
Chalmers Publication Library

Analysis and Design of Tuned Turbo Codes

This document has been downloaded from Chalmers Publication Library (CPL). It is the author´s

version of a work that was accepted for publication in:

IEEE Transactions on Information Theory (ISSN: 0018-9448)

Citation for the published paper:
Koller, C. ; Graell i Amat, A. ; Kliewer, J. (2012) "Analysis and Design of Tuned Turbo
Codes". IEEE Transactions on Information Theory, vol. 58(7),  pp. 4796-4813.

http://dx.doi.org/10.1109/TIT.2012.2195711

Downloaded from: http://publications.lib.chalmers.se/publication/160415

Notice: Changes introduced as a result of publishing processes such as copy-editing and

formatting may not be reflected in this document. For a definitive version of this work, please refer

to the published source. Please note that access to the published version might require a

subscription.

Chalmers Publication Library (CPL) offers the possibility of retrieving research publications produced at Chalmers
University of Technology. It covers all types of publications: articles, dissertations, licentiate theses, masters theses,
conference papers, reports etc. Since 2006 it is the official tool for Chalmers official publication statistics. To ensure that
Chalmers research results are disseminated as widely as possible, an Open Access Policy has been adopted.
The CPL service is administrated and maintained by Chalmers Library.

(article starts on next page)

http://dx.doi.org/10.1109/TIT.2012.2195711
http://publications.lib.chalmers.se/publication/160415


1

Analysis and Design of Tuned Turbo Codes
Christian KollerStudent Member, IEEE, Alexandre Graell i AmatSenior Member, IEEE,

Jörg KliewerSenior Member, IEEE, Francesca VattaMember, IEEE, Kamil S. ZigangirovFellow, IEEE,
Daniel J. Costello, Jr.Life Fellow, IEEE

Abstract—It has been widely observed that there exists a
fundamental trade-off between the minimum (Hamming) dis-
tance properties and the iterative decoding convergence behavior
of turbo-like codes. While capacity achieving code ensembles
typically are asymptotically bad in the sense that their minimum
distance does not grow linearly with block length, and they
therefore exhibit an error floor at moderate-to-high signal to
noise ratios, asymptotically good codes usually converge further
away from channel capacity. In this paper, we introduce the
concept of tuned turbo codes, a family of asymptotically good
hybrid concatenated code ensembles, where asymptotic minimum
distance growth rates, convergence thresholds, and code rates
can be traded-off using two tuning parameters,λ and µ. By
decreasingλ, the asymptotic minimum distance growth rate is
reduced in exchange for improved iterative decoding convergence
behavior, while increasingλ raises the asymptotic minimum dis-
tance growth rate at the expense of worse convergence behavior,
and thus the code performance can be tuned to fit the desired
application. By decreasingµ, a similar tuning behavior can be
achieved for higher rate code ensembles.

Index Terms—concatenated codes, distance growth rates,
EXIT-charts, Hamming distance, iterative decoding, turbo codes

I. I NTRODUCTION

Turbo codes [1] and multiple parallel concatenated codes
(MPCCs) [2] perform very close to the Shannon limit with
suboptimum iterative decoding, but the corresponding code
ensembles are asymptotically bad in the sense that their
minimum (Hamming) distance does not grow linearly with
block length [3]. Even the minimum distance of the best
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code in the ensemble of turbo codes cannot grow more
than logarithmically with block length [4]. As a result, their
minimum distance may not be sufficient to yield very low
error rates at moderate-to-high signal to noise ratios (SNRs),
and an error floor can occur.

On the other hand, multiple serially concatenated code
(MSCC) ensembles with three or more component encoders
can be asymptotically good. This has been shown for repeat
multiple accumulate codes in [5]–[7]. There also exist varia-
tions of standard repeat accumulate codes that are asymptoti-
cally good [8] but are more complex to encode than classical
repeat accumulate codes.

MSCCs in general exhibit good error floor performance due
to their large minimum distance, but they have the drawback
of converging at an SNR further from capacity than parallel
concatenated codes. While the asymptotic distance growth
rate of MSCCs can be made arbitrarily close to the Gilbert-
Varshamov Bound (GVB) by adding more concatenation
stages [7], the iterative decoding convergence behavior of the
resulting code ensembles becomes worse, making codes with
more than three concatenation stages impractical.

An alternative to the above schemes are hybrid concatenated
codes (HCCs), first introduced in [9]. They combine the
features of parallel and serially concatenated codes and thus
offer more freedom in code design. It has been demonstrated in
[10] that HCCs can be designed that perform closer to capacity
than MSCCs while still maintaining a minimum distance that
grows linearly with block length. In particular, small memory-
one component encoders are sufficient to yield asymptotically
good code ensembles for such schemes. The resulting codes
provide low complexity encoding and decoding, and, in many
cases, can be decoded using relatively few iterations. In [11],
the analysis of MSCCs and HCCs was extended to the binary
erasure channel, and stopping set enumerators for the HCCs
in [10] were derived.

The HCCs presented in [10] consist of an outer MPCC
serially concatenated with an inner accumulator. In this paper,
we further elaborate on this code structure and extend the
results of [12] to create a family of codes where the asymptotic
minimum distance growth rate and the convergence threshold
can be adjusted by varying a tuning parameterλ. In particular,
we replace a fraction1 − λ of the bits at the output of the
inner accumulator with bits taken from the output of the outer
MPCC (see Fig. 1). This leads to a smaller asymptotic distance
growth rate for decreasingλ but also to a better iterative
decoding threshold. The resulting code ensembles remain
asymptotically good over the range of all positive values ofλ.
We call this family of codestuned turbo codes(TTCs). Tuning
can also be used to vary the rate of the code. To this end, we
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introduce a second parameterµ, λ ≤ µ ≤ 1, which denotes
the fraction of bits that are kept from the combined output
of the outer MPCC and the inner accumulator (see Fig. 1).
Related code structures have also been investigated in [13].

An advantage that TTC ensembles typically have over low-
density parity check (LDPC) code ensembles is that tuning
does not change the encoder structure. The iterative decod-
ing convergence threshold of an LDPC code ensemble, as
well as their asymptotic minimum distance growth rates, are
determined by the degree distribution of the ensemble. To
trade off the iterative decoding convergence threshold and
the asymptotic minimum distance growth rate, one must vary
the degree distribution, which in general results in a different
encoder.

For LDPC codes, quasi-cyclic code constructions are pre-
ferred in practice since they can be encoded using a low com-
plexity shift register encoder. The quasi-cyclic subensembles
of LDPC codes, however, are not asymptotically good, since
their minimum distances are upper bounded by a constant as
the circulant sizes increase [14].

We note that the error floor performance of turbo-like codes
with iterative decoding is greatly influenced but not solely
determined by the minimum Hamming distance of the code,
the subject of this paper, since pseudo-codewords and trapping
sets also play a role. In Section II, we present a general encoder
structure for TTCs and discuss the relevance of the minimum
Hamming distance to designing codes with good error floor
performance. We also introduce four specific types of TTCs
that are the focus of our analysis throughout the remainder of
the paper. In Section III we introduce ensemble-average weight
enumerators for TTCs and their asymptotic expressions. In
Section IV, the ensemble average weight enumerators are
used to bound the minimum distance for TTCs, and we
present asymptotic minimum distance growth rates of TTCs
for different values ofλ andµ. Also, a finite length minimum
distance analysis is performed and the results are shown to be
in agreement with the asymptotic results. Section V computes
iterative decoding thresholds for TTCs using EXIT-charts,and
Section VI combines the results of the previous two sections
and addresses the tuning behavior of the code constructions.
Finally, Section VII presents some simulation results, and
Section VIII concludes the paper.

II. ENCODERSTRUCTURE

The general structure of the proposed tuned turbo codes
is shown in Fig. 1. They consist of an outer MPCC serially
concatenated with an inner rate-1 accumulator and optionally
an additional rate-1 parallel encoderC0. The outer MPCC con-
sists of a total ofq rate-1 component encoders,C1, C2, . . . , Cq,
of which the first J encoders,3 ≤ J ≤ q, are recursive
convolutional encoders (RCEs). The remainingq−J encoders
in the outer MPCC are feedforward convolutional encoders
(FFCEs). (We note that, while in practice it is not necessary
to precede all component encoders by an interleaver, doing so
simplifies the analysis and does not change the properties of
the code ensemble.) We denote the combined output weight of
the RCEs byhr =

∑J
i=1 hi and the combined output weight of

Fig. 1. General encoder structure for TTCs with feedforwardand recursive
convolutional component encoders.

the FFCEs byhf =
∑q

i=J+1 hi, wherehi is the output weight
of encoderCi in the outer MPCC. The total output weight of
the outer MPCChp is given byhp = hr + hf =

∑q
i=1 hi.

