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Figure 1.1: Distributed MIMO system with L multiple-antenna radio ports transmitting
data to a multiple-antenna base station.

Higher data rates can be achieved by employing multiplexing to full extent while high
reliability benefits from diversity [8]. For this reason, the advantages of MIMO systems
have been used in the most recent cellular standards, long-term evolution (LTE), to reach
new performance heights [9].

1.2 Distributed MIMO systems

The potential of combining MIMO spatial multiplexing gains with macro-diversity1 gains
is realized by distributed MIMO (D-MIMO) systems, that promise to improve the capacity
and cell coverage [10]. In D-MIMO systems, multiple antennas, placed at one end of the
radio link, are deployed into multiple radio ports. In such configurations, each radio port ex-
periences different large-scale fading effects and path loss (a.k.a. shadowing / slow fading),
due to the different propagation paths. This is the key difference compared to conventional
point-to-point MIMO configurations, which makes the performance analysis of D-MIMO
systems a challenging mathematical problem. Fig. 1.1 clearly shows the schematic illus-
tration of a D-MIMO system with L radio ports with multiple-antennas transmitting data to

1In the wireless communications field, macro-diversity is a kind of space diversity scheme using several
transmitter antennas and/or receiver antennas for transmitting the same signal. The distance between the
transmitter and receiver is much larger than the wavelength, as opposed to micro-diversity where the distance
is in the order of or smaller than the wavelength.
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Abstract

Real-time fading channels are affected by multipath fading as well as shadowing.
In this thesis, we propose the Inverse-Gaussian distribution as a less complex alterna-
tive to the classical Log-normal model to describe shadowing effects in composite mul-
tipath fading/shadowing environments and to get closed-form solutions for the most im-
portant figures of merit. A main motivation for this selection has been the poor accuracy
of the analytically friendlier Gamma distribution to approximate the Log-normal distribu-
tion, when the latter has a large variance or long tails. As such, we demonstrate that the
Rayleigh/Inverse-Gaussian distribution can serve as a more efficient approximation to the
prevalent Rayleigh/Log-normal distribution.

Our study starts with the performance evaluation of distributed multiple-input multiple-
output (MIMO) systems in composite Rayleigh/Inverse-Gaussian fading channels. The
potential of combining MIMO spatial multiplexing gains with macro-diversity gains is re-
alized by distributed MIMO systems that promise to enhance the channel capacity and
cell coverage. Capitalizing on some generic bounding techniques, we first derive new
closed-form bounds on the ergodic capacity of optimal receivers. In order to gain useful
insights into the impact of fading parameters on optimal receivers’ performance, a detailed
characterization in the asymptotically high and low signal-to-noise ratio regimes is also
provided. In addition, we explore the “large-system” regime and provide asymptotic ex-
pressions when the number of antennas grows very large. A similar performance analysis
is performed for the achievable sum rate of distributed MIMO systems employing linear
zero-forcing and minimum mean-square error receivers.

Finally, we perform an effective rate analysis of multiple-input single-output systems
over composite Nakagami-m/Inverse-Gaussian fading channels and in the presence of sta-
tistical queueing constraints. All the resulting closed-form expressions are validated via a
set of Monte-Carlo simulations.

Index terms: Achievable sum rate, composite fading, effective rate, ergodic capacity,
MIMO systems, Rayleigh/Inverse-Gaussian fading.



Abbreviations and Acronyms

AWGN Additive White Gaussian Noise

a.k.a. also known as

CSI channel state information

D-MIMO Distributed Multiple-Input Multiple-Output

IG Inverse-Gaussian

i.i.d. independent and identically distributed

MIMO Multiple-Input Multiple-Output

MISO Multiple-Input Single-Output

MMSE MinimumMean-Squared Error

p.d.f. probability density function

QoS Quality of Service

RIG Rayleigh/Inverse-Gaussian

RV random variable

SNR signal-to-noise ratio

w.r.t. with respect to

ZF Zero-Forcing

Symbols and Notations

Symbols

β fixed and finite ratio
(

Nr

LNt
> 1

)

γ average SNR

µ Mean parameter of the IG distribution



λ Scale parameter of the IG distribution

θ Asymptotic decay-rate of the buffer occupancy

υ Path loss exponent

ϕ Gamma distributed RV

ξ IG distributed RV (Large-scale fading coefficient)

Parameters

A QoS constraint (θTB/ ln 2)

B Bandwidth of the system

Di Distance between the receiver and i-th radio port

L Number of radio ports

m Nakagami-m fading factor

N0 Noise power

Nr Number of receive antennas

Nt Number of transmit antennas per radio port

P Total transmit power

T Block-length

Numbers

C Set of complex numbers

R Set of real numbers

N Set of natural numbers
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Matrix and Vector Representations

0 all-zero vector

Ξ Diagonal matrix represents the large-scale fading effects

AH Conjugate (hermitian) transpose of matrixA

A−1 Inverse of matrixA

A† Pseudo-inverse of matrixA

Ai MatrixA with the i-th column removed

[A]ij (i, j)-th minor of matrixA

det(A) Determinant of matrixA

diag{a} Represents diagonal matrix with diagonal elements vector a

h Channel fading vector representing the small-scale fading effects

H Channel fading matrix representing the small-scale fading effects

IM (M ×M) identity matrix

n Additive white Gaussian noise vector

tr(A) Trace of matrixA

x Transmitted signal vector

y Received signal vector

Functions

Γ(·) Gamma function [1, Eq. (8.310.1)]

ψ(·) Euler’s digamma function [1, Eq. (8.360.1)]

CN (a,B) complex normally distributed vector with mean a and covariance matrix B

E(·) Expectation operation

Ei(x) Exponential integral function: Ei(x) = −
∫∞
−x

e−t

t dt [1, Eq. (8.211.1)]
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exp(·) Exponential function

log2(·) Logarithmic function with base 2

ln(·) Natural logarithmic function

vii



Contents

Notations iv

Contents viii

List of Figures xi

1 Introduction 1
1.1 Multiple-Input Multiple-Output systems . . . . . . . . . . . . . . . . . . . 3
1.2 Distributed MIMO systems . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Goals of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Channel modeling of D-MIMO systems . . . . . . . . . . . . . . . 5
1.3.2 Receivers selection for D-MIMO systems . . . . . . . . . . . . . . 6
1.3.3 Effective capacity analysis . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Key contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Structure of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Basic Multipath Propagation Characteristics 9
2.1 Path loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Slow and fast fading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Frequency-flat and frequency-selective fading . . . . . . . . . . . . . . . . 11
2.4 Modeling of flat-fading channels . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Multipath fading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5.1 Rayleigh model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5.2 Nakagami-m model . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.6 Shadowing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.6.1 Log-normal model . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.6.2 Gamma model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.6.3 Inverse-Gaussian model . . . . . . . . . . . . . . . . . . . . . . . 14

2.7 Combined path loss and shadowing . . . . . . . . . . . . . . . . . . . . . . 15

viii



2.8 Composite multipath and shadowing . . . . . . . . . . . . . . . . . . . . . 16

3 D-MIMO Systems in RIG Fading Channels 18
3.1 MIMO system model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Ergodic capacity analysis of optimal receivers . . . . . . . . . . . . . . . . 19

