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Grassmann Manifold Online Learning and Partial Occlusion Handling for

Visual Object Tracking under Bayesian Formulation

Irene Y.H. Gu Zulfiqar H. Khan

Dept. of Signals and Systems, Chalmers Univ. of Technology, Gothenburg, 41296, Sweden

Abstract
This paper addresses issues of online learning and oc-

clusion handling in video object tracking. Although man-

ifold tracking is promising, large pose changes and long-

term partial occlusions of video objects remain challeng-

ing. We propose a novel manifold tracking scheme that

tackles such problems, with the following main novelties:

(a) Online estimation of object appearances on Grass-

mann manifolds; (b) Optimal criterion-based occlusion

handling during online learning; (c) Nonlinear dynamic

model for appearance basis matrix and its velocity; (b)

Bayesian formulations separately for the tracking and

the online learning process. Two particle filters are em-

ployed: one is on the manifold for generating appearance

particles and another on the linear space for generating

affine box particles. Tracking and online updating are

performed in alternative fashion to mitigate the tracking

drift. Experiments on videos have shown robust track-

ing performance especially when objects contain signif-

icant pose changes accompanied with long-term partial

occlusions. Evaluations and comparisons with two ex-

isting methods provide further support to the proposed

method.

1 Introduction
Visual tracking has drawn increasing interest in recent

years. Many promising results have been obtained by,

e.g. trackers using mean shift, local point feature and par-

ticle filters [1, 2, 3, 4]. Online learning is essential for the

robustness of video object tracking since video objects

are dynamic with deformable shape, pose changes and

various other changes. Early work of online learning in-

cludes, e.g., incremental subspace learning [5], however,

tracking drift or failure remains for video objects in com-

plex scenes, e.g. significant pose changes, occlusions and

intersections. For planar video objects with significant

pose changes, manifold tracking is more suitable since

a dynamic object with continuous pose changes is better

described by a set of subspaces, or points on a smooth-

ing manifolds. Manifold-based video object tracking

has drawn much interest lately. [6] proposes piecewise

geodesics on complex Grassmann manifolds using pro-

jection matrices for synthetic array sensor signals. [7]

proposes visual tracking by using a Kalman filter to ve-

locity vectors in the tangent planes of Grassmann man-

ifold, that only works for objects with small/moderate

pose changes. Several covariance tracking methods on

Riemannian manifolds have also been proposed [8, 9].

In these methods online learning is designed for learning

object changes, where object occlusion scenarios are not

considered. Despite reasonably good results from mani-

fold tracking, challenges remain for tracking objects with

significant pose changes especially when this is accom-

panied with long-term object partial occlusions or object

intersections. The main reasons could be the lack of ro-

bust online learning methods, the lack of online learning

with simultaneously occlusion handling, and also the lack

of robust dynamic models on manifolds.

Motivated by the above, we propose a novel tracking

method that tackles these issues. The proposed tracking

scheme is a Grassmann manifold-based Bayesian tracker,

where the main novelties are the online appearance learn-

ing combining with occlusion handling. Comparing with

our previous work on Riemannian manifolds in [9], this

paper deals with a different type of manifolds, also an

occlusion handling strategy is introduced on top of the

online learning. To the best of our knowledge, for Grass-

mann manifold tracking scenarios, no successful criterion

of object online learning with occlusions handling has so

far been reported.

2 Grassmann Manifolds: Review
A Grassmann manifold Gn,k is defined as a set of all

k-dimensional subspaces in R
n. Let p ∈ Gn,k and U

be the n × k orthonormal bases of p. To form a full

bases for R
n, an n× n orthonormal Q is defined as

Q , [U | U⊥], where UTU⊥ = 0. A Grassmann mani-

fold can be equivalently described by the basis matrix U

in [U] for achieving computational efficiency [10]. Let

Y ∈ R
n,k be an observation matrix, mY = 1

k

∑k

i=1 Yi

be the mean, then U ∈ R
n,k is computed by a compact

singular value decomposition (SVD) of mean subtracted

Y, UDV = SVD(Y−mY ). More general descriptions

of manifold theories can be found in [10].
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Mapping functions: Two important mapping functions

are essential for manifold tracking and online learning.

One is the exponential map (T → Gn,k)). Given p,q ∈
Gn,k, the exponential mapping function maps a tangent

vector ∆ to a manifold point q at t=1, starting from p

along the geodesic. The exponential mapping function

can be described by using basis matrices for computa-

tional efficiency [11]:

expp(∆) = W = UV cos(Σ)VT +R sin(Σ)VT

where U and W are n × k basis matrices for p and q.