The output of the outer MPCC enters the serially concate-
nated inner accumulator, whose output weight is denoted by
hs. Both the output of the outer MPCC and the output of the
inner accumulator are punctured, then multiplexed together
and passed to the channel. The puncturing rates(µ − λ)
andλ in Fig. 1 denote the fraction of bits thatsurviveafter
puncturing the outer MPCC and the inner accumulator, and
h′
p andh′

s are the corresponding weights, respectively. Finally,
h = h′

s+h′
p+h0 represents the total output codeword weight.

The parameterµ is used to control the rate of the TTC
ensemble, i.e., considering the multiplexed output of the outer
MPCC and inner accumulator, a total fraction ofµ bits survive
puncturing. The rate of the overall ensemble is thus given by

R =
K

N
=

1

µq + I0
, (1)

whereK is the input length,N is the total output length, and
I0 = 1 if there is an additional parallel encoder andI0 = 0
otherwise. As additional parallel encoders we consider FFCEs
or simply a systematic branch.

Tuning the asymptotic minimum distance growth rate and
the iterative decoding convergence threshold is done by vary-
ing the puncturing rateλ, i.e., changing the fraction of bits
that come from the output of the inner serially concatenated
accumulator. Forλ = 0, all the bits of the inner accumulator
are punctured and the output is the (possibly punctured) output
of the MPCC. Forλ = µ on the other hand, all output bits of
the tuning section stem from the inner accumulator and none
of the bits of the outer MPCC survive puncturing.

In the sections of the paper that feature numerical results,
from Subsection IV-B onwards, we consider four different
types of TTCs, which are depicted in Fig. 2. For each type,
we consider a version with only 2-state component encoders
and a version with 4-state RCEs in the outer MPCC. All types
are based on the rateR = 1/4 HCCs introduced in [10] and,
for λ = µ = 1, are identical to the HCC in [10], while for
λ = 0, we obtain the (possibly punctured) outer MPCC plus
the optional parallel encoder.

The type 1 and 2 TTC ensembles have a rateR = 1/4 outer
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Fig. 2. Encoder structure for different TTC types with feedforward and recursive convolutional component encoders (FFCEs and RCEs, respectively).

MPCC with no additional parallel encoderC0 (see Fig. 2).
While the outer MPCC of the type 1 ensemble consists of
four identical rate-1 RCEs, the last encoderC4 of the MPCC
in the type 2 ensemble is the 2-state FFCE having generator
[3]8 (in octal notation). The type 3 and 4 TTC ensembles have
a rateR = 1/3 outer MPCC consisting of three identical rate-
1 RCEs plus an additional parallel encoderC0. In the type 3
ensemble,C0 is the [3]8 FFCE, while in the type 4 ensemble
it is simply a systematic branch. Thus, forµ = 1 andλ = 0,
when the output of the outer MPCC is not punctured and all
bits from the inner encoder are punctured, the type 2 and 3
code ensembles are identical, while they differ for all other
values ofµ andλ. The outer MPCC of the type 2 ensemble
(with 2-state encoders) was introduced in [15] and exhibits
excellent iterative decoding behavior due to the presence of
the FFCE (see [16]). In all the cases considered in this paper,
the 2-state rate-1 RCEs are accumulators with generator[1/3]8
and the 4-state RCEs are chosen to have the generator[5/7]8.

We decode TTCs iteratively, in a component code oriented
fashion, which is a generalization of the turbo-decoding prin-
ciple applied in [1]. Component decoders employ maximum
a posteriori probability (MAP) decoding strategies and the
extrinsic information of one component decoder becomes a
priori information for the other decoders. In our simulations
we assume a straightforward iteration schedule, where each
component decoder is activated once per iteration.

Since we use iterative decoding and not a MAP decoder
for the overall code, the performance of the decoder in the
moderate-to-high SNR region of the additive white Gaussian
noise (AWGN) channel is greatly influenced but not solely
determined by the minimum Hamming distance of the code.
Pseudo-codewords and trapping sets also play a role in the
error floor performance of the decoder (see, e.g. [11], [17]).

TTC ensembles with 2-state component encoders are closely
related to LDPC codes and can also be decoded using the sum-
product algorithm [18], so it is likely that the pseudo-weight

properties of TTCs are similar to those of LDPC codes. In [19]
it was shown that the minimum AWGN channel pseudo-weight
of regular LDPC codes grows at best sub-linearly with block
length, even though the minimum Hamming distance grows
linearly with block length. There exist, however, specially con-
structed code ensembles where the minimum binary symmetric
channel pseudo-weight can grow linearly with block length
[20].

Since the minimum Hamming distance is an upper bound on
the minimum pseudo-weight, we expect that designing TTC
ensembles whose minimum distance grows linearly with block
length will lead to code ensembles that also possess good
pseudo-weight properties. This expectation is supported by
the finite length (Hamming) distance analysis in Section IV
and the simulation results in Section VII, both of which show
that code ensembles with large minimum Hamming distance
exhibit low error floors.

III. PRELIMINARIES

A. Weight Enumerators

The weight spectrum of an(N,K) linear encoderC(N) is
described by its weight enumerator (WE)A

C(N)
h , which speci-

fies the number of codewords with output weighth. Likewise,
let AC(N)

w,h denote the input-output weight enumerator (IOWE),
which specifies the number of codewords with input weightw
and output weighth. To investigate the distance properties of
tuned turbo code ensembles, we consider the ensemble average
of the above quantities. For an encoder ensembleC(N) of
lengthN , we write the average IOWE as

Ā
C(N)
w,h =

1

|C(N)|
∑

C(N)∈C(N)

A
C(N)
w,h , (2)
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where|C(N)| denotes the size ofC(N). When the members
of C(N) are equally likely, we obtain the average WE as

Ā
C(N)
h =

K∑

w=1

Ā
C(N)
w,h . (3)

The average WE represents the expected number of codewords
of weighth if a code is randomly chosen from the ensemble
C(N). In the rest of the paper, whenever the context is clear,
we will omit the parameterN .

To obtain the average WĒACTTC(N)
h of TTC ensembles,

we use the uniform interleaver analysis introduced in [21].
The uniform interleaver is a probabilistic device that mapsan
input block of weightw and lengthKC into all its possible
(
KC

w

)
permutations with equal probability, thus decoupling the

component encoders in a concatenated code and creating a
code ensemble with equally likely members. An(NC ,KC)
component encoderC(NC), preceded by a uniform interleaver,
results in the input-output weight distribution (IOWD)

P
C(NC)
w,h =

A
C(NC)
w,h
(
KC

w

) , (4)

wherePC(NC)
w,h is the probability that encoderC(NC) transforms

an input of weightw into an output of weighth. For (NC , NC)
2-state component encoders, the IOWE can be given in closed
form as [22]

A
Acc(NC)
w,h = A

FF(NC)
h,w =

(
NC − h

⌊w/2⌋

)(
h− 1

⌈w/2⌉ − 1

)

, (5)

wherew/2 ≤ h ≤ NC − w/2, “Acc” represents the accu-
mulator, and “FF” represents the 2-state FFCE with generator
[3]8.

In the case of TTCs, component codes may be punctured.
The IOWE of punctured accumulators was analyzed in [23]
by considering the serial concatenation of an accumulator
and a single-parity-check. Using this approach, only regular
puncturing patterns and puncturing rates ofλ = 1/i with
i ∈ N can be realized. To be able to varyλ continuously, we
therefore consider random puncturing, and the code ensembles
we analyze are formed over all interleaver realizations, as
well as over all possible puncturing patterns. Using random
puncturing, the probability that a codeword of lengthN and
weight h before puncturing is punctured to a codeword of
lengthN ′ = λN and weighth′ is given by the hypergeometric
distribution

P
P(N ′)
h,h′,λ =

(
N ′

h′

)(
N−N ′

h−h′

)

(
N
h

) , (6)

where (6) represents the IOWD of the random puncturing
operation and we requireh′ ≤ N ′, h − h′ ≤ N − N ′,
and h′ ≤ h. Throughout the paper we define the binomial
coefficient

(
n
k

)
to be zero ifn < k.

The average component input-output weight enumerator
(CIOWE) of an (N,K) TTC, ĀCTTC(N)

w,h0,h1,...,hq,hs,h′
p,h

′
s
, is the

average number of codewords with fixed input and output
weightsw, h0, h1, . . . , hq, hs, h

′
p, and h′

s of each component
encoder in the TTC. The CIOWE is simply the product of the

IOWDs of the components times the number of permutations
of the input sequence, i.e.,

Ā
CTTC(N)
w,h0,h1,...,hq,hs,h′

p,h
′
s
=

(
K

w

)( q
∏

i=0

P
Ci(K)
w,hi

)

· PAcc(qK)
hp,hs

· PP(qK(µ−λ))
hp,h′

p,µ−λ · PP(qKλ)
hs,h′

s,λ
,

(7)
where we denote the total output weight of the outer MPCC
as hp =

∑q
i=1 hi. If there is no additional parallel encoder,

we definePC0(K)
w,h0

to be one forh0 = 0 and zero otherwise.