3.2.1 Exact analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.2 Low-SNR analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.3 High-SNR analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Ergodic capacity analysis of optimal receivers in specific cases . . . . . . . 28
3.3.1 Point-to-point MIMO systems . . . . . . . . . . . . . . . . . . . . 29
3.3.2 Lower bound – Distance parameter analysis . . . . . . . . . . . . . 29
3.3.3 Lower bound – Large system analysis . . . . . . . . . . . . . . . . 30
3.3.4 Wideband slope Sopt

0 characteristics . . . . . . . . . . . . . . . . . 35
3.4 Achievable sum rate analysis of ZF receivers . . . . . . . . . . . . . . . . 36

3.4.1 Exact analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4.2 Lower bound – Distance parameter analysis . . . . . . . . . . . . . 39
3.4.3 Lower bound – Large system analysis . . . . . . . . . . . . . . . . 40
3.4.4 Upper bound – High-SNR analysis . . . . . . . . . . . . . . . . . . 43
3.4.5 Low-SNR analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4.6 High-SNR analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5 Achievable sum rate analysis of MMSE receivers . . . . . . . . . . . . . . 47
3.5.1 A generic framework . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.5.2 Low-SNR analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.5.3 High-SNR analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 Effective Capacity Analysis of MISO Systems 55
4.1 MISO system model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1.1 RIG fading channels . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.1.2 G fading channels . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Low-SNR analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2.1 RIG fading channels . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2.2 G fading channels . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 High-SNR analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 Conclusions 67
5.1 Summary of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2 Future research areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

ix



A Standard Results and Formulae 69
A.1 Modified Bessel function of second kind . . . . . . . . . . . . . . . . . . . 69
A.2 Properties of Inverse-Gaussian distributed RVs . . . . . . . . . . . . . . . 69
A.3 Basic majorization theory results . . . . . . . . . . . . . . . . . . . . . . . 70

B Original publications 72

References 80

x



List of Figures

1.1 DistributedMIMO systemwithLmultiple-antenna radio ports transmitting
data to a multiple-antenna base station. . . . . . . . . . . . . . . . . . . . . 4

2.1 Probability density function of the Inverse-Gaussian distribution for differ-
ent λ values with E [ξ] = µ = 1 (courtesy of [33]). . . . . . . . . . . . . . . 15

2.2 Path loss, shadowing and multipath fading versus distance (with the slope
of 10υ dB/decade) (courtesy of [2]). . . . . . . . . . . . . . . . . . . . . . 16

3.1 Simulated ergodic capacity and analytical low-SNR approximation against the
transmit Eb/N0 (Nt = 2, L = 3, µi = µ = 4, λi = λ = 3, Di = D = 1500m
(∀i = 1, . . . , L), and v = 4). . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Simulated ergodic capacity and low-SNR approximation against the transmitEb/N0

for different values of the large-scale fading mean parameter µi = µ (Nr = 12,
Nt = 2, L = 3, λi = λ = 3, Di = D = 1500m (∀i = 1, . . . , L), and υ = 4). . . . 27

3.3 Simulated ergodic capacity, analytical high-SNR approximation, analytical lower
bound, and simulated upper bound against the average SNR (Nt = 2, L = 3,
µi = [4, 2, 3], λi = [3, 5, 7], Di = [1000m, 1500m, 2000m], where i = 1, . . . , L,
and υ = 4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Simulated ergodic capacity, analytical lower bound, analytical large-system lower
bound, and its asymptote against the number of transmit antennas, Nt (γ = 25dB,
L = 1, β = 2, µi = µ = 1, λi = λ = 3, Di = D = 1500m (∀i = 1, . . . , L), and
υ = 4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5 ZF receivers: Simulated sum rate, analytical upper and lower bounds against the
average SNR (Nt = 2, L = 3, µi = µ = 4, λi = λ = 3, Di = D = 1500m
(∀i = 1, . . . , L), and υ = 4). . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.6 ZF receivers: Simulated sum rate, analytical upper/lower bounds against the av-
erage SNR (Nr = 12, Nt = 2, µi = µ = 4, λi = λ = 3, Di = D = 1500m
(∀i = 1, . . . , L), and υ = 4). . . . . . . . . . . . . . . . . . . . . . . . . . . 39

xi



3.7 ZF receivers: Simulated sum rate, analytical upper/lower bounds against the aver-
age SNR for two different configurations (Nr = 12, L = 3, Nt = 2, µi = µ = 4,
λi = λ = 3, (∀i = 1, . . . , L), υ = 4 with (a) anti-symmetrical configuration:
D1 = 1000m, D2 = 1500m, D3 = 2000m and (b) symmetrical configuration:
D1 = D2 = D3 = 1500m). . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.8 ZF receivers: Simulated sum rate, exact and asymptotic lower bounds against the
number of transmit antennas, Nt (γ = 15dB, L = 2, β = 2, µi = µ = 1,
λi = λ = 10 (∀i = 1, . . . , L), Di = [1000m, 1500m], and υ = 4). . . . . . . . . 43

3.9 MMSE receivers: Low-SNR simulated sum rate and analytical linear approxima-
tion against the transmit Eb/N0 (Nt = 3, L = 3, µi = µ = 4, λi = λ = 13,
Di = D = 1500m (∀i = 1, . . . , L), and υ = 4). . . . . . . . . . . . . . . . . . 51

3.10 Low-SNR simulated sum rate (optimal, ZF, and MMSE) and analytical linear ap-
proximations against the transmit Eb/N0 (Nr = 12, Nt = 2, L = 3, µi = µ = 1,
λi = λ = 10 (∀i = 1, . . . , L), Di = [1000m, 1500m, 2000m], and υ = 4). . . . . 52

4.1 Low-SNR effective rate and analytical linear approximation against the transmit
Eb/N0 (Nt = 6, A = 4, λ = 10, andm = 1). . . . . . . . . . . . . . . . . . . 63

4.2 Low-SNR effective rate and analytical linear approximation against the transmit
Eb/N0 (Nt = 6,m = 1, λ = 10, and µ = 0.5). . . . . . . . . . . . . . . . . . 64

4.3 Low-SNR effective rate and analytical linear approximation against the transmit
Eb/N0 (Nt = 6,m = 1, λ = 10, and µ = 0.5). . . . . . . . . . . . . . . . . . 65

4.4 Low-SNR effective rate and analytical linear approximation against the transmit
Eb/N0 (Nt = 6, A = 4, λ = 10, and µ = 0.5). . . . . . . . . . . . . . . . . . . 66

4.5 High-SNR effective rate and analytical linear approximation against the SNR (A =

4,m = 2, λ = 10, and µ = 2). . . . . . . . . . . . . . . . . . . . . . . . . . 66

xii



Chapter 1

Introduction

Wireless communications is one of the fastest growing segments of the communications
industry. The exponential growth of cellular telephone usage and wireless access networks
have led to great optimism about wireless technology in general [2]. Over the past sev-
eral decades, demands for increasing the data rates within a fixed bandwidth and with no
extra power consumption have gained much research interest. In addition to that, wire-
less networks are expected to provide high-quality services (such as data, voice, and video)
between several users and multiple sources of information. Many new applications, includ-
ing wireless sensor networks, smart homes and appliances, and remote telemedicine, are
emerging from research ideas to concrete systems. However, many technical challenges
remain in designing robust wireless systems to support these aforementioned emerging ap-
plications. On the other hand, the convergence between decentralized wired and wireless
technologies will allow operators and end users to enjoy all the functionalities and network
resources towards the direction of ubiquitous communications. This means that end users
will be able to receive the same service through different wireless access networks regard-
less of the devices they utilize.