Another is the logarithmic map (Gn,k → T ). Given

p,q ∈ Gn,k, the logarithmic mapping function maps p

to q on Gn,k along the geodesic that results in a tangent

vector ∆ in T . Using basis matrices, this can be effi-

ciently computed by ∆ = logp(q) = S sin−1(Σ)VT ,

where RΣDT = W − UUTW, VCDT = UTW is

the generalized SVD, CTC+ΣTΣ = I , and sin−1(·)
acts element-by-element along the diagonal of Σ.

3 General Description: Proposed Scheme

Figure 1. Block diagram of the proposed integrated scheme.

Î
obj
t−1

is the reference object image at t-1, Î
obj
t and s2objt−1

are

the tracked object image and its box parameters at t-1; I
obj
t−1

is

tracked object image used as the new observation image at t;

Ût is the estimated manifold appearance, and U
obj
t is the final

updated appearance after occlusion handling; (Yt−1, Yt) are

the observation matrix with a sliding window size L at t-1 and t;

It is the current video frame; and z−1(Uobj
t ) = U

obj
t−1

is the

reference object appearance at t-1 used for the tracking process

at t.

Fig.1 shows the block diagram of the proposed scheme,

which can be split into two parts: a Bayesian object

tracking process (block-1 on the top), and a process

of Bayesian manifold online appearance estimation, and

manifold updating with criterion-based occlusion han-

dling (block-2 on bottom left, and block-3 on bottom

right), respectively. In the tracking process, object bound-

ing box affine parameters are tracked by a PF (Particle

Filter). This is different from the conventional PF track-

ing such that the embedded visual object appearance is

on a Grassmann manifold rather than in a vector space.

In the online updating process, the appearance subspace

is first estimated on the manifold by another PF. The PF

uses a nonlinear dynamic model, the exponential and log-

arithmic mapping functions between the tangent planes

and the manifold. The likelihood in this PF is computed

by the subspace angles between the current observation

and predicted manifold particles. The online learned ob-

ject appearance is then obtained as the posteriori man-

ifold point. A criterion is applied to estimate the oc-

clusion. If no occlusion is detected, updating the basis

matrix of reference object appearance is then performed.

These two parts, tracking and updating, are performed in

an alternation fashion as an integrated tracking scheme.

4 Dynamic Model, Bayesian Manifold Ap-

pearance and Occlusion Handling

4.1. Nonlinear Dynamic State Space Model

Let the object appearance at t be described by a point on

a Grassmann manifold by the basis matrix Ut, and the

change of appearance (or speed) be ∆t. Define the state

vector as st = [Ut ∆t]
T . Let the state dynamics be

described by the nonlinear dynamic model,

Ut = h(Ut−1,∆t) = expUt−1
(∆t)

∆t = ∆t−1 +V1
(1)

where V1 (including the acceleration and model noise) is

assumed to be zero-mean white distributed, ∆t−1 is con-

stant in each sample interval T = tk − tk−1, and T = 1
for mathematical convenience,h(·) is nonlinear. We refer

(1) as the dynamic model that deals variables in two dif-

ferent spaces: The first equation models the dynamic ap-

pearances on the manifold where two manifold points at

successive time instants are related by ∆t in the tangent

plane; the second equation is a constant velocity model

in the tangent plane whose acceleration is considered as

white noise. The above dynamic model can be considered

as a 2nd-order discrete white noise acceleration model for

Grassmann manifold points.

4.2. Online Bayesian Appearance Estimation

The aim here is to perform online estimation of Ut given

a new object appearance at t. We first assume that no ob-

ject occlusion occurs (See Section 4.3 for occlusion han-

dling). This is realized by a PF on the manifold. Let the

current observation at t be Zt = Ũ
obj
t (provided by the

tracking process, see Section 5). Ũ
obj
t is the basis ma-

trix of tracked object at t obtained by first stacking the

tracked object appearance I
obj
t in a sliding windows of

size L (noting, Yt below corresponds to non-occlusion

cases): Yt = [Iobjt−L+1 · · · I
obj
t ], and then calculating the

basis matrix. Let Ut be the Bayesian estimate through:

p(Ut|Z0:t)
∝ p(Zt|Ut)