The ensemble average IOWE of a TTC,̄ACTTC(N)
w,h , is

then the summation over all CIOWEs such that the codeword
has weighth. To include the total output weighth in the
CIOWE, we represent the punctured weight of the inner serial
accumulator ash′

s = h− h′
p − h0, thus obtaining the IOWE

Ā
CTTC(N)
w,h =

K∑

h0=I0

K∑

h1=1

· · ·
K∑

hq=1

qK
∑

hs=1

h∑

h′
p=0

Ā
CTTC(N)
w,h0,h1,...,hq,hs,h′

p,h
.

(8)

Note that, with random puncturing, it is possible that all
the weight is punctured and therefore the enumeration of
punctured weights starts at zero.

B. The Spectral Shape

To investigate the asymptotic minimum distance properties
of tuned turbo codes as the block lengthN tends to infinity,
we will make use of the asymptotic spectral shape function
originally introduced by Gallager [24],

r(ρ) = lim sup
N→∞

ln Ā
C(N)
⌊ρN⌋

N
, (9)

whereρ = h
N is the normalized codeword weight. The spectral

shape is the exponential part of the average WE normalized
by the block lengthN . Whenr(ρ) < 0, the average number
of codewords with normalized weightρ goes exponentially to
zero asN tends to infinity. Whenr(ρ) > 0, on the other hand,
the average number of codewords with normalized weight
ρ grows exponentially inN . When r(ρ) = 0, the average
number of codewords with normalized weightρ does not
exhibit exponential growth — it might increase or decrease
polynomially, for example.

Similarly, we define the asymptotic IOWD of an(NC ,KC)
component codeC(NC) as

fC
α,β = lim

NC→∞

lnP
C(NC)
⌊αKC⌋,⌊βNC⌋

NC
, (10)

whereα and β are the normalized input and output weight
w.r.t. the input block lengthKC and the output block length
NC , respectively, of codeC(NC). Stirling’s approximation can
be used to bound the binomial coefficients as

enH(k/n)

n+ 1
≤
(
n

k

)

≤ enH(k/n), (11)

whereH (x) = −x lnx− (1−x) ln(1−x) denotes the binary
entropy function using the natural logarithm.
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Using (4), (5), (10), and (11) the asymptotic IOWD of the
accumulator is given by

fAcc
α,β = (1− β)H

(
α

2(1− β)

)

+ βH

(
α

2β

)

−H (α) , (12)

whereα = w/NC andβ = h/NC (see also [5]). In the same
way, the asymptotic IOWD of the 2-state FFCE is given by

fFF
α,β = (1− α)H

(
β

2(1− α)

)

+ αH

(
β

2α

)

−H (α) . (13)

Similarly, by using (6), (10), and (11), the asymptotic IOWD
of the random puncturing operation is given by

fP
β,β′,λ = H (β′) +

1− λ

λ
H

(
β − λβ′

1− λ

)

− 1

λ
H (β) , (14)

whereβ = h/NC andβ′ = h′/(λNC).
We now define the asymptotic CIOWE of an(N,K) TTC

as

FCTTC

α,ρ0,ρ1,...,ρq,ρs,ρ′
p,ρ

= lim
N→∞

ln Ā
CTTC(N)
w,h0,h1,...,hq,hs,h′

p,h

N
, (15)

whereα = w/K, ρi = hi/K, i = 0, 1, . . . , q, ρs = hs/(qK),
ρ′p = h′

p/(q(µ − λ)K), and ρ = h/(qµ + I0)K = h/N .
Using (15), we rewrite the asymptotic spectral shape as the
optimization problem

r(ρ) = sup
α,ρ0,...,ρ′

p

FCTTC

α,ρ0,ρ1,...,ρq,ρs,ρ′
p,ρ

. (16)

We obtain the asymptotic CIOWE of a TTC by inserting its
CIOWE (7) into (15). The logarithm transforms the product of
IOWDs in (7) into a sum, and in the limit as the block lengths
of each component codeNCi

tend to infinity, the asymptotic
CIOWE of a TTC can be written in terms of the asymptotic
IOWDs of its component codes, weighted by their respective
block lengths divided byN , as

FCTTC

α,ρ0,ρ1,...,ρq,ρs,ρ′
p,ρ

=

qR

(

1

q
H (α) +

1

q

q
∑

i=0

fCi
α,ρi

+ fAcc
ρp,ρs

+

(µ− λ)fP
ρp,ρ′

p,(µ−λ) + λfP
ρs,ρ′

s,λ

)

,

(17)

where ρp = hp/qK and R = K/N is the rate of the
TTC given by (1). To include the normalized total output
weight ρ = h/N in the asymptotic CIOWE, we represent the
normalized punctured weight of the inner serial accumulator
ρ′s as

ρ′s =
h′
s

qλK
=

h− h′
p − h0

qλK

=
ρ/R− q(µ− λ)ρp

′ − ρ0
qλ

.

(18)

If there is somêρ > 0 such thatr(ρ) < 0 for all 0 < ρ < ρ̂,
we would immediately have that̂ρ is the asymptotic growth
rate of the minimum distance of the ensemble. However, this
is not the case for TTCs.

Proposition 1. For 0 ≤ ρ < Rqλ, the spectral shape of a
TTC cannot be negative but is lower bounded byr(ρ) = 0.

Proof: The proposition is trivially proved by settingρp =
0 (which impliesα = 0, ρ0 = 0, ρi = 0 for i = 1, . . . , q, and
ρ′p = 0) and ρs = ρ′s = ρ/(Rqλ). Setting ρp = 0 results
in the asymptotic IOWDs of the 2-state component encoders
(12), (13) in the CIOWE of a TTC to be zero and settingρs =
ρ′s results in the asymptotic IOWD of the random puncturing
operation (14) to be zero, resulting in

FCTTC

0,0,0,...,0,(ρ/(Rqλ)),0,ρ = 0.

Thus, it cannot be directly concluded that the resulting en-
sembles are asymptotically good, but we will show in the next
section that the 2-state ensembles are indeed asymptotically
good and we conjecture the same for the 4-state ensembles.

IV. M INIMUM DISTANCE ANALYSIS

In this section we make use of the expressions from the
previous section to perform both an asymptotic and a finite
length minimum distance analysis of tuned turbo codes with
2-state component encoders.

A. Asymptotic Analysis

For a TTC withq encoders andJ accumulators in the outer
MPCC (see Fig. 1), the probability that a randomly chosen
code from the ensemble has minimum distancedmin < d is
upper bounded by

P (dmin < d) ≤ (Ā
CTTC(N)
0 − 1) +

d−1∑

h=1

Ā
CTTC(N)
h (19)

=

K∑

w=1

K∑

h0=I0

K∑

h1=1

· · ·
K∑

hq=1

Kq
∑

hs=1

⌊Kq(µ−λ)⌋
∑

h′
p=0

d−1∑

h=0

Ā
CTTC(N)
w,h0,h1,...,hq,hs,h′

p,h
.

(20)

Note that, while the average number of all-zero codewords
Ā

C(N)
0 equals1 for unpunctured linear codes, with punctured

codes there is a possibility that all the weight is removed by
the puncturing operation. We take the probability of this event
into account with the term(ĀCTTC(N)

0 − 1) in (19) and with
the summation overh starting from zero in (20), while the
summation overw starts atw = 1.

We define the valuêρ as follows.

Definition 1. Let 0 ≤ ρ̂ < Rqλ/2 be such that, for all0 ≤
ρ < ρ̂, the unique supremum of the asymptotic CIOWE of TTCs
given by(17) is achieved forρp = 0 andρs = ρ′s = ρ/(Rqλ).

Following the procedure established in [25] and [7], we can
split (20) into two parts,A1 andA2, depending on the output
weight of the outer MPCChp =

∑q
i=1 hi. For any positive

integerh∗
p, q ≤ h∗

p ≤ Kq, we can write

P (dmin < d) =

P
(
dmin < d ∩ hp ≤ h∗

p

)

︸ ︷︷ ︸

A1

+P
(
dmin < d ∩ hp > h∗

p

)

︸ ︷︷ ︸

A2

. (21)

We now proceed to show that, with appropriately chosen
values ofh∗

p andd, A1 → 0 andA2 → 0 asN → ∞ for all
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d < ⌈N(ρ̂− ǫ)⌉, whereǫ > 0 is an arbitrarily small constant,
which implies that the ensemble is asymptotically good with
asymptotic minimum distance growth ratêρ.

Lemma 1. AsN → ∞, for all J > 2 andh∗
p ≤ N

J−2
J

−ǫ, we
have

A1 = P
(
dmin < ⌈N(ρ̂− ǫ)⌉ ∩ hp ≤ h∗

p

)
→ 0 (22)

for arbitrarily small values ofǫ > 0.

Proof: Using the simple upper bound

A1 =P
(
dmin < ⌈N(ρ̂− ǫ)⌉ ∩ hp ≤ h∗

p

)

≤ P
(
hp ≤ h∗

p

)
,

the problem is reduced to finding the asymptotic minimum
distance of an MPCC withJ parallel concatenated RCEs,
which was lower bounded in [3] and [25] as

P

(

hp ≤ N
J−2
J

−ǫ
)

≤ C1 ·N−ǫ/2

for arbitrarily small values ofǫ > 0, some positive constant
C1, andN sufficiently large.