We have many different ways to segment this complex field into different applications,
systems, or coverage regions [2], [3]. Wireless applications include internet access, web
browsing, voice, paging and short messaging, file transfer, video tele-conferencing, enter-
tainment, sensing, subscriber information services, and distributed control. Systems include
cellular telephone systems, wireless local area networks, wide-area wireless data systems,
satellite systems, and ad-hoc wireless networks. Coverage regions include inside-building,
campus area, city, regional, and global. The best characterization of wireless based com-
munications along these various segments has resulted in considerable fragmentation in
the industry, as evidenced by the many different wireless standards, products, and services
being offered. One reason for this fragmentation is that different wireless applications have
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different requirements. For example, Voice systems have relatively low data rate require-
ments and can tolerate a fairly high probability of bit error, but the total delay must be less
than around 30 msec or it becomes noticeable to the end user. On the other hand, data
systems typically require much higher data rates and very small bit error rates but do not
have a fixed delay requirement. Likewise, Real-time video systems have high data rate
requirements coupled with the same delay constraints as voice systems, while paging and
short messaging services have very low data rate requirements and no delay constraints.
The associated bottlenecks and single points-of-failure are clearly undesirable for the over-
all system. In addition, the transmission and signal processing in the hand held portable
device must consume minimal power, while the signal processing that required to support
multimedia applications and networking functions should be power-intensive. Thus, wire-
less networks place as much of the processing burden as possible on fixed sites (typically
base stations) with large power resources.

Design of wireless networks differs fundamentally from wired network design due to
the nature of the wireless channel. This channel is an unpredictable and difficult com-
munications medium. As a signal propagates through a wireless channel, it experiences
random fluctuations in time if the transmitter, receiver, or surrounding objects are moving,
due to changing reflections and attenuation. It is also susceptible to noise, interference, and
other channel impediments, while these impediments change over time in unpredictable
ways due to users’ movement [4]. The wireless radio channel poses a severe challenge as
a medium for reliable high-speed communications. Thus, the characteristics of the channel
appear to change randomly with time, which makes it difficult to design reliable systems
with guaranteed performance.

We can also characterize the variation in received signal power over distance due to
path loss, multipath fading, and shadowing. This demanding task can normally be ac-
complished by conducting radio channel measurements followed by the extraction of the
path’s parameters and the development of accurate channel models. A wireless system also
consists of multiple dimensions: time, frequency, space, and users. Opportunistic com-
munication maximizes the spectral efficiency by measuring when and where the channel
is good and only transmits in those degrees of freedom. In this context, channel fading is
beneficial in the sense that the fluctuations of the channel across the degrees of freedom
ensures that there will be some degrees of freedom in which the channel is very good [3].
The technological breakthroughs to enable higher frequency systems with the same cost
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and performance would greatly reduce the spectrum shortage. However, path loss at these
higher frequencies is larger, thereby limiting range, unless directional antennas are used.

1.1 Multiple-Input Multiple-Output systems

It has been known for a while that in a downlink (i.e., base station to mobile terminal
communication) with multiple receive antennas at the base station, allows several users
to simultaneously communicate with the transmitter. Multiple antennas in effect increase
the number of degrees-of-freedom in the system and allow spatial separation of the signals
from the different users. It has been shown that a similar effect occurs in a point-to-point
channel with multiple transmit and receive antennas, i.e., even when the antennas of the
multiple users are co-located. This holds, provided that the scattering environment is rich
enough to allow the receive antennas to separate out the signal from the different transmit
antennas, allowing spatial multiplexing of information [3]. The most promising technol-
ogy that satisfies all these requirements is the so-called Multiple-Input Multiple-Output
(MIMO) systems, which make use of multiple antenna elements at both the transmitter and
receiver sides. Foschini [5] and Telatar [6] separately demonstrated in their seminal works,
the performance improvement when multiple antenna elements are employed at both ends
of a radio link. The price to pay is increased complexity of the hardware (number of RF
amplifier front-ends, etc.), as well as the complexity and energy consumption of the signal
processing at both ends. This is a typical example where channel fading is beneficial to
communication.

The most attractive features of MIMO technology are the so-called spatial multiplex-
ing gain and spatial diversity [7]. By transmitting parallel or orthogonal data streams over
a MIMO channel, the capacity of MIMO channel can potentially increase linearly with
the minimum number of transmit and receive antennas [3], [6]. Compared to conven-
tional Single-Input Single-Output (SISO) systems, MIMO systems significantly increase
the spectral efficiency when using spatial multiplexing. Diversity occurs when the antenna
spacing is large enough such that independent signal propagation paths are created, re-
sulting in a reduced variation of the received signal’s power. Diversity also increases the
system reliability by sending the same information through multiple independent paths so
that the probability of successful transmission is higher and thus it enhances the error rate
performance. However, there is an inherent trade-off between spatial multiplexing and spa-
tial diversity, which means that increasing the diversity advantage comes at the expense
of decreasing the spatial multiplexing gain, and vice versa [7]. In fact, the authors in [7]
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Figure 1.1: Distributed MIMO system with L multiple-antenna radio ports transmitting
data to a multiple-antenna base station.

clearly showed that the diversity-multiplexing trade-off achievable by a system is a more
fundamental measure of its performance than just its maximal diversity gain or its maximal
multiplexing gain alone. In general, the optimal trade-off is determined by system require-
ments such as the desired data rate, efficiency, and reliability of transmission. Higher data
rates can be achieved by employing multiplexing to full extent while high reliability ben-
efits from diversity [8]. For this reason, the advantages of MIMO systems have been used
in the most recent cellular standards, long-term evolution (LTE), to reach new performance
heights [9].

1.2 Distributed MIMO systems

The potential of combining MIMO spatial multiplexing gains with macro-diversity1 gains
is realized by distributed MIMO (D-MIMO) systems, that promise to improve the capacity
and cell coverage [10]. In D-MIMO systems, multiple antennas, placed at one end of
the radio link, are deployed into multiple radio ports2. In such configurations, each radio

1In the wireless communications field, macro-diversity is a kind of space diversity scheme using several
transmitter antennas and/or receiver antennas for transmitting the same signal. The distance between the
transmitter and receiver is much larger than the wavelength, as opposed to micro-diversity where this distance
is in the order of or smaller than the wavelength.

2The term “radio port” refers to every terminal or user transmitting data to a base station in an uplink
scenario.
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port experiences different large-scale fading effects and path loss (a.k.a. shadowing / slow
fading), due to the different propagation paths. This is the key difference compared to
conventional point-to-point MIMO configurations, which makes the performance analysis
of D-MIMO systems a challenging mathematical problem. A schematic illustration of a D-
MIMO system with L radio ports, with multiple-antennas transmitting data to a multiple-
antenna base station is depicted in figure 1.1. In D-MIMO systems, the effects of large-
scale fading are very critical. As such, there are very few analytical works (for e.g., [11],
[12]) investigating the impact of composite fading channels (i.e., mixture of both small- and
large-scale fading) on the performance of D-MIMO systems, mainly due to the difficulty
in averaging the channel eigen-statistics over the shadowing distribution. Note also that the
system under investigation can be considered as a typical MIMOMAC system or Multiuser
MIMO system. The main reason for using the terminology distributed MIMO herein, is for
the sake of consistency with previous related papers [11], [12].

