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Prediction of coast-down test results 
A statistical study of environmental influences 
Peter Norrby 
Department of Product and Production Development 
Division of Product Development  
Chalmers University of Technology 

Abstract 
In order to measure a car’s total road load and thereby form the basis of the determination of 
the car’s certified fuel consumption, Volvo Car Corporation (VCC) performs coast-down 
tests. Despite thorough checks, fine adjustment of the car and well documented weather 
conditions there is a great inconsistency in the results. Large differences in road load for the 
same car model means that it is possible to obtain a lower load with a car with theoretically 
higher road load, which in turn creates problems in the internal development. In a scenario 
when a car is performing very well in a coast down test and the cause is not known, it may 
require very large and costly improvements for the next model to reach the same low result, 
although it in theory easily would perform better than the old car. This is because it is not 
known what factors influenced the first model in such a way that it suddenly delivered a very 
low road load. 
 
The purpose of this master’s thesis is to find and understand the parameters that affect the 
coast-down result and predict the most accurate road load at the given circumstances, so that 
coast-down expeditions can be done with as few and effective test runs as possible and 
thereby make the expedition quicker, cheaper and with more precise and reliable result. The 
goal is to fulfil this with a stable, mathematical model that describes the true road load within 
+/- 5% with 95% confidence. 
 
The goal was achieved by collecting and compiling data from three coast-down expeditions 
and performing multiple regressions analyses on the dataset with a model developed by 
literature studies and expertise at VCC. The dataset and model were analyzed and further 
developed by residual analyses, F-tests, t-tests, correlation analyses and VIF-tests. The final 
regression model was used on three different subsets of data, one for each coast-down 
expedition, in order to study the stability of the regression models. 
 
With the final regression model 
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the goal of this master thesis was met by explaining just over 96% of the total variation in the 
coast-down results and thus describing the true road load within less than +/- 4%. The 
coefficients (Ctemp, Ctime etc.) were found significant and rather stable. The model can be used 
to normalize the boundary conditions at a coast-down expedition in order to investigate 
whether the obtained results are representative in relation to the circumstances or not. 
 
 
 
Keywords: Coast-down expedition; Boundary conditions; Multiple regression analysis; 
Vehicle dynamics; Statistics. 
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Nomenclature  
APG – Arizona Proving Ground  
AWD – All Wheel Drive  
Chalmers – Chalmers University of Technology 
Eq. – Equation  
Fig. – Figure  
FWD – Front-Wheel Drive  
U.S. – Unites States of America  
VCC – Volvo Car Corporation  
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1. Introduction 
This chapter gives an introduction to this master thesis by providing a description of the 
problem’s background and what purpose and goal that was set up in order to solve the 
problem.  
 
1.1. Background  
In order to measure a car’s total road load, coast-down tests are performed. The result from 
the coast-down tests form the basis of the determination of the car’s certified fuel 
consumption.  At Volvo Car Corporation (VCC) these tests are today performed at the 
Arizona Proving Ground (APG) in the southern U.S.A.. Fig. 1 shows the long, straight road 
and the black road with the hexagonal area were the tests are performed.  
 

 
 
 
Despite thorough checks, fine adjustment of the car and well documented weather conditions 
there is a large inconsistency in the results. Large differences in road load for the same car 
model means that it is possible to obtain a lower load with a car with theoretically higher road 
load, which in turn creates problems in the internal development. In a scenario when a car is 
performing very well in a coast down test and the cause is not known, it may require very 
large and costly improvements for the next model to reach the same low result, although it in 
theory easily would perform better than the old car. This is because it is not known what 
factors influenced the first model in such a way that it suddenly delivered a very low road 
load. 
Random checks are made by authorities in the U.S in order to check if the test results stated 
by the car manufactures correspond to the reality and thereby be able to determine whether 
there has been unallowable actions or not. Knowing the parameters that affect the coast-down 
result makes it easier for VCC to argue that the test results are really representative. That is, if 
it can be proved that the certificated coast-down result done by VCC was performed during 
different circumstances than for the authorities’ test.  
Knowing what parameters that affects the coast-down result and the extent to which they do, 
provide many benefits in additions to the above mentioned. Today’s tests are carried out until 
you believe the right result is achieved, but it is not possible to be certain. By knowing how 
the environment affects the result, the expeditions may be finished earlier since it is then 
possible to predict what result you can expect during the current circumstances. The coast-
down expeditions can then be made more efficient in terms of both time and money. To fly 
the prototype cars to the U.S for a four week long test period is not only very expensive, it 

Fig. 1. The Arizona Proving Ground 
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also keeps the prototypes away from other development departments that need to do other 
tests as well.  
 
1.2. Purpose  
The purpose is to find and understand the parameters that affect the coast-down result and 
predict the most accurate road load at the given circumstances, so that coast-down expeditions 
can be made with as few and effective test runs as possible and thereby make the expedition 
quicker, cheaper and with more precise and reliable result. 
 
1.3. Aim and goal  
The thesis shall result in a stable, mathematical model that describes the true road load within 
+/- 5% with 95% confidence.  
 
1.4. Delimitations 
How well a car performs in a coast-down test depends on two main areas:  Partly car specific 
parameters such as aerodynamics, weight and power train drag and partly boundary 
conditions such as weather conditions and the character of the test track. Since the car specific 
parameters are relatively well known and can be considered constant during a test with the 
same car, only the boundary conditions impact on the coast-down result will be studied within 
this master’s thesis. 
 
1.4.1. Secrecy  
Due to secrecy, some results, conclusions and discussions are removed, expressed as “XXX” 
or mentioned in general terms in this thesis. Also the number of significant figures varies and 
the real names of the dummy variables are hidden. 
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2. Coast-down and vehicle theory  
This chapter covers the theory and regulations of coast-down tests and the vehicle dynamics 
that were used as a base for the models presented in Section 5.  
 
2.1. Relation between road load and fuel consumption  
The road load of a vehicle is defined as the force needed to push the vehicle forward in 
neutral gear in constant speeds on a flat road. VCC and many other car companies use a real 
world test, a coast-down test, to determine this force. The basic principle behind the coast-
down test, illustrated in Fig. 2, is the following: accelerate the car to a predetermined speed, 
let it decelerate in Neutral Gear down to another predetermined speed and measure the time 
for the process. The road load is then calculated from Newton’s second law using the vehicle 
mass and the difference in speed and time: (Hilmersson, 2010) 

t

v
mF

∆
∆⋅=     (2.1) 

 

 
Fig. 2. Schematic view over the coast-down test procedure (Hilmersson, 2010).  
 
By calculating a second order polynomial fit to the drag force as a function of vehicle speed, 
the vehicle specific coefficients f0, f1 and f2 are produced: 
 

( ) 2
210 vfvffvFvehicle ⋅+⋅+=        (2.2) 

 
The cars’ certified emission level and fuel consumption is determined by performing 
predefined driving cycles on a roller test bench (Fig. 3). This bench is equipped with a 
dynamometer that simulates driving on a real road. The dynamometer load is acquired by 
running a coast down test on the roller test bench and calculates Fdyno:  
 

( ) 2
210 vFvFFvFdyno ⋅+⋅+=       (2.3) 

 

 
 
 

Fig. 3. The difference in road load and dynamometer 
load. (Hilmersson, 2010) 
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The coefficients in Eq. 2.3 are then adjusted so that Fdyno generates the same time-speed trace 
as the real world coast down test represented by f0, f1 and f2 in Eq. 2.2. 
Important is that Fdyno is not equal to Fvehicle. The dynamometer load is equal to all forces that 
are not acting on the car during the test, such as aerodynamic forces and difference in rolling 
resistance between the dynamometer and asphalt. Resistance that is already acting on the car 
at roller test bench are taken away to not have those forces twice. (Hilmersson, 2010) 
 
2.2. Laws and regulations 
Since the coast-down result is directly related to the car´s certified fuel consumption, those 
tests are governed by laws and regulations. The rules which are presented below, concerning 
how the tests shall be performed and under what environmental conditions the results are 
valid, are taken from Regulations No. 83-05. (2009).  
 
2.2.1. Environmental conditions  

• The road shall be level and the slope shall be constant within %1.0± and not exceed 
1.5%.  

• The wind speeds shall be measured 0.7 m above the road surface and the wind speeds 
shall not exceed 3m/s in average and 5m/s in wind peak speeds. The vector component 
of the wind speed across the road shall be less than 2m/s.  

• The road shall be dry 
• The air density shall not deviate more than %5.7±  from the reference conditions P = 

100 kPa and T = 293.2 K. 
 
2.2.2. Test procedure  

• The vehicle shall be accelerated up to a speed 10km/h higher than the chosen test 
speed v. 

• The gearbox shall then be placed in Neutral 
• The time taken, t1, for the vehicle to decelerate from speed vvv ∆+=2 to 

vvv ∆−=1 shall be measured.  

• The same procedure shall be performed again, but in the opposite direction.  
• The average time T of the two test runs shall be calculated. 
• The procedure must be repeated several times such that the statistical accuracy, p, of 

the average  
 

∑
=

⋅=
n

i
iT

n
T

1

1
      (2.4) 

is no more than 2% (p ≤ 2%)  
 
2.2.3. Correction formula  
Since the temperature and the air density are considered to influence the outcome of the test, 
there is a correction factor defined in Regulations No. 83-05. (2009), 
 








⋅+−⋅+⋅=
ρ
ρ0

0 )(1(
T

Aero
R

T

R

R

R
ttK

R

R
K                            (2.5) 
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where RR is the rolling resistance at speed v, RAero is the aerodynamic drag at speed v, RT is 
total driving resistance (RR + RAero), Kr is the temperature correction factor of rolling 
resistance, equal to Co/1064.8 3−× , t is the ambient temperature at the test, t0 is the ambient 
reference temperature (20 ̊ C), ρ is the air density at the test and ρ0 is the air density at the 
reference conditions (see Section 2.2.1). This correction factor K is multiplied by the power P 
determined on the track  
 

T

vvm
P

⋅
∆⋅⋅=

500
       (2.6) 

 
where m is the vehicle reference mass, v is the speed of the test, ∆v is the speed deviation 
from speed v (see section 2.2.1) and T is the time. The corrected power, Pcorr is then calculated 
by 
 

PKPcorr ⋅=                                                           (2.7) 

 
2.3. Vehicle dynamics  
In Eq. 2.1 the road load F is defined by Newton’s second law. This total force acting on a 
vehicle can also be described as the sum of the gravitational force and the drag force. The 
drag force can divided into following components: air resistance, side force resistance, rolling 
resistance and losses in transmission and bearings (Karlsson, Hammarström, Sörensen, & 
Eriksson, 2011). The road load can therefore also be defined as: 
 

trmRRsideairgrav FFFFF
t

v
mF ++++=

∆
∆⋅=                      (2.8) 

 
The force components in Eq. 2.8 are described below. 
 
