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Abstract 

This thesis was conducted as a part of the Architecture For Future Electric-vehicles 

(AFFE) project. AFFE project is a research project funded by VINNOVA to bring out 

the next generation electric vehicles based on Automotive Open System Architecture 

(AUTOSAR).  

The primary aim of the thesis is to analyze and demonstrate the possibility of 

connecting model-based design environments to the AUTOSAR Virtual Function Bus 

(VFB) to make the process of development of complex automotive systems easier. The 

tools chosen for this purpose were Mecel’s Picea suite for the VFB implementation and 

Mathworks’ Simulink as the model-based design environment. 

The outcome of the project is that a scalable solution to connect the two disparate 

programs was created using two different Interprocess Communication (IPC) methods. 
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1 Introduction 

This section describes the purpose, scope and background of the project. 

1.1 Background 

The AUTOSAR project aims at creating a standard for automotive architecture that will 

be used to provide basic infrastructure for the function of standard software and 

applications. It was created by a large group of automotive manufactures together with 

Tier 1 suppliers to increase co-operation between organizations and to standardize 

interfaces such that code could be reused more easily [1].  

In general cases testing the functionality of the system are of great importance at each 

stage in the development of AUTOSAR systems. At this point, in the model-based 

development method, simulations are done by creating models using a MBD tool and 

code is generated and later integrated with the AUTOSAR platform. This is a time 

consuming way to work. Because complex systems are hard to get right in one attempt, 

one has to repeatedly go back to the Simulink model, make the appropriate changes, 

regenerate the code and finally integrate it in the AUTOSAR environment again to 

repeat the test.  

While the application software components are unique to each project, the rest of the 

architecture of AUTOSAR can be seen to be more or less the same for each project. 

These parts can be purchased as a package from organizations such as Mecel. Mecel’s 

AUTOSAR platform is the Picea suite and it is this product that was used in the thesis. 

This thesis was conducted as part of the government founded project ‘Architecture For 

Future Electric-vehicles (AFFE). The objectives of AFFE are to create and present 

control system architecture for electrical hybrid vehicles including a drive-by-wire 

system with an electric motors and wheels. It is important that the architecture fulfills 

certain safety regulations as well as functional requirements needed for the integration 

of different subsystems and components. The final solution requires the giving of a 

proof of concept as well as guidelines, principles and solutions. It is also important that 

the system be scalable and adaptable to different platform configurations [2].  

1.2 Purpose 

The purpose of this thesis is to create a connection between the AUTOSAR Virtual 

Function Bus (VFB) and the Simulink environment. The aim is to make the Simulink 

models execute in their natural environment so that, the steps of code generation and 

(re)integration of the code in the AUTOSAR environment, can be avoided. As of now 

the debugging is very time consuming and it lacks visibility. This thesis aims at 

changing this and taking full advantage of the intuitive ease that comes with the design 

of the system in a MBD environment. This is done shifting the steps of debugging and 

optimization to the MBD environment and hence reducing the time and the cost to 

develop the whole system by a significant factor. Another important factor to be taken 

into account is that the solution should scale well so that it can be adapted to larger 
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projects and that the modified system should run within the time bounds required by the 

project. 

MBD, as of now, is just used to design components. In a medium to large project this 

process can be relatively faster than using handwritten code. However using this 

methodology implies a large reliance on the code generated by the code generator 

integrated with the model-based. Although the reliance on the generated code is high, it 

still needs to be verified. If such a reliance on the system exists though, this works quite 

well. MBD is presently the method of choice depending on the functionality of the 

application. The correctness of the code depends on the correctness of the model. If the 

model is correct, then the code generated is so as well. But errors in logic etc. might 

lead to faults in the functionality of the system itself and this number of errors increases 

exponentially with the increase in complexity of the system. These faults are 

inescapable in the early stages of design.  

This leads to a fundamental problem; to test the functional correctness of a component, 

one might have to simulate the whole system and the whole process of doing so from 

using the code generated from the models and integrating it with the simulator to 

running the tests is time consuming. Furthermore, the number of licenses required for 

the code generating tools increases as the number of people using the licenses increases. 

The process of debugging is slow as while the model itself is relatively easy to 

understand, the code generated by an automatic code generator might be complex and 

relatively harder to debug. The solution then, is to find some way so that the developer 

can see the working of the model in graphical format and make changes to the model 

without having to generate code and test the functionality for each change. 

This is the focus of the master’s thesis. The primary aim is to connect two products 

namely, the Mecel’s Picea suite for Windows in the shape of a VFB simulator and 

Simulink. Picea’s VFB simulator encapsulates the functionality of the AUTOSAR 

components below the application software level in the architecture and Simulink is the 

most common tool used for the MBD of application SW-Cs. A proof of concept by 

integrating the two using the AFFE-light system is presented and demonstrating that the 

system runs within the timing bounds.  

1.2.1 Current implementation 

Figure 1.1 shows the logical structuring of the systems as is being used today. The 

abbreviation SW-C, throughout this report, is used exclusively to indicate application 

software components. In figure 1.1 it is shown how the SW-Cs are connected to the 

RTE via standard interfaces within Picea. The SW-Cs are built in Simulink and code is 

generated from them to be integrated into Picea. All communication between the SW-

Cs as well as the communication between the SW-Cs and the lower layers of the system 

goes through the VFB. 
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Figure 1.1: Overview of the original system. 

1.2.2 Planned method of implementation 

Figure 1.2 shows the proposed implementation. Here it is seen that the SW-Cs have 

been separated from the RTE. They now execute in the environment they were designed 

in i.e. Simulink. Communication to and from the SW-Cs is still done through the RTE 

but through the pseudo SW-Cs instead. Since the AUTOSAR architecture allows for a 

separation between different layers, no major changes were expected to be made in the 

layers below the VFB. 
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 Figure 1.2: Overview of the proposed implementation. 

1.3 Problem statement  

The problem can be stated as follows: 

Use the AFFE-light system provided by Mecel to: 

- Investigate which kind of Inter-process Communication (IPC) techniques can be 

used between Simulink and the in house developed Picea AUTOSAR platform 

and select two of the most significant ones. 

- Compare and contrast performance of different techniques with each other and 

with the original model which uses generated and compiled code. 

- Design a framework that can be can be easily expanded upon in the future with 

minimal configuration changes. 

1.4 Scope and Delimitations 

The project focuses on the VFB, Operating System (OS) and Application Layer of 

AUTOSAR. The other layers of the architecture are not discussed further here. Software 

Components (SW-C) developed in Simulink as well as a demo application of Picea was 

made available by Mecel at the beginning of the project. These were used as baselines 

to create the solution though the solution aims to be more generic. 
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All the tools and software obtained are assumed to be in working order. No further 

testing is done with regards to the Picea demo product and the Simulink models 

obtained. The justification for this is that the AFFE-project is quite mature and issues 

with correctness are not anticipated. 

Only two of the many IPCs possible will be chosen to be implemented. The 

implementation of communication with other IPCs is out of the scope of the thesis. 
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2 Theory 

In this chapter, a brief history and a review of AUTOSAR and Simulink will be 

presented along with a few lines on how they are currently used in tandem by the 

industry to develop software. This section will also discuss the different IPCs available 

and give an overview of them.  