1.3 Goals of this thesis

The main goals of this thesis work can be summarized as follows:

1.3.1 Channel modeling of D-MIMO systems

In this thesis, our main focus will be on the modeling of a new and an appropriate stochas-
tic channel model that will capture exactly the composite fading fluctuations of D-MIMO
channel. Also, we need to design new antenna array configurations based on channel mod-
els and antenna theory, to achieve higher ergodic capacity. On the other hand, we need to
develop a simpler, tractable information-theoretic analysis, for a fundamental communica-
tion theory behind MIMO systems to utilize available analytical tools and random matrix
theory principles.

In the literature, the Nakagami-m, Rayleigh distributions are often used to model the
fast fading effects, whereas the Log-normal, Gamma distributions model the slow fading
effects. In this context, the performance analysis of D-MIMO systems was explored for the
case of Nakagami-m/Log-normal fading channels in [11] while in [12] it was investigated
over Nakagami-m/Gamma fading (a.k.a. K fading) channels. The results using the gamma
distribution as an alternative to the Log-normal distribution are essentially approximations
and for the large variance case or in the tails of the Log-normal distribution, the gamma
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distribution does not yield a good approximation [18]. Motivated by these intrinsic defi-
ciencies, in this thesis, we propose the Inverse-Gaussian distribution as a more accurate
approximation to the classical Log-normal model to describe large-scale fading effects.

1.3.2 Receivers selection for D-MIMO systems

One common approach to exploit the ergodic capacity of D-MIMO systems is to employ
spatial multiplexingwhere independent information streams are transmitted from the anten-
nas. These information streams are then separated at the receiver by means of appropriate
signal processing techniques which achieve optimal performance. Despite the abundance of
literature on D-MIMO channel capacity, the vast majority of existing works have focused
primarily on systems employing nonlinear optimal receivers. These receivers minimize
the error probability when all data vectors are equally likely by performing an exhaustive
search (see e.g., [11–13]). The main disadvantages of such schemes are their high complex-
ity and cost of implementation, especially for large number of antennas, which prohibits
their deployment in practical communication systems.

To circumvent these issues, linear receivers such as zero-forcing (ZF) [14], [15] and
minimummean-squared error (MMSE) [16] receivers are often considered as low complex-
ity alternatives. They provide sub-optimal performance but offer significant computational
complexity reduction with tolerable performance degradation. Linear MMSE receiver is
particularly important as it uses full degrees-of-freedom of the channel to optimally trades
off strengthening the energy of the desired signal of interest and canceling unwanted in-
terference, such that the signal-to-interference-and-noise ratio (SINR) is maximized [3].
Also, it operates close to optimal receivers’ performance at both low- and high-SNRs. On
the other hand, linear ZF receiver is relatively simpler compared to MMSE; yet, when in-
dependent decoding is used, it suffers from an inherent noise enhancement.

While prior relevant works have improved our knowledge on optimal, ZF and MMSE
receivers’ characterization, an analytical framework encompassing D-MIMO systems oper-
ating over composite Rayleigh/Inverse-Gaussian fading channels is not yet available, which
motivated our research interest in this topic.

1.3.3 Effective capacity analysis

The delay constraints imposed by next generation wireless applications (e.g., interactive
and multimedia streaming, interactive gaming, voice over IP (VoIP), mobile TV and com-
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puting) require a suitable metric (for e.g., quality-of-service (QoS)) for assessing their
impact on the overall system performance. In most of studies on MIMO/Multiple-Input
Single-Output (MISO) channel capacity, the classical Shannon’s ergodic capacity is em-
ployed as the main performance metric. However, this formulation does not capture the
performance in the presence of QoS limitations in the form of constraints on queuing de-
lays, although providing QoS assurances in many delay-sensitive wireless systems. Since
the classical Shannon’s ergodic capacity fails to do so, the so-called effective capacity was
recently established as a rigorous alternative [17].

While prior relevant works have improved our knowledge on the effective capacity char-
acterization of communication systems, a performance analysis of MISO systems operat-
ing over composite Rayleigh/Inverse-Gaussian and Nakagami-m/Inverse-Gaussian fading
channels is not yet available, which motivated our research interest in this topic.

1.4 Key contributions

The original contributions of this thesis work are now summarized as follows:

• The main objective is to analytically investigate the performance of D-MIMO sys-
tems with optimal, linear ZF and MMSE receivers over Rayleigh/Inverse-Gaussian
(RIG) fading channels. It is important to note that, to the best of the author’s knowl-
edge, the results in this thesis present the first-ever analytical investigation of D-
MIMO systems over composite RIG fading channels.

• Capitalizing on some generic bounding techniques, we first derive new closed-form
bounds on the ergodic capacity/sum rate of optimal, ZF and MMSE receivers. The
proposed bounds apply for any finite number of antennas and remain relatively tight
across the entire SNR range. These bounds are particularly tractable and allow for
fast and efficient computation. With the help of these proposed bounds, we ana-
lytically explore the “large-system” regime by assuming that either the number of
receive or transmit antennas grows large.

• In order to gain useful insights into the impact of fading parameters on optimal,
ZF and MMSE receivers’ performance, a detailed characterization in the asymptot-
ically high and low SNR regimes is also provided. In these asymptotic cases, we
investigate the notions of minimum normalized energy per information bit to reli-
ably convey any positive rate and wideband slope, along with the high-SNR slope

7



and high-SNR power offset, respectively. We explicitly assess the performance off-
set between ZF, MMSE, and optimal receivers, we compare the derived results with
previously reported results for the latter receivers. Our analytical results are quite
informative and insightful; for example, they enable us to characterize the impact of
large-scale fading parameters as well as path-loss on the sum rate.

• We pursue a detailed effective capacity analysis of Nakagami-m/Inverse-Gaussian
MISO fading channels by deriving new, analytical expressions in the asymptotically
high and low SNR regimes, for which tractable, closed-form effective capacity ex-
pressions are presented. These results enable us to draw useful conclusions about
the impact of system parameters, such as delay constraints, fading parameters and
number of antennas, on the effective rate of MISO fading channels.

1.5 Structure of this thesis

An outline of the remainder of this thesis is given as follows:

Chapter 2 introduces the basic principles of multipath propagation and subsequently
presents the fundamental properties of path loss and different fading models. More specifi-
cally, in this chapter, we describe composite fading models, the Inverse-Gaussian distribu-
tion and their characteristics.

Chapter 3 studies the performance evaluation of D-MIMO systems in composite RIG
fading channels. Capitalizing on some generic bounding techniques, we first derive new
closed-form bounds on the ergodic capacity of optimal receivers. In order to gain useful
insights into the impact of fading parameters on optimal receivers’ performance, a detailed
characterization in the asymptotically high and low SNR regimes is also provided. In ad-
dition, we explore the “large-system” regime and provide asymptotic expressions when
the number of antennas grows large. A similar performance analysis is performed for the
achievable sum rate of D-MIMO systems employing linear ZF and MMSE receivers.

Chapter 4 presents the closed-form expressions for the effective capacity of composite
MISO channels, which enable efficient evaluation of the effective capacity of the systems
with arbitrary numbers of antennas, for high and low SNRs.