2.3.1. Gravitation force  
The gravitational force is defined as: 
 

)sin(θ⋅⋅= gmFgrav           (2.9) 

 
where m is the vehicle mass, g the gravitational acceleration and θ is the longitudinal slope of 
the road (Karlsson et al, 2011). The gravitational acceleration is not constant but varies across 
the globe. Following formula can be used to determine the value of g: 
 















⋅−

⋅+⋅=
)(sin90130066943799,01

)(sin86390019318513,01
7803267714,9

2

2

0
λ

λ
g      (2.10) 

 
where λ is the geographic latitude (Ahern, 2004). 
  
2.3.2. Aerodynamic drag  
Aerodynamic drag occur as when the airflow around and through the vehicle is being moved. 
When air flows over and past a solid form, vortices are created at the rear causing the flow to 
deviate from the smooth streamline flow. The air flow pressure in the front of the solid object 
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will be higher than the surrounding pressure while the pressure behind will be lower, 
therefore the vehicle will be dragged in the direction of air movement. This effect is created in 
addition to the skin friction drag, which is the viscous resistance generated within the 
boundary layer when air flows over a solid surface (Heisler, 2002). The skin friction drag is 
not studied in this thesis. The air resistance can be written as 
 

ACvF DrelD ⋅⋅⋅⋅= 2

2

1 ρ                                                 (2.11) 

 
where ρ is the density of the air, vrel is the relative air velocity striking the surface, CD is the 
drag coefficient and A is the cross section area (Heisler, 2002). The air density is a function of 
total air pressure, temperature and relative humidity (Shelquist, 2011) that can be seen in 
Appendix A. The dimensionless drag coefficient depends upon the shape of the body exposed 
to the airstream (Heisler, 2002) and its value for different vehicles is determined in wind 
tunnels. Typical CD-values for private cars are between 0.22-0.4 (Heisler, 2002). CD is 
sensitive even for relatively small changes in the shape of the vehicle; a general rule is that 
one centimetre change of the car body height change the CD-value with 0.01 steps and an 
open window or sunroof can increase CD with five to seven percent (Bauer, 1996). As can be 
seen in Eq. 2.11 and Fig.4, the drag force is strongly depending on the relative air velocity. 
 

 
 
 
 
 
This air velocity is in favourable conditions equal to the vehicle speed as in Fig 4, but for real 
world test such as a coast-down test the meteorological wind affects the relative air velocity. 
The relative air velocity can be expressed as: 
 

22 )cos(2 wwvvvrel +⋅⋅⋅+= α           (2.12) 

 
where v is the speed of the vehicle, w is the wind speed and α is the wind direction relative to 
the velocity vector of the vehicle. This vrel strikes the vehicle with an angle β (Karlsson et al., 
2011): 

Fig. 4. Comparison of aerodynamic drag forces with rolling 
resistance (Heisler, 2002). 
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)/))cos(arccos(( relvwv ⋅+= αβ         (2.13) 

 
The force FD from Eq. 2.11 is then projected on an axis parallel with the vehicle’s direction of 
travel, using the β-angle: 
 

2/)cos())sin(( 2
relDLbetaLair vACCCF ⋅⋅⋅⋅⋅⋅+= ρββ                         (2.14) 

 
The unknown coefficients CL and CLbeta can be determined by regression. 
 
2.3.3. Side force resistance  
The side force resistance can be calculated as: 
 

22 )))cos()sin(/)(cos(( θσσ ⋅⋅−⋅⋅⋅= gRvmCF sideside                         (2.15) 

 
where σ is the crossfall of the road, R is the radius of curvature of the road and  Cside is a 
constant. (Karlsson et al., 2011) 
 
2.3.4. Rolling resistance  
Rolling resistance is the force acting on a vehicle caused by the interaction between the 
vehicle and the road surface (Karlsson et al., 2011). It is the tire deformation that causes the 
rolling resistance and as illustrated in Fig.5 the resultant normal force is shifted forward 
causing a torque around the wheel centre that resists rolling. The horizontal force that is 
required to keep the wheel at constant speed and thus overcome this torque is called the 
rolling resistance and is defined as (Nielsen & Sandberg, 2002): 
 

NCF RRRR ⋅=                                   (2.16) 

where N is the normal force and CRR is the rolling resistance coefficient. CRR is depends on 
many variables such as inflation pressure, tire temperature, vehicle speed, road conditions and 
wheel adjustments (Nielsen & Sandberg, 2002). 

 

 

 

Fig. 5. Illustrates the horizontal shift of the resultant normal 
force during tire deformation (Nielsen & Sandberg, 2002). 
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In the report by Karlsson, et al. (2011) the following equation for the rolling resistance is 
suggested 

)( _____00_ vCrIRICrMPDCTCCNF vIRIRRIRIRRMPDRRtempRRRRRR ⋅+⋅+⋅+⋅+⋅=   (2.17) 

where T is the ambient temperature, MPD is a measure for the macrotexture of the road, IRI is 
a measure of the unevenness of the road, v is the vehicle speed and CRR_00, CRR_temp etc are 
constants that can be determined by multiple regression. Another model suggested by Nielsen 
& Sandberg (2002) is 

NvTCF rRR ⋅= ),(        (2.18) 

where T in this model is the tire temperature. This model with a rolling resistance coefficient 
depending only on the tire temperature and the vehicle speed require a driving scenario with a 
given tire and constant or slow varying external conditions. It is established in the report that 
the tire temperature is the dominant parameter for the above described driving scenario and 
that the tire temperature is dependent on the ambient temperature, road surface temperature, 
the vehicle speed and how long time the vehicle is driven at various speeds. The main reason 
for the strong correlation between tire temperature and rolling resistance is that the tire 
pressure raises when the inflated air gets warmer and thereby reducing the rolling resistance. 
Even if the tire pressure is held constant, the rolling resistance is known to depend also on the 
velocity. The effect of the vehicle speed is however rather small, around 20-30% of the tire 
pressure effect. (Nielsen & Sandberg, 2002) 
 
2.3.5. Transmission drag 
Due to the limitations of this thesis, the transmission resistance and losses in bearings are not 
discussed since they are considered to not vary substantially for different boundary 
conditions. The contribution to the road load that the transmission losses constitute is instead 
covered by dummy variables, which is explained in Section 3.7.  
 
2.4. Weather station 
The weather station measures the properties of the ambient air, which are: pressure, humidity, 
temperature, wind speed and wind direction. Those properties are measured each 10 second, 
which means that the weather-data obtained from the coast-down tests does not need to be 
exactly what occurred during the test. The weather station is located at the side of the test 
track and hence, it could be some differences between what is measured and what is affecting 
the car at the test track. 
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3. Regression theory  
Regression analysis is a statistical tool for the investigation of relationships between two or 
more variables that are functionally linked (Petterson, 2003), (Grandin, 2012). In this chapter 
a review of the regression methods and statistical tests used in this thesis, are described.  
 
3.1. Simple linear regression model  
The basic principle in linear regression is that a straight line, a regression line, is adjusted to a 
statistical material consisting of n pairs of observations (xi,yi) using the least square method. 
This means determine the values of the variables a and b in the equation of a straight line  
 

xbay ⋅+=    (3.1) 
so that the sum of squares  
 

∑
=

⋅−−
n

i
ii xbay

1

2)(         (3.2) 

 
is as small as possible. The solution to this can be written as  
 

__

xbya ⋅−=           (3.3) 
 

( )
∑ ∑

∑
∑∑

−

−⋅
=

n

x
x

n

xy
xy

b
i

i

ii
ii

2

2

_

    (3.4) 

  
where a indicates where the straight line intersect with the y-axis and b indicates the average 
change in y for one unit change in x. (Petterson, 2003) 
It is very rare that this minimization problem has an exact solution, especially when the data 
are from real world measurements or experiments (Umeå University, 2004). The deviation 
from the dependent variable’s conditional expectation for the level x is called the residual, ε. 
The variation is described with this model: 
 

ε+⋅+= xbay                     (3.5) 
 
The residual is a random variable with expectation zero and the value of the residual can be 
interpreted as the total effect of other factors that influence the dependent variable y 
(Wahlgren & Körner, 2006). More about residuals and how to analyse those can be found in 
Section 3.6.  
 
3.2. P-value  
The p-value is the probability to obtain at least as large difference as between the sample 
value and the value under the null hypothesis. For regression, the null hypothesis is that there 
is no linear relationship between the dependent variable and explanatory variables (Körner & 
Wahlgren, 2006): 
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0: 10 =βH   (3.6) 

 
The alternative hypothesis is that each of the regression coefficients is different from zero: 
 

0: 11 ≠βH   (3.7) 
 
The p-value for which the null hypothesis is rejected is determined by the level of 
significance. A common value for the level of significance is α = 5 %, which means that if the 
p-value is larger than 0.05 the null hypothesis cannot be rejected and the smaller the p-value, 
the greater support for the null hypothesis. (Körner & Wahlgren, 2006)  
 
 
3.3. Analysis of Variance  
With the above formulas it is possible to obtain an equation for the linear relationship 
between the dependent variable y and the independent variable x (Grandin, 2012). To analyse 
the strength of the relationship, i.e. how much of the variation in y is due to the change in x, 
the ANOVA (Analysis Of Variance) table can be used. In Table1 an example of an ANOVA 
table from MS Excel can be seen.  
 
