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Benefit of Route Recognition in Energy Management
of Plug-in Hybrid Electric Vehicles

Viktor Larssona, Lars Johannessona,b, Bo Egardta and Anders Lasssonc

Abstract— This paper investigates the benefit of an energy
management system that autonomously can recognize when a
plug-in hybrid electric vehicle is driven along known commuting
routes. The presented route recognition algorithm compares
the GPS trajectory of the ongoing trip with stored commuting
routes using the well known cross-correlation operation. If a
route is recognized the energy management system switches
from a charge depleting charge sustaining discharge strategy
to a strategy where the battery discharge rate is adapted to the
length of the recognized route, thereby decreasing the average
discharge current and the resistive losses.

The proposed system is evaluated using simulations on
one month of logged commuter driving data. The results
for an energy management system based on the equivalent
consumption minimization strategy indicate an overall fuel cost
reduction of 1.5% compared to an system that only utilize a
charge depleting charge sustaining strategy.

I. INTRODUCTION

At the present day the automotive industry is undergoing
an electrification process to counter the challenges posed by
global warming and the expected peak in oil production. Due
to the high cost of battery capacity, the electrification was
until a few years ago limited to Hybrid Electric Vehicles
(HEVs) with an electric range of at most a few kilometers.

However, recent advances in battery technology has low-
ered battery cost significantly, thus indicating that the next
major step in the electrification will be the introduction
of Plug-in Hybrid Electric Vehicles (PHEVs) to the mass
market. A PHEV has a high capacity battery, which can be
charged through the electric grid, thereby providing an All
Electric Range (AER) of at least 10 km; for example the
rated AER of the 2012 plug-in Prius is about 18 km [1].

One potential target group for PHEVs is arguably individ-
uals that commute longer distances to and from work on a
daily basis. In Sweden 11% of the labor force commuted
longer than 30 km to work (median distance 50 km) in
the year 2000 [2]. Hence, it is likely that a large fraction
of PHEV commuters might drive a distance exceeding the
AER during a commuting trip (a trip is defined as the driving
between two consecutive charging occasions), especially if
they do not charge at work.

For trips exceeding the AER there is a degree of freedom
concerning the discharge rate of the battery. How this degree
of freedom should be exploited by the Energy Management
System (EMS) has been investigated in [3]–[6]. The studies
compare the trivial Charge Depleting - Charge Sustaining
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(CDCS) strategy with blended strategies, i.e. strategies that
continuously blend battery energy with fuel energy such that
the battery is depleted at the very end of the trip. A blended
strategy lowers the electric losses mainly by: i) lowering the
average battery current and ii) avoiding that the ICE is used
to charge the battery during CS operation. Results show that
a blended strategy can reduce the fuel consumption with up
to 20% compared to the CDCS strategy [4]. However, the
results in [3]–[5] indicate that the fuel cost reductions are
highly dependent on trip length and vehicle configuration,
with higher reductions possible for trip lengths somewhat
longer than the AER and PHEVs with low efficiency in CS
mode (e.g. PHEVs with high power ICE’s).

The main disadvantage of a blended strategy is the need
for accurate a priori information regarding the future trip.
If the prediction is poor the discharge rate might be to
slow and the trip could end with a partially discharged
battery, implying that with increasing uncertainty the fuel
cost might increase rather than decrease. Earlier studies
have considered situations where the future trip is known
either perfectly, [5], or partly a priori, [3], [4], [7]. However,
a priori information is typically only available when the
driver explicitly has informed the vehicle of the coming trip
through the navigation system, a scenario which might be
considered unrealistic for every day usage due to the extra
effort required. A more convenient approach would be to
let the vehicle autonomously recognize trips going along
commuting routes and thereby acquire a priori information
regarding the future trip, something that was investigated for
more general automotive applications in [8]. Previous studies
related to energy management and autonomous recognition
have primarily been focused on HEVs and on driving pattern
recognition, i.e. to recognize suburban, highway or congested
driving, and not considered recognition of individual routes,
see for example [9], [10].