Now, consideringA2, we upper bound theq + 5 sums in
(20) by their maximum element timesNRq + 1, which is an
upper bound on the number of terms in each sum, and we
obtain

A2 =P
(
dmin < ⌈N(ρ̂− ǫ)⌉ ∩ hp > h∗

p

)

≤(NRq + 1)q+5 max∑q
i=1 hi=hp>h∗

p

h<⌈N(ρ̂−ǫ)⌉
w,h0,h

′
p,hs

Ā
CTTC(N)
w,h0,h1,...,hq,hs,h′

p,h
.

(23)
Using Stirling’s approximation (11), we can upper bound

each of theq + 4 IOWDS in the CIOWE of (7) as

P
Ci(NCi

)

wi,hi
≤ exp

{

NCi
fCi

αi,βi
+ 2 ln(NCi

+ 1)
}

.

Then using the notation of the asymptotic CIOWE (17) and
upper boundingNCi

+ 1 by NRq + 1, we obtain (24).
Thus, to boundA2 it is necessary to examine the asymptotic

CIOWE and the asymptotic spectral shape (16) of TTCs. We
now show that if there exists âρ > 0 as defined in Definition 1,
we haveA2 → 0 asN → ∞. To this end we make use of the
log-concavity of the IOWDs of the component encoders.

Proposition 2. It holds that:

1) For a fixed input weightw, the IOWDP
Acc(NC)
w,h of the

accumulator forms a logarithmically concave sequence
in the output weighth and its maximum occurs ath =
NC/2.

2) For a fixed input weightw, the IOWDP
FF
w,h(NC) of the

2-state FFCE forms a logarithmically concave sequence
in the output weighth and its maximum occurs ath =
2w(1− w/NC).

3) For a fixed input weighth, the IOWDP
P(N ′)
h,h′,λ of the

random puncturing operation forms a strictly logarith-
mically concave sequence in the output weighth′ and
its maximum occurs ath′ = λh.

The proofs of these statements can be found in Appendix A.
From Proposition 2 it follows that, for a fixed input weightw
and a fixed total output weight of the RCEshr =

∑J
i=1 hi (see

Fig. 1), the CIOWE of TTCs is maximized when the RCEs
in the outer MPCC contribute equally tohr, i.e., whenhi =
hr/J , or ρi = hr/JK = ρr, i ∈ {1, . . . , J}. Equivalently, the
CIOWE of TTCs is maximized when the FFCEs in the outer
MPCC contribute equally tohf , i.e., whenhi = hf/(q − J),
or ρi = hf/(q − J)K = ρf , i ∈ {J + 1, . . . , q}. Thus we can
substituteρs andρf for the ρi in the asymptotic CIOWE and
the number of variables in the maximization problem in (24)
is reduced. The normalized output weight of the outer MPCC
is then given byρp = (Jρs/q + (q − J)ρf/q).

Lemma 2. If there exists âρ > 0 then forJ > 2 RCEs in the
outer MPCC and

lim
n→∞

ln(NRq + 1)

h∗
p

= 0

we have

A2 = P
(
dmin < ⌈N(ρ̂− ǫ)⌉ ∩ hp > h∗

p

)
→ 0

asN → ∞, whereǫ > 0 is an arbitrarily small constant.

Proof: We investigate the asymptotic CIOWE (17) in the
region 0 ≤ ρ < ρ̂ by splitting it into two parts,RqF1 and
RqF2, and write

N ·FCTTC

w
NR

,
h0
NR

, hs
NRJ

,
hf

NR(q−J)
, hr
NRq

,
h′
p

NRq(µ−λ)
, h
N

= NRq(F1+F2)

(25)
with

F1 =
1

q
H

( w

NR

)

+
I0
q
fC0

w
NR

,
h0
NR

+
J

q
fAcc

w
NR

, hr
NRJ

+
q − J

q
fFF

w
NR

,
hf

NR(q−J)

+ fAcc
hp

NRq
, hs
NRq

(26)

F2 = (µ−λ)fP
hp

NRq
,

h′
p

NRq(µ−λ) , µ−λ
+λfP

hs
NRq

,
h−h′

p−h0

NRλq
, λ
. (27)

The termF1 includes the asymptotic IOWDs of the encoders,
whereasF2 includes the asymptotic IOWDs of the random

A2 ≤(NRq + 1)q+5 exp







max
hp>h∗

p,h<⌈N(ρ̂−ǫ)⌉

w,h0,h′
p,hs

N · FCTTC

w
NR

,
h0
NR

,
h1

NRq
, ...,

hq
NRq

, hs
NRq

,
h′
p

NRq(µ−λ)
, h
N

+ (2q + 8) ln(NRq + 1)







=exp







max
hp>h∗

p,h<⌈N(ρ̂−ǫ)⌉

w,h0,h′
p,hs

N · FCTTC

w
NR

,
h0
NR

,
h1

NRq
, ...,

hq
NRq

hs
NRq

,
h′
p

NRq(µ−λ)
, h
N

+ (3q + 13) ln(NRq + 1)







(24)
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puncturing operation. From Definition 1 we have that, for0 ≤
ρ < ρ̂, the spectral shape has its supremum atr(ρ) = 0, which
is achieved forρp = 0 andρs = ρ′s = ρ/(Rqλ).

First we note thatF2 ≤ 0, with F2 = 0 for ρs = ρ′s and
F2 < 0 otherwise (see the proof of part 3 of Proposition 2),
so we can simply upper bound the termNRqF2 by zero.

Next we note thatF1 tends to zero forρp → 0 (see the proof
of Proposition 1), and hence to upper boundNRqF1 we con-
sider all possiblehp > h∗

p such thatρp tends asymptotically
to zero, i.e.,

lim
N→∞

hp

N
= 0.

Then we have

lim
N→∞

hp/N→0

NRq F1 = lim
N→∞

hp/N→0

hp ·
F1

ρp
= hp ·

d

dρp
F1|ρp=0 ,

(28)
where bothF1 and ρp = hp/(NRq) tend asymptotically to
zero asN → ∞ and the fractionF1/ρp is the difference
quotient of the pointF1|ρp=0, which asN → ∞ yields the
total derivative ofF1 with respect toρp evaluated atρp = 0.

We show in Appendix B that, if there exists âρ > 0, then,
for J > 2 accumulators in the outer MPCC, the total derivative
of F1 with respect toρp evaluated atρp = 0 is bounded by

d

dρp
F1|ρp=0 ≤ −C2, (29)

for some positive constantC2 and forρs < 1/2.
So, for ρp = 0, from (24), (25), (26), (27), (28), and (29)

we can write

A2 ≤ exp {−C2 · hp + (3q + 13) ln(NRq + 1)} , (30)

and limN→∞ A2 = 0 for all h∗
p that satisfy

limN→∞ ln(NRq + 1)/h∗
p = 0.

Remark 1. The fact that in Appendix B we requireρs < 1/2
for (29) to be negative together with the fact that we require
ρs = ρ′s = ρ/(Rqλ) for F2 to be zero results in the upper
bound on the asymptotic minimum distance growth rate

ρ̂ <
Rqλ

2
(31)

given in Definition 1.

We summarize our results in the following Theorem.

Theorem 1. If there exists âρ > 0 as defined in Definiton 1
for a 2-state TTC ensemble withJ > 2 RCEs in the outer
MPCC, then the 2-state TTC ensemble is asymptotically good
and the asymptotic minimum distance growth rate is at least
ρ̂.

Proof: From Lemmas 1 and 2 we have that, for an
arbitrarily small constantǫ > 0, both

P
(
dmin < ⌈N(ρ̂− ǫ)⌉ ∩ hp ≤ h∗

p

)
→ 0

and

P
(
dmin < ⌈N(ρ̂− ǫ)⌉ ∩ hp > h∗

p

)
→ 0
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Fig. 3. Asymptotic spectral shapes for the rateR = 1/4 TTCs with µ =

λ = 1.

asN → ∞ for any h∗
p satisfying

lim
N→∞

ln(NRq + 1)

h∗
p

= 0 and h∗
p ≤ N

J−2
J

−ǫ.

Theorem 1 proves that̂ρ is a lower bound on the asymptotic
minimum distance growth rate of a 2-state TTC ensemble. In
a slight abuse of notation, from now on we refer toρ̂ as the
asymptotic minimum distance growth rate.

B. Asymptotic Minimum Distance Growth Rates

While the spectral shapes of TTCs cannot be negative, the
existence of a positivêρ according to Definition 1 implies
that the ensemble is asymptotically good. As is common
practice, we numerically evaluate the spectral shapes of TTC
ensembles and use a subspace trust-region method [26] to
evaluate the supremum of the asymptotic CIOWE. For 2-
state component codes, the asymptotic IOWDs are available
in closed form, but for 4-state ensembles, we cannot obtain
closed form expressions, so to compute the asymptotic spectral
shapes we use the method outlined in [27] to calculate them
numerically.