Table  1. ANOVA table from MS Excel 

ANOVA           

  df SS MS F Significance F 

Regression 15 7736627 7736627 20448,36 2,2167E-199 

Residual 195 73778,17 378,3496     

Total 196 7810406       

 
The cell at the intersection of the second column and third row in Table 1 is called Total Sum 
of Squares (SST); this is the total variation of Y and it is defined as 
 

∑ −= 2
_

)( ii yySST          (3.8) 

 
In Table 1 it is also possible to see the Sum of Squares for the residuals (SSE), which is the 
variation around the adapted regression line that is independent of the variation of x. This 
unexplained variation is calculated as 
 

∑ −= 2
^

)( ii yySSE          (3.9) 

 
where 
 

ii xbay ⋅+=
^

   (3.10) 

 
Eq. 3.9 is in other words the squared and summed difference between the actual value yi and 
the expected value ŷi calculated from the regression model at xi . The difference between the 
total variation, SST, and the unexplained variation, SSE, is called SSR and is the explained 
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variation (See Table 1 first row, second column); the variation that is described by the 
regression model. (Körner & Wahlgren, 2006). To sum it up, the total variation can be written 
as 

 
(3.11) 

 
and it is also illustrated below in Fig.6 
 

 
Fig. 6. How the division of the total variation, SST, can be seen. (Illustration  
done after model by Karlsson et al., (2011) 

 
3.3.1. Coefficient of determination 
As a measure of how strong the linear correlation is, the coefficient of determination, R2, is 
used 
 

SST

SSE

SST

SSR
R −== 12          (3.12) 

 
The R2-value tells how much of the total variation of the dependent variable is explained by 
the linear relationship between the variables (Körner & Wahlgren, 2006). When using more 
than one explanatory variable in the model, the R2-value can be misleading since it increases 
with the number of terms whether the terms are significant or not (Grandin, 2012). Therefore 
a R2-value that is adjusted based on the residuals degrees of freedom must be used in multiple 
regression. The residual degrees of freedom is defined as 
 

mnv −=            (3.13) 
 
where n is the number of response values and m is the number of fitted coefficients estimated 
from the response values. The adjusted R2-value is defined as (UNSW, 2011) 
 

)(

)1(
12

vSST

nSSE
Radj

−−=−           (3.14) 

  
3.3.2. F-value 
The F-value can be found in the ANOVA table (Table1) and is a test function for the null 
hypothesis that there is no linear relationship between the variables. F is calculated as 

SSESSRSST +=
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MSE

MSR
F =  (3.15) 

 
where MSR is the mean sum of squares for the regression and MSE is the mean sum of 
squares for the residuals. The value of MSR and MSE can be found under MS in the ANOVA 
table. The F-distribution is skewed to the right and the critical area, illustrated in Fig.7, in the 
right tail depends on the degrees of freedom for MSR and MSE and the level of significance. 
The probability that F is in the accepted area and the null hypothesis is accepted can be seen 
in the ANOVA table under Significance F. If a significance level of 5% is selected, the 
Significance F must be lower than 0.05 if the null hypothesis should be rejected. (Körner & 
Wahlgren, 2006)  
 

 
 
 
 
3.4. Multiple regression analysis  
The multiple regression is a natural extension of the simple linear model described in Section 
3.1. The main difference is that a multiple regression model contains two or more explanatory 
variables in order to better explain the variation of y. When using two x-variables, the model 
can look like this: 
 

2211 xbxbay ⋅+⋅+=         (3.16) 
 
The interpretation of b1 and b2 is now as follows: 
 
b1 = The average change in the variable y if x1 increases one unit and x2 remain unchanged.   
b2 = The average change in the variable y if x2 increases one unit and x1 remain unchanged. 
 
The value for those variables is determined in the same way as for the simple regression in 
Section 3.1 (Petterson, 2003).  
 
Building a suitable multiple regression model can be a balancing act between using as many 
interesting and essential variables as possible and the risk for overdetermination. For a small 
amount of data with many explanatory variables there is a risk that the regression model 
indeed provides a good description of the variation in y, but that only applies to that particular 
sample and is not valid for the entire population.Therefore, the number of variables in the 
model should be carefully considered. Only the most essential variables that together provides 
as high coefficient of determination, R2 (see Section 3.3.1), as possible should be used. 
(Körner & Wahlgren, 2006) 

Fig. 7. The shape of the F-distribution with the critical 
area to the right. 
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3.5. Multicollinearity 
Linear relations between the explanatory variable is called multicollinearity 
(Nationalencyklopedin, 2012). A risk when using many variables in a multiple regression 
model is that some of them might be strongly correlated and thus provides almost the same 
information (Grandin, 2012).The evaluation of the regression coefficients and its standard 
errors is not independent and at multicollinearity the standard errors therefore becomes larger 
in the valuations. It is thus possible to obtain an inferior model with two explanatory variables 
instead for only one, even though the coefficient of determination slightly increases with two 
variables. It is then better to only use one of the correlated variables, preferably that one that 
provides the highest R2-value (Wahlgren & Körner, 2006). To avoid strongly correlated 
variables in the model, a correlation analysis with all the variables should be done before 
performing the regression analysis. There is no strict value when the regression cannot be 
made, but as a rule of thumb variables with correlation stronger than 0.8 should not be used 
(Sundell, 2010). Since multicollinearity between two or more variables often indicates that 
they provide about the same information to the model, one way to get around the problem is 
to drop one of the variables from the model and keep that one that provides the highest value 
of R2 (Körner & Wahlgren, 2006). If all the correlated variables are considered important to 
the model and cannot be taken away, another way to solve multicollinearity is to combine the 
correlated variables to a single variable with which the regression is performed (UKY, 2010).  
 
3.5.1. Variance Inflation Factor 
Another way of detecting multicollinearity is to use the Variance Inflation Factor (VIF).  
The VIF quantifies how much the variance of the estimated coefficients is inflated and thus 
the severity of the multicollinearity (Simon, 2004). As for the correlation between variables 
there is no strict VIF-value when the regression result is considered unreliable but as a general 
rule of thumb VIF higher than 4 warrant further investigations and over 10 is a sign of severe 
multicollinearity that must be solved (Simon, 2004). The Variance Inflation Factor is defined 
as: 
 

2

2
,

2
,

2

)1(

1

1

S

SEnS

R
VIF jbjx

j
j

−
=

−
=                   (3.17) 

 
where Sx,j is the standard deviation for the regression variable, SEb,j is the standard error for 
the slope coefficient, S2 is the mean squared residual and (n-1) is the degree of freedom 
(ProfTDub, 2010).  
 
   
3.6. Residual analysis  
The residual, ε, is defined as the difference between the actual observed value y and the 
corresponding value ŷ obtained from the regression model: 
 

^

yy −=ε                                                           (3.18) 
 
There are three prerequisites regarding the residuals so that the equations used in the 
regression should give accurate values (Körner & Wahlgren, 2006): 
 

• The residuals must be distributed independently 
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• The residuals’ standard deviation is equal for all levels  
• The residuals are normally distributed for all levels  

 
By using plots of the residuals, those prerequisites can be controlled quite easily. Fig. 8 shows 
some examples of this.   

 

 
 
 

 
The third prerequisite about normal distribution can be illustrated with a histogram. However, 
this assumption not necessary for large data sets (Körner & Wahlgren, 2006), since the rules 
for the Central Limit Theorem shows that for a data set larger than 20 observations, one can 
assume approximately normal distribution (Grandin, 2012). 
 
A lot of information can be obtained by analyzing the residuals, such as the suitability of the 
model, the data set as a whole and as individual observations. The reason for large residuals is 
often measuring fault, incorrect regression model or the actual individual variation. Large 
deviations should be seen as warning signals that something is not right (Körner & Wahlgren, 
2006). If the outliers should be removed from the data set must be carefully analyzed so that 
the real cause is bad data and not part of the natural variation or an incorrect regression 
model. 
 
If the residuals look like those in Fig. 8, that is a clear sign of an incorrect regression model. 
To solve the problem, the data may be transformed in a manner such that linear regression can 
be used. If that is not possible, other types of regression models, for example polynomial 
regression or non-linear regression, must be used. (Grandin, 2012) In this thesis only linear 
regression will be discussed.  
 
3.7. Dummy variables  
The use of dummy variables is a way to treat qualitative variables in a regression model, for 
example if there is a difference in road load using a manual or automatic gearbox. The 
regression model is made to handle quantitative variables but can manage qualitative 
variables if they are transformed into binary dummy variables with values 0 or 1. (Körner & 
Wahlgren, 2006) The estimated regression relations can for example now be written as: 
 

2211

^

xbxbay ⋅+⋅+= ⋅          (3.19) 
 

Fig. 8. a) residuals with standard deviation that is not equal for all levels of x (UCLA, 2007). b) 
residuals with a systematic pattern, they are not independently distributed (Zejda, 2008).  

b) a) 
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where  
 
x1 = an ordinary quantitative variable 
x2 = gearbox (with values “manual” = 0 and “automatic”=1) 
 
The value of the regression coefficient b2 is equal to the difference in ŷ when shifting between 
manual and automatic gearbox. It is possible to have more dummy variables than just one, but 
it is then necessary to have a reference variable that the other variables can be compared with. 
Each of the dummy variables uses one degree of freedom, so n groups has n-1 degrees of 
freedom. What group or variable that is used as reference does not influence the R2-value 
(UCLA, 2007). 
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4. Methodology    
This section covers the setup of the thesis and what methods that are used in order to achieve 
a result that fulfils the aim and purpose. 
 
4.1. Literature study 
In order to achieve an understanding for the task and to increase the knowledge in areas 
related to vehicle dynamics, coast-down tests, statistics and data mining, a literature study was 
done. The search for literature was primarily done using the search engine at Chalmers 
Library’s homepage, in order to obtain reliable information and get access to articles and 
reports that otherwise are unavailable. Information about coast-down tests in terms of 
implementation, measuring methods, accuracy and laws and regulations was captured both by 
interviews with experts at the Fuel Economy department at VCC and internal information. 
Also interviews with statistics experts at Chalmers were made in order to verify and discuss 
methods and results.  
 