2.1 AUTOSAR  

The AUTOSAR platform is an open, standardized automotive software architecture 

jointly developed by a consortium of automobile manufacturers, suppliers and tool 

developers. The goals behind doing so were the following: 

- Management of E/E complexity associated with growth in functional scope 

- Flexibility for product modification, upgrade and update 

- Scalability of solutions within and across product lines 

- Improved quality and reliability of E/E systems 

- Fulfillment of future vehicle requirements, such as, availability and safety, SW 

upgrades/ updates and maintainability 

- Increased scalability and flexibility to integrate and transfer functions 

- Higher penetration of "Commercial off the Shelf" SW and HW components 

across product lines 

- Improved containment of product and process complexity and risk 

- Cost optimization of scalable systems [1] 

AUTOSAR aims to separate the application from the infrastructure. One of the design 

goals is to provide a common basic infrastructure to all the developers of software so 

that they are not vendor specific anymore, are more portable and reusable thus allowing 

different vendors to cooperate on standards but compete on the implementation. Having 

this basic infrastructure helps reduce costs by reusing parts of code across different 

projects and if needed, organizations. It uses a component based software design model 

for the design of a vehicular system. All the application software components interact 

with each other through an entity called the Virtual Function Bus. The VFB abstracts 

from the application software all the complexities of communication and provides a 

standardized interfaces for inter component communication and with the operating 

system itself. This separation is provided by adding extra layers of abstraction between 

the components. Figure 2.1 shows the basic structure of AUTOSAR. 
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Figure 2.1: Basic AUTOSAR architecture [1]. 

Above the RTE, the software architecture style changes from layered to component-

based from the application layer and downwards. The functionality of the system is 

mainly encapsulated in application software components (SWCs) [1].  

2.1.1 Application software components 

A SW-C in AUTOSAR is an application or part of an application that is designed for a 

specific purpose in a car e.g. to control a windshield wiper. Each component 

encapsulates part or whole of an application. A large SW-C can be viewed either as 

comprising many smaller components each designed with a single functionality in mind 

or as an independent component itself [3]. 

2.1.1.1  Runnables 

A SW-C consists of one or many runnables that perform certain tasks. These runnables 

are called upon by the RTE. There are different commands, or events, sent from the 

RTE to trigger a runnable. A timing event can be used to periodically execute a 

runnable whereas a data received event triggers a runnable based on data received. This 

behavior is as per the SW-C specification for AUTOSAR [3].  

2.1.2 The Virtual Function Bus  

In order to fulfill the goal of reliability, the SW-Cs are implemented completely 

independent of hardware. All the communication in and out of the SW-C goes through 

the standardized interfaces using the API provided by the VFB. The developer of the 

SW-C can thus ignore the specifics of the underlying hardware and focus just on the 

application itself. Thus parts of the work involved in integration can be done much 

earlier than other comparable development processes in AUTOSAR [4]. 
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2.1.3 Runtime environment  

The RTE implements the VFB on ECU level. It provides communication capability 

between SW-Cs as well as the necessary services for the SW-Cs to execute. It provides 

capabilities for communication between SW-Cs on the same ECU as well as 

communication between SW-Cs of different ECUs. Whether inter or intra 

communication is applied the RTE provides a communication abstraction to the SW-Cs 

attach to it. This is done by providing the same services and interfaces to the SW-Cs 

whether using inter communication channels such as FlexRay, CAN, LIN, etc. or 

simply intra-ECU communication. The RTE is generated on a per ECU basis [5].  

2.1.4 Basic Software  

The BSW is a layer located below the RTE in the architecture. The BSW allows the 

RTE to communicate externally with other ECUs over a bus network like CAN, 

FlexRay or LIN. The BSW contains both standard and ECU specific software 

components. The standard components include for example the system service such as 

NVRAM and memory management. It also includes a communication framework with 

e.g. FlexRay, CAN and LIN. The BSW also includes the operating system and 

input/output services [6].  

2.1.5 Operating system  

The AUTOSAR OS is based on the industry standard OSEK OS and shares many of its 

characteristics. It is responsible for scheduling the tasks which the RTE has mapped 

runnables to. The resources managed by a specific OS implementation are defined 

within a configuration file of the OS [7]. 

2.2 Model-based development and Simulink 

Model-based or model driven development is a modern way of developing complex 

systems in the automotive world. A model-based system at the core increases the 

visibility and increases understanding of the solution thus helping engineers detect 

potential problems early on during the development phase. This greatly reduces the 

development cost and time and increases functional safety. A model is usually in a 

common format which can be comprehended much easier by any other person working 

on the project and thus opens up new vistas for knowledge sharing and peer review. The 

advantage in savings by using model-based development over hand written code can be 

as much 36% according to some studies [8]. 

There are a few tools currently used to design models. However, the software used most 

often by the industry is Simulink. Simulink offers a quick and easy design and an 

optional licensed code generator that can be used to generate AUTOSAR compliant 

code [9].  

The code generated by Simulink’s ‘AUTOSAR target production package’ is integrated 

with a simulator so that the system can be simulated on the whole and tested before 

being implemented it into hardware. 
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Simulink has a graphical environment and provides many built-in as well as 

customizable blocks as part of various libraries and toolboxes. It has sets of predefined 

blocks for communication, signals, inputs/outputs, etc. [9]. 

With Simulink, it is possible to create different environment models and SW-Cs such as 

Wheel Nodes (WN) and Control Units (CU). With the help of these models and add-ons 

such as Simulink’s code generator, it is possible to generate C-code and implement into 

real-time systems.  

2.3 IPC 

Interprocess Communication (IPC) methods are different ways in which data can be 

exchanged between processes. The processes can be either on the same computer or on 

different computers connected by a network. One of the requirements of the thesis was 

to find one way to connect Picea and Simulink for communication between programs 

running on the same computer as well as another for the programs to be able to 

communicate in a distributed system. 

2.3.1 File mapping and shared memory 

Using file mapping gives the process the ability to look at the content of a file as if it 

were a block of memory in the RAM. This is done by loading the contents of the file 

provided using the file handle as an argument for the function that is used to create the 

shared memory. The file on disk that is referred to by the handle is then loaded into the 

memory and can be traversed in a way similar to a memory location. This provides for 

the ability to modify or simply look at what data exists by the use of simple pointer 

operations. If there is a multitasking environment it is important for the processes to 

uses some kind of synchronization object such as a semaphore.  

A special case of file mapping is called shared memory. In shared memory, a NULL is 

passed in place of the file handle to the physical location of the file, indicating to 

operating system that this file exists only on memory. Shared memory is an efficient 

way of passing data between processes. One process creates a memory location which 

the other process can then access. Shared memory is a very efficient way of passing 

information between programs, since the shared memory method only utilizes the RAM 

of the system. A drawback with this method is that the processes must exist on the same 

computer [10]. This is one of the methods implemented in this project. 