Fig. 3 shows the asymptotic spectral shapes for the rate
R = 1/4 TTC ensembles withµ = λ = 1, i.e., the spectral
shapes of the HCCs. The asymptotic spectral shape function of
the entire ensemble of block codes is also shown. It crosses
zero at the GVB for rateR = 1/4. The ensembles with 2-
state RCEs in the outer MPCC are plotted with solid lines,
while the ensembles with 4-state RCEs in the outer MPCC
are plotted with dashed lines. The spectral shapes are never
negative, but they start out with a zero stretch and turn positive
at the asymptotic distance growth rateρ̂.

Among the 2-state ensembles, the type 1 scheme has the
largest asymptotic distance growth rate ofρ̂ = 0.1911.
Replacing one of the parallel concatenated accumulators byits
feedforward inverse (type 2) decreases the asymptotic distance
growth rate toρ̂ = 0.1793. When only three branches enter
the inner serially concatenated accumulator and the output
of the 1 + D branch is sent straight through to the channel
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only up toλ = µ, the maximum possible value ofλ.
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Fig. 5. Asymptotic minimum distance growth rates of the type4 TTC as
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(type 3), the asymptotic distance growth rate reduces further
to ρ̂ = 0.1276, and for the systematic type 4 scheme we obtain
an asymptotic distance growth rate of onlyρ̂ = 0.1179.

Employing 4-state[5/7]8 codes instead of accumulators in
the outer MPCCs increases the asymptotic distance growth
rates w.r.t. the 2-state ensembles. In the case of the type
1 and type 2 ensembles with 4-state encoders in the outer
MPCCs, the positive part of the asymptotic spectral shape
is practically indistinguishable from the spectral shape of the
entire ensemble of block codes.

Fig. 4 shows the asymptotic minimum distance growth
ratesρ̂ of the type 1 TTC as the tuning parameterλ varies,
0 ≤ λ ≤ µ. As the code rate increases by reducing the
coefficient µ, the initial slope of the asymptotic distance
growth rate curve becomes steeper. For smallλ, these curves
approach the upper bound onρ̂ given by (31) and indicated by
the line ρ̂ = λ

2µ for the type 1 ensemble. This steep increase
in the asymptotic distance growth rates withλ is followed
by the curve flattening out as the asymptotic distance growth
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N
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Fig. 6. Lower bound on the minimum distance of theR = 1/4 type 2
TTCs with 2-state component encoders (filled markers) and 4-state component
encoders (empty markers) forµ = 1, ǫ = 1/2, and different values of the
tuning parameterλ.

rates approach the GVB. The green curve for the rateR = 1/2
code ensemble shows the steepest increase (among the curves
shown) but then flattens out aroundλ = 0.15. Like the 4-state
code ensembles it reaches the GVB forλ = µ. The asymptotic
distance growth rates of the type 2 tuned turbo code show the
same general behavior, but they are smaller than those of the
type 1 ensemble and the increase for smallλ is not as steep.

Type 3 and 4 TTCs also show the same general behavior,
with the asymptotic distance growth rates of the type 3
ensemble being slightly larger than for the type 4 ensemble.
The asymptotic distance growth rates of the type 4 ensemble
are shown in Fig. 5. The initial slope of the curves is smaller
than for the type 1 ensemble, and forλ = µ the asymptotic
distance growth rates are further away from the GVB. They
also increase more smoothly withλ than for the type 1
ensemble.

C. Finite Length Analysis

The minimum distance of a TTC ensemble for a finite block
lengthN can also be analyzed using (19). In particular, if we
setP (dmin < d) = ǫ, whereǫ is any positive value between0
and1, we expect that at least a fraction1− ǫ of the codes in
the ensemble have a minimum distancedmin of at leastd. In
the following, we chooseǫ = 1/2, i.e., we expect that at least
half of the codes in the ensemble have admin at least equal
to the value predicted by the curves.

In Fig. 6 we show the lower bound ondmin versus the code
block lengthN for theR = 1/4 type 2 tuned TTC ensembles
with 2- and 4-state component encoders and several values
of λ. The finite length GVB is also plotted for reference.
The results are consistent with the asymptotic analysis in
the previous section and show increasing minimum distance
growth rates with increasing values ofλ. Also, for a given
value of the tuning parameterλ, the minimum distance of
the type 2 code ensemble with 4-state component encoders
is larger than for the code ensemble with 2-state component
encoders.
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In Fig. 7 we display the same set of curves for theR = 1/2
type 4 TTCs with 2- and 4-state component encoders. Again,
the results are consistent with the asymptotic analysis, and for
a given value of the tuning parameterλ, the minimum distance
of the code ensemble with 4-state component encoders is
larger than for the code ensemble with 2-state component
encoders.

For 4-state RCEs we cannot obtain a closed form WE.
However, since 2-state TTCs are asymptotically good, and
replacing the accumulators in the outer MPCC with more
complex[5/7]8 RCEs increases both the asymptotic distance
growth rates (see Figs. 3-5) as well as the finite block length
minimum distances (see Figs. 6 and 7), we strongly conjecture
that the resulting code ensembles with the same structure are
still asymptotically good.

V. I TERATIVE DECODING CONVERGENCETHRESHOLD

To determine the iterative decoding thresholds of tuned
turbo code ensembles we employ an extrinsic information
transfer (EXIT) chart-based analysis [28]. EXIT charts track
the exchange of extrinsic information between component de-
coders in a concatenated code scheme to estimate its iterative
decoding threshold. In the following we briefly describe EXIT
charts for type 1 TTCs. The decoder is depicted in Fig. 8.
A similar procedure as the one described below can also be
applied to type 2, type 3, and type 4 TTCs.

Let ui = (u0, . . . , uKCi
−1) andxi = (x0, . . . , xNCi

−1) be
the sequence of information symbols and the sequence of code
symbols, respectively, of theith (NCi

,KCi
) component code

Ci of the TTC. (In the following, we will drop the indexi
when referring to a generic component code.) Each component
decoder in Fig. 8 is fed witha priori information (from either
other component decoders or the channel) on its information
and coded symbols and computes extrinsic information which,
in turn, is used by the other component decoders asa priori
information. In convergence analysis using EXIT charts it is
common to model thea priori information as a Gaussian
random variable. Also, as required in EXIT charts analysis,

we assume thatKC → ∞ and NC → ∞. For information
symbolu the correspondinga priori L-value (or log-likelihood
ratio) is denoted byLC

a(u). Using the Gaussian approximation,
LC
a(u) can be expressed as:

LC
a(u) =

σ2
a,u

2
u+ w (32)

wherew is a zero-mean Gaussian random variable with vari-
anceσ2

a,u. We denote byI(u;LC
a(u)) the mutual information

(MI) betweenu andLC
a (u). The averagea priori MI for the

information symbols is

ICa,u =
1

KC

KC−1∑

i=0

I(ui;L
C
a (ui)), (33)

which depends only onσa,u and can be computed using theJ
function asICa,u = J(σa,u) [28]. Note that ifu is transmitted
over the (binary-input Gaussian) channel,LC

a (u) corresponds
to the channel L-value,Lch(u) = 4Rγr, where R is the
code rate,γ denotes the SNREb/N0, r = ũ + n is the
received observation,̃u is the BPSK modulated symbol, and
n is AWGN with varianceN0/2. In this case it can be easily
shown thatσ2

a,u = 8Rγ.
For code symbolx, the correspondinga priori L-value is

denoted byLC
a(x). Using the Gaussian approximationLC

a (x)
can be written as

LC
a(x) =

σ2
a,x

2
x+ w, (34)

where w is a zero-mean Gaussian random variable with
varianceσ2

a,x. As before, we denote byI(x;LC
a (x)) the MI

betweenx andLC
a (x). The averagea priori MI for the code

symbols is given by

ICa,x =
1

NC

NC−1∑

i=0

I(xi;L
C
a(xi)), (35)

which can be computed using theJ function asICa,x = J(σa,x).
If the code symbols are transmitted over the channel,σ2

a,x =
8Rγ.

The a priori L-valuesLC
a (u) and LC

a(x) are inputs to an
a posteriori probability (APP) decoder which computes the
extrinsic L-valuesLC

e (u) andLC
e (x) for information symbols

and code symbols, respectively. The extrinsic L-values are
also Gaussian with varianceσ2

e,u andσ2
e,x, respectively. The

average extrinsic MI for information and code symbols is given
by

ICe,u =
1

KC

KC−1∑

i=0

I(ui;L
C
e (ui)) (36)

and

ICe,x =
1

NC

NC−1∑

i=0

I(xi;L
C
e (xi)), (37)

respectively.
The input-output behavior of the APP decoder for encoderC

is completely characterized by two EXIT functions,Tu andTx,
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which specify the evolution of the extrinsic MIs as a function
of the a priori MIs:

ICe,u = Tu(I
C
a,u, I

C
a,x)

ICe,x = Tx(I
C
a,u, I

C
a,x).