4.2. Data collection and preparation  
Coast-down expeditions must be performed for every new car model and its variants; the 
amount of data available for analysis is thus very large. There is however some important 
information that is not officially documented and only available in terms of personal notes 
and what is remembered of the team that performed the test. Since such information becomes 
weaker over time and no one in the team that carried out tests earlier than 2010 are left in 
today’s coast-down team, only data from tests performed during 2010 and later are used in 
order to compromise between minimize the risk for misinterpret the results and use as much 
data as possible.  
 
All data used in this thesis is derived from measurements made for internal development at 
VCC and is not required by the authorities. The documentation of these measurements is 
therefore not as thoroughly as for the official data.  
 
During coast-down expeditions not only data about the cars, speeds and times are gathered, 
but also information about weather and road conditions. The information about weather, 
coast-down times and car specific data were merged into one large file and then matched 
against the current time for the test. According to the regulations of the coast-down tests 
(Section 2.2) the coast-down must be performed in both directions of the test track and the 
average of the two runs is the time that counts. Those two runs were treated as individual runs 
in order to get as many runs as possible to analyze. Measurements of the road surface 
roughness were not included in this file, both because they were considered not sufficient and 
accurate enough, and for the lack of information about the where on the test track the current 
coast-down tests were made, which in turn made it unfeasible to match the asphalt 
measurements against the coast-down times.   
 
In order to prepare the dataset for further analysis, obvious errors such as duplicates and tests 
without weather measurements were removed. Arizona, where APG is located, does not use 
day light saving time (Prerau, 2006), but the measurement equipment from Sweden does. 
Therefore, data from the day when the time shift occurred were analysed and cleared from 
results being registered twice with an hour difference.  
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4.3. Data analysis and model structure  
To be able to describe the variation of the forces acting on a car during a coast-down test, 
some kind of mathematical model is needed. From the literature study, formulas describing 
elementary correlations between environmental parameters and forces acting on a car were 
found and assembled into a first model. The descriptions of these formulas are presented in 
Section 2.3. With this model a first multiple regression on the dataset was done in order to be 
able to analyse the quality of both coast-down data and regression model. Naturally, it is 
important that the input data is correct and contains only natural variation and no significant 
measurement errors or other sporadic human error that cannot be predicted in a model. 
Therefore a residual analysis was done after the multiple regression in order to detect such 
inaccuracies in the coast-down data. The residual is defined as the difference between the 
actual observed value y and the corresponding value ŷ obtained from the regression model 
(Körner & Wahlgren, 2006) and it is consequently a good measure of whether something is 
not right, either the regression model or the input data. The residuals of the variables in the 
regression model were illustrated in diagrams to visualize possible outliers. Those residuals 
that were considered as outliers were thoroughly analysed by tracking the coast-down results 
which led to the error and go through the current testing protocol together with the group in 
charge of the expedition. Those tests that were considered invalid for some reason were 
removed from the dataset and for those where no errors were detected, the test results were 
retained in order not to affect the natural variation. By this method both large groups of 
invalid coast-down results and single measurement errors can be found much quicker and 
more accurate than if all test protocols had been examined one by one without knowing what 
kind of error that is being sought. The residual analysis was used also as a quality control of 
the regression model by investigate if the prerequisites described in Section 3.6 were met. 
More about residual analysis and regression models can be found in Section 3.1 and 3.6, 
respectively.  
 
When the dataset is cleared from invalid coast-down results, the regression model can be 
extended with more interesting parameters. Since this thesis aims to determine the external 
parameters’ impact on the test result, the car specific parameters were treated with dummy-
variables. In that way the influence of for example different gearboxes and FWD or AWD 
were kept away from the more important variables. Due to the regulations, the coast-down 
test must be performed in both direction of the test track; therefore also a dummy variable for 
the direction of the test track was used in order to determine a possible difference in road load 
between the various directions. A description of dummy-variables is presented in Section 3.7. 
 
How well the model describes the variation of forces in the dataset was measured by the 
adjusted coefficient of determination, adj-R2, which indicates the proportion explained 
variation of the total variance, with respect to the number of parameters in the model. The 
definition of the ordinary coefficient of determination, R2, the adjusted coefficient of 
determination and difference between them, is discussed in Section 3.3.1.  
 
To prove that there is a significant linear correlation between the variables and hence reject 
the null hypothesis that there is no linear relationship between them, an F-test was made for 
the regression model as a whole. The significance level was set to 5%, in accordance with the 
aim of the thesis. Also a t-test for each of the regressions coefficients was made in order to try 
the null hypothesis that the regression coefficient is equal to zero. That is to say that the 
variable has no effect on the regression equation. P-values lower than 0.05 were accepted for 
the t-test due to the above mentioned significance level at 5%. More about the F-test and p-
values can found in Section 3.2 and 3.3.2.  
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The use of many variables in a regression model increases the risk of multicollinearity, which 
provides unstable estimates of the regression coefficients. Hence must multicollinearity be 
detected and adjusted before any conclusions can be drawn from the model. Both a VIF-test 
and a correlation analysis were done in order to be sure of detecting variables that could make 
the model unstable. If multicollinearity is detected, the variable that provides the least 
contribution to the coefficient of determination is removed from the model. In that way a 
model with better and more reliable estimates of the regression coefficients is obtained, but at 
the expense of being able to take account of many different variables. The explanation for 
multicollinearity, VIF-test and correlation analysis can be found in Section 3.5.  
 
To further determine the stability of the model and its variables, regression analyses with the 
final model were made on the dataset for each of the three coast-down expeditions separately. 
If there is a good agreement between the regression coefficients for the analyses, then the 
model can be considered as robust. If the coefficients strongly fluctuate between the 
expeditions, they must be analyzed deeper in order to understand the deviation.  
 
4.3. Statistical software 
All coast-down data were compiled using MS Excel, which is a program that is well suited for 
processing large data volumes, is easy to use and requires very short learning time. Also the 
statistical operations on the dataset were made using MS Excel. Due to secrecy concerning 
the coast-down data and the calculations on this, only computers on VCC were permitted to 
be used and they contained no more advanced statistical software, such as SPSS or MiniTab. 
SPSS, Minitab or some other strict statistical program provides more built-in statistical 
functions and plots that could have speeded up the calculations, since these functions, VIF-
tests for example, must be done "by hand" in MS Excel. 
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5. Results and analyses  
This chapter covers the results obtained from the method in the previous section. The results 
are continuously analysed and at the end of this section a thoroughly analysis and discussion 
of the final regression model is presented. 
 
5.1. Dataset   
Information about the cars, coast-down times and weather were merged into a single Excel 
file. With all duplicates, weather errors and other obvious errors removed, 22570 unique 
coast-down results were obtained.  The tables below show the headlines of the input data and 
fictional examples of those.  
 
The weight in Table 2 is the total weight of the car, including driver and liquids. The total 
weight was used since it is important to use the actual weight of each test in order to 
understand the variance of the road load. During a test, the total weight will slightly decrease 
due to the fuel consumption. The effect of this was considered small and was not taken into 
account in the calculations. 
 
Table  2. Car related information 

Test 
nr. 

Car 
model 

Transmission AWD/FWD Cd*A Weight 
[kg] 

31 D1 B6 FWD 0,8 1500 
 
Table  3. Coast-down information 

Coast-down time 
[s] 

Speed [m/s] Date Direction 
(FWD/BWD) 

14,2 30,55 2011-10-27 19:17:45 FWD 
 
Table  4. Weather information     

Wind 
speed 
[m/s] 

Wind direction 
[rad] 

Humidity [%] Air pressure 
[kPa] 

Ambient 
temperature [  ͦC] 

4,6 2,78 17,7 96,1 27,2 
 
 
 
5.2 Analysis of the dataset 
 
5.2.1. First regression model 
In order to analyse the data set and find errors that are hard to find just by watching it, a first 
basic model for the forces acting on a car during a coast-down test was constructed using 
Eq.2.8 as a base  
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where Fgrav and Fside , Eq. 2.9 respective Eq. 2.15, were neglected since the test road at APG 
was considered very level. Also Ftrm was ignored, both since that is a car specific variable 
which is not discussed in this thesis, and because the values of the regression coefficients are 
not important at this stage. For the air resistance, Fair, Eq. 2.14 was used.  Eq.2.17 was used to 
calculate FRR, but the variables for the road surface condition, MPD and IRI, were excluded 
since those variables are not sufficiently measured at the coast-down expeditions.  The actual 
road load, F, was calculated using Eq. 2.1 and the information in Table 2 and 3: 
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The values for the mass and coast-down time are just examples. The speed difference, v∆ , is 
always 10 km/h. It was converted into the SI-unit m/s by dividing by 3.6.  
 
Thus, the first regression model looked  like this: 
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where  
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A multiple regression analysis with the above model used on the unadjusted dataset, provided 
a value of adj-R2 at 84.32%. The values of the regression coefficients are at this stage of no 
interest, since the accuracy of the input data is somewhat dubious.  
 
5.2.2. Residual analysis and clearance of bad data  
The associated residual plots for the regression variables were analysed with the aim of 
finding outliers. Only outliers which could be traced to some sort of error during the test were 
removed or adjusted, the others were retained in order not to affect the natural variation. In 
Fig.9 there is a well-defined group of outliers indicating some kind of error in the weight data.  
 

 
 
 
 
By tracing those outliers back to the source it was discovered that a group of cars had a total 
weight of 900 kg more than other similar cars, caused by a human error. For the air resistance 
variables, AIR and )sin(β⋅AIR , both groups and seemingly isolated outliers were found. That 
is illustrated in Fig.10. Tracing those outliers back the current coast-down expedition 

Fig. 9. Residual plot for N with a distinct group of outliers 
at N ≈ 26000. 
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protocols resulted in findings of driver mistakes, invalid practice runs, problems with the 
surveying equipment and other errors that made the coast-down result invalid. Such results 
were deleted from the dataset. Some of the outliers in Fig. 10 were due to problems that could 
be adjusted, such as a coast-down test performed in the opposite direction order and a number 
of tests performed with the wind direction indicator turned 180 degrees. Both of those errors 
led to that the cars were believed to have head wind when they actually had tailwind, and vice 
versa. The adjusted dataset used in the further calculations now contains 21300 unique coast-
down results.  
 