2.3.2 Remote Procedure Call  

RPCs give applications the possibility to call function remotely. This IPC can be used 

between computers in a network or on a single computer. RPCs can be used to connect 

applications on different operating systems. RPCs have a high performance rate for a 

network based system as the clients and server are tightly coupled [10]. 

2.3.3 Pipes 

Pipes can be of two distinct kinds, anonymous or named pipes. Named pipes are used 

when transferring information between processes that are not related or between 

processes on different PCs. A named pipe server typically spawns a named pipe with a 
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common name or the name is sent to the clients. The named pipe server process is in 

charge of access to the pipe. If a named pipe client process knows the name of the pipe 

and has access to the pipe, it can open the other end and start communication. After a 

successful connection between the server and the client they communicate using read 

and write operations.  

Anonymous pipes are used when the processes are related. A common application of 

anonymous pipes would be when they are used to take the standard input or output from 

a child process and deliver it to the parent process. Since the pipes are one-way by 

nature, in order to enable duplex communication, two pipes need to be used. The child 

process reads from one pipe and writes on the other. Similarly the parent process reads 

and writes on the opposite pipes. Anonymous pipes cannot be used between unrelated 

processes or over a network [10]. 

2.3.4 Mailslot 

This IPC is a one-way communication method. There are two distinct entities in this 

method; mailslot clients and mailslot servers. Any application creating a mailslot is a 

server. The clients send data to the server by writing in its mailslot. Any incoming 

messages are queued up at the mailslot. They are saved at the mailslot until the server 

has read them. For this kind of communication to work both ways, a process has to 

function as both a server and a client i.e. each process should have at least two mailslots 

open. 

It is possible to use this kind of communication in many ways. The client can for 

example send messages to its local computer or to a computer on a network. It is even 

possible for the client to send broadcast messages. Broadcast messages are limited in 

size where the messages to single host only have the restriction decided by the mailslot 

server [10]. 

2.3.5 Socket Communication 

Another type of IPC is the Socket Communication. A socket is characterized with an IP-

address and a port number. Based on this information the socket delivers the data packet 

to the right thread or process [10].  

2.3.6 Clipboard 

Using the clipboard is a way to create a central storage for applications sharing data. 

Whenever a copy or cut operation is done by a process, it stores the data on the 

clipboard in application-defined or standard format. When any other application wants 

to fetch data from the clipboard it chooses between the different formats it supports. The 

applications need only to agree about which formats that are going to be used. This 

makes the clipboard a very loosely coupled exchange board. The clipboard IPC can be 

used between applications on the same computer as well as on different computers in a 

network [10].  
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3 Tools 

This chapter discusses the software tools used in this thesis. 

3.1 Simulink 

As mentioned earlier, Simulink is a commercial tool for modeling, simulating and 

analyzing dynamic systems. It has a customizable set of blocks that can be used to 

simulate a wide variety of systems. Simulink offers a tight integration with MATLAB 

and can be scripted from it. In the automotive communications domain, Simulink is 

used to model systems so that AUTOSAR code can be generated from it using the 

embedded coder add-on [9]. 

3.2 Visual C++ Express and Mecel Picea Demo 

Visual C++ Express is a free Integrated Development Environment (IDE) tool from 

Microsoft [11]. It is a light weight version of the Microsoft Visual Studio product line. 

The idea with the express edition is to provide an easy-to-use and easy-to-learn 

environment. The full version of Visual C++ has to be paid for and offers many more 

features. However, this was not required for the system. The Picea demo version used in 

this project was developed and modified in Visual C++ Express.  

The Picea demo was built using the Mecel Picea suite including its VFB simulator and 

the code generated from the AFFE-light models. The final implementation comprised 

about 13000 objects including all the archives used. The VC++ IDE is used to work 

with these files to debug and modify the code as required.  

3.3 Mecel Picea Testbench 

Picea Testbench is a tool used to simulate, at a very basic level, the environment around 

the vehicle and the actions of the driver. It does so by communicating with the vehicular 

system itself. This is achieved by sending CAN frames to the Picea VFB simulation. 

The CAN frame consists of a number of bytes which can specify as inputs. The CAN 

frame in the AFFE-light system is used to communicate the following attributes of the 

environment to the system: 

- Angle of the steering wheel  

- Max torque for the wheels 

- Angle of depression of the gas pedal 

The information in this frame is used to decide how the car is moving. The system 

processes these inputs and gives as outputs the calculated values of  

- Torque for left and right wheel 

Thus though Picea Testbench does not give an elaborate replication of the environment, 

it provides a basic testing ground for the logic used in the vehicle. 
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4 System overview 

This chapter aims to give a description of the system used for the thesis. 

The suggested AFFE project implementation consists of two control units (CU) and 4 

wheel nodes (WN) as shown in figure 4.1. 

Wheel 
Node

Wheel 
Node

Wheel 
Node

Wheel 
Node

Control Unit Control Unit

 

 Figure 4.1: The original AFFE system. 

 

However, as the idea was still in the planning stage, the decision was made to keep the 

solution simple and a smaller version of the system called the AFFE-light system was 

used instead. The AFFE-light system is shown in figure 4.2.  
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Wheel 
Node

Wheel 
Node

Control Unit

 

 Figure 4.2: The smaller AFFE light system. 

 

The AFFE-light system includes a CU and two WNs supported in software by the VFB 

in Picea’s implementation of the AUTOSAR system. The CU as well as the WNs was 

provided as is and their internal structure was not changed. The AFFE-light system that 

was provided had about thirteen thousand files in total but only a few of these had to be 

modified as most of them dealt with the lower layers of the architecture.  

The models that are used in this thesis are discussed in detail in the following sections. 

4.1 Control Unit  

The Control Unit (CU) takes as input, the angle of depression of the gas pedal, the max 

torque allowed for the Wheel Unit (WU) and angle of the steering wheel. Based on the 

gas pedal angle and the max torque, the CU calculates the speed for the wheel and sends 

it to the WUs. The steering angle is directly passed to the wheels. Inside the CU there 

are three runnables as shown in figure 4.2. The first runnable checks the status of the 

engine, if an error has been reported the engine is stopped but if not everything 

continues as normal. The second runnable, as shown in figure 4.3, takes gas pedal angle 

and max torque as input. It then uses a lookup table to convert the gas pedal angle to 

obtain the right value of torque that should be applied. A third runnable uses the steering 

wheel angle as input and just passes it on to the wheels. 
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Figure 4.2: Simulink model showing the runnables of the CU. 

 

 

Figure 4.3: Inside a runnable of the CU. 
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4.2 Wheel node 

Inside the Wheel Node (WN) a runnable calculates the torque that the wheel should 

generate. The wheel node model is shown in figure 4.4. The torque is calculated based 

on the value received from the CU as well as the inputted steering angle. 

 
Figure 4.4: Overview of a wheel node in Simulink. 

 

Inside the wheel node there is an algorithm to calculate the actual torque to give out. 

This algorithm takes steering angle and torque as input. The steering angle is important 

e.g. if the car is turning left the left wheel should output less torque because of a shorter 

distance to travel. The runnable can be seen in figure 4.5. 