(38)

In practice, these functions can be obtained by Monte Carlo
simulation for all values0 ≤ ICa,u ≤ 1 and 0 ≤ ICa,x ≤ 1 by
modeling thea priori information as Gaussian distributed, as
noted above.

The decoder of the type 1 TTC consists ofq + 1 APP
component decodersC−1

1 , . . . , C−1
q , andC−1

acc corresponding to
the component encodersC1, . . . , Cq of the outer MPCC and to
the inner accumulator, respectively, which iteratively exchange
extrinsic information (see Fig. 8). A decoding iteration consists
of a single activation ofC−1

1 , . . . , C−1
q andC−1

acc in this order.
The evolution of the extrinsic MI can then be tracked in a
multi-dimensional EXIT chart [29], which plots together the
EXIT functions of theq + 1 component encoders and can
be used to predict the convergence threshold. Unfortunately,
such a multi-dimensional EXIT chart is hard to visualize.
To generate EXIT charts that are easier to deal with, the
EXIT functions of the component encoders of the outer MPCC
can be combined to obtain the EXIT function of the MPCC,
without any precision loss in the prediction of the convergence
thresholds [30]. In this way, the behavior of TTCs can be
determined by using a two-dimensional EXIT chart, displaying
in a single figure the EXIT functions of the outer MPCC and
of the inner recursive encoder:

ICMPCC
e,xMPCC

= Tx(I
CMPCC
a,xMPCC

)

ICacc
e,uacc

= Tu(I
Cacc
a,uacc

, ICacc
a,xacc

),
(39)

where ICMPCC
a,xMPCC

= ICacc
e,uacc

and ICacc
a,uacc

= ICMPCC
e,xMPCC

. Note
that, since the inner accumulator is connected to the channel,
ICacc
a,xacc

is a function ofγ. In particular, we must distinguish
between the MI corresponding to the parity bits generated by
the accumulator and the MI corresponding to the input bits,
since the two branches are punctured with different puncturing
rates. Assuming random puncturing, thea priori MI for the
parity bits of the inner accumulator, punctured with rateλ, is
given byλJ(

√
8Rγ), while thea priori MI provided by the

channel for the input bits of the inner accumulator, punctured
with rateµ−λ, is (µ−λ)J(

√
8Rγ). With these considerations,

the EXIT function of the inner accumulator can be written as

ICacc
e,uacc

= Tu(I
CMPCC
e,xMPCC

, (λJ(
√

8Rγ), (µ− λ)J(
√

8Rγ))).
(40)

What remains is the computation ofICMPCC
e,xMPCC

. Looking in
more detail at the EXIT functions of the component encoders
of the outer MPCC, we observe that thelth, l = {1, . . . , 4},
component decoder is fed witha priori information onul

generated by all the other component decoders of the MPCC,
and witha priori information onxl provided by the decoder
of the inner accumulator. The EXIT functions of thelth

Fig. 8. Decoder for a type 1 TTC.

component of the outer MPCC can then be expressed as

ICl
e,ul

= T Cl
u



J





√
√
√
√

L−1∑

i=1,i6=l

J−1
(

ICi
e,ui

)2



 , ICl
a,xl





ICl
e,xl

= T Cl
x



J





√
√
√
√

L−1∑

i=1,i6=l

J−1
(

ICi
e,ui

)2



 , ICl
a,xl



 ,

(41)

for information symbols and code symbols, respectively.
In (41) we used the fact thatLCl

a (u) =
∑

i6=l L
Ci
e (u)

and (assuming independence)σ2
a,ul

=
∑

i6=l σ
2
e,ui

, from
which (using the J function) it follows that ICl

a,ul
=

J

(√
∑L−1

i=1,i6=l J
−1
(

ICi
e,ui

)2
)

[28]. Note that, for the type

1 tuned turbo code, the four EXIT functionsICl
e,ul

and ICl
e,xl

are identical andICl
a,xl

= ICacc
e,uacc

. The EXIT functionICMPCC
e,xMPCC

can be computed for all values0 ≤ ICacc
e,uacc

≤ 1 by activat-
ing all q decoders of the MPCC untilICl

e,ul
and ICl

e,xl
have

converged to a fixed value. In other words, to obtain the
two-dimensional EXIT plot, we assume that a large enough
number of iterations is performed within the decoder of the
outer MPCC before iterating with the decoder of the inner
accumulator. Then, since all component encoders of the outer
MPCC are identical,ICMPCC

e,xMPCC
is just equal toICl

e,xl
. Finally,

the convergence behavior of the type 1 TTC can be tracked
by displaying in a single plot the two EXIT functions in (39).
The EXIT charts of type 2, type 3, and type 4 TTCs can be
computed in a similar way. Note that for type 3 and type 4, the
EXIT function of the outer MPCC also depends onγ through
encoderC0, which is directly connected to the channel. For
the type 2 TTC, the computation ofICMPCC

e,xMPCC
is a bit more

complex, since the EXIT function of the first encoder in the
outer MPCC is different.

In Fig. 9 we show the EXIT charts of the rateR = 1/4
type 1 (triangles) and type 4 (solid curves with no markers)
TTCs with 2-state component encoders forλ = 1. A vertical
step between the lower curves and the upper curves represents
a single activation of the inner decoder, while a horizontal
step between the upper curves and the lower curves represents
an unspecified number of activations of all the component
decoders of the MPCC until nothing more can be gained. We
observe that the type 4 TTC converges significantly earlier
(γ = 1.03 dB) than the type 1 TTC (γ = 2.24 dB), thanks
to the systematic branch. Note also that the EXIT chart for
the type 1 tuned turbo code is identical to that of the R4AA
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Fig. 9. EXIT charts of the type 4 TTC withλ = 1 and γ = 1.03 dB
(solid curves with no markers), the type 1 TTC withλ = 1 and γ = 2.24
dB (triangles), and the type 1 TTC withλ = 0.3 andγ = 1.09 dB (circles).
R = 1/4, 2-state component encoders.

code, where the EXIT function of encoderCa in the figure
corresponds now to the EXIT function of the repeat-by-four
code. The convergence threshold of the type 1 TTC can be
significantly improved if some of the parity bits at the output of
the inner encoder are replaced by bits from the outer MPCC, at
the expense of a smaller asymptotic minimum distance growth
rate. For the type 1 TTC withλ = 0.3 (circles1) a tunnel opens
at γ = 1.09 dB, i.e.,1.15 dB earlier. In this case, the type 1
TTC with λ = 0.3 has a similar convergence threshold and
asymptotic growth rate as the type 4 TTC withλ = 1.

VI. T UNING BEHAVIOR

In this section we combine the minimum distance results of
Section IV and the iterative decoding convergence results from
Section V. We observed the tuning effect, namely asymptotic
minimum distance growth rates and iterative decoding thresh-
olds increasing withλ, for all types of tuned turbo codes.
However, the effectiveness of tuning depends on the specific
combination of distance and threshold results.

Fig. 10 shows the asymptotic minimum distance growth
rate ρ̂ versus the iterative decoding convergence threshold
for the type 4 TTC with 2-state and 4-state encoders in the
outer MPCC, respectively. For all curves, we computed 11
equally spaced values fromλ = 0 to λ = µ. For R = 1/4
(µ = 1) and λ = 1, the ensemble with 4-state encoders
exhibits an asymptotic distance growth rate ofρ̂ = 0.17
and a threshold ofEb/N0 = 1.8 dB. Decreasingλ leads to
better convergence properties, but also to a reduction of the
asymptotic distance growth rate. In the extreme case ofλ = 0,

1Note that the EXIT function of the outer MPCC for type 1 TTCs is
identical forλ = 1 andλ = 0.3, since it does not depend onλ.
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Fig. 10. Asymptotic minimum distance growth ratêρ versus the iterative
decoding convergence threshold for the type 4 TTC with 2-state and 4-state
encoders in the outer MPCC.

the code is equal to the outer MPCC consisting of a parallel
concatenation of three RCEs and a systematic branch. In this
case, the minimum distance does not grow linearly with block
length and the asymptotic distance growth rate therefore is
zero. Note that the outer MPCC with 4-state encoders has a
significantly better iterative decoding convergence threshold
(Eb/N0 = −0.04 dB) than the MPCC with 2-state encoders
(Eb/N0 = 0.63 dB). Forλ = 1, theR = 1/4 2-state ensemble
exhibits a better threshold (Eb/N0 = 1.03 dB) but a lower
asymptotic distance growth rate (ρ̂ = 0.1179) than the 4-state
ensemble. Therefore the dynamic range over which the 2-state
ensemble can be adjusted is only 0.4 dB, whereas the 4-state
ensemble can be tuned over a larger range of thresholds and
asymptotic distance growth rates. This indicates that in the
design of TTCs it is important to use an outer MPCC with
very good convergence properties.