 
 
 
 
5.2.3. Adjusted dataset  
With a new multiple regression analysis performed with the same model as before, Eq. 5.1, 
but on the new dataset, the proportion explained variation, ajd-R2, was now 95.15%. Thus a 
large increase was obtained only by clearing the input data from erroneous values. The 
residual plots for the independent variables can be seen in figures below. With the outliers 
corrected, the residual plots were used also as a check for the quality of the model with the 
criteria specified in Sec.3.6. The residuals for the variables N and NT ⋅ in Fig.11a respective 
Fig 11b, meet the criteria; they are independently distributed and the standard deviation is 
equal for all levels. The groupings in Fig.11 a are due to the difference in weights for the 
various car models and the variation around each weight group is the difference in driver 
weight and filling degree of the liquids.  In both Fig.11c and Fig.11d small amount of 
negative forces can be seen which occurs at low vehicle speeds and high meteorological 
tailwind speeds. The standard deviation seems to decrease for increasing values 
of )sin(β⋅AIR in fig.11d), but the number of observations does also strongly decrease for 
increased values of )sin(β⋅AIR  and it is therefore not possible to determine if the standard 
deviation actually is equal for all levels  or not. The residuals in Fig 11c) indicate a departure 
of linearity for high vehicle speeds of 110 km/h and more. The reason for this behaviour is 
further discussed in Section 5.5.3.  
 

Fig. 10. Residual plot for the air resistance with both 
groups of outliers and single extreme values.  
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Fig. 11. Residual plots for the variables in the regression model 
 
The ANOVA-table and the values of the different regression coefficients and their p-values 
are reported in the table below 
 
Table  5. ANOVA table and statistics for the regression coefficients. 
 

ANOVA 

  df SS MS F Significance F 

 Regression 4 4,56E+08 1,14E+08 104542,9 0 

 Residual 21295 23224892 1090,627 

   Total 21299 4,79E+08 

    

         Coef SE Coef t Stat P-value Lower 95% Upper 95% 

Intercept 38,0878 3,2598 11,6840 1,92E-31 31,6983 44,4773 

CRR_00 0,0083 0,0002 37,5275 1,6E-298 0,0079 0,0088 

C_temp XXX 0,0000 -37,1285 2E-292 XXX XXX 

CL 1,0219 0,0018 575,6082 0 1,0184 1,0254 

CL_beta 0,1669 0,0309 5,3986 6,79E-08 0,1063 0,2275 

 
The Significance F in the ANOVA table is equal to 0 and the null hypothesis, that there is no 
linear relationship between the variables, was therefore rejected. The model as a whole can 
therefore be considered as significant. The p-values of the t-tests for all regression coefficients 
are also much lower than the level of significance at 0.05 and the alternative hypothesis, that 
the coefficient is different from zero, was accepted for all coefficients. That is, it is very likely 
that all the coefficients have a linear relationship to the dependent variable y. In this thesis y is 
equal to the road load F. 
 
5.3 Dummy variables  
Dummy variables were created for each variant of the cars in the data set. There are eight 
different cars and some of them were tested with different gearboxes and number of driving 
wheels. There are consequently eleven different variants and hence also eleven car-related 
dummy variables used in the regression model. The eleventh dummy variable, D11, was used 
as reference and is therefore not included in the table of coefficients. 
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A twelfth dummy was entered into the model to determine if there are any differences in 
which direction of the test track the coast-down test is performed. Forward was set to 1 and 
Backward as 0. The dummy variable was denoted Direc.   
 
The regression analysis with the model including dummy variables provides a slightly higher 
adj-R2-value than the model without them. The adjusted coefficient of determination was now 
calculated to 96.11 %. As illustrated in Table 6, there is a substantial change in the p-value for 
the Intercept and CRR_00, compared to the values in Table 5 without dummy variables. But 
also the estimation of the coefficients differ in an unreasonably way. Since the weight of the 
cars to a great extent depends on the car model and the variants of those, there is a high risk 
for multicollinearity between the normal force variable N and the dummy variables. The high 
VIF-values, which are illustrated to the right in Table 6 and the correlation analysis (See 
Table B1 in Appendix B) for CRR_00 and the car-related dummy variables confirms that 
multicollinearity actually is present and that is has to be solved in order to obtain a regression 
model with reliable estimates of the coefficients. The regression coefficient CRR_00 was 
removed from the model to solve the problem. With that removed, the adj-R2-value remains at 
96.11 % and the VIF-values were well below 3 for all coefficients. All coefficients, except for 
the dummy variable D10, were also clearly significant (p-value<<0.05).  The table for the 
regression analysis performed with the model without CRR_00 can be found in Table C1 in 
Appendix C.  

 
ANOVA               

  df SS MS F Significance F     

Regression 15 4,61E+08 30711384 35099,35 0     

Residual 21284 18623168 874,9844         

Total 21299 4,79E+08           

                

  Coef SE Coef t Stat P-value Lower 95% Upper 95% VIF 

Intercept 61,6722 23,2528 2,6522 0,008002 16,0949 107,2495   

CRR_00 0,0061 0,0015 3,9422 8,10E-05 0,0031 0,0091 73,60 

C_temp XXX 0,0000 -41,8557 0 XXX XXX 1,30 

CL 1,0160 0,0016 630,5791 0 1,0128 1,0191 1,26 

CL_beta 0,2686 0,0286 9,3803 7,22E-21 0,2124 0,3247 1,29 

Direc 12,5905 0,4056 31,0436 5,65E-207 11,7956 13,3855 1,00 

D1 50,6130 2,1566 23,4692 2,83E-120 46,3860 54,8401 2,68 

D2 34,4623 1,5893 21,6841 3,79E-103 31,3472 37,5774 4,06 

D3 -9,5033 1,2823 -7,4109 1,30E-13 -12,0168 -6,9898 3,22 

D4 -5,6998 1,0711 -5,3217 1,04E-07 -7,7992 -3,6005 2,13 

D5 24,6415 1,5058 16,3644 7,97E-60 21,6901 27,5930 5,45 

D6 4,6442 2,6751 1,7361 0,082559 -0,5991 9,8876 22,67 

D7 11,8388 3,0638 3,8641 0,000112 5,8335 17,8441 23,75 

D8 5,4670 4,8344 1,1309 0,258129 -4,0088 14,9427 48,14 

D9 0,5504 3,4423 0,1599 0,872972 -6,1969 7,2976 23,72 

D10 2,2175 1,1457 1,9354 0,052951 -0,0282 4,4632 2,52 

Table  6. ANOVA table and statistics for the regression coefficients with dummy variables under the dotted line.  
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Thus, removing CRR_00 can be considered as a good way to solve the multicollinearity 
problem without reducing the adj-R2-value. The rolling resistance coefficient is consequently 
now only a function of the ambient temperature.  
 
 
5.3. Extended regression model   
In order to further increase the adj-R2-value and to get a more comprehensive model, more 
variables were added.  
 
The rolling resistance for the tires used in the coast-down tests is measured at VCC before 
each coast-down expedition. Those values were entered in the regression model as a part of 
the rolling resistance coefficient. The variable is called TRR. 
 
According to Section 2.3.4 and Eq. 2.18, the rolling resistance mainly depends on the tire 
temperature, provided that variables such as road surface, wheel adjustments and tire type are 
relatively constant. For coast-down tests, the wheel adjustments are carefully controlled and 
can be considered as constant. The variation in tire types between the coast-down expeditions 
are rather small and were in addition handled with the variable TRR described above. The 
influence from the road surface structure can be described with Eq. 2.17, but such surface 
texture measurements have only been done in a small scale and also with no possibility to 
connect those results with the other coast-down data. Based on the few measurements that 
have been made, it can be seen that there appears to be some variations in the asphalt although 
it is probably small. Assuming that the variations in road surface are small, the tire 
temperature is the main contribution to the rolling resistance coefficient.  
In order to further describe the rolling resistance as function of temperature, a variable called 
Time was entered in the regression model. This variable represents the time of day (1-24) at 
which the test was performed. 
After addition of dummy variables, variables for tire rolling resistance and for time of day 
and the deletion of the CRR_00 coefficient, the model looks like this: 
 

444 3444 214444 34444 214444444 34444444 21
DummiesF

LbetaL

F

RRRRTtimetemp DDDirecAIRCCTCTimeCTCNF

AIRRR

11...1))sin(()( _ ++++⋅⋅++⋅+⋅+⋅⋅= β  (5.3) 

 
A regression analysis with the model specified in Eq 5.3 generated the values illustrated in 
Table 7. The adj-R2-value was calculated to 96.16%.  
 
According to the extremely high VIF-values in Table 7 for CT_RR and the dummy variables, 
the multicollinearity is very strong between those variables. This is partly because the car 
weight is correlated to the dummy variables, as for the earlier model containing the coefficient 
CRR_00, and partly because the variation in TRR is very small. The problem was solved by 
removing the variable TRR. 
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Table  7. Statistics for the regression coefficients in eq. 5.3. 
 

