicated for

simulating the project but personal PCs with a lot more programs and services that were

running that could cause unintended process switches and add to the running time of the

simulations. A justification for considering this to be an issue can be shown by the

following counterintuitive fact; the PC with the Intel i5 processor and similar

configuration as the PC with the Intel i7 processor constantly outperformed the latter

although, by nearly every standard of measurement, the i7 processor is superior to the

i5. This means that there was a significant effect of the other processes/services running

on the system. The logical conclusion of this is that the solution will be much faster on a

PC that is used in a dedicated environment.

The original system was used a baseline to check the correctness of the functionality

and see if any faults were introduced in the correctness. The new solutions can be

reported to be performing identically in terms of correctness. Thus the new solution did

not cause any unintended consequences in the system and the delay introduced by the

solution was deemed to be well within acceptable limits.

Existing models can be adapted with changes with the AFFE-light system as a reference

model. The solution is thus scalable as the number of changes required to implement

this solution is within reasonable limits.

Future work

There is some refinement of the solution possible which was not done because of the

lack of time. Though the solution clearly demonstrates the advantages of using the new

method over the old one, to adapt existing projects to this method can be a daunting task

simply because of the sheer size of some of the systems currently in use. Adding the

communication blocks to existing project models involves adding them individually to

each port and modifying the parameters of each block. An easier way to do this is to

automate more of the configuration. It would be handy for e.g. if the blocks could

automatically assign the ID of the port in the model that they are connected to. The IDs

however have to be unique throughout the system and this would be a problem because

Simulink reuses port numbers per model.

Thus, an even better solution would be if the block adds the hash of the name of the

model it is placed in to the port number. This would, in most cases make the IDs unique

but more importantly, the AUTOSAR side of the system (Picea demo in this case) could

be adapted to perform the same calculation and generate the same IDs in the

communicate files.

32

Testing of the system over a network using TCP/IP, was not done mainly because of the

lack of availability of systems with the appropriate system licenses at the same time. A

greater time for communication will obviously be added by the network latency if the

solution is used like this but whether or not this offsets the delays caused by the load on

the processor differs per project.

There can also be a better way to implement the tasks in the VFB simulator. For

example, it would be more resource friendly to create a threadpool to assign RTE tasks

to. The current simulator in use kills the threads after one execution of the RTE task.

However, such a modification to the VFB simulator is beyond the scope of this thesis.

The methodologies discussed are in the process of being implemented in the full AFFE

project by Mecel. This will be a true test of the scalability of the solution. While the

results of that process will not be discussed here, it must be noted that it did make a

significant difference in the ease of analysis of the AFFE-light system that was used in

this thesis.

33

References

1. AUTOSAR Overview. [Online] [Cited: May 14, 2012.]

http://www.autosar.org/index.php?p=1&up=1&uup=0.

2. Architecture For Future Electric vehicle. s.l. : MECEL internal documentation.

3. AUTOSAR Software Component. [Online] [Cited: April 20, 2012.]

http://www.autosar.org/index.php?p=1&up=2&uup=1&uuup=0.

4. AUTOSAR Virtual Function Bus. [Online] [Cited: April 17, 2012.]

http://www.autosar.org/index.php?p=1&up=2&uup=2&uuup=0.

5. AUTOSAR Specification of the RTE. [Online] [Cited: April 19, 2012.]

http://www.autosar.org/index.php?p=1&up=2&uup=3&uuup=2&uuuup=0&uuuuup=0.

6. AUTOSAR Basic Software. [Online] [Cited: April 26, 2012.]

http://www.autosar.org/index.php?p=1&up=2&uup=3&uuup=3&uuuup=0&uuuuup=0.

7. AUTOSAR Operating System. [Online] [Cited: April 21, 2012.]

http://www.autosar.org/index.php?p=1&up=2&uup=3&uuup=3&uuuup=0&uuuuup=0.

8. Embedded Market. [Online] [Cited: April 13, 2012.]

http://www.embeddedmarketintelligence.com/2010/07/19/model-based-design-mbd-

and-model-driven-development-mdd/.

9. The Mathworks family of sites. [Online] Mathworks inc. [Cited: May 12, 2012.]

www.mathworks.com.

10. Interprocess Communications. [Online] Microsoft. [Cited: March 25, 20212.]

http://msdn.microsoft.com/en-us/library/windows/desktop/aa365574(v=vs.85).aspx.

11. Visual Studio 2008 Express. [Online] Microsoft. [Cited: March 29, 2012.]

http://www.microsoft.com/visualstudio/en-us/products/2008-editions/express.

12. S-function built with C code. [Online] Mathworks. [Cited: May 5, 2012.]

http://www.mathworks.se/help/toolbox/simulink/sfg/f6-151.html.

13. The Mathworks Inc. Integrating code with Simulink; . Natick, Massachusetts

01760 USA : Mathworks training services, 2010.

14. S-function builder. [Online] Mathworks. [Cited: April 12, 2012.]

http://www.mathworks.se/help/toolbox/simulink/slref/sfunctionbuilder.html.

15. Order of execution by the Simulink engine. [Online] [Cited: May 7, 2012.]

http://www.mathworks.se/help/toolbox/Simulink/sfg/sfunc_c23.gif.

16. Mask editor. [Online] Mathworks. [Cited: May 8, 2012.]

http://www.mathworks.se/help/toolbox/simulink/gui/f8-3488.html.

1

Appendix

A. Code and function description for time function

QueryPerformanceCounter()

This function returns the number of “ticks” since the systems was started. It is called

before the execution of the runnable and after it is done executing.

QueryPerformanceFrequency()

This function returns the number of “ticks” per second. In order to get the time in

seconds the difference between the start and end value in QueryPerformanceCounter()

has to be divided whit the frequency.