Puncturing TTCs to rateR = 1/3 (µ = 2/3) results in
a right shift of the curves, while leaving their general shape
intact. Since the maximum asymptotic distance growth rates
(for λ = µ) of the underlyingR = 1/4 code ensembles are
not very close to the GVB, they are only slightly reduced by
the puncturing process (see also Fig. 5).

In contrast to Fig. 10, which shows the values for the
threshold and the asymptotic distance growth rate directly, in
Fig. 11 we show the gap between the convergence threshold
and channel capacity and the gap between the asymptotic
minimum distance growth rate and the GVB. Sinceρ̂ = 0
for λ = 0, the gap of the leftmost point of any curve is equal
to the GVB. Asλ increases, the gap to the GVB decreases, but
the gap to channel capacity increases in all cases. ForR = 1/4
and λ = 0, the 2-state type 2 and type 3 ensembles are
identical. Due to the FFCE, they exhibit an iterative decoding
threshold ofEb/N0 = −0.04 dB, only 0.75 dB from capacity.
For λ > 0, the two ensembles exhibit somewhat different
characteristics.

For µ = 1 (R = 1/4) and λ = 1, the type 2 ensemble
has an asymptotic distance growth rate ofρ̂ = 0.1793,
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Fig. 11. Gap of the threshold to channel capacity versus the gap of the
asymptotic minimum distance growth rate to the GVB for 2-state type 2
and type 3 TTCs and ratesR = 1/2, 1/3, and1/4. As a comparison, for
R = 1/2 the thresholds and asymptotic distance growth rate coefficients of
some regular LDPC code ensembles, as well as the ARJA ensemble [23] are
also given.

corresponding to a gap of0.0352 to the GVB, and a threshold
of Eb/N0 = 2.05 dB, corresponding to a gap to capacity
of 2.85 dB, while the type 3 ensemble exhibits a gap to the
GVB of 0.0869 and a gap to capacity of2.08 dB, which is
similar to the type 2 ensemble withλ = 0.6. While puncturing
the code ensembles resulted in a right shift of the curves in
Fig. 10, in the representation of Fig. 11 puncturing moves the
curves closer to the origin, i.e., for a fixed gap to capacity,
the gap to the GVB is smaller. It is interesting to note that for
λ = 0 the gap to capacity of the type 2 ensemble increases
slightly as the rate increases, while for the type 3 ensemblethe
gap to capacity decreases slightly as the rate increases. The
asymptotic distance growth rates for theR = 1/2 type 2 TTC
behave like those shown in Fig. 4 for type 1 ensembles. For
small values ofλ they rapidly increase and then flatten out as
the asymptotic distance growth rate approaches the GVB. The
iterative decoding threshold, however, continuously increases
with λ, so that the tuning behavior of theR = 1/2 type 2
ensemble flattens for a stretch before it reaches the GVB at
λ = µ = 1/2. Therefore the parameter range over which the
ensemble can be effectively tuned is fromλ = 0 to λ = 0.2,
which brings the asymptotic distance growth rate to within
0.02 of the GVB.

As a comparison we also give the threshold and asymptotic
distance growth rates for rateR = 1/2 regular LDPC code
ensembles and the rateR = 1/2 ARJA [23] ensemble.
With the exemption of the (3,6) LDPC code ensemble, for
a given gap to channel capacity, the LDPC code ensembles
exhibit a larger asymptotic distance growth rate than the TTC
ensembles. However, in contrast to the asymptotically good
LDPC codes, TTCs have a simple encoder structure with
O(1) encoding complexity. On the other hand, the quasi-cyclic
subensemble of the above LDPC codes that also hasO(1)
encoding complexity is not asymptotically good.

Fig. 12 again shows the tuning behavior of the 2-state
type 3 ensemble, but this time the y-axis shows the relative
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Fig. 12. Gap of the threshold to channel capacity versus the relative gap
of the asymptotic minimum distance growth rate to the GVB forthe 2-state
type 3 TTC ensemble with ratesR = 1/2, 1/3, and1/4.
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Fig. 13. Frame error rate performance ofR = 1/4 (µ = 1) type 2 TTCs
with 2-state component encoders for different values of thetuning parameter
λ.

distance from the GVB, namely1 − ρ̂
ρGV B

. The slopes of
the three curves are almost identical. Therefore improvingthe
asymptotic distance growth rate from zero to half of the GVB
in each case corresponds to a difference in the convergence
threshold of roughly 1 dB. The curves plot the maximum
possible range ofλ values, withλ = 0 corresponding to the
topmost point andλ = µ corresponding to the lowest point of
each curve.

VII. S IMULATION RESULTS

While the previous sections focused on asymptotic results
for the minimum distance and the iterative decoding conver-
gence behavior, in this section we show simulation results
illustrating that the tuning principle also applies to relatively
short block lengths. We did not make any attempt to optimize
the simulated codes but rather focused on the ensemble
average code performance. To this end, random interleavers, as
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Fig. 14. Frame error rate performance of R=1/2 type 4 TTCs with 4-state
component encoders for different values of the tuning parameterλ.

well as random puncturing patterns, were employed. Carefully
designing the interleavers and puncturing patterns shouldyield
better codes than the ones shown here in terms of error floor
performance [31]. Interleaver design, however, usually has
little influence on the iterative convergence threshold. The
information block length for all simulations isK = 1024 bits
and we use 20 iterations.

In Fig. 13, we display frame error rate (FER) curves for rate
R = 1/4 type 2 tuned turbo codes with 2-state component
encoders andλ ∈ [0, 1]. The type 2 code withλ = 0 performs
best in the waterfall region, but it has a high error floor due to
its poor minimum distance2. In this case, the code is equivalent
to the MPCC in [15]. On the other hand, the code withλ = 1
shows the worst convergence, but according to the analysis
in Section IV, it has the best asymptotic minimum distance
growth rate, potentially resulting in the lowest error floor. By
tuning λ, we can obtain any behavior in between these two
extreme cases: whenλ decreases, the convergence behavior of
the code improves (the curves get closer to the performance of
the MPCC), but the error floor is higher. For small values of
λ, where the minimum distance is small, the simulations were
able to reach the error floor of the code. Compared toλ = 0,
the code withλ = 0.2 loses about 0.5 dB in the waterfall
region but the height of the error floor improves by two orders
of magnitude. Forλ = 0.4, the convergence threshold is again
0.5 dB worse than theλ = 0.2 case, but the error floor is
lowered beyond what can be observed in the simulations.

Similar behavior is observed in Fig. 14, where FER curves
for rate R = 1/2 type 4 TTCs with 4-state component
encoders are shown. Again, by varying the tuning parameterλ,
we can obtain any behavior between the outer MPCC, which
shows the best iterative decoding convergence behavior, and

2The height of the error floor of the MPCCs (λ = 0) in Figs. 13 and
14 is accurately predicted by the union bound of the code, indicating that
the dominant cause of decoding error is decoding to a wrong codeword. For
λ > 0, the error floor is above the union bound, indicating that theminimum
pseudo-weight of the code is limiting performance in the error floor region.

the HCC, which has the best error floor. In particular, the
code with λ = 0 performs best in the waterfall region, as
predicted by the EXIT charts. However, it has the highest error
floor, in agreement with the minimum distance analysis. In
general, lower error floors are obtained for increasing values
of λ, but at the expense of poorer performance in the waterfall
region. Note that, due to the more powerful 4-state component
encoders employed, the error floors of theR = 1/2 type 4
TTCs are lower than those observed in Fig. 13 for theR = 1/4
type 2 TTCs with 2-state component encoders.

VIII. C ONCLUSIONS

In this paper, we have introduced a family of hybrid concate-
nated codes where a tradeoff between asymptotic minimum
distance growth rate and iterative decoding threshold can be
achieved by varying a tuning parameterλ. By decreasingλ, the
convergence behavior of the code is improved at the expense
of a smaller asymptotic minimum distance growth rate and
worse error floor performance, and vice versa. An important
advantage of the hybrid tuned turbo code constructions is that
they are asymptotically good for a large range of values ofλ,
so that even small values ofλ are sufficient to ensure linear
asymptotic distance growth with block length, potentially
resulting in low error floors. In addition, a second tuning
parameterµ can be used to change the rate of a TTC ensemble,
thereby allowing a system designer to trade off between code
rate, iterative decoding convergence behavior, and error floor
performance without changing the encoder structure.

APPENDIX A
PROOF OFPROPOSITION2

A sequenceαi, i = 0, 1, . . . , n, is logarithmically concave
if

α2
i ≥ αi−1 · αi+1

holds for every elementαi with 1 ≤ i ≤ n− 1 [32].
1) For the accumulator, we now consider the ratio

Rw =

(

P
Acc(NC)
w,h

)2

P
Acc(NC)
w,h−1 P

Acc(NC)
w,h+1

=
NC − h

NC − h+ 1
· NC − h− ⌊w/2⌋+ 1

NC − h− ⌊w/2⌋ ·

h− 1

h
· h− ⌈w/2⌉+ 1

h− ⌈w/2⌉ .