  Coef SE Coef t Stat P-value Lower 95% Upper 95% VIF 

Intercept -2,5450 23,0969 -0,1102 0,912260039 -47,8168 42,7267   

C_time 0,0000 0,0000 -17,4951 4,68E-68 -0,0001 0,0000 1,22 

CT_RR 0,0018 0,0003 7,0047 2,55E-12 0,0013 0,0023 344,11 

C_temp XXX 0,0000 -37,7013 3,61E-301 XXX XXX 1,36 

CL 1,0129 0,0016 629,4677 0 1,0098 1,0161 1,27 

CL_beta 0,2511 0,0284 8,8289 1,14E-18 0,1954 0,3069 1,29 

Direc 12,5328 0,4027 31,1232 5,30E-208 11,7435 13,3221 1 

D1 60,8990 1,5114 40,2942 0 57,9366 63,8614 1,33 

D2 43,8829 1,1445 38,3412 0 41,6395 46,1263 2,14 

D3 8,0040 2,8615 2,7971 0,005160939 2,3952 13,6129 16,26 

D4 8,6658 2,1456 4,0389 5,39E-05 4,4603 12,8713 8,68 

D5 34,5777 1,0815 31,9713 4,10E-219 32,4578 36,6975 2,85 

D6 -7,0977 3,4638 -2,0491 0,040466289 -13,8871 -0,3083 38,56 

D7 -3,2429 3,8853 -0,8347 0,403910831 -10,8584 4,3725 38,75 

D8 -38,0451 9,3746 -4,0583 4,96E-05 -56,4201 -19,6701 183,66 

D9 -39,1692 7,7376 -5,0622 4,18E-07 -54,3354 -24,0029 121,6 

D10 4,5850 1,1417 4,0160 5,94E-05 2,3472 6,8228 2,54 

 
          
 
The vehicle speed v was entered in the model as a part of the rolling resistance coefficient in 
order to capture its contribution to tire temperature and rolling resistance. The vehicle speed 
was however found to be very strongly correlated to the air resistance which causes problems 
with multicollinearity between those variables. The correlation, illustrated in Table 8, was 
close to 96 % between the variables vN × and AIR. The VIF-test provided values over 13 
(See Table C2 in Appendix C). Also a test to reintroduce the TRR-values, this time as a 
combined variable with the speed v, was done since TRR are known from earlier tests at VCC 
to be slightly speed-dependent. But also this variable caused multicollinearity problems. 
Although the adj-R2-value was increased from 96.16 % to 97.57% when the speed-variable v 
was entered into the model, it had to be removed in order to eliminate the multicollinearity 
and thus improve the estimates of the regression variables. 

 
 
 
 
 
 
 
 
 
 
 

  N*Time N*v N*T AIR AIR*sin(β) 

N*Time 1,00         

N*v -0,12 1,00       

N*T 0,27 -0,04 1,00     

AIR -0,13 0,96 -0,08 1,00   

AIR*sin(β) -0,08 0,41 0,08 0,40 1,00 

Table  8. Correlation analysis for the variables included in the model. The dummies are out of picture, the total 
analysis can be found in Table B2 in Appendix B.  
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5.4. Final regression model 
The model that provides the highest value of adj-R2 without causing problems with 
multicollinearity is described in Eq. 5.4. 
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The adj-R2-value and ANOVA table from the regression analysis is illustrated in Table 9 and 
the statistics for the regression coefficients can be found in Table 10. 
 
 

SUMMARY OUTPUT         

            

Regression Statistics         

R Square 0,961613         

Adjusted R Square 0,961586         

Standard Error 29,40146         

Observations 21300         

            

ANOVA           

  df SS MS F Significance F 

Regression 15 4,61E+08 30726338 35544,56 0 

Residual 21284 18398861 864,4457     

Total 21299 4,79E+08       

 
 

 
 
As can be seen in Table 9, the value of Significance F is equal to zero which means that the 
null hypothesis can be rejected and the model as a whole can be considered as significant. 

  Coef SE Coef t Stat P-value Lower 95% Upper 95% VIF 

Intercept 159,0079 1,2462 127,5897 0 156,5652 161,4507   

C_time -0,0001 0,0000 -16,5895 2,02E-61 -0,0001 0,0000 1,19 

C_temp XXX 0,0000 -37,5534 6,70E-299 XXX XXX 1,36 

CL 1,0130 0,0016 628,7740 0 1,0098 1,0161 1,27 

CL_beta 0,2463 0,0285 8,6536 5,34E-18 0,1906 0,3021 1,29 

Direc 12,5329 0,4031 31,0884 1,49E-207 11,7427 13,3231 1 

D1 59,9321 1,5067 39,7760 0 56,9788 62,8854 1,32 

D2 40,7072 1,0521 38,6913 0 38,6450 42,7694 1,8 

D3 -10,7814 0,9993 -10,7893 4,55E-27 -12,7401 -8,8228 1,98 

D4 -4,5659 1,0187 -4,4822 7,43E-06 -6,5626 -2,5692 1,95 

D5 31,1567 0,9661 32,2512 7,69E-223 29,2631 33,0503 2,27 

D6 16,3041 0,9159 17,8012 2,24E-70 14,5088 18,0993 2,69 

D7 23,1456 0,9516 24,3238 6,31E-129 21,2804 25,0107 2,32 

D8 27,2177 1,0396 26,1820 9,62E-149 25,1801 29,2553 2,25 

D9 14,5703 1,0074 14,4629 3,48E-47 12,5956 16,5449 2,06 

D10 0,5802 0,9893 0,5864 0,557588865 -1,3590 2,5194 1,9 

Table  9. Summary output and ANOVA-table 
 

Table 10. Statistics for the regression coefficients  
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Also all regression coefficients in Table 10, except for the dummy variable D10, are 
significant with a p-value well below the limit at 0.05. The VIF-values are low for all 
coefficients and no high correlations were found in the correlation analysis (Table B3 in 
Appendix B).  
 
5.5. Analysis and discussion of final regression model 
An analysis of the regression coefficients and the regression model as a whole is presented 
below. 
 
5.5.1. Time-variable 
The low p-value of the Ctime -coefficient tells that there is a significant time dependency in the 
model. The negative sign of the coefficient means that the road load decreases when the hour 
of the day increase.  
 
The residual plot for the variable in Fig. 12 shows that the prerequisites from Section 3.6 are 
met. The vertical bar of outliers to the left in Fig.12 derives from one round of test with the 
same car, which indicates that something may be wrong with that test. No errors could 
however found in the test protocol and they were therefore not removed in order to not 
interfere with the natural variation.  
 

 
 
 
 
5.5.2. Ambient temperature  
The coefficient related to the ambient temperature, Ctemp , has been very stable for all different 
models tested. It says that the rolling resistance decrease when the temperature increase. That 
agrees well with the theory that the tire pressure, and thus the rolling resistance, is dependent 
of the ambient temperature. 
 
The prerequisites from Section 3.6 are met, according to the residual plot in Fig.13. Also in 
this residual plot the outliers described in Section 5.5.1 can be seen.  
 

 
 

Fig. 12. The residual plot for the rolling resistance coefficient 
Time. 

Fig. 13. The residual plot for the ambient temperature times 
the normal force. 
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5.5.3. Air resistance  
CL has appeared relatively stable between the different models, but there was a slightly 
difference when the dummy variables were introduced which tells that it probably is 
something more than just the ACD ⋅ -value that differentiates the cars in terms of air 
resistance. This effect is even more evident when it comes to the cross-wind coefficient, 
CLbeta, which differ greatly between the model with dummy variables and the one without. 
Based on that result, it can be assumed that another car model-specific variable is needed in 
the equation, for example a new sidesideD AC ⋅_ -variable where the area A and CD are measured 

obliquely from the side.  
 
In Fig.14 a slight departure of linearity can be seen for values of AIR exceeding 400N, which 
means vehicle speeds of 110 km/h and more. This effect may be due the lack of the vehicle 
speed term in the rolling resistance coefficient that was removed in Section 5.3 due to 
multicollinearity problems. 
  

 
 
 
With the speed included in the rolling resistance coefficient, the residuals for AIR appeared 
much better for high speeds but shows instead a departure of  linearity for low speeds, which 
is illustrated in Fig.15.  
 

 
 
 
 
The speed must however be removed in order to solve the severe multicollinearity problem 
that occurs otherwise. Therefore, the model should be used with some caution for those high 
speeds. For lower speeds the model fulfils the requirements for linearity. The standard 
deviation seems to decrease for high values of )sin(β⋅AIR  in Fig.16, but the number of 
observations does also strongly decrease for increased values of )sin(β⋅AIR  and it is 
therefore not possible to determine if the standard deviation actually is equal for all levels or 
not.  

Fig. 14. Residual plot for the air resistance. 

Fig. 15. Residual plot for the cross-wind effect with the vehicle 
speed included in the rolling resistance coefficient.  
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5.5.4. Dummy variables  
The value of the dummy variables for the different car variants shows the average difference 
in road load for the various variants relative to the reference vehicle, which in those 
calculations is the D11. For example, a coast-down test with a D8 would in average yield a 
road load 27N higher than for the D11 during the same boundary conditions.  The values of 
the coefficients are in good agreement with earlier measurements performed by VCC. 
Interesting is that the coefficients for the two station wagons, D8 and D7 are quite similar and 
so also the coefficients for the two sedans, D6 and D9. That strengthens the theory that a new 
kind of aerodynamic variable is needed in order to better calculate the cross-wind effects.  
 
The dummy variable Direc indicates that it is more preferable to drive backwards on the test 
track than forwards. The road load is in average 12N higher when driving forward. The 
reason for this effect is far from obvious, especially since earlier measurements show that the 
test track is totally level. But the probable cause for this is the fact that the cars were not 
driven at the same part of the test track for the two directions and that the asphalt structure 
differs between those different parts. This is further discussed in Section 5.6.4. When 
introducing this dummy variable in the model, the other coefficients remained at the same 
values which indicate that this dummy variable measure something that is not cover earlier in 
the model, such as the road surface influence on the rolling resistance. 
 
5.5.5 Total model 
The final regression model provides an adj-R2-value at over 96% which means that it is less 
than 4% of all road load variation that cannot be explained. Those 4% consists of both 
measure errors and parameters that were not included in the model. Since the meteorological 
measuring equipment is located at the side of the test track, it could be as much as 1km 
between the coasted car and the weather station and it is hence possible that the measured 
wind is not the one that actually affects the car. In Section 5.3 it was shown that introducing 
the vehicle speed v in the rolling resistant coefficient increased the adj-R2-value to 97.6%. 
Thus, there is potential of further improve the model by solving the multicollinearity in 
another way than removing the correlated variable.  
 
5.6. Stability of parameters with respect to subsets of data 
The final regression model was used on three different subsets of data, one for each coast-
down expedition. The result is illustrated in Appendix D. The comparison is not entirely fair 
since the various coast-down expeditions consists of different numbers of test, but it gives an 
indication of which parameters that appears stable.  