Figure 4.5: Runnable in the wheel node. 
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5 Design 

In this section, the requirements for the final solution are identified and the final 

communication protocol is discussed. 

5.1 Initial investigation 

To get an understanding of the project an initial literature study of AUTOSAR, 

Simulink and the concepts of AFFE was done. Information about AUTOSAR itself, 

how the AUTOSAR VFB works as well as information about how AUTOSAR uses 

SW-Cs had to be studied.  

Since Simulink is one of the two major applications used in this thesis, a more detailed 

study about Simulink was needed. Information about how Simulink works and what its 

capabilities and limitations are was provided by Mathworks [9]. 

5.2 Requirements 

The following requirements were identified for the final solution. 

1) Control of the order of execution of the components should remain within Picea. 

2) Of the original system, only the runnable files should be changed. No outside 

modifications to the RTE or the BSW are permitted. 

3) Picea and Simulink should execute mutually exclusively. There should be no 

competition between Picea and Simulink for use of the processor since the 

simulated system only uses one core. 

4) The solution should be scalable and it must be possible to reuse the work done in 

this project on much bigger projects without heavy configuration and huge 

changes in the logic. 

5) The Simulink models should not be altered in any fashion which may cause the 

logic in the runnables to change. 

5.3 Methods chosen 

The requirement was to choose one method optimized for running the whole system in 

one computer and a distributed method. The two methods chosen to be implemented 

were shared memory using file mapping and the TCP/IP method.  

Shared memory was chosen because it was shown in documentation to be one of the 

fastest methods of IPCs because the data is never written to disk and stays in the 

memory.  

TCP/IP was chosen as it was the simplest of the distributed method. Some of the other 

IPCs discussed, used TCP/IP at a lower level themselves and thus would have been 

slower.  
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5.4 Communication Protocol 

In order for Picea to be able to distinguish between the information and know which 

functions to call every message from Simulink to Picea includes an ID. The S-functions 

in Simulink, as will be explained in more detail later, are mapped to specific functions 

in Picea through unique IDs.  

The communication protocol used between the two programs viz. Simulink and Picea is 

as follows: 

Only a single integer of data is sent between the two programs. Pointers are used to 

address specific bytes of the integer and modify them. The contents of the individual 

bytes are shown in the table 5.1. 

 

Byte Position Significance 

1 ID of the function in question 

2 Used to send data from the block to Picea if applicable. 

3 Used to send data from the block to Picea if applicable. (Currently used 

only by 16 bit data types) 

4 Currently unused. 

 Table 5.1: Content of the different bytes in the frame sent 

 

The first byte is used by all the communication blocks in the Simulink system. The 

second is used only if it is connected to one of the output ports of the model while the 

third is used only if the data type that the model outputs is of more than 8 bits. 

In the AFFE-light project, a maximum of 16 bits were used by any port. Thus there was 

no need to use more than 2 bytes of data for carrying the content of the processing done 

by Simulink. However, this byte can be used in the future, with minimal changes, to 

carry some extra information e.g. carry error codes or to carry larger data types.  

In the protocol used in the initial versions of the system, to test proof of concept etc., 

character strings were used as they were the most comfortable to work with. The newer 

protocol was chosen to avoid the overhead of using string functions in C and because 

characters are not a datatype native to Simulink. 
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6 Evolution of the Solution 

This section describes the phases in the development of the solution and tries to explain 

the reasoning behind the structuring of the final solution. The routines used in shared 

memory communication as well as in the TCP/IP solution can be found in appendix C 

and D. 

6.1 Standalone programs 

To begin with, two standalone programs using the windows API for C which could 

interact with each other were created using the selected IPC methods. The idea was to 

keep the code as close as possible to the final version and reuse it with minor 

modifications as and when required in the next iteration of development and integration.  

These programs were used as baselines for testing the correctness of the code integrated 

with Simulink and the modifications made within Picea.  

The next step after the creation of the programs was to use them to send and receive 

simple data from Simulink and Picea individually. To do this in Picea was relatively 

easy as the code could be reused with little modifications by editing the rte.c file to call 

the server function as well. Nonetheless, one problem that was noticed was that Picea 

could not handle a blocking call in the RTE thread for more than a small period of time. 

This problem was temporarily solved by using a polling type were RTE periodically 

checks for signals set rather than a blocking solution.  

To test Simulink for data communication however was a little harder. Although there 

are built-in blocks in the Instrument Control Toolbox of Simulink which can be used for 

socket communication, they had limited flexibility. Simulink for example does not have 

any built-in block that can act as a TCP/IP server. Thus it was tested only as a client in 

the initial stages.  

6.2 S-function builder blocks 

System-functions, or S-functions, are computer language description of a Simulink 

block. This block can be used to extend the use of Simulink environment. The S-

function can be written in C, C++, FORTRAN, ADA or MATLAB [12]. 

Writing an S-function is much like writing a normal function in for example C. The S-

function includes definitions, initial conditions, input and output, termination conditions 

as well as normal #includes. Every time the S-function is reached in the block diagram 

the function inside is called and executed. 

The first proof of concept was shown by using Simulink as server for the component for 

the control unit runnables and as a client for the other runnables in the wheels. This was 

done by the S-function builder block method and using the outputs field in the GUI for 

running the logic of the system. Picea was used as a server for the other runnables to 

contact, and process data. 
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Though hand written S-function provides the largest feature set to aid the integration of 

generic C code, it is a relatively complex task to write one. The S-function builder block 

allows for a smaller set of features but a much faster way of integrating existing C code 

with Simulink.  

 

 

 Figure 6.1: Basic S-function builder overview. 

 

The S-function builder block in Simulink allows the user to place a block in the 

Simulink model that will incorporate normal C code [13]. It also allows the user  

1) A place to assign a unique name for the function. 

2) To select the number of input and output ports and their datatypes. 

3) To select the number of states in a system and their types. 

4) A specific place to enter the paths or the names of the header files required. 

5) A specific place to enter the logic to calculate the output for the block for each 

stage of the process. 

6) A place to select whether a mdlStart() and mdlTerminate() function should also 

be generated. These can be edited later by the user directly as required. 

The block, when run, would use the logic provided by the user to generate outputs [14]. 

S-function builder block was by far the easiest method to implement the system. 

However, it did not give the fine grained control required for optimizing the solution 
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and the values of the IDs had to be hardcoded into the files.  The implementation 

obtained by using this method was inconvenient to use because the end-user had to 

manually copy in code per block, choose the data types for each block and compile by 

clicking on the build button in the block. This step could not be scripted easily and 

would be very time consuming for larger systems. 

There was some work required to ensure that the sockets shutdown immediately as 

windows was prone to let the port linger for some time after a closesocket() was called 

and a lack of persistent memory meant that the program could not dynamically assign a 

new port for itself. This problem was solved by explicitly calling shutdown() with 

instruction to end both sending and receiving on the socket before the closesocket() call. 

Though this successfully demonstrated the objective of the system i.e. to connect 

Simulink and Picea, the system itself was slow as the program opened and shutdown 

sockets for each block for each run of the Simulink model. There were also other 

problems with the requirements set that control of execution should lie with Picea which 

said that Simulink should at no point act as a server since in the control unit, a server 

was required in Simulink to communicate which runnable has to be run in this system..  