Recognizing a lack of studies concerning blended strate-
gies and route recognition, the aim of this paper is twofold.
First and foremost, the paper presents an EMS with route
recognition. A novel heuristic route recognition algorithm is
proposed based on the trip GPS-trajectory and starting time.
If the ongoing trip is recognized the EMS switches from
a CDCS strategy to a blended strategy where the battery
State of Charge (SoC) reference is decreased linearly with
the remaining route distance. The power split controller used
to follow the SoC reference is based on the well known
Equivalent Consumption Minimization Strategy (ECMS), see
[9], [11]. The main benefit of the proposed route recognition
algorithm is its relatively low complexity and ease of im-



plementation due to not relying on a digital map. Secondly,
the paper evaluates the proposed EMS in a case study with
simulations on one month of logged driving data for a family
with a commuting driving pattern. A real driving pattern
is necessary for a fair comparison of the overall fuel costs
between the proposed EMS and the trivial CDCS strategy,
used when no a priori information is available.

A. Paper Outline

The paper is divided into seven sections. After the in-
troduction the proposed EMS is introduced and the power
split control strategy used to follow the SoC reference is
explained. Succeeding sections covers the logged commuter
driving data and the simulation study. The paper is ended
with discussion and conclusions and an appendix describing
the vehicle model and parts of the route recognition algo-
rithm.

II. AN EMS WITH ROUTE RECOGNITION

The proposed EMS with integrated route recognition is
divided into three separate parts, each of them outlined
below.

A. Data Collection and Route Clustering

The vehicle should continuously collect, store and cluster
driving data such as: velocities, GPS-positions and trip
starting times. The clustering problem is however beyond the
scope of this paper and is therefore not considered further.
During the reminder of the paper the EMS is assumed to
have access to already structured route data.

The identified commuting routes, i = 1, 2, ..., p, are
represented by the data structure shown in Table I, specifying
the expected GPS-position of the vehicle as a function of the
distance travelled since the start of the route. Furthermore,
the data structure also contains information regarding the
mean route: length, starting time and energy demand at the
wheels, with associated standard deviations.

TABLE I
THE DATA STRUCTURE CHARACTERZING A ROUTE, i.

Data Type Symbol Unit
Index k 1,2,...,N

Distance zk km
Latitude, Longitude xk, yk dec.

Start Time, Mean / Std t̄0, σt0 hh:mm:ss
Route Length, Mean / Std z̄, σz km
Route Energy, Mean / Std ĒN , σEN

MJ

B. Route Recognition Algorithm

The algorithm can be summarized as follows:
1) Initialization: At the start of the trip determine the

initial GPS-position of the vehicle and the start time. All
commuting routes with initial positions and start times within
d∗ km and T ∗ minutes are designated possible candidate
routes.

2) Real-Time Loop: While driving calculate the normal-
ized 2-dimensional cross-correlation between the currently
logged GPS-trajectory and the trajectories of the candidate
routes. From the obtained matrices determine the route,
i∗, with the highest cross-correlation value, s∗, and the
corresponding position offset, Δz∗, i.e. the distance lag
between the two coordinate trajectories. The whole procedure
is described in detail in Appendix I.

3) Recognition Criterion: The current trip is positively
matched against a candidate route, at sample k, if s∗k is
greater than the threshold slim and the travelled distance,
zk, exceeds the threshold distance zo. The condition on the
travelled distance is added to avoid false matching when the
data set is small, i.e. early on in a trip. If several of the
candidate routes satisfy these criterions the shortest candidate
route is chosen as the matching route.

C. EMS Modes
The EMS operates in two modes, separating whether or

not the current trip has been recognized as a route.
1) The CDCS Mode: The default mode used when no

route has been recognized, consequently there is no infor-
mation available regarding the future driving and the trip
could end at any moment. To minimize the expected energy
cost the PHEV should operate in charge depletion mode until
the battery is depleted and then proceed in charge sustaining
operation. Hence, the SoC reference is set to the lower limit,
i.e. SoCref(t) = SoCf .