Fig. 16. Residual plot for the cross-wind effect. 
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5.6.1 Ctime  
The coefficient for the Time variable, Ctime, are negative for all expeditions, but varies 
between 5102 −⋅− and 5107 −⋅− .  
 
5.6.2 Ctemp 
The ambient temperature coefficient, Ctemp, appears relatively stable for the different 
expeditions. 
 
5.6.3. CL 
The CL coefficient is very stable and varies just between 0.997 and 1.014. This is probably 
due to that the AIR-variable mainly depends on the vehicle speed, which is accurately 
measured without much measuring faults.  
 
5.6.3. CLbeta 
This cross-wind parameter is rather stable for the two coast-down expeditions performed in 
2010; it varies between 0.278 and 0.243. But for the expedition in 2011 the CLbeta-value is 
only 0.124, about the half of the other two. It is significant, but with a relatively small margin 
compared to the two older expeditions; the p-value is only 0.04. That indicates a problem with 
the wind direction data. It is known that the wind gauge was turned 180 degrees at an 
unknown date during the expedition in 2011 and the dataset was compensated for that by 
adding 180 degrees to the wind direction for those dates when the wind gauge most likely was 
turned and that provided the highest value of adj-R2.  
It is also known that minor modification was done to the weather station in the middle of the 
expedition in 2011. By only using weather data before that date, the CLbeta instead increased to 
0.49 and the p-value decreased significantly. The CL coefficient was also slightly affected and 
decreased to 1.006. Thus, this modification of the weather station probably affected the 
accuracy of the wind data. 
 
5.6.4. Dummy variables  
The direction dummy for the two expeditions in 2010 both show that it is significantly 
preferable to drive backwards on the test track, even if the value is a bit unstable and vary 
from 15,6N to 22,6N. The value for 2011 is instead slightly negative, -1.4N, and with a higher 
p-value than for the other expeditions.  Those results agree well with the fact that at the 
expeditions performed in 2010 the cars were not driven at the same part of the test track for 
the different directions. When the cars were driven at the direction called forward, they pass a 
larger section of the track with inferior asphalt quality than when they are driven at the other 
direction. The expedition in 2011 was performed on two different test tracks at APG and the 
tests were performed at the same part of the track for the different directions. It is hence very 
likely that the dummy variable Direc can be used as a measure for the road surface influence 
on the rolling resistance. In the report by Karlsson, et al. (2011) it stated that differences in 
road surface quality can influence the road load at the same order as found by this dummy 
variable.  
 
The stability of the dummy variables for the car-variant is naturally hard to validate since they 
are not generic for all expeditions.  
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6. Conclusions 
With a multiple regression analysis performed with the model  
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on a dataset containing coast-down results from three independent coast-down expeditions 
with in total eleven different car-variants, over 96% of the total variation of the road load was 
explained. The values of the regression coefficients are presented in the table below.  
 
 

  Coef P-value Lower 95% Upper 95% 

Intercept 159,0079 0 156,5652 161,4507 

C_time -0,0001 2,02E-61 -0,0001 0,0000 

C_temp XXX 6,70E-299 XXX XXX 

CL 1,0130 0 1,0098 1,0161 

CL_beta 0,2463 5,34E-18 0,1906 0,3021 

Direc 12,5329 1,49E-207 11,7427 13,3231 

D1 59,9321 0 56,9788 62,8854 

D2 40,7072 0 38,6450 42,7694 

D3 -10,7814 4,55E-27 -12,7401 -8,8228 

D4 -4,5659 7,43E-06 -6,5626 -2,5692 

D5 31,1567 7,69E-223 29,2631 33,0503 

D6 16,3041 2,24E-70 14,5088 18,0993 

D7 23,1456 6,31E-129 21,2804 25,0107 

D8 27,2177 9,62E-149 25,1801 29,2553 

D9 14,5703 3,48E-47 12,5956 16,5449 

D10 0,5802 0,557588865 -1,3590 2,5194 

 
 
From the above table it can be seen that all regression variables, except the dummy variable 
D10, are significant for a confidence level at 95%. The analysis of the coefficients showed the 
value of Ctime fluctuates between the different coast-down expeditions but that it is always 
significantly negative. That means that the road load is lower when performing the coast-
down test later in the day, but exactly how much lower differ from various expeditions and 
the actual cause for this cannot be established with the present data. The coefficient Ctemp has 
appeared stable for the different models and datasets and the value can be seen as secured for 
this model. The air resistance parameter CL has also been stable around 1.01, but a small 
departure of linearity for high vehicle speeds, 110 km/h and more, can be seen in the residual 
plot. This problem is probably due to the lack of the vehicle speed term in the rolling 
resistance coefficient that was removed due to severe multicollinearity problems. Therefore, 
the model should be used with some caution for those high speeds. The other air resistance 
parameter for the cross-wind effects, CLbeta, appears rather stable for two of the expeditions 
with a value between 0.243 and 0.278, but for the last expedition the value is about the half 
and barely significant. The reason for this behaviour is probably those experiments that were 
done with the wind gauge during the expedition that may have perturbed the wind direction 
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data. It is hence not possible to determine a totally sure value of CLbeta, even if it most likely is 
close to the value in the above table.  
 
The value of the dummy variable coefficient Direc tells that it is in average 12N heavier to 
drive in the direction called “Forward” on the test track, compared to “Backward”. For the 
expeditions performed in 2010 that value is even higher, between 15,6N to 22,6N, but for the 
last expedition in 2011 the coefficient is slightly negative and also barley significant. In 2010, 
when the cars were driven at the direction called forward, they pass a larger section of the 
track with inferior asphalt quality than when they are driven at the other direction. The 
expedition in 2011 was performed on two different test tracks at APG and the tests were 
performed at the same part of the track for the different directions. Thus, it can be considered 
that the differences in road surface has a relatively large impact on the rolling resistance and 
that it is important to run the coast-down test where the asphalt quality is best. 
 
The car specific dummies cover those differences between the car variants that the model 
does not handle, different gearboxes for example. Those are no absolute values but relative 
values to the reference dummy, D11. The differences between the variants are considered as 
reasonable according to the experience of previous tests at VCC. When introducing those 
dummy variables in the model, the air resistance coefficients changed and CLbeta in particular. 
That indicates that another car specific aerodynamic variable is needed in the model, probably 
some kind of a sidesideD AC ⋅_ -variable where the area A and CD are measured obliquely from 

the side.   
 
To sum up, the regression model meets the goal of this master thesis by explaining just over 
96% of the total variation in the coast-down results and thus describing the true road load 
within less than +/- 4%. The model can be used to normalize the boundary conditions at a 
coast-down expedition in order to investigate if whether the obtained results are representative 
in relation to the circumstances or not. In that way the number of test runs can be decreased 
and the coast-down expedition may be made quicker, cheaper and with more precise and 
reliable result, which also was the purpose of this thesis.  
 
6.1. Future work 
To make this model even better and more accurate, the multicollinearity problem must be 
solved in another way. A vehicle speed variable in the rolling resistance parameter would 
increase the adj-R2-value and probably also solve the problem in the air resistance variable for 
high speeds.  
 
To further understand the road surface impact on the total road load, better and larger 
numbers of measurements of the road surface is needed in order to analyze it in a regression 
model, but most important is to make it possible to connect those results to the coast-down 
results so the data can be used.  
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Appendix A - Calculation of air density 
 
 
The air density can be written as: 
 








 ⋅
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Where: 
 
P = total air pressure [Pa] 
 
Rd = specific gas constant for dry air = 287,05 [J/(kg* ̊K)] 
 
T = temperature [ ̊K] 
 
pv = pressure of water vapour (partial pressure) [Pa] 
 
The vapour pressure, pv, can expressed as: 
 

satv pp ⋅= φ  

 
Where: 
 
ɸ =relative humidity [%] 
 
psat = saturation vapour pressure [Pa] 
 
To determine psat, a simplification of Herman Wobus polynomial1 can be used with good 
accuracy, especially at higher air temperatures where the saturation pressure becomes 
significant for the density calculations. The saturation vapour pressure is then expressed as: 
(Shelquist, 2011). 
 

             C

C

Tc

Tc

sat cp +
×

⋅= 2

1

100  [mbar] 

 
Where: 
 
C0 = 6,1078 
C1 = 7,5 
C2 = 237,3 
 
 
 
 
___________________________________________________________________________ 
 
1.Psat = 6.1078/(c0+T*(c1+T*(c2+T*(c3+T*(c4+T*(c5+T*(c6+T*(c7+T*(c8+T*(c9))))))))))8 
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Appendix B – Correlation analyses 
 
Table  B1. Correlation analysis for the first regression model including dummy variables  

  N N*T AIR 
AIR* 

sin(β) 
Direc D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 

N 1,00                               

N*T 0,41 1,00                             

AIR 0,07 -0,08 1,00                           

AIR* 

sin(β) 
0,06 0,08 0,40 1,00                         

Direc 0,00 0,00 -0,02 -0,03 1,00                       

D1 0,00 0,03 0,02 0,00 0,00 1,00                     

D2 -0,06 -0,08 0,02 -0,04 0,00 -0,04 1,00                   

D3 -0,42 -0,10 -0,03 -0,07 0,00 -0,05 -0,09 1,00                 

D4 -0,33 -0,14 -0,02 -0,09 0,00 -0,05 -0,08 -0,09 1,00               

D5 -0,08 0,02 0,04 -0,07 0,00 -0,06 -0,10 -0,11 -0,11 1,00             

D6 0,23 0,17 0,01 0,06 0,00 -0,07 -0,12 -0,13 -0,13 -0,15 1,00           

D7 0,28 0,14 -0,02 0,03 0,00 -0,06 -0,10 -0,11 -0,11 -0,13 -0,16 1,00         

D8 0,58 0,24 0,07 0,11 0,00 -0,05 -0,09 -0,10 -0,10 -0,11 -0,14 -0,12 1,00       

D9 0,31 0,04 0,00 -0,10 0,00 -0,05 -0,09 -0,10 -0,10 -0,11 -0,13 -0,12 -0,10 1,00     

D10 -0,38 -0,23 -0,05 0,07 0,00 -0,05 -0,09 -0,10 -0,09 -0,11 -0,13 -0,11 -0,10 -0,10 1,00   

D11 -0,27 -0,17 -0,04 0,08 0,00 -0,05 -0,08 -0,09 -0,09 -0,10 -0,13 -0,11 -0,09 -0,09 -0,09 1,00 

 
Table  B2. Correlation analysis for the regression model with the vehicle speed, v, included in the rolling 
resistance coefficient.  