Since the whole system had 14 S-Function Build blocks in total, this gave 14 different 

files that had to be modified for each change and built at every run, by manually 

clicking on the ‘build’ button in the S-function dialog boxes. This way of working got 

after a while too complicated and was not deemed to be scalable. 

An additional problem was that because access to the other functions of the Simulink 

block was not available, the program had to be designed to be stateless. This meant that 

at each execution cycle, a variety of steps that should ideally have been only done once 

per simulation had to be repeated.  Hence there was a lot of overhead which 

considerably slowed down the system.  

 Thus, though this method was used to implement the system and show sufficient proof 

of concept, the final system implementation was done using hand written C S-functions 

for better performance.  

6.3 Hand written C S-Functions in C 

The slow performance seen required an overhaul of the system as it was at that point. A 

decision was also made, after a meeting with the supervisor of the project, to change 

from the S-function builder block method to another method that would not involve 

manual building of files per block.  

The different methods to do so were looked into and the one selected was using pure C 

S-function files [12]. These allowed access to parameters of the whole Simulink block 

and allowed doing nearly everything that a native Simulink block would do. It also 

came up that as this method involved compiling the function into a MEX file at the 

beginning of the project, this was actually faster to use than the S-function builder block 

method which involved opening each block and compiling it once. The fact that the 

same file could be reused for multiple blocks using this method, would greatly enhance 

maintainability. 
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It is possible to ‘mask’ the S-function making it more user friendly with definition of a 

custom interface for the user.  

 

 

Figure 6.2: Order of execution by the Simulink engine [15]. 

Figure 6.2 shows the order in which the Simulink engine calls the implemented 

functions during the course of execution. A Simulink model is executed in stages.  The 

first phase is the initialization phase where the signal widths, data types and sample 

times are propagated. The block execution order and memory allocation are also 

performed at this stage.  Each simulation step involves executing the blocks in the order 

determined initially. These simulation steps are performed in a cycle till the simulation 

is complete.  The MEX S-function consists of a set of methods that can be invoked by 

the Simulink engine directly during the different phases of execution. The S-function 
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methods have to comply with naming conventions as they are called directly by the 

engine.  

6.3.1 Defines and Include statements 

The S-function code starts with the following #define statements. 

#define S_FUNCTION_NAME <name of the S function>  

This is used to define the name of the S-function. 

#define S_FUNCTION_LEVEL 2 

This is used to define that the code will use the S-function level-2 format. 

#include "simstruc.h" 

This header is used to access the SimStruct data structure’s and the MATLAB 

application’s API functions. 

The headers that are used in the program, such as the windows.h for the shared memory 

block and the winsock.h for the TCP/IP block are included after these lines. 

6.3.2 Routines used 

mdlInitializesizes() 

The Simulink engine calls this function to gather information about the number of input 

and output ports and their datatypes. It is also used to set the number of parameters to be 

accepted by the function [12]. 

mdlStart() 

The use of this function is optional. It need not be implemented for the block to be 

compiled or executed. However, it is used in this implementation to perform steps that 

are ideally done only once. For e.g. in the TCP/IP block, the mdlStart method is used to 

set up the otherwise expensive connections between the Server at Picea and the blocks 

at the start of the execution. This step would otherwise have to be performed once per 

execution cycle in the S-function builder block method [12]. 

mdlOutputs() 

The implementation of this function is mandatory and it is called by the engine at the 

beginning of each time step to calculate the outputs of the block. This incorporates the 

core logic of the block and is presumably the most important function in the program. 

The implementation chosen relies heavily on this function and the most part of all 

communication between Picea and Simulink is handled here [12].  

mdlTerminate() 

This function is used to perform tasks at the end of the simulation. The routine can be 

used to free up resources, break connections and generally restore the system to the pre 

simulation state [12]. 
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6.3.3 Compiling an S-function based C file. 

A complete S-function C file can be compiled from the Matlab interface using the 

following command once the compiler is set up correctly. 

mex <function_name> [13] 

6.3.4 Working  

Each block in the model acts as a client to the server that Picea has started. Therefore it 

is essential that Picea is started before the Simulink model.  

The mdlStart() method in Simulink is used to initialize the variables and establish the 

connection to Picea. Since Simulink executes each block of a model in a specific order, 

there is no danger of any block executing out of turn within a model Simulink but there 

is no synchronization between the models open in different instances of Simulink. Thus 

there may be incorrect ordering between blocks from different models. This condition is 

handled using the server at Picea to synchronize order of execution between the threads. 

When each block gets its turn to execute, it calls the mdlOutput() function which 

executes the bare minimum set of instructions that are required as most of the work is 

done exactly once when the model’s execution starts. 

This new general block used is instead simply called S-Function. This block takes the 

name of the S-function C file as input. With access to the full S-function API, it became 

possible to homogenize the whole solution and reuse the same C file for each block. 

The block was then masked so that the details of the block would be abstracted away 

from the user. The following section explains the reason behind and the details of the 

masking mechanism. 

Parameters and masks  

 

In the builder block method, the project IDs were hard coded into the S-Function 

Builder. This was suitable for testing and for verifying the mapping of the IDs to 

functions in Picea. This way of working could obviously not scale and had to be 

changed to a more user friendly interface. Simulink masks were used to minimize the 

configuration by the user and to centralize the location where the changes are to be 

made.  

In both the IPC methodologies selected, to be able to handle the mapping of IDs to 

Picea the user is prompted to input the ID for the particular block and what data type the 

block uses as well. There are also specific options to be selected based on the 

methodology. For example, the shared memory block also has a signal type option that 

can be used to select which set of signals or memory would be used and the TCP/IP 

block allows for entering the IP address and the port of the server at Picea.  

By selecting what type of SW-C the block is a part of, different settings will be loaded. 

Figure 6.3 shows the customized user interface of the shared memory blocks.  
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Figure 6.3: Original and modified user interfaces. 

Using masks abstracts away details of the block that the user need not modify. It gives 

one central point for all the changes to the block to be done and makes the configuring 

of the system much faster [16]. 

6.4 Final Implementation 

The final implementation uses S-functions written in C. Each input and output port in 

the models are replaced with one of the new Simulink blocks created. These blocks are 

assigned unique IDs and the datatypes to be used by them are selected from the 

dropdown menus on their GUIs. Settings specific to the methodologies such as the IP 

address for the server for TCP/IP or the type of Software component for the shared 

memory system are then entered into the GUI. This completes the work to be done in 

configuring Simulink. 

In Picea, the following modifications are done.  

i. From the StartOS() method or earlier in the execution of the program, the 

TCP/IP server is started. 

ii. The mapping of the IDs used by a runnable is implemented in a separate file for 

each runnable. These runnables are called by the run function based on the ID 

received. 

iii. All signals used in the system are reset in the StartOS() function. This is to 

prevent unintended behavior of the system. 

iv. Picea was given entire control over the scheduling of the system. The earlier 

versions of the solution had Simulink acting as a server that the RTE thread 

communicated with to pass the ID of the runnable to be run. This could not be 

possible once the Simulink blocks were homogenized and necessitated this 

change.   

v. The threads that were started by the alarms originally used the 

THREAD_PRIORITY_TIME_CRITICAL priority. However, while the solution 

was not yet completed, this caused the PC to become non responsive. To counter 

this, the   THREAD_BASE_PRIORITY_MAX priority was use instead during 

the development phase. 