Chapter 5 forms a summary of the most important conclusions drawn from this thesis
and proposes several research paths for future work.
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Chapter 2

Basic Multipath Propagation
Characteristics

In a wireless channel, the interaction of the transmitted signal with the physical environ-
ment as it travels towards the receiver creates multiple propagated wavefronts. This phe-
nomenon is commonly referred to as multipath propagation. Multipath propagation occurs
due to three basic mechanisms, namely reflection, diffraction, and scattering. The multi-
path propagation can also be characterized by means of path loss and fading. The superpo-
sition of all impinging waves at the receiver side gives rise to fluctuations in the amplitude
and phase of the received signal, commonly referred as fading, which is also distance de-
pendent. We further classify fading in two categories namely slow fading (or shadowing
or large-scale fading when path loss is included) and fast fading (or multipath fading or
small-scale fading). In this chapter, we characterize the variations in received signal power
over distance due to path loss, multipath fading, and shadowing. A brief description of
these manifestations is provided in the following sections as follows:

2.1 Path loss

Path loss is caused by dissipation of the power radiated by the transmitter as well as the
effects of the propagation channel. Path loss can be defined as the ratio between the re-
ceived and transmitted powers. Accurate path loss models can be obtained from complex
analytical models or empirical measurements. A number of path loss models have been
developed over the years to predict path loss in wireless environments such as macro-cells,
micro-cells, and inside buildings (refer to [2, Ch. 2], [19], and [20]).
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A simplified model for path loss as a function of distance is given by [2]

Pr

Pt
= K

(
D

D0

)−υ

(2.1)

where Pt, Pr are the average transmit and receive powers, respectively, K is a unit-less
constant which depends on the antenna characteristics and the average channel attenuation,
D0 is a reference distance for the antenna far-field, and υ is the path loss exponent with
typical values ranging from 2 to 6. Path loss models generally assume that path loss is the
same at a given transmit-receive distance, D. The values for K,D0, and υ can be obtained
to approximate either an analytical or empirical model.

2.2 Slow and fast fading

Slow fading (a.k.a. large-scale fading) is due to path loss of the signal as a function of
distance and shadowing by large objects such as buildings and hills. This occurs as a mo-
bile user moves through a distance of the order of the cell size. On the other hand, fast
fading (a.k.a. small-scale/multipath fading), occurs due to the constructive and destructive
interaction of the multiple signal paths between the transmitter and receiver. This occurs at
the spatial scale of the order of the carrier wavelength, and is frequency dependent.

A clear distinction between slow and fast fading is very important for the mathematical
modeling of fading channels and for the performance evaluation of communication systems
operating over such class of channels. This distinction is related to the so-called coherence
time Tc of the channel, which measures the period of time over which the fading process
is correlated (or equivalently, the period of time after which the correlation function of two
impulses of the channel response taken at the same frequency but different time instants
drops below a certain predetermined threshold). The coherence time is also related to the
channel Doppler spread BD by [2], [21]

Tc ≈
1

BD
. (2.2)

The fading is said to be slow fading if the symbol duration Ts is smaller than the channel’s
coherence time Tc (i.e., Ts << Tc); otherwise it is considered to be fast fading.

In slow fading a particular level of fade will affect many successive symbols, which
leads to burst of errors, whereas in fast fading the fading differs from symbol to symbol.
In the latter case and when the receiver decisions are based on an observation over two or
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more symbol durations (e.g., differentially coherent or coded communications), it becomes
necessary to consider the variation of the fading channel from one symbol duration to the
next. This can be done through prevalent correlation model that depends essentially on the
particular propagation environment and the communication systems under consideration.

2.3 Frequency-flat and frequency-selective fading

Frequency selectivity is an another important characteristic of fading channels. If all the
spectral components of the transmitted signal are affected in a similar manner, the fading is
said to be frequency-flat. This is the case for narrowband systems, in which the transmitted
signal bandwidth Bs is much smaller than the channel’s coherence bandwidth Bc (i.e.,
Bs << Bc). This bandwidth measures the frequency range over which the fading process
is correlated and is defined as the frequency band over which the correlation function of
two samples of the channel response, taken at the same time but different frequencies, falls
below a predifined value. In addition to that, the coherence bandwidth is related to the
maximum delay spread στmax by

Bc ≈
1

στmax

. (2.3)

On the other hand, if all the spectral components of the transmitted signal are affected by
different amplitude gains and phase shifts, the fading is said to be frequency-selective. This
applies to wideband systems in which the transmitted bandwidth is much bigger than the
channel’s coherence bandwidth.

2.4 Modeling of flat-fading channels

When fading affects narrowband systems, the received carrier amplitude is modulated by
the fading amplitude/envelope ϕ, where ϕ is a random variable (RV) with mean-square
value Ω = ϕ2 and probability density function (p.d.f.) pϕ(ϕ), which is dependent on the
radio propagation environment. After passing through the fading channel, the signal is
perturbed at the receiver by additive white Gaussian noise (AWGN), which is typically
assumed to be statistically independent of the fading amplitude ϕ, and which is charac-
terized by a one-sided power spectral density N0 Watts/Hertz. Equivalently, the received
instantaneous signal power is expressed as ϕ2. Thus, we define the instantaneous signal-
to-noise ratio (SNR) per symbol by γin = ϕ2Es/N0 and the average SNR per symbol by
γ = ΩEs/N0, whereEs is the energy per symbol. In this thesis, our performance evaluation
over fading channels will be a function of the average SNR per symbol γ.

11



2.5 Multipath fading

As we mentioned earlier, multipath fading occurs due to the constructive and destructive
combinations of randomly delayed, reflected, scattered, and diffracted transmitted signal
components. This type of fading is relatively ‘fast’ and is therefore responsible for the
short-term signal variations. Depending on the nature of the radio propagation environ-
ment, there are different models describing the multipath fading envelope’s statistical be-
havior. It is thus of interest, to outline the commonly used statistical models, their corre-
sponding p.d.f.s and their relation to physical channels.

2.5.1 Rayleigh model

The Rayleigh distribution is commonly used to model multipath fading environment if no
line-of-sight (LOS) path exists between the transmitter and receiver antennas. In this case,
the channel fading envelope ϕ is distributed according to

pϕ(ϕ) =
2ϕ

Ω
exp

(

−ϕ2

Ω

)

, ϕ,Ω > 0. (2.4)

The Rayleigh distribution gives the best fit to the propagation of reflected and refracted
paths through the troposphere and ionosphere, and to ship-to-ship radio links [21]. For any
two Gaussian random variables X and Y , both with mean zero and equal variance σ2, it
can be shown that Z =

√
X2 + Y 2 is Rayleigh-distributed [22].

2.5.2 Nakagami-mmodel

The Nakagami-m distribution is a more general multipath fading distribution, which is
given by [23]

pϕ(ϕ) =
2mmϕ2m−1

ΩmΓ(m)
exp

(

−mϕ2

Ω

)

, ϕ,Ω > 0 (2.5)

where m is the Nakagami-m fading factor, which ranges from 0.5 to∞. The Nakagami-
m distribution includes the one-sided Gaussian distribution (m = 0.5) and the Rayleigh
distribution (m = 1) as special cases. In the limit as m → +∞, the Nakagami-m fading
channel converges to a nonfading AWGN channel (i.e., there is no fading). The Nakagami-
m distribution gives the best fit to land-mobile and indoor-mobile multipath propagation, as
well as ionospheric radio links [21], [23]. Note that some empirical measurements support
values of them parameter less than one, in which case the Nakagami-m fading causes more
severe performance degradation than Rayleigh fading [2].