  

N* 

Time N*v N*T AIR 

AIR* 

sin(β) Direc D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 

N* 

Time 1,00                                 

N*v -0,12 1,00                               

N*T 0,27 -0,04 1,00                             

AIR -0,13 0,96 -0,08 1,00                           

AIR* 

sin(β) -0,08 0,41 0,08 0,40 1,00                         

Direc 0,00 0,00 0,00 -0,02 -0,03 1,00                       

D1 0,08 0,02 0,03 0,02 0,00 0,00 1,00                     

D2 -0,01 -0,01 -0,08 0,02 -0,04 0,00 -0,04 1,00                   

D3 0,02 -0,07 -0,10 -0,03 -0,07 0,00 -0,05 -0,09 1,00                 

D4 0,06 -0,06 -0,14 -0,02 -0,09 0,00 -0,05 -0,08 -0,09 1,00               

D5 0,05 0,03 0,02 0,04 -0,07 0,00 -0,06 -0,10 -0,11 -0,11 1,00             

D6 0,07 0,03 0,17 0,01 0,06 0,00 -0,07 -0,12 -0,13 -0,13 -0,15 1,00           

D7 -0,13 0,00 0,14 -0,02 0,03 0,00 -0,06 -0,10 -0,11 -0,11 -0,13 -0,16 1,00         

D8 0,19 0,11 0,24 0,07 0,11 0,00 -0,05 -0,09 -0,10 -0,10 -0,11 -0,14 -0,12 1,00       

D9 -0,02 0,03 0,04 0,00 -0,10 0,00 -0,05 -0,09 -0,10 -0,10 -0,11 -0,13 -0,12 -0,10 1,00     

D10 -0,12 -0,04 -0,23 -0,05 0,07 0,00 -0,05 -0,09 -0,10 -0,09 -0,11 -0,13 -0,11 -0,10 -0,10 1,00   

D11 -0,16 -0,05 -0,17 -0,04 0,08 0,00 -0,05 -0,08 -0,09 -0,09 -0,10 -0,13 -0,11 -0,09 -0,09 -0,09 1,00 



III 

 
Table  B3. Correlation analysis for the final regression model 

  N*Time N*T AIR 

AIR* 

Direc D1 D2 D3 D4 D5 D6  D7 D8 D9 D10 D11 sin(β) 

N*Time 1,00 

N*T 0,27 1,00 

AIR -0,13 -0,08 1,00 

AIR* 

-0,08 0,08 0,40 1,00 sin(β) 

Direc 0,00 0,00 -0,02 -0,03 1,00 

D1 0,08 0,03 0,02 0,00 0,00 1,00 

D2 -0,01 -0,08 0,02 -0,04 0,00 -0,04 1,00 

D3 0,02 -0,10 -0,03 -0,07 0,00 -0,05 -0,09 1,00 

D4 0,06 -0,14 -0,02 -0,09 0,00 -0,05 -0,08 -0,09 1,00 

D5 0,05 0,02 0,04 -0,07 0,00 -0,06 -0,10 -0,11 -0,11 1,00 

D6 0,07 0,17 0,01 0,06 0,00 -0,07 -0,12 -0,13 -0,13 -0,15 1,00 

D7 -0,13 0,14 -0,02 0,03 0,00 -0,06 -0,10 -0,11 -0,11 -0,13 -0,16 1,00 

D8 0,19 0,24 0,07 0,11 0,00 -0,05 -0,09 -0,10 -0,10 -0,11 -0,14 -0,12 1,00 

D9 -0,02 0,04 0,00 -0,10 0,00 -0,05 -0,09 -0,10 -0,10 -0,11 -0,13 -0,12 -0,10 1,00 

D10 -0,12 -0,23 -0,05 0,07 0,00 -0,05 -0,09 -0,10 -0,09 -0,11 -0,13 -0,11 -0,10 -0,10 1,00 

D11 -0,16 -0,17 -0,04 0,08 0,00 -0,05 -0,08 -0,09 -0,09 -0,10 -0,13 -0,11 -0,09 -0,09 -0,09 1,00 



IV 

Appendix C – Statistics for regression analyses  
 
 
  Coef SE Coef t Stat P-value Lower 95% Upper 95% VIF 

Intercept 153,2163 1,2040 127,2532 0 150,8563 155,5763   

C_temp XXX 0,0000 -41,7044 0 XXX XXX 1,30 

CL 1,0159 0,0016 630,3632 0 1,0127 1,0190 1,26 

CL_beta 0,2651 0,0286 9,2618 2,20E-20 0,2090 0,3213 1,29 

Direc 12,5886 0,4057 31,0283 8,91E-207 11,7933 13,3838 1,00 

D1 56,7089 1,5038 37,7115 2,51E-301 53,7614 59,6564 1,30 

D2 39,1506 1,0546 37,1223 2,46E-292 37,0834 41,2178 1,79 

D3 -12,6739 0,9991 -12,6851 9,71E-37 -14,6322 -10,7155 1,95 

D4 -7,0641 1,0139 -6,9669 3,33E-12 -9,0515 -5,0767 1,91 

D5 29,1996 0,9650 30,2590 5,84E-197 27,3082 31,0911 2,24 

D6 14,5534 0,9156 15,8942 1,47E-56 12,7587 16,3481 2,65 

D7 23,3121 0,9576 24,3439 3,91E-129 21,4351 25,1891 2,32 

D8 24,0887 1,0289 23,4128 1,03E-119 22,0720 26,1053 2,18 

D9 13,5216 1,0119 13,3626 1,46E-40 11,5382 15,5050 2,05 

D10 -0,0241 0,9950 -0,0242 0,980659 -1,9744 1,9262 1,90 

 
 
 
 

  Coef SE Coef t Stat P-value Lower 95% Upper 95% VIF 

Intercept 104,5316 1,1055 94,5575 0 102,3647 106,6984 

 C_time 0,00005 0,0000 -20,6117 1,76293E-93 0,0000 0,0000 1,19 

C_v 0,0005 0,0000 111,2299 0 0,0004 0,0005 13,10 

C_temp XXX 0,0000 -50,7290 0 XXX XXX 1,35 

CL 0,5784 0,0041 140,6794 0 0,5703 0,5865 13,01 

CL_beta 0,0794 0,0227 3,5009 0,000464658 0,0350 0,1239 1,29 

Direc 9,6131 0,3217 29,8853 2,839E-192 8,9826 10,2436 1,00 

D1 60,3946 1,1982 50,4030 0 58,0460 62,7433 1,31 

D2 44,5178 0,8374 53,1632 0 42,8765 46,1592 1,80 

D3 -5,7242 0,7960 -7,1915 6,62048E-13 -7,2843 -4,1640 1,97 

D4 3,0542 0,8130 3,7567 0,000172602 1,4607 4,6477 1,95 

D5 30,7072 0,7683 39,9693 0 29,2013 32,2131 2,26 

D6 11,1794 0,7298 15,3180 1,10851E-52 9,7488 12,6099 2,69 

D7 18,3642 0,7579 24,2290 5,9445E-128 16,8786 19,8498 2,31 

D8 18,0877 0,8308 21,7722 5,7995E-104 16,4593 19,7161 2,26 

D9 6,8122 0,8042 8,4710 2,5886E-17 5,2360 8,3885 2,06 

D10 -1,6993 0,7870 -2,1591 0,030852785 -3,2419 -0,1566 1,89 

 

 

Table C1. Statistics for regression model without the C00-coefficient  

Table  C2. Statistics for regression model with the vehicle speed included in the rolling resistance coefficient   
 



V 

Appendix D – Regression analyses for each expedition  
 

Autumn 2011 

  Coef P-value Lower 95% Upper 95% 

Intercept 198,6129 0 194,1488 203,0770 

C_time -0,00007 9,73E-54 -0,00007 -0,00006 

C_temp XXX 9,42E-82 XXX XXX 

CL 1,0146 0 1,00930 1,0199 

CL_beta 0,1239 0,04149376 0,0048 0,2430 

Direc -1,4492 0,03231125 -2,7762 -0,1223 

D1 29,4268 1,67E-85 26,5183 32,3352 

D2 9,6115 2,66E-21 7,6287 11,5944 

D3 -41,7326 0 -43,6071 -39,8580 

D4 -35,2903 2,37E-264 -37,2077 -33,3730 

 
 

Autumn 2010 

  Coef P-value Lower 95% Upper 95% 

Intercept 169,65588 0 166,38818 172,92358 

C_time -0,00004 4,31E-17 -0,00004 -0,00003 

C_temp XXX 1,15E-171 XXX XXX 

CL 0,9971 0 0,9930 1,0012 

CL_beta 0,2426 4,65E-12 0,1739 0,3113 

Direc 22,6576 0 21,5904 23,7248 

D6 1,6435 0,03533243 0,1129 3,1740 

D7 8,7591 3,44E-26 7,1420 10,3762 

D8 12,7037 1,23E-44 10,9361 14,4712 

 
 

 

Spring 2010 

  Coef P-value Lower 95% Upper 95% 

Intercept 146,2845 0 141,2321 151,3368 

C_time -0,00002 2,32E-02 -0,00003 0,00000 

C_temp XXX 2,15E-72 XXX XXX 

CL 1,0911 0 1,0821 1,1001 

CL_beta 0,2781 1,78E-05 0,1512 0,4049 

Direc 15,5010 2,16E-55 13,6040 17,4160 

D10 0,0703 0,94291 -1,8552 1,9959 

 
 
 

 
 
 
 
 