2) The Blended Mode: If the current trip is recognized as
a commuting route, the EMS switches to a blended discharge
strategy. In this paper the topography is assumed flat and the
SoC reference is therefore simply decreased linearly with the
remaining route distance, an approach shown to give close to
optimal results on flat topography [6], [7]. Denote the time
when the trip is recognized as a commuting route t∗, from
that time the SoC reference is given by

SoCref(t) =SoC(t∗) − (1)

min
{
1,

zc(t) − zc(t∗)
ẑ − zc(t∗)

}
(SoCf − SoC(t∗)),

where SoCf is the lower SoC limit. The corrected vehicle
distance position along the route, i.e. compensated for the
distance lag between the trip and the identified route, is
given by zc(t) = z(t) + Δz∗(t). Furthermore, to avoid an
overestimation of the trip length and the possibility that the
trip ends with only a partially discharged battery, the trip
length prediction is set to: ẑ = z̄ − 2σz , meaning that only
about 2.3% of the trips recognized will have overestimated
trip lengths, provided that the expected trip length is a
normally distributed unbiased estimate.

III. POWER SPLIT CONTROL STRATEGY

The well known ECMS strategy, see [9], [11], is used in
both EMS modes to follow the SoC reference. The main idea
in ECMS can be summarized as to find the control signal,
u, that minimize the cost function

J(t, u) = ṁf(t, u) · HLHV + s(t) · Pbat(t, u), (2)



where ṁf represents the fuel mass rate of the ICE, HLHV

the lower heating value of the fuel used and Pbat the battery
power (defined positive during discharge). The control signal
u determines the power split between the ICE and the
battery and the variable s(t) represents the equivalence factor
translating battery energy into an equivalent fuel energy.

For each specific trip there exists an equivalence factor,
s, that yields the desired final SoC on that trip. However,
in practice a trip is never known a priori and the correct
equivalence factor remains unknown. This paper will utilize
the following approximate expression for the equivalence
factor

s(t) = p(t) · sdis + (1 − p(t)) · schg, (3)

originally proposed in [11], where sdis is the value of the
equivalence factor that results in electric vehicle mode and
schg is the value that leads to ICE based traction combined
with charging of the battery, see [11] for a detailed descrip-
tion of how these parameters are defined and determined.

The weighting variable p(t) governs the discharge rate of
the battery and is given by

p(t) =
sdis

sdis + schg
+

Ee(t) − Eref(t) − λEr(t)
Er(t)

√
sdisschg

sdis + schg
,

(4)

where p(t) is truncated such that p(t) ɛ [0, 1]. Furthermore,
Er(t) represents the expected remaining energy demand of
the trip at time t, λ represents the fraction of the energy
delivered to the wheels that can be recuperated by the
electrical path and Ee(t) corresponds to the battery energy
consumed up to time t.

For an HEV no net depletion of the battery is desired and
the reference for the net change in battery energy, Eref(t),
is typically zero. However, this is not the case for a PHEV
where the battery should be depleted. Hence

Eref(t) = (SoC0 − SoCref(t)) · Ebat, (5)

where Ebat represents the nominal energy stored in the
battery and SoC0 the initial battery SoC.

IV. LOGGED COMMUTER DRIVING DATA

The authors were given access to logged driving data from
a joint PHEV demonstration project [12] carried out by the
Swedish power company Vattenfall AB, ETC Battery and
FuelCells Sweden AB and Volvo Car Corporation. During
one year all the driving of two test vehicles were logged;
each vehicle was driven for approximately one month by
one family before it was passed on to a new family. The
logged data used in this paper is the vehicle velocity, GPS-
position and trip starting time. The altitude was not logged
and is for simplicity assumed to be constant throughout the
paper.