12



2.6 Shadowing

A signal transmitted over a wireless channel will experience random, ‘slow’ variations of
the mean signal level at a given distance due to blockage from obstacles (such as trees,
buildings, etc.), reflecting surfaces, and scattering objects in the signal path. Since the
location, size, and dielectric properties of the blocking objects as well as the changes in
reflecting surfaces and scattering objects that cause the random attenuation are generally
unknown, statistical models must be used to characterize this attenuation. Communication
systems’ performance will depend only on this shadowing if the radio receiver is able to
average out the fast multipath fading or if an efficient “micro” diversity system is used
to eliminate the effects of multipath fading. Shadowing also decorrelates the transmitted
signal over decorrelation distance. It is thus of interest, to outline the commonly used
statistical models, their corresponding p.d.f.s and their relation to physical channels.

2.6.1 Log-normal model

The Log-normal distribution is the prevalent model in the characterization of the shadowing
effects in various radar, optical and land-mobile systems [2], [21]. This model has been
confirmed empirically to accurately model the variation in received power in both outdoor
and indoor radio propagation environments (see e.g., [19], [20]), in which case the path
SNR per symbol γ has a p.d.f. [24]

pξ(ξ) =
η

ξ
√
2πσ2

exp

(

−(η ln ξ − µ)2

2σ2

)

, ξ ≥ 0 (2.6)

where η = 10/ ln 10 = 4.3429, and µ (dB) and σ (dB) are the mean and the standard
deviation of the variable’s natural logarithm, respectively.

2.6.2 Gamma model

Although the classical Log-normal distribution appears to be a simple expression to repre-
sent shadowing effects, it is often inconvenient when it is used in the performance evalua-
tion of several communication systems due its logarithmic nature. TheGamma distribution
has been recently proposed as an approximation to the Log-normal distribution (e.g., [25],
[26]) and it was demonstrated as a substitute to the Log-normal distribution to describe the
shadowing phenomena in terrestrial and satellite channels (e.g., [27], [28]). The p.d.f. of
the Gamma distribution is given by

pξ(ξ) =
1

Γ(k)

(
ξk−1

θk

)

exp

(

−ξ

θ

)

, ξ, θ, k > 0 (2.7)
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where k, θ = E [ξ]/k, are the shape and scale parameters of the Gamma distribution, re-
spectively.

One of the most useful properties of the Gamma distribution is the reproductive prop-
erty. This means that the sum of n independent and identically distributed (i.i.d.) Gamma
random variables (RVs) with common scale parameter θ and shape parameters {ki}ni=1 is
also Gamma distributed with parameters

(∑n
i=1 ki, θ

)

[29], [30]. We also invoke that a
squared Rayleigh RV follows the Gamma distribution with scale parameter 1.

2.6.3 Inverse-Gaussian model

For the large variance case or in the tails of the Log-normal distribution, the Gamma distri-
bution does not yield a good approximation [18]. The Inverse-Gaussian (IG) distribution
has been demonstrated as a more accurate approximation to the the Log-normal distribution
when heavy-tailed behavior is expected [31–33]. The IG distribution was initially proposed
by Tweedie in 1945 during a statistical investigation of data relating to electrophoretic mea-
surements [34], [35]. The name “Inverse-Gaussian” comes from the inverse relationship
between the cumulant generating functions of these distributions and those of standard nor-
mal (i.e., Gaussian) distributions [36], [37]. The same class of distributions was derived by
Wald [38] as an asymptotic form of distribution of average sample number in sequential
analysis. Sometimes, the name “Wald distribution” is also used for members of this class.
The IG distribution is generally used to model any non-negative positively skewed data.

This IG distribution was originally introduced in [18], [39] as an accurate substitute
to the Log-normal distribution for describing shadowing effects in RF wireless communi-
cations. In the context of optical systems, it has been employed for modeling the statis-
tical behavior of avalanche photo diodes receivers [40] and it has been used to describe
turbulence-induced fading in free-space optical systems [41]. In addition to that the au-
thors of [41], [42] employed Kolmogorov–Smirnov goodness of fit statistical tests in order
to measure the difference between the two models (i.e., IG and Log-normal) and they pro-
posed the IG distribution, as a less complex alternative to the Log-normal distribution. On
the other hand, Karmeshu and Agrawal used the Kullback–Leibler measure and found that
the IG approximates the Log-normal distribution more accurate than the Gamma distribu-
tion [18]. The p.d.f. of the IG distribution is given by [33], [36], [37]

pξ(ξ) =

√

λ

2π
ξ−

3
2 exp

(

−λ(ξ − µ)2

2µ2ξ

)

, ξ, µ,λ > 0 (2.8)
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ξ

pξ(ξ)

Figure 2.1: Probability density function of the Inverse-Gaussian distribution for different λ
values with E [ξ] = µ = 1 (courtesy of [33]).

where µ, λ are the mean and the scale parameters of the IG distribution, respectively. The
p.d.f. of the IG distribution for different λ values is plotted in Fig. 2.1. As λ → ∞, the IG
distribution becomes more like a Gaussian distribution. The IG distribution also represents
the first hitting time distribution for a Brownian motion with drift and this interpretation
has been extensively used in situations where one is actually concerned with waiting times
[43], [44].

The advantage of using the Gamma and the IG distribution as an alternative to the Log-
normal distribution is that it can allow tractable algebraic manipulation in the performance
analysis of communication systems.

2.7 Combined path loss and shadowing

Models for path loss and shadowing can be superimposed to capture power falloff versus
distance along with the random attenuation about this path loss due to shadowing. In this
combined model, average path loss (dB) is characterized by the path loss model and shadow
fading, with a mean of 0 dB, creates variations about this path loss. The figure 2.2 shows the
combination of the simplified path loss model (2.1) and the Log-normal shadowing random
process defined by (2.6). For this combined model, the ratio of received to transmitted
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K (dB)

Pr/Pt (dB)

0 log10(D/D0)

Figure 2.2: Path loss, shadowing and multipath fading versus distance (with the slope of
10υ dB/decade) (courtesy of [2]).

power in dB is given by

Pr

Pt
(dB) = 10 log10K − υ10 log10

(
D

D0

)

− ψdB (2.9)

where ψdB is a Gaussian distributed RV with zero-mean and variance σ2
ψdB
. In (2.9) and as

shown in Fig. 2.2, the path loss decreases linearly with log10(D/D0) with a slope of 10υ
dB/decade.

2.8 Composite multipath and shadowing

Mixtures of multipath fading and shadowing are frequently encountered in different realis-
tic scenarios in wireless communication systems. A composite multipath/shadowed fading
environment consists of multipath fading superimposed by shadowing effects. In this envi-
ronment, the receiver does not average out the envelope fading due to multipath but rather
reacts to the instantaneous composite multipath/shadowed signal [45, Sec. 2.4.2]. This is
often the scenario in congested downtown areas with slowmoving pedestrians and vehicles
or stationary users [46–48]. This type of composite fading is also observed in land–mobile
satellite systems subject to urban shadowing [49], [50]. There are many approaches and
various combinations suggested in the literature for obtaining the composite distribution.
The interested readers are referred to [50, Table I] for a brief survey of those composite
distributions in the context of narrowband land–mobile satellite modeling.