Since the ratio x1

x1+1 ·
x2+1
x2

> 1 for x1 > x2, we obtain
R1 = 1 for w = 1 andRw > 1 for w > 1. The sequence
is thus logarithmically concave. Since the logarithm is a
monotonically increasing function, the maximum of the
IOWD equals the maximum of the asymptotic IOWD
and can thus be obtained by taking the derivative of
(12), which is given by

∂

∂β
fAcc
α,β = ln

(
β

1− β

)

+ ln

(
1− β − α/2

β − α/2

)

, (42)

so the maximum occurs atβ = 1/2, wherefAcc
α,1/2 = 0.

Correspondingly, the IOWD of the accumulator is max-
imized for h = NC/2.
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2) For simplicity, we consider the terminated 2-state FFCE
with even output weighth. (Considering the terminated
code does not change the asymptotic IOWD of the code.)
The ratioRw is given by

Rw =

(

P
FF(NC)
w,h

)2

P
FF(NC)
w,h−2 P

FF(NC)
w,h+2

=
h/2 + 1

h/2− 1
· NC − w − h/2 + 1

NC − w − h/2− 1
· w − h/2 + 1

w − h/2− 1
> 1.

The sequence is strictly logarithmically concave since
every term in the above product is strictly larger than
one. The derivative of (13) is given by

∂

∂β
fFF
α,β =

1

2
ln

(
α− β/2

β/2

)

+
1

2
ln

(
1− α− β/2

β/2

)

,

(43)
so the maximum occurs atβ = 2α(1 − α), where
fAcc
α,2α(1−α) = 0. Correspondingly, the IOWD of the 2-

state FFCE is maximized forh = 2w(1− w/NC).
3) For random puncturing, we consider the ratio

Rh =

(

P
P(N ′)
h,h′,λ

)2

P
P(N ′)
h,h′−1,λP

P(N ′)
h,h′+1,λ

=
h′ + 1

h′
· λN − h′ + 1

λN − h′
·

h− h′ + 1

h− h′
· (1− λ)N − h+ h′ + 1

(1− λ)N − h+ h′
> 1.

The sequence is strictly logarithmically concave since
every term in the above product is strictly larger than
one. The derivative of (14) is given by

∂

∂β′
fP
β,β′,λ = − ln

(
β′

1− β′

)

+ln

(
β − λβ′

1− λ− β + λβ′

)

,

so the maximum occurs atβ′ = β, wherefP
β,β,λ = 0.

Correspondingly, the IOWD of the random puncturing
operation is maximized forh′ = λh.

APPENDIX B
THE TOTAL DERIVATIVE FOR F1

We bound the total derivative of

F1 =
1

q
H (α) +

I0
q
fC0
α,ρ0

+
J

q
fAcc
α,ρr

+
q − J

q
fFF
α,ρf

+ fAcc
ρp, ρs

asρp → 0.
To capture the dependency ofρp on the normalized input

weightα, the normalized output weight of the 2-state FFCEs
ρf and the normalized weight of the systematic branchρ0,
we parameterizeα as α = aρr, with a ∈ [0, 2], where the
range ofa follows from the fact that the output weight of
the accumulator cannot be less than half the input weight.
Likewise we parameterizeρf = bα = abρr, with b ∈ [0, 2].
With the above parameterization, the weightsρp and ρr are
related by a multiplicative factor, i.e.,ρp = ρr(J + ab(q −
J))/q.

We parameterize the output weight of the optional parallel
encoder asρ0 = cα = acρr, where c = 0 if there is no

parallel encoder,c = 1 if there is a simple systematic branch,
andc ∈ [0, 2] if the parallel encoder is the 2-state FFCE.

The total derivative w.r.t.ρp is then given by

d

dρp
F1| α=aρr

ρf=abρr
ρ0=acρr

=
∂

∂ρp
F1+

q

J + ab(q − J)

(
∂

∂ρr
F1 +

∂

∂α
F1 ·

∂α

∂ρr
+

∂

∂ρf
F1 ·

∂ρf
∂ρr

+
∂

∂ρ0
F1 ·

∂ρ0
∂ρr

)∣
∣
∣
∣ α=aρr

ρf=abρr
ρ0=acρr

.

The derivatives of the asymptotic IOWDs of the component
encoders with respect to their output weight are given by (42)
and (43). The derivatives with respect to their input weightare
given by

∂

∂α
fAcc
α,β =

1

2
ln

(
β − α/2

1− α

)

+
1

2
ln

(
1− β − α/2

1− α

)

+ ln 2

=
1

2
ln (4x(1− x)) ,

(44)
wherex = β−α/2

1−β , and

∂

∂α
fFF
α,β = 2 ln

(
α

1− α

)

+ ln

(
1− α− β/2

α− β/2

)

. (45)

We now evaluate the contributions of the component en-
coders inF1 to the total derivative and show that forρp → 0,
or equivalentlyρr → 0, the contribution of each component
is either zero or negative. For convenience, for the component
encoders of the outer MPCC and the systematic branch we
consider the derivative w.r.tρr rather than the derivative w.r.t.
ρp. When the parallel encoder is simply a systematic branch,
its contribution to the total derivative is a constant. Whenthe
parallel encoder is the 2-state FFCE, its contribution to the
total derivative is given by

I0
q

∂

∂α
fFF
α,ρ0

∣
∣ α=aρr
ρ0=acρr

∂α

∂ρr
+

I0
q

∂

∂ρ0
fFF
α,ρ0

∣
∣ α=aρr
ρ0=acρr

∂ρ0
∂ρr

=
I0a
q

[

ln

(
1− aρr − acρr/2

1− aρr

)

− ln
(

1− c

2

)

+

ln

(
aρr

1− aρr

)]

+
I0ac
2q

[

ln

(
1− aρr − acρr/2

1− aρr

)

+

ln

(
aρr(1− c/2)

aρr

)

− ln

(
acρr/2

1− aρr

)

− ln

(
acρr/2

aρr

)]

=
I0a
q






ln

(
(c/2)−c/2(aρr)

1−c/2

(1− aρr)1−c/2

)

︸ ︷︷ ︸

1

+

( c

2
+ 1
)

ln

(
1− aρr(1 + c/2)
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)
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)

ln
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3

− c

2
ln
( c

2
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︸ ︷︷ ︸

4
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For a = 0, the above expression takes on the value zero. For
any fixeda, 0 < a ≤ 2, term 1 is zero forc = 2 and tends to
−∞ otherwise. Term 2 is zero forc = 0 and strictly negative
otherwise, and it vanishes asρr → 0. Terms 3 and 4 are
constants and are zero forc = 0 andc = 2.

Similarly, the contribution of the FFCEs in the outer MPCC
to the total derivative is given by

q − J

q

∂

∂α
fFF
α,ρf

∣
∣ α=aρr

ρf=abρr

∂α

∂ρr
+

q − J

q

∂

∂ρf
fFF
α,ρf

∣
∣ α=aρr

ρf=abρr

∂ρf
∂ρr

=
a(q − J)

q

[

ln

(
(b/2)−b/2(aρr)

1−b/2

(1− aρr)1−b/2

)

+

(
b

2
+ 1

)

ln

(
1− aρr(1 + b/2)

1− aρr

)

+

(
b

2
− 1

)

ln

(

1− b

2

)

− b

2
ln

(
b

2

)]

,

and either tends to zero or−∞ asρr → 0.
The contribution of the RCEs in the outer MPCC to the

total derivative is given by

∂

∂α

(
1

q
H (α) +

J

q
fAcc
α,ρr

)∣
∣
∣
∣
α=aρr

∂α

∂ρr
+

∂

∂ρr

J

q
fAcc
α,ρr

∣
∣
α=aρr

=
aJ

q

[

− 1

J
ln

(
aρr

1− aρr

)

+
1

2
ln

(
ρr(1− a/2)

1− aρr

)

+

1

2
ln

(
1− ρr − aρr/2

1− aρr

)

+ ln 2

]

+

J

q

[

ln

(
ρr

1− ρr

)

+ ln

(
1− ρr − aρr/2

ρr − aρr/2

)]

=
J

q
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+

ln
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− 1
)

ln
(

1− a
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)

︸ ︷︷ ︸

4






.

For a = 0, the above expression is zero. For any fixeda,
0 < a ≤ 2, andJ > 2, term 1 tends to−∞ asρr → 0. Terms
2 and 3 vanish forρr → 0 and term 4 is a constant.

Finally, the contribution of the inner accumulator to the total
derivative is given by

∂

∂ρp
fAcc
ρp,ρs

=
1

2
ln (4x(1− x)) , (46)

with x =
ρs−ρp/2
1−ρp

, which is negative for allx < 1/2, or
equivalentlyρs < 1/2.

Thus, usingρs < ρ̂/(Rqλ) and the fact that (46) is concave
in x, for any0 ≤ ρ < ρ̂ < Rqλ/2, we have

d

dρp
F1|ρp=0 ≤ 1

2
ln

(

4
ρ̂

Rqλ

(

1− ρ̂

Rqλ

))

= −C2,

where we have used the fact that, forρp → 0, x → ρs.
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