The logged driving pattern for one of the participating
families is shown in Figure 1. The upper left plot depicts a
histogram of the trip lengths and the upper right plot shows
the corresponding GPS trajectories. During the logging pe-
riod of one month this family drove 1834 km dispersed on

120 trips ranging from 0.1 km to 225 km. The histogram
shows a clear peak at a trip length of approximately 33 km,
indicating the commuting route(s), also seen as the thick
solid line among the GPS-trajectories in the right plot. Worth
to note is that 44 % of the total driving, for this family, is
along the commuting route(s), i.e. 805 km out of the total
1834 km. Denote the starting and ending positions of the
commuting route(s) home and work respectively. Figure 2
depicts the GPS and velocity trajectories of the trips starting
either at home or at work. The figure clearly shows that there
are two slightly alternate paths, a and b, going between home
and work.

Furthermore, some of the trips driven share the same
initial path as the commuting route(s) but have different
final destinations, meaning that the GPS-trajectory alone is
not enough to unambiguously identify a trip driving along
a commuting route, at least early on during the trip. Note
however, that all the commuting trips have isolated start times
with low variability, as seen in the lower plots of Figure 1
that depicts scatter plots of the start times vs. trip lengths for
the trips starting at home and work. Finally, the statistics for
the commuting trips are summarized in Table II.

TABLE II
STATISTICS FOR THE COMMUTING TRIPS.

Path Nr Length Start Time Energy
[km] [hh:mm:ss] [MJ]

z̄ (σz) t̄0 (σt0 ) ĒN (σEN
)

Home-Work 13 33.6 (0.8) 05:14:07 (05:21) 15.2 (1.2)
Work-Home 11 33.5 (0.9) 14:23:47 (20:55) 16.0 (0.7)

Both dir. 24 33.6 (0.8) - 15.6 (1.1)
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Fig. 1. The upper plots shows the trip length histogram, left, and the
corresponding GPS trajectories, right. The lower plots shows scatter plots
of the start times vs. trip lengths for the trips starting at home and work.
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Fig. 2. The upper plots shows the GPS trajectories of the trips starting
at home, left, and work, right. The lower plots depicts the corresponding
velocity trajectories.

V. SIMULATION STUDY USING LOGGED DRIVING DATA

The simulation study is performed using the logged com-
muter driving data described in Section IV and the benefit of
the proposed EMS is evaluated by comparing it to a nominal
EMS that does not use route recognition, i.e. uses the CDCS
mode at all times.

The PHEV model used during the simulations is a parallel
hybrid with an Electric Machine (EM) driving the rear axle
and a Spark Ignited (SI) ICE driving the front axle and a
small generator that can be used to charge the battery. The
battery is of Li-Ion type and provides an AER of approxi-
mately 15-25 km depending on the driving conditions. See
Appendix II for a more detailed description of the vehicle
model.

Three performance measures are used to compare the two
EMS’s: i) the fuel cost (gasoline and electricity), ii) the fuel
consumed (gasoline) and iii) the battery Ah throughput. The
Ah throughput is of relevance since it is correlated with
battery wear, see [13]. The gasoline and electricity prices
used are 1.61 e/liter and 0.10 e/kWh. Furthermore, it is
assumed that the efficiency when charging the battery at the
end of the trip is 90 percent.

A. Simulation Setup

From the logged driving data four commuting routes were
identified: 1a, 1b, 2a and 2b; where 1, 2 separates routes
going between home-work and work-home respectively. The
two slightly different paths possible for each driving direction
are distinguished by index a, b as seen in Figure 2. The GPS-
trajectories of the routes are defined by one of the logged
trips along that route.

All the 120 logged trips from Section IV were simulated
with both the nominal and the proposed EMS, under the
assumption that the battery is fully recharged after each

trip, i.e. up to SoC0. For simplicity all four commuting
routes use the same parameters and route statistics, except
starting times, shown in Table III. Furthermore, to have a
fair comparison of the the nominal and the proposed EMS,
both strategies use the mean values of the ECMS parameters
obtained on the commuting routes. Note that due to the
limited data set, one month of logged data, the training
data used to identify the route parameters/statistics is the
same as the simulation data. Finally, to give an idea of the
performance the results are also compared to the optimal
discharge strategy determined using Dynamic Programming
(DP) [14].

TABLE III
THE PARAMETER VALUES USED DURING THE SIMULATIONS.