A composite distribution arises therefore as a suitable statistical characterization of the
SNR in such class of channels. Composite multipath/shadowing fading channels are gen-
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erally modeled as a mixture of Nakagami-m or Rayleigh multipath fading and Log-normal
shadowing. The composite Gamma/Log-normal p.d.f. was introduced by Ho and Stüber
[48] and arises in Nakagami-m shadowed environments, whereas Suzuki [46] proposed
a composite Rayleigh/Log-normal p.d.f. to model the multipath/shadowing distribution
for the fading amplitude that characterizes the mobile channel. Since the Log-normal
distribution is used to describe the shadowing phenomenon for both the Suzuki and the
Rayleigh/Log-normal models, the resulting composite p.d.f. is unfortunately not in closed-
form, thereby making the performance evaluation of communication links cumbersome.

Using the Gamma or IG distribution as an alternative to the Log-normal distribution
leads to other simpler composite closed-form distributions. For example, the composite
distribution that approximates the Rayleigh/Log-normal one quite well is the so-called K
distribution [51], which is a mixture of both the Rayleigh and Gamma distributions. The K
distribution has been suggested for modeling diverse scattering phenomena such as tropo-
spheric propagation of radio waves, various types of radar clutter, and optical scintillation
from the atmosphere [52], [53].

In this thesis, we first propose the IG distribution as an alternative distribution to the
Log-normal distribution for the performance evaluation of distributed MIMO and MISO
systems. We then consider the more general Rayleigh/IG (RIG) and Nakagami-m/IG (a.k.a.
G distribution) composite distribution models in the performance analysis. The G distribu-
tion was first proposed in [54] in the context of Synthetic Aperture Radar image modeling,
whereas in [55], it was first applied to the performance evaluation of communications sys-
tems, and in [56], in the context of relaying systems.
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Chapter 3

D-MIMO Systems in RIG Fading
Channels

In this chapter, we present a detailed performance analysis of three receivers, namely opti-
mal, ZF, and MMSE. First, we introduce a distributed MIMO (D-MIMO) system operating
over RIG fading channels. Secondly, we present analytical expressions for the ergodic ca-
pacity of optimal receivers and derive new upper/lower capacity bounds, along with low-
and high-SNR analytical expressions. Next, we analyze these analytical expressions for
various types of special cases, especially in the “large-system” regime. Finally, we perform
a similar analysis for the achievable sum rate of linear ZF and MMSE receivers.

3.1 MIMO system model

Consider a typical MIMO system with Nr receive antennas and L radio ports each con-
nected to Nt transmit antennas with the assumption Nr ≥ LNt. The input-output model
for this D-MIMO system is

y =
√
γHΞ1/2x+ n (3.1)

where x ∈ CLNt×1 and y ∈ CNr×1 are the transmitted and received signal vectors, re-
spectively, while n ∼ CN (0, INr) is the complex additive white Gaussian noise (AWGN)
and γ = P/N0 is the average SNR, where P is the total transmit power andN0 is the noise
power. The large-scale fading effects are represented by the diagonal matrixΞ ∈ RLNt×LNt

whose structure is Ξ = diag{INtξi/D
υ
i } for i = 1, . . . , L. Note that all Nt antennas in

the i-th radio port experience the same large-scale fading1. The distance between the re-
ceiver and the i-th radio port is denoted by Di, while υ is the path-loss exponent. The

1This assumption is valid because total antenna separation distance between Nt antennas (in the i-th
radio port) is much lesser compared to distance from the receiver. Moreover, all radio ports are uniformly
distributed in a cell and they are separated with larger distances between them. As such, each radio port
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large-scale fading coefficients, ξi, are modeled as independent IG random variables (RVs),
ξi ∼ IG(µi,λi), or

p(ξi) =

√

λi

2π
ξ
− 3

2

i exp

(

−λi(ξi − µi)2

2µ2
i ξi

)

, ξi, µi,λi > 0 (3.2)

where µi, λi are the mean and the scale parameters of the IG distribution, respectively [33].

The entries of the channel matrix H ∈ CNr×LNt are assumed to be independent and
identically distributed (i.i.d.) Rayleigh RVs, i.e., hst ∼ CN (0, 1), where s = 1, . . . , Nr and
t = 1, . . . , LNt. We invoke that a squared Rayleigh RV follows the Gamma distribution
with scale parameter 1. We now recall that the sum of n i.i.d. Gamma RVs with common
scale parameter θ and shape parameters {ki}ni=1 is also Gamma distributed with parameters
(∑n

i=1 ki, θ
)

[30]. As such, the sum of Nr i.i.d. Gamma RVs with scale parameter 1 is
distributed as ϕi ∼ Gamma(Nr, 1), or

p(ϕi) =
ϕNr−1
i

Γ(Nr)
exp(−ϕi), ϕi ≥ 0. (3.3)

3.2 Ergodic capacity analysis of optimal receivers

In this section, we perform an ergodic capacity analysis of D-MIMO systems with optimal
receivers in RIG fading channels. We assume that the receiver has perfect channel state
information (CSI) while the transmitter has nor statistical neither instantaneous CSI and
as such performs uniform power allocation across all the data streams. Then, the MIMO
mutual information reads as [6]

I ! log2

(

det
(

INr +
γ

LNt
HΞHH

))

(bits/s/Hz) (3.4)

while the MIMO ergodic capacity is given by

Cerg ! E [I] = E
[

log2

(

det
(

INr +
γ

LNt
HΞHH

))]

(3.5)

where the expectation is taken over all channel realizations of H, Ξ and the channel
is assumed to be ergodic. We use the following matrix determinant property det(In +

An×mBm×n) ! det(Im +Bm×nAn×m), to rearrange (3.5) and obtain the following alter-
native expression

Cerg = E
[

log2

(

det
(

ILNt +
γ

LNt
ΞHHH

))]

. (3.6)

experiences different large-scale fading and all Nt antennas in the i-th radio port experience the same large-
scale fading [21].
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3.2.1 Exact analysis

We now derive new ergodic capacity upper and lower bounds for optimal receivers. Capi-
talizing on the results of [11], we first derive an upper capacity bound as follows:

Proposition 3.1. For D-MIMO systems with optimal receivers in RIG fading channels, the
ergodic capacity in (3.5) is upper bounded by CUB, with

CUB =
γ

2
√
π ln 2L Γ(Nr)

L
∑

i=1

1

Dυ
i

exp

(
λi

µi

) N
∑

j=1

wjVi(xj) (3.7)

where Vi(t)= t−
1
2 exp

(

− λ2
i

4µ2
i t

)

G1,3
3,2

(

γiµit
LNtλiDυ

i

∣
∣
∣

−Nr ,0,0

0,−1

)

, {xj}Nj=1 are the zeros of the N-th

order Laguerre polynomial, {wj}Nj=1 are the weight factors tabulated in [57, Table 25.9],
and Gm,n

p,q =
[

x
∣
∣
b1,...,bq

a1,...,ap

]

denotes the Meijer’s-G function [1, Eq. (9.301)].