Code

extern struct TIME {
 LARGE_INTEGER start;
 LARGE_INTEGER end;
 LARGE_INTEGER Freq;
}timing;

struct TIME values;

extern double average = 0;
extern int counter = 0;

int timeFunction(int x)
{
 double diff;

 if (x == 1)
 {
 QueryPerformanceFrequency(&values.Freq);
 QueryPerformanceCounter(&values.start);
 return(0);
 }
 else if (x == 2)
 {
 QueryPerformanceCounter(&values.end);
 diff = ((double)(values.end.QuadPart - values.start.QuadPart) * 1000000) /
values.Freq.QuadPart;

 if (counter < 100000)

2

 {
 if (diff > 8 && diff < 50)
 {
 average = ((average * counter) + diff) / (counter + 1);
 counter++;
 }
 }
 else
 {
 printf("\nAverage - %f", average);
 }
 return(0);
 }
 return(0);
}

3

B. List of Signals used

Shared Memory

Nr Signal name Used for

1 Signal 1 Used to signal a write operation from Simulink CU to Picea

2 Signal 2 Used to signal a write operation from Picea to Simulink CU

3 Signal 3 Used to signal the next block in Simulink CU that a read

operation has been done

4 Signal 4 Used to signal a write operation from Simulink right WN to

Picea

5 Signal 5 Used to signal a write operation from Picea to Simulink

right WN

6 Signal 6 Used to signal the next block in Simulink right WN that a

read operation has been done

7 Signal 7 Used to signal a write operation from Simulink left WN to

Picea

8 Signal 8 Used to signal a write operation from Picea to Simulink left

WN

9 Signal 9 Used to signal the next block in Simulink left WN that a

read operation has been done

10 Signal 123 Used to signal Picea to sleep/wake up threads

TCP/IP

Serial

number

Signal name Use

1 Signal50 Used as a general flag to prevent two runnables from being

executed at the same time.

2 Signal51 The RTE uses this to signal the scheduler that one of the

control unit runnables is to run.

3 Signal52 This is set to signal to the RTE that one RTE runnable has

finished executing.

4 Signal53 This is used to Signal the thread processing the left wheel

node to start communicating with Simulink

5 Signal54 This is used by the thread processing the left wheel node to

signal the RTE that it has finished executing.

4

6 Signal55 This is used to Signal the thread processing the right wheel

node to start communicating with Simulink.

7 Signal56 This is used by the thread processing the right wheel node to

signal the RTE that it has finished executing.

8 Signal57 This signal is used by the RTE to specify that the first

runnable of the control unit should be executed.

9 Signal58 This signal is used by the RTE to specify that the second

runnable of the control unit should be executed.

10 Signal59 This signal is used by the RTE to specify that the third

runnable of the control unit should be executed.

11 Signal123 This signal was used to correct the problems with Picea as

mentioned before.

5

C. Routines used by shared memory

CreateFileMapping()

The communication is initialized by the first program calling this function with a name

for the memory mapped object. This procedure returns a handle.

MapViewOfFile()

This function uses the handle returned by the previous function. It is used to create a

view of the object in the programs address space. This function call returns a pointer to

the file view.

OpenFileMapping()

The second program can get hold of the information in the memory by calling this

function with the same name for the object as the first program.

WaitForSingleObject()

To make the processes aware that there is information for them in the memory different

events are used. The remote process is waiting for an event to happen by calling the

function WaitForSingleObject().

SetEvent()

Once a process is finished writing to the memory it sets a signal telling the remote

process that there is something for it in the memory. The process uses the SetEvent()

function to do this.

6

CreateEvent()

An event is created by using the function CreateEvent(). This function call returns a

handle to the event object.

UnmapViewOfFile()

This function invalidates the occupied address space and makes the address range

available for other allocation.

CloseHandle()

Whenever a process is finished with an object it is good practice to close the handle.

Many processes can have handles to objects and after the last handle is closed the object

will be removed from the system.

7

D. Routines used for TCP/IP

Socket()

The Socket function is used to create a socket bound to a specific transport service

provider. It can be used to create sockets based on either version of

WSAStartup()

This function is used to initiate use of the Winsock DLL by a process. This has to be

used in the beginning of any windows application that uses Windows sockets. An

application can access the Winsock socket functions only after this function has been

successfully called.

Connect()

The connect function is used to establish a connection to a specified socket. This is used

by the client to connect to a server. It needs to be done only once per program but is

essential for subsequent send() and recv() functions.

Bind()

A bind function associates a local address with a socket. This is done to associate a

socket name with an unnamed socket created as the result of a Socket() call. A socket

name consists of an IP address, a port number and the address family.

Listen()

The listen() call places a socket in a state that listens for incoming connections. The

maximum number of pending connections is also specified as a parameter.

Createthread()

This is used to create a new thread in the system that can be used to execute another set

of instructions independently of the original thread. A function pointer to a function that

is to be run is passed with the call.

Accept()

This function permits an incoming connection attempt on a socket. It then returns a

handle to the new socket where the connection has actually been made.

Send()

This function is used to send data on a connected socket. The address to the buffer

which contains this data is a parameter passed through to the function.

Recv()

This function is used to receive data from a socket. The data received is stored into a

buffer whose location is sent as a parameter.

Shutdown()

8

The shutdown() function is used to disable receiving data, sending data or both. It is

called before calling CloseSocket() so that the data transmission can be effectively

disabled.

Closesocket()

This function releases the resources used by the socket and closes it.

WSACleanup()

This is the complementary call to the WSAStartup() function and is used to indicate that

the WinSock DLL will no longer be used. This frees up the resources allocated by the

windows socket implementation for the program.