Route Rec. Par.
T ∗ 60 [min]
d∗ 3 [km]
z0 3 [km]

slim 0.995
Route Stat. i = 1a, 1b, 2a, 2b

z̄i (σi
z) 33.6 (0.8) [km]

Ēi
N (σi

EN
) 15.6 (1.1) [MJ]

t̄10 , t̄20 05:14:07, 14:23:47
EMS Par. CDCS Mode Blended Mode

Er(t) 0.25 [MJ] Ēi
N − 2σi

EN

−
∫ t

to
τwh(s)ωwh(s)ds

SoCref(t) SoCf Eq. (1)
ECMS Par. Commuting Route Mean (std)

sdis 3.92 (0.14)
schg 2.29 (0.07)
λ 0.03 (0.02)

B. Simulation Results
Simulation results for one of the commuting trips, Trip

A starting at home at 05:13:19 and following route 1a, are
depicted in Figure 3. The figure show that the proposed EMS
identifies both route 1a and 1b as candidate routes for Trip
A, since both these routes starts at home with mean starting
time 05:14:07. The maximum cross-correlation, s∗, between
Trip A and the candidate routes is very close to unity for
both routes since they follow the same path during most of
the way. However, there is a notable difference near the end
of the trip, due to the slightly different paths of the candidate
routes when approaching the final destination, work. From
the figure it is clear that the proposed EMS results in
a blended discharge strategy with a SoC trajectory lying
relatively close to the optimal SoC trajectory determined
using DP; this in contrast to the nominal EMS where the
battery is depleted about halfway into the trip.

Similar results are shown in Figure 4 which depicts the
simulation results obtained on another commuting trip, Trip
B, starting at work at 14:33:09 and going along route 2a.
Note that for this example, the cross-correlation between Trip
B and the candidate routes, 2a and 2b, exhibit a slightly
different behavior since the candidate routes follow slightly
different paths during the beginning rather than the end of
the route.
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Fig. 3. Simulation of a commuting trip, Trip A, along route 1a. The
upper plots show the trip velocity trajectory and the SoC trajectories for
the nominal and the proposed EMS. The lower plots depicts the maximal
cross-correlation between the trip and the candidate routes and the torques
of the ICE and the EM for the proposed EMS.

Table IV shows the fuel costs and the final SoC values
obtained for Trip A and Trip B. The table indicates that
the proposed EMS achieves fuel costs close to optimality,
thereby reducing the fuel costs with 3.1% (Trip A) and 5.8%
(Trip B) compared to the nominal EMS. Furthermore, Table
V summarizes the overall fuel costs, fuel consumption and
battery Ah throughput obtained during the simulations; both
for the 24 logged commuting trips and for all the 120 trips
made during the logging period (i.e. both commuting and
non-commuting trips). For the investigated logging period
the proposed EMS will result in: 1.5% lower fuel cost,
1.9% lower fuel consumption and 3.8% lower Ah throughput
compared the nominal EMS.

TABLE IV
THE FUEL COST AND FINAL SOC VALUES OF TRIP A AND TRIP B.

Trip / Trips Nominal EMS Proposed EMS DP
e SoCf e SoCf e SoCf

Trip A 1.95 0.131 1.89 0.133 1.85 0.133
Trip B 1.91 0.121 1.80 0.126 1.77 0.125

TABLE V
THE FUEL COST, FUEL CONSUMPTION AND THE AH-THROUGHPUT OF

THE NOMINAL EMS AND THE PROPOSED EMS.

Trip / Trips Control Strategy
Nominal EMS Proposed EMS

e Fuel Ah e Fuel Ah
[kg] [MAh] [kg] [MAh]

All com. trips 46.1 21.7 2.66 44.4 20.7 2.43
All trips 116.9 59.0 5.84 115.2 57.9 5.62
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Fig. 4. Simulation of a commuting trip, Trip B, along route 2a. The
upper plots show the trip velocity trajectory and the SoC trajectories for
the nominal and the proposed EMS. The lower plots depicts the maximal
cross-correlation between the trip and the candidate routes and the torques
of the ICE and the EM for the proposed EMS.

VI. DISCUSSION

The simulations illustrate the importance of evaluating the
usage of blended strategies on realistic driving patterns. For
individual trips the fuel cost can be reduced significantly,
more than 6%. However, since some fraction of the trips
made with a PHEV will be shorter than the AER, the overall
fuel cost savings will be lower.

The benefit of the proposed EMS will to a large extent
depend on the driving pattern of the PHEV; a driver that
rarely drives trips exceeding the AER will have practically
no benefit of the proposed EMS. However, a long distance
commuter driving a significant fraction of the total distance
along well known routes, exceeding the AER, will likely
have a notable fuel cost reduction. Furthermore, the benefit
of a blended strategy is closely connected to the resistive
losses in the electrical path, thus meaning that the benefit will
improve with increased battery resistance, i.e. with battery
aging and at low battery temperatures. Also worth to point
out is that the proposed route recognition method is not
dependent on digital map data but only on having access
to the GPS position and the calendar time, meaning that
software integration and licensing issues can be avoided.

Although the simulation results are promising for the
studied family, the route recognition can be improved further,
for example by including: average route speed, weekday,
allowing different starting times for the same route (e.g.
people working shift), etc. The proposed technique could
also be compared with more sophisticated methods such as
Hidden Markov Models, as proposed in [15], or Support
Vector Regression.



VII. CONCLUSION

The results obtained during the simulations indicate that
for the logged commuting driving data used in this paper, the
proposed EMS can give non negligible reductions in overall
fuel costs, fuel consumption and battery Ah throughput.
The reduced Ah throughput should reduce battery wear, see
[13], although to what extent is uncertain. Furthermore, the
fuel cost savings depends on the price ratio between fuel
and electricity, if the price of gasoline increases the cost
savings will be slightly higher. However, further research
and experimental tests are needed to verify the results and
determine if similar figures are possible for other commuting
patterns.

APPENDIX I
THE NORMALIZED 2-DIMENSIONAL

CROSS-CORRELATION

The normalized 2-dimensional cross-correlation between
the ongoing driving trajectory and the driving trajectory of
a candidate route is calculated using the image processing
procedure proposed in [16]. Although, here the usage is
slightly different compared to conventional template match-
ing, rather than interpreting the two driving trajectories
as sliding images they are interpreted as two dimensional
vectors of real numbers (the GPS coordinates) that slide
along one another.

The expression for the 2-dimensional cross-correlation is
given by

γi
k(u, v) = (6)∑

x,y

[
f i(x, y) − f̄ i

u,v

][
tk(x − u, y − v) − t̄k

]√∑
x,y

[
f i(x, y) − f̄ i

u,v

]2 ∑
x,y

[
tk(x − u, y − v) − t̄k

]2 .

Where f i(x, y) is the image, i.e. the GPS-coordinate vector
of the candidate route of comparison, f i(x, y) = [xi

1:N −
xo, yi

1:N − yo] ∈ RN×2 and tk(x, y) is the template, i.e. the
GPS-coordinate vector of the ongoing driving trajectory at
the current sample k, tk(x, y) = [x1:k − xo, y1:k − yo] ∈
Rk×2. The coordinates of both the template and the image,
f and t, are taken with respect to the starting position of the
ongoing trip to remove bias effects, i.e. cross-correlations
very close to unity. Furthermore, t̄k represents the mean of
the template and f̄u,v represents the mean of the image in
the region under the template.

From the resulting cross-correlation matrix, γi
k(u, v) ∈

R(N+k−1)×3, the highest cross-correlation value is s∗,i
k =

maxu γi
k(u, 2) and the corresponding position offset is

Δz∗,i
k = δz · (argmaxu γi

k(u, 2) − k), where δz is spatial
resolution.

APPENDIX II
VEHICLE MODEL

The vehicle configuration used during the simulations is
depicted schematically in Figure 5 and the vehicle parameters
are summarized in Table VI. The powertrain is modeled

using a quasi static approach, see [17], meaning that the
mass fuel rate of the ICE, ṁf(ωice, τice), and the losses
in the EM/generator, Ploss(ω, τ), are determined by linear
interpolation between steady state measurements. The inter-
nal moments of inertia for the ICE, EM and generator are
neglected and temperature effects are not considered for any
part of the vehicle.