Proof. Using [11, Eq. (64)], we can rewrite the ergodic capacity in (3.5) as

Cerg ≤ CUB =
Nt

ln 2

L
∑

i=1

E
[

ln

(

1 +
γ

LNt

ξiϕi

Dυ
i

)]

︸ ︷︷ ︸

I1

. (3.8)

Now, the expectation term is evaluated as follows:

I1 =

∫ ∞

0

∫ ∞

0

ln

(

1 +
γ

LNt

ξiϕi

Dv
i

)

p(ϕi) p(ξi) dϕi dξi (3.9)

=

∫ ∞

0

∫ ∞

0

G2,2
1,2

(
γiξiϕi

LNtDv
i

∣
∣
∣

1,1

1,0

)

p(ϕi) dϕi p(ξi) dξi (3.10)

where in (3.10), we have expressed ln(1 + ax) in terms of a Meijer’s-G function [58, Eq.
(8.4.6.5)]. Substituting (3.3) into (3.10) and using [1, Eq. (7.813.1)], we can easily evaluate
the first integral as

I1 =
1

Γ(Nr)

∫ ∞

0

G1,3
3,2

(
γiξi

LNtDv
i

∣
∣
∣

1−Nr ,1,1

1,0

)

p(ξi) dξi. (3.11)

Substituting (3.2) into (3.11) and making a change of variables namely, ti = (2ξiµ2
i /λi),

gives

I1 =

√

λi

2π

exp
(

λi

µi

)

Γ(Nr)

∫ ∞

0

ξ
− 1

2
−1

i exp

(

− λi

2µ2
i

ξi −
λi/2

ξi

)

G1,3
3,2

(
γiξi

LNtDv
i

∣
∣
∣

1−Nr ,1,1

1,0

)

dξi

(3.12)

=
λi exp

(
λi

µi

)

2
√
πµiΓ(Nr)

∫ ∞

0

t
− 1

2
−1

i exp(−ti)V
′
i (ti)dti (3.13)
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where V ′
i (ti) = exp

(

− λ2
i

4µ2
i ti

)

G1,3
3,2

(

γiµiti
LNtλiDv

i

∣
∣
∣

1−Nr,1,1

1,0

)

. We can simplify (3.13) using one

of the properties of Meijer’s-G function [1, Eq. (9.31.5)] as follows:

I1 =
γ exp

(
λi

µi

)

2
√
πLNtDv

i Γ(Nr)

∫ ∞

0

exp(−ti) Vi(ti) dti (3.14)

where Vi(ti) is defined in (3.7). To the best of the author’s knowledge, the above integration
cannot be expressed in closed-form. Yet, it can be efficiently evaluated by Gauss-Laguerre
quadratic integration [57, Eq. (25.4.45)] and it is given as follows:

I1 =
γ exp

(
λi

µi

)

2
√
πLNtDv

i Γ(Nr)

N
∑

j=1

wjVi(xj). (3.15)

To conclude the proof, we substitute (3.15) into (3.8) and simplify it.

In the above proof, Gauss-Laguerre quadratic integration has been used to approximate
the integral expression. While (3.7) can be used to compute the upper bound for D-MIMO
systems in RIG fading channels, the computation of Gauss-Laguerre quadratic integration
can still be time consuming at low SNRs (e.g., γ < −15 dB). More importantly, the above
upper bound, though in analytical form, provides limited physical insights. Thus, it is of
interest to consider the high-SNR regime for further analyzing the upper bound.

Corollary 3.1. At high-SNRs (i.e., γ → ∞), the ergodic capacity upper bound CUB simpli-
fies to

C∞
UB = LNt log2

(
γ

LNt

)

+
LNt

ln 2
ψ (Nr)

+Nt

L
∑

i=1

(

log2(µi)− υ log2(Di) +
1

ln 2
exp

(
2λi

µi

)

Ei

(
−2λi

µi

)
)

. (3.16)

Proof. By taking γ large in (3.8), we trivially get

C∞
UB =

Nt

ln 2

L
∑

i=1

E
[

ln

(
γ

LNt

ξiϕi

Dυ
i

)]

(3.17)

=
Nt

ln 2

L
∑

i=1

(

E
[

ln

(
γ

LNtDυ
i

)]

+ E
[

ln (ϕi)
]

+ E
[

ln (ξi)
]
)

(3.18)

= LNt log2

(
γ

LNt

)

−Nt

L
∑

i=1

υ log2(Di) +
Nt

ln 2

L
∑

i=1

E
[

ln (ϕi)
]

+
Nt

ln 2

L
∑

i=1

E
[

ln (ξi)
]

. (3.19)
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Using [1, Eq. (4.352.1)], we can obtain the first log-moment of Gamma distributed RV as

E [ln(ϕi)] = ψ(Nr). (3.20)

Thus, we can obtain (3.16) by combining (3.20), (A.7) with (3.19) and simplifying it.

Clearly, the high-SNR upper bound in (3.16) decouples the effects of small- and large-
scale fading on the ergodic capacity. Now, we give a new ergodic capacity lower bound via
the following proposition.

Proposition 3.2. For D-MIMO systems with optimal receivers in RIG fading channels, the
ergodic capacity in (3.5) is lower bounded by CLB, with

CLB = LNt log2

(

1 +
γ

LNt
exp

(

1

L

L
∑

i=1

(

lnµi − υ lnDi

+ exp

(
2λi

µi

)

Ei

(
−2λi

µi

))

+
1

LNt

LNt−1
∑

k=0

ψ(Nr − k)

))

. (3.21)

Proof. The proof relies on the application of Minkowski’s inequality to (3.5), as proposed
in [59, Th. 1]. Exploiting the fact that ln(1 + α exp(x)) is convex in x for α > 0, and
thereafter applying Jensen’s inequality, we can obtain the following lower bound

Cerg ≥ CLB = LNt log2

(

1+
γ

LNt
exp

(
1

LNt
E
[

ln
(

det
(

ΞHHH
))

]

︸ ︷︷ ︸

I2

))

. (3.22)

Recalling the identity of square matrices det(AB) = det(A) det(B), we can express the
above expectation term as follows:

I2 = E
[

ln(det(Ξ))
]

+ E
[

ln
(

det
(

HHH
))

]

. (3.23)

Since Ξ is diagonal, the first term in (3.23) can be given as

E
[

ln(det(Ξ))
]

= E
[

ln

(
LNt∏

i=1

ξiD
−υ
i

)]

(3.24)

= −Nt

L
∑

i=1

lnDi
υ +Nt

L
∑

i=1

E
[

ln ξi
]

(3.25)

(A.7)
= −Ntυ

L∑

i=1

lnDi +Nt

L∑

i=1

(

lnµi + exp

(
2λi

µi

)

Ei

(
−2λi

µi

)
)

.

(3.26)
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SinceH is Rayleigh distributed, the termHHH follows a central Wishart distribution (zero-
mean) [60]. Using [60, Eq. (A.8.1)], the last term in (3.23) is expressed as

E
[

ln
(

det
(

HHH
))

]

=
LNt−1
∑

k=0

ψ(Nr − k). (3.27)

Substituting (3.26) and (3.27) into (3.23) and combining with (3.22) gives

CLB = LNt log2

(

1 +
γ

LNt
exp

(

1

LNt

(

−Ntυ
L

∑

i=1

ln(Di)

+Nt

L
∑

i=1

(

ln(µi) + exp

(
2λi

µi

)

Ei

(
−2λi

µi

))

+
LNt−1
∑

k=0

ψ(Nr − k)

)
))

. (3.28)

Thus, we can conclude the proof after the basic simplifications of (3.28).

Note that, in the high-SNR regime, the lower bound becomes by definition exact and
equal to the ergodic capacity [59].

3.2.2 Low-SNR analysis

In this subsection, we examine the ergodic capacity in the power-limited (or low-SNR)
regime. In general, the low-SNR performance of any MIMO channels can be