∫
p(Ut|Ut−1,∆t)p(Ut−1|Zt−1)dUt−1

where Ut is object manifold appearance, Z0:t is the ob-

servations up to t. The posterior pdf estimate is approxi-

mated by p(Ut|Z0:t) ≈
∑N1

j=1 w
j
t δ(Ut−U

j
t ), where U

j
t

is the jth particle, wj
t is the normalized weight, and N1 is

the total number of particles. Since this PF is performed
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on the manifold where the dynamic model describes state

variables in two inter-connected spaces, realization of this

PF requires the interaction between the manifold points

and their tangent planes. This estimation process is sub-

divided into the following steps:

Prediction: Let U
j
t−1 be a manifold particle point

at t − 1 and ∆
j
t−1 be the velocity particle that con-

nects (U
j
t−2,U

j
t−1), where U

j
t−1 is the end point of the

geodesic starting from U
j
t−2. First, a set of velocity par-

ticles ∆
j
t (originated from U

j
t−1) is generated in tangent

planes using the previous velocity particles ∆
j
t−1 accord-

ing to ∆
j
t = ∆

j
t−1 + V1 (using (1)), j = 1, · · · , N1.

Then, a set of new manifold particles U
j
t is obtained

from ∆
j
t through the exponential mapping, according to

U
j
t = exp

U
j

t−1

(∆j
t ) (using (1)). U

j
t are predicted mani-

fold points at t.
Appearance Likelihood and Particle Weights: The

likelihood is computed from Gaussian distributed prin-

cipal angles between the observation bases Ũ
obj
t (com-

puted from Yt) and predicted manifold point U
j
t :

p(Ũobj
t |Uj

t ) = exp
{

−
d(Ũobj

t ,U
j
t)

σ2

l

}

, where σ2
l is

the measurement noise (σ2
l =0.1 in our tests), and

d(Ũobj
t ,Uj

t ) is defined according to principal angle [10].

The weight is then updated by wj
t ∝ wj

t−1p(Ũ
obj
t |Uj

t )
and subsequently normalized. Resampling is applied if

N̂eff = 1/
∑N1

j=1(w
j
t )

2 < N1th, to prevent the degener-

acy [4].

Posterior Estimation of Manifold Point: MMSE es-

timate of Û
obj
t is obtained as the expected value of

weighted predicted particles on the manifold by:

Û
obj
t = exp

Ũ
obj
t





1

N1

N1
∑

j=1

w
j
t logŨobj

t
U

j
t



 (2)

4.3. Partial Occlusion Handling

It is important that an online updating method only up-

dates the reference object appearance for changes caused

by the dynamic object itself (e.g. pose, deformation).

If online updating is applied when manifold appearance

changes is due to partial occlusions, it could lead to track-

ing drift. In video object tracking, there is an ambiguity

between changes due to object and due to occlusions. Our

aim here is to introduce a criterion that gives a rough es-

timation on whether changes are due to object dynamics,

or occluding objects/background. If latter case appear,

the updating process would be frozen to prevent absorb-

ing wrong information to the object.

The occlusion handling strategy is based on the obser-

vation that relatively large differences may occur when

an object experiences occlusions as compared with ob-

ject pose changes. We use the Bhattacharyya coeffi-

cient between a tracked and the reference object as the

distance measure between two subspaces, i.e.: ρt =

∑

u

√

ptu qt−1
u , where ptu and qt−1

u are uth histogram

bin of spatial kernel-weighted intensity histograms for a

tracked and the reference object region at t. The criterion

for estimating occlusion is done by comparing ρt with an

empirical threshold ρth:

ρt < ρth (3)

If (3) is satisfied, then the object is considered as oc-

cluded and no updating is performed. The rationale be-

hind the choice is that the subspace change introduced by

occluding object/background is usually larger than that

from pose/appearance change from an object itself. Since

a large ρt indicates that two subspaces are closer, a small

ρt value is as an indication of object experiencing oc-

clusions and deviating from its own appearance. If (3)

is satisfied, the tracked object region I
obj
t would not be

added to the sliding window observation matrix Yt, and

no updating is performed for (4). Otherwise, changes are

considered as caused by object itself, and hence I
obj
t is

added to Yt, and the basis matrix from the observation

matrix Yt as well as the reference image object Îobjt are

then updated by:

update Ũ
obj
t : Ũ

obj
t D

obj
t V

obj
t = SVD(Yt −mY )

update Îobjt : Îobjt = κmY + (1 − κ)Îobjt−1

update U
obj
t : U

obj
t = Û

obj
t (4)

where κ is a constant controlling the learning rate and

mY is the mean of Yt.