25 

 

vi. In the initial phases of the project, the RTE was modified to call the 

communicate files directly. But to get to the goal limiting modification in 

existing files to the runnable files, this had to be changed to be called from the 

runnables itself. 

vii. Earlier, the memory locations for the shared memory system were kept open by 

running an external program. This was no longer required in the final 

implementation as the Simulink model would leave these locations open. 

6.4.1 Shared memory 

Communication using shared memory was the first method implemented for the project. 

The motivation behind the choosing of this method was that shared memory is known to 

be the fastest way for two processes to communicate whilst on the same physical 

computer. The shared memory location stays on the RAM of the system and utilizes 

lightweight windows events called signals to synchronize data transfer between the 

programs. This methodology has some shortcomings in that the processes must be 

located on the same computer and that this system is platform specific and is native to 

Windows only. However as said before, the advantage gained is in the speed. There are 

no protocol stacks to deal with and communication remains very simple and fast. 

The shared memory system works in the following fashion. Both Picea and Simulink 

are started and Simulink creates the memory locations needed to communicate in the 

initialize phase. Following this, each block in the model executes its output method one 

by one. In the output method, the Simulink blocks first wait for Picea’s signal Signal3 to 

start executing. Once the signal is obtained, the blocks identify themselves by ID to 

Picea. In case the executing block is an output block, it also sends the output of the 

processing of the model. Picea is signaled by using the signal Signal1 while Simulink 

waits on Signal2.  Picea then uses the ID that was given to call the RTE function 

associated with this ID and sends the value returned by the function to Simulink. It then 

signals the availability of the data by using Signal2. The Simulink block retrieves the 

data, passes it to the model and then Signals to Picea using Signal1 that it can continue. 

The Signal1 indicates the end of the execution of a communication block and signals 

Picea to read from the memory. Picea knows, based on the ID, if this is the end of the 

runnable and proceeds. 

There are thus, three signals that are used to synchronize the communication. This 

Signal set is specific per model. This along with the fact that a unique memory location 

is chosen, ensures that there is no inter-model interference in the system.  

To aid this, the Simulink block designed allows for the selection of the SW-C from the 

GUI. Selecting from the drop down menu allows for a unique memory location and a 

signal set to be selected. 

6.4.2 TCP/IP communication 

This was the second method of implementation for the project chosen. Since Windows 

Signals and shared memory are limited to use on a single computer, a system that could 

be distributed over multiple computers was deemed to be desirable as well. This would 
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reduce the processor and memory load that would otherwise have to be handled by a 

single computer.  

As per the requirement set for the project, Picea should remain in control of the system 

at all times. Thus the server is set on the Picea side of the system. This is done by 

starting a separate thread for the server which listens on the assigned port and waits for 

incoming connections. The server thread spawns a new thread for each of the incoming 

connections from the blocks used in Simulink. The reason for using different threads is 

that by doing this the management of the system becomes easier. The individual threads 

make use of blocking calls and sleep till the operating system informs them that there is 

data to be processed. This makes for an efficient system but leaves the problem of co-

coordinating the threads so that the Simulink processes wait and do not get a chance to 

process their data till the VFB calls for them. A basic level of ordering is received 

directly from Simulink as it allows only one block of a model to execute at one point of 

time. However, since different instances of Simulink needed to be run at one time, there 

would be at exactly the same number of blocks running simultaneously as the number of 

instances of Simulink. Thus there had to be some differentiation done in Picea to ensure 

that the order of processing was what the RTE required it to be. To achieve this, 

windows signals were used from the calls to the run() function of the runnables to 

control the order of processing. All the Software Components have access to a global 

signal which is set when there is any runnable running. In addition to this, for every 

Software Component, there exists a pair of Signals to signal the start and end of the 

execution of the software component to the RTE. A further set of 3 signals are used 

within the Servers threads so that the block used for scheduling in the Simulink model 

gets a different value sent to it from the server. It must be noted that all signals used in 

the TCP/IP method are relevant and used only at the Picea side. These signals are used 

only for the purposes of co-ordination between the different threads at Picea. Simulink 

does not participate in this.  

On the Simulink side, during the initialization phase, each of the blocks connects to the 

server in Picea using TCP/IP sockets. They identify themselves with the unique ID 

assigned to them then wait for data to be received from Picea to process. The Input 

blocks use this to provide data to the model while the output data blocks merely send 

the processed data to Picea. 

When each server thread is allowed to execute, it receives the ID from the specific 

Simulink block and executes the corresponding RTE call, processes it and returns a 

result to Simulink. The result is then read by Simulink, reflected onto the model and the 

next block in sequence is allowed to run and receive data from Picea. 
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7 Testing and Results 

This section presents the reasoning behind the development of the test as well as the 

design and the results. 

In order to test and verify the two different solutions that were implemented, a test to 

measure the performance of the system was designed and incorporated into the solution. 

The performance of the implemented solutions was then compared to that of the original 

one.  

The system has a total of five runnables, 3 for the CU and 1 for each of the WNs. These 

are called in order from the RTE. 

In the original program the code for the runnables were implemented in Picea which 

would give none or little process switching and overhead. In the other solutions 

proposed in the thesis, the runnables run in their natural environment of Simulink. This 

would force the system to switch process and therefore generate some overhead. Since 

these would cause the new solutions to run slower, it was decided to use time taken for 

runnable calls as a measure of performance. 

To make the timing as accurate as possible each runnables execution time was measured 

and then added with weights to the average. A cycle consists of all 5 runnables 

executing once each. In order to get as accurate results as possible the system ran 30000 

cycles for each test run. A total of five test runs for each solution was performed and an 

average value was calculated. Both the new and the old solutions were tested on two 

different systems, one DELL Inspiron PC with an i5 processor clocked at 2.40 GHz and 

one DELL Studio PC with an i7 processor clocked at 1.6 GHz.  These systems had 4GB 

of RAM installed. Figures 7.1 and 7.2 show the outcome of the tests. The results seen 

are average times of execution for a single runnable. 

 

Run Original (time in 

us) 

Shared Memory 

(time in us) 

TCP/IP (time in 

us) 

1 4.750243 297.784798 684.335962 

2 4.738396 296.058547 635.680373 

3 4.835660 297.023139 689.455095 

4 4.806832 299.727421 659.746134 

5 4.876847 299.504264 654.943754 

Average 4.801556 298.019633 664.832263 

 Figure 7.1: Table of results from DELL Inspiron (intel i5 processor). 

 



28 

 

 

Run Original (time in 

us) 

Shared Memory 

(time in us) 

TCP/IP (time in 

us) 

1 7.282058 527.242404 1699.509549 

2 7.168050 533.386413 1675.742360 

3 7.122712 510.399304 1695.908078 

4 7.468927 528.337446 1698.702238 

5 7.481844 536.467410 1660.177948 

Average 7.304718 527.166595 1687.608034 

 Figure 7.2: Table of results from DELL Studio (intel i7 processor). 

 

The tests were implemented in the following fashion, a function call measures the 

number of processor tics before the runnable starts and the number of processor tics at 

the point when the runnable returns. The difference is obtained and used in conjunction 

with the systems clock frequency to calculate the time elapsed. The resolution chosen to 

display the results is in microseconds. 

At certain points extremely high values were seen in the tests. To be able to determine 

whether these values were a valid reflection of the quality of the solution, an analysis of 

the values was done in order to see how frequently they showed up. It was seen that 

they represent less than 2% of the total values. An assumption was thus made that they 

are results from the PC’s internal behavior such as process switching possibly because 

of other programs being run as well. Hence, they are to be treated as noise and need not 

be added to the results. Thus, after determining the range of values that could be seen as 

valid representations of system time, the other outliers were excluded from the final 

calculations. 

The functions used to measure the performance of the system and the code used is 

documented in appendix A. 

Results 

As seen in tables 7.1 and 7.2 the average time taken per call is higher than the original 

version. These results were expected since a lot of process switching is introduced 

compared to the original system where the execution only contains one process. 
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8 Discussion 

This section discusses the issues faced during development. It also discusses the results 

from the previous chapter and explains how they were interpreted. 

As mentioned during the discussion of the S-function builder block method, one major 

problem encountered during the initial stages was that Picea could not handle infinite 

waits and would crash or hang when these were used.  This problem was given a 

temporary solution by using a polling method to check for the signal instead of using 

infinite waits. The main drawback with polling is that a lot of processor time is wasted; 

processor time which can instead be more productively used for the running of Simulink 

while Picea sleeps waiting for Simulink to signal it to start again.  

The issue was related to the OS simulator currently used in the Picea demo. As this was 

designed to simulate a real time system, it expected all the tasks assigned by it to have 

completed by specific times and did not handle delays or blocking calls well and would 

cause the system to crash. This was a problem that needed to be solved as both the 

shared memory and the TCP/IP communication methods require the use of blocking 

calls. Another factor was the requirement set that only Picea or Simulink would execute 

mutually exclusively. Thus the implementation of the OS simulator had to be modified 

to handle blocking calls more effectively.  

The solution to the problem was to create two routines as outlined below. The first 

function called a function created for the purposes of this thesis i.e. EveryoneSleeps() 

that would suspend every alarm threads in the system except the RTE thread. Signals 

within the OS simulator were used to ensure that the creation of any new threads would 

wait while the RTE thread was running. The other function called EveryoneWakes() 

could be used to reawaken the alarm threads of the system and enable the creation of the 

new threads as well. This essentially set a lock on the system to stop the creation and 

scheduling of new threads in Picea while Simulink was being run. The net effect of the 

steps mentioned above was that the blocking calls required for the communication 

methods could now be handled by the system. 

In order for the system to run in real time, for this project, the execution of one cycle 

has to be lower than 10ms. The results from the measurements show that the new 

solutions both run faster than that specified by the timing requirement. This is based on 

how fast the environment models that will be used for the system will expect a response 

from the system. The TCP/IP model however comes close to the deadline on the i7 

processor. 

It is also shown from the results how the i5 PC outperforms the i7 PC. Because of 

license issues for Simulink it was not possible to test the solutions on dedicated 

computers and hence, the tests had to be performed on the personal PCs of the authors. 

These PCs had different types of programs and services running in the background 

which could not be stopped. The results are therefore a pointer to what performance is 

to be expected when testing on dedicated PCs. To have any relevance, the timing of the 

different methods is compared within the same system. This meaning that the 

comparison is done between the shared memory solution and the TCPIP solution within 
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either the i7 PC or within the i5 PC. One important thing to notice though is how the 

performance changes at approximately the same rate on the different PCs. The 

execution time increases 2.2 times for the TCPIP implementation compared to the 

shared memory implementation for the i7 PC and with 1.2 times for the i5 PC. Likewise 

the execution time increases 71 times for the original implementation compared to the 

shared memory implementation for the i7 PC and with 61 times for the i5 PC. This is 

consistent with the view of the models. The TCP/IP system being more complex from 

the system’s point of view with more threads etc. would be expected to have higher 

performance degradation on a busier system. 

It is envisioned that using the solutions proposed in this thesis, will lead to software 

engineers designing the SW-Cs without being delayed by the bottleneck of shared code 

generator computers. This will lead to engineers being able to act more independently 

and save man-hours as well. This solution can also enable greater co-operation between 

different organizations as the Simulink models would be executed on different systems 

at different organization’s local sites; something that was  not possible till now. 
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9 Conclusion and future work 

This chapter deals with the conclusions made as a result of the testing and review of the 

solution and the future work that may be performed in this field. 

Conclusions 

As has been said before, the solution and its implementation were well within timing 

requirements of the AFFE-light system as the highest average value was only about 1.6 

milliseconds. It must be noted that these were measured on PCs not dedicated for 

simulating the project but personal PCs with a lot more programs and services that were 

running that could cause unintended process switches and add to the running time of the 

simulations. A justification for considering this to be an issue can be shown by the 

following counterintuitive fact; the PC with the Intel i5 processor and similar 

configuration as the PC with the Intel i7 processor constantly outperformed the latter 

although, by nearly every standard of measurement, the i7 processor is superior to the 

i5. This means that there was a significant effect of the other processes/services running 

on the system. The logical conclusion of this is that the solution will be much faster on a 

PC that is used in a dedicated environment. 

The original system was used a baseline to check the correctness of the functionality 

and see if any faults were introduced in the correctness. The new solutions can be 

reported to be performing identically in terms of correctness. Thus the new solution did 

not cause any unintended consequences in the system and the delay introduced by the 

solution was deemed to be well within acceptable limits. 

Existing models can be adapted with changes with the AFFE-light system as a reference 

model. The solution is thus scalable as the number of changes required to implement 

this solution is within reasonable limits. 

Future work  

There is some refinement of the solution possible which was not done because of the 

lack of time. Though the solution clearly demonstrates the advantages of using the new 

method over the old one, to adapt existing projects to this method can be a daunting task 

simply because of the sheer size of some of the systems currently in use. Adding the 

communication blocks to existing project models involves adding them individually to 

each port and modifying the parameters of each block. An easier way to do this is to 

automate more of the configuration. It would be handy for e.g. if the blocks could 

automatically assign the ID of the port in the model that they are connected to. The IDs 

however have to be unique throughout the system and this would be a problem because 

Simulink reuses port numbers per model.  

Thus, an even better solution would be if the block adds the hash of the name of the 

model it is placed in to the port number. This would, in most cases make the IDs unique 

but more importantly, the AUTOSAR side of the system (Picea demo in this case) could 

be adapted to perform the same calculation and generate the same IDs in the 

communicate files. 
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Testing of the system over a network using TCP/IP, was not done mainly because of the 

lack of availability of systems with the appropriate system licenses at the same time. A 

greater time for communication will obviously be added by the network latency if the 

solution is used like this but whether or not this offsets the delays caused by the load on 

the processor differs per project. 

There can also be a better way to implement the tasks in the VFB simulator. For 

example, it would be more resource friendly to create a threadpool to assign RTE tasks 

to. The current simulator in use kills the threads after one execution of the RTE task. 

However, such a modification to the VFB simulator is beyond the scope of this thesis. 

The methodologies discussed are in the process of being implemented in the full AFFE 

project by Mecel. This will be a true test of the scalability of the solution. While the 

results of that process will not be discussed here, it must be noted that it did make a 

significant difference in the ease of analysis of the AFFE-light system that was used in 

this thesis. 
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Appendix  

A. Code and function description for time function 

 

QueryPerformanceCounter() 

This function returns the number of “ticks” since the systems was started. It is called 

before the execution of the runnable and after it is done executing. 

QueryPerformanceFrequency() 

This function returns the number of “ticks” per second. In order to get the time in 

seconds the difference between the start and end value in QueryPerformanceCounter() 

has to be divided whit the frequency. 

Code 

extern struct TIME { 
 LARGE_INTEGER start; 
 LARGE_INTEGER end; 
 LARGE_INTEGER Freq; 
}timing; 
 
struct TIME values; 
 
extern double average = 0; 
extern int counter = 0; 
 
int timeFunction(int x) 
{ 
 double diff; 
 
 if (x == 1) 
 { 
   QueryPerformanceFrequency(&values.Freq); 
   QueryPerformanceCounter(&values.start); 
   return(0); 
 } 
 else if (x == 2) 
 { 
   QueryPerformanceCounter(&values.end); 
   diff = ((double)(values.end.QuadPart - values.start.QuadPart) * 1000000) / 
values.Freq.QuadPart; 
 
 if (counter < 100000) 
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 { 
 if (diff > 8 && diff < 50) 
 { 
   average = ((average * counter) + diff) / (counter + 1); 
   counter++; 
 } 
 } 
 else 
 { 
   printf("\nAverage - %f", average); 
 } 
   return(0); 
 } 
   return(0); 
} 
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B.  List of Signals used 

Shared Memory 

Nr Signal name Used for 

1 Signal 1 Used to signal a write operation from Simulink CU to Picea 

2 Signal 2 Used to signal a write operation from Picea to Simulink CU 

3 Signal 3 Used to signal the next block in Simulink CU that a read 

operation has been done 

4 Signal 4 Used to signal a write operation from Simulink right WN to 

Picea 

5 Signal 5 Used to signal a write operation from Picea to Simulink 

right WN 

6 Signal 6 Used to signal the next block in Simulink right WN that a 

read operation has been done 

7 Signal 7 Used to signal a write operation from Simulink left WN to 

Picea 

8 Signal 8 Used to signal a write operation from Picea to Simulink left 

WN 

9 Signal 9 Used to signal the next block in Simulink left WN that a 

read operation has been done 

10 Signal 123 Used to signal Picea to sleep/wake up threads 

 

TCP/IP  

Serial 

number 

Signal name Use 

1 Signal50 Used as a general flag to prevent two runnables from being 

executed at the same time. 

2 Signal51 The RTE uses this to signal the scheduler that one of the 

control unit runnables is to run. 

3 Signal52 This is set to signal to the RTE that one RTE runnable has 

finished executing. 

4 Signal53 This is used to Signal the thread processing the left wheel 

node to start communicating with Simulink 

5 Signal54 This is used by the thread processing the left wheel node to 

signal the RTE that it has finished executing. 
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6 Signal55 This is used to Signal the thread processing the right wheel 

node to start communicating with Simulink. 

7 Signal56 This is used by the thread processing the right wheel node to 

signal the RTE that it has finished executing. 

8 Signal57 This signal is used by the RTE to specify that the first 

runnable of the control unit should be executed. 

9 Signal58 This signal is used by the RTE to specify that the second 

runnable of the control unit should be executed. 

10 Signal59 This signal is used by the RTE to specify that the third 

runnable of the control unit should be executed. 

11 Signal123 This signal was used to correct the problems with Picea as 

mentioned before. 
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C. Routines used by shared memory 

CreateFileMapping() 

The communication is initialized by the first program calling this function with a name 

for the memory mapped object. This procedure returns a handle. 

MapViewOfFile() 

This function uses the handle returned by the previous function. It is used to create a 

view of the object in the programs address space. This function call returns a pointer to 

the file view. 

OpenFileMapping() 

The second program can get hold of the information in the memory by calling this 

function with the same name for the object as the first program. 

WaitForSingleObject() 

To make the processes aware that there is information for them in the memory different 

events are used. The remote process is waiting for an event to happen by calling the 

function WaitForSingleObject(). 

SetEvent()  

Once a process is finished writing to the memory it sets a signal telling the remote 

process that there is something for it in the memory. The process uses the SetEvent() 

function to do this. 
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CreateEvent() 

An event is created by using the function CreateEvent(). This function call returns a 

handle to the event object. 

UnmapViewOfFile() 

This function invalidates the occupied address space and makes the address range 

available for other allocation.  

CloseHandle() 

Whenever a process is finished with an object it is good practice to close the handle. 

Many processes can have handles to objects and after the last handle is closed the object 

will be removed from the system. 
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D. Routines used for TCP/IP 

Socket() 

The Socket function is used to create a socket bound to a specific transport service 

provider. It can be used to create sockets based on either version of 

WSAStartup()  

This function is used to initiate use of the Winsock DLL by a process. This has to be 

used in the beginning of any windows application that uses Windows sockets. An 

application can access the Winsock socket functions only after this function has been 

successfully called. 

Connect() 

The connect function is used to establish a connection to a specified socket. This is used 

by the client to connect to a server. It needs to be done only once per program but is 

essential for subsequent send() and recv() functions. 

Bind() 

A bind function associates a local address with a socket. This is done to associate a 

socket name with an unnamed socket created as the result of a Socket() call. A socket 

name consists of an IP address, a port number and the address family. 

Listen() 

The listen() call places a  socket in a state that listens for incoming connections. The 

maximum number of pending connections is also specified as a parameter. 

Createthread() 

This is used to create a new thread in the system that can be used to execute another set 

of instructions independently of the original thread. A function pointer to a function that 

is to be run is passed with the call. 

Accept() 

This function permits an incoming connection attempt on a socket. It then returns a 

handle to the new socket where the connection has actually been made. 

Send() 

This function is used to send data on a connected socket. The address to the buffer 

which contains this data is a parameter passed through to the function. 

Recv() 

This function is used to receive data from a socket. The data received is stored into a 

buffer whose location is sent as a parameter. 

Shutdown() 
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The shutdown() function is used to disable receiving data, sending data or both. It is 

called before calling CloseSocket() so that the data transmission can be effectively 

disabled. 

Closesocket() 

This function releases the resources used by the socket and closes it. 

WSACleanup() 

This is the complementary call to the WSAStartup() function and is used to indicate that 

the WinSock DLL will no longer be used. This frees up the resources allocated by the 

windows socket implementation for the program. 