The torque required at the wheels, τwh, to follow the
velocity trajectory of a trip can be determined using an
inverse simulation approach [17] as

τwh = rwh(0.5 · ρairCdAv2 + frmg + mv̇), (7)

where v represents the vehicle velocity and the road slope
is assumed to be zero. The required torque must be met
by the torque contributions from the EM, τem, the outgoing
transmission torque, τgb, and the torque from the mechanical
brakes, τfr,

τwh = ηrrrτem + ηfrfτgb + τfr. (8)

Note that the torque of the EM is defined as negative
when acting as a generator and then the rear axis efficiency
becomes η−1

r . Furthermore, the outgoing transmission torque
is proportional to the sum of the ICE torque, τice, and the
(negative) charging torque, τch,

τgb =
(
τice + τch

)
ηgb · rgb,i, τice ≥ −τch ≥ 0 (9)

where the gear box ratios are represented by rgb,i, i =
1, ..., 5. The relation between the generator torque, τgen, and
the charging torque is

τgen =
τchηr,gen

rgen
. (10)

The generator, ICE and EM speeds are: ωgen = ωicergen,
ωice = ωwhrfrgb,i and ωem = ωwhrr; where ωwh represents
the rotational speed of the wheels. The choice of gear, rgb,i,
is given by a look-up table constructed from the gear ratios
and the ICE maximum torque curve, with an added hysteresis
mode to avoid excessive gear shifting. The dynamics during
the gearshift are neglected.

The battery is of Li-Ion type and is modeled as an
equivalent circuit with a voltage source in series with an
internal resistance. The open circuit voltage is assumed to
be an affine function of the SoC, Voc(SoC), and the internal
resistance, Rin, is assumed to be constant. The battery SoC
dynamics are given by

dSoC

dt
= − I

Q
, (11)

where Q represents battery capacity and the relationship
between battery current, I , and power, Pbat, is

Pbat = V (SoC)I − RI2
in. (12)

Finally, the power that the battery must supply is given by

Pbat = τemωem + Ploss,em(τem, ωem) (13)
+ τisgωisg + Ploss,isg(τisg, ωisg) + Paux.



Fig. 5. Schematic of the vehicle configuration, the arrows indicate the
possible directions of power flow.

The control signal vector is: u = [τem, τice]T , where the
generator torque is given implicitly by the torque split(s).
Furthermore, if τice is zero the ICE is considered to be off
and ṁf is zero. To prevent excessive ICE state transitions,
turning on the ICE is penalized with a fuel equivalent,
mstart = g(ωice), which represents the fuel energy required
to accelerate the ICE crankshaft to the required speed.

TABLE VI
VEHICLE DATA

Chassis Data Symbol Value
Mass, Wheel rad. m, rwh 1930 kg, 0.3m

Air / Roll. res. CdA, fr 0.74, 0.012
Rear gear rat. / eff. rr , ηr 9.2, 0.965
Front gear rat. / eff. rf , ηf 3.1, 0.97
Gear box rat. / eff. rgb,i, ηgb 3.2, 2.0, 1.3, 0.9, 0.7; 0.97
Gen. gear rat. / eff. rgen, ηr,gen 2.7, 0.95

Aux. Power Demand Paux 1500 W
Battery Data

Open cir. voltage Voc 202/181V@0.85/0.15 SoC
Resistance Rin 0.10 Ω
Capacity Ebat 5.9 kWh (4.1 usable)

SoC limits SoCo/SoCf 0.85/0.15
SI ICE Data
Max power Pmax 160 kW @ 5100 rpm
Max torque τmax 325 Nm @ 3000 rpm
EM Data

Max power Pmax 50 kW
Max torque τmax 200 Nm up to 2100 rpm
Gen. Data
Max power Pmax 21 kW
Max torque τmax 55 Nm up to 3500 rpm
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