5 Bayesian Object Tracking

The aim in this part is to estimate the posterior pdf of

affine object bounding box, while taking into account of

the manifold object appearance within the box. This is

realized by utilizing another PF, PF-2, where the mani-

fold object appearance is embedded. Let the state vec-

tor s2t = [y1t y2t βt γt αt φt]
T at t be the affine

bounding box parameters (2D box center, scale, rota-

tion, aspect ratio and skew). Given a set of particles

at t − 1, new particles {s2it}
N2

i=1 are generated by PF-

2 according to the state equation s2t = s2t−1 + v2,

v2 ∼ N (0,Ω). The likelihood is moedelled as Gaus-

sian distributed dynamic prediction error on the manifold,

p(z2t|s2it) = exp

{

−
||d

Ii
t
−U

obj

t−1
U

objT

t−1
d

Ii
t
||

σ2

w2

}

, where

I(s2it) = Iit describes the candidate object appearance

within the bounding box, dIit
= Iit − Î

obj
t−1, U

obj
t−1 is

the manifold bases of the reference object at (t − 1),
z2t is the current observation (image frame), and σ2

w2 is

the variance of measurement noise. The particle weights

w2it are updated by w2it ∝ w2it−1p(z2t|s2
i
t) followed

by the normalization. Further, resampling is applied if

N̂eff = 1/
∑N2

i=1(w2
i
t)

2 < N2th [4]. Finally, the MAP

estimate of bounding box s2t is computed.
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Figure 2. Tracking results on ”Danni” and ”Behzad” with added occlusions (by superposition of a real occluding (book) image on face

images). Red box: from the proposed tracker; Green: from Tracker-1; Yellow: from Tracker-2.

Figure 3. Performance evaluation and comparisons. Left: Proposed method with/without occlusion handling strategy: Euclidean dis-

tance on video ”Danni + occlusion”. The black bar indicates the frames with occlusion; Middle (Euclidian distances between bounding box

corners of tracked and ground truth object); Right (SSIM between images of tracked and ground truth object (the larger value the better):

Proposed tracker and tracker-1, tracker-2 on video ”Chai’ without occlusions.

6 Experiments and Results

To test and evaluate the proposed scheme, several videos

containing deformable objects with significant object

pose changes, captured by a moving/static camera, are

used. For all videos, initial object bounding boxes are

manually selected. Each box is further normalized to

32× 32 pixels. Parameters used for PF-1 are N1 = 400,

σ2
v1

= 0.01, σ2
l = 0.1, κ = 0.1, N1th=50; for PF-2,

N2 = 600, σ2
w2 = 0.25, and N2th=75. Two existing

trackers: Tracker-1 (covariance-based tracking in [8]),

and Tracker-2 (subspace tracking on Grassmann mani-

fold [7]) are used for comparisons.

Tests are performed on several videos that contain ob-

jects with both large pose changes and partial occlusions.

Fig.2 shows the tracking results on several videos with

partial occlusions. Fig.3 (left plot) shows the Euclidean

distances (of 4 corners of tracked box and ground truth

box) with and without occlusion handling. Observing

Fig.2 and Fig.3, the proposed tracker has clearly shown a

better performance in these tests.

Tests and comparisons are also performed on videos

where objects contain large pose changes but without oc-

clusions. Fig.3(Middle and Right plots) shows the Eu-

clidian distances and SSIM (Structural Similarity) mea-

sure as a function of video frames, from the proposed

tracker and Tracker-1,2. Comparing the results, the pro-

posed scheme has shown clear improvement.

7 Conclusion

Tests on the proposed tracking scheme, consisting of vi-

sual tracking on the manifold and online manifold basis

updating, has shown very robust tracking performance for

objects containing moderate to large pose changes. The

online updating of basis matrices by exploiting the non-

linear dynamic model and two state variables enables ef-

fective posterior estimates of Grassmann manifold points.

A method to detect partial occlusion is shown to be ef-

fective. The online tracking by integrating dynamic ap-

pearance and shape on the manifold and its tangent plane

in single particle filter is efficient. Comparisons with

two existing and most relevant manifold tracking meth-

ods have provided further support to the robustness of the

proposed scheme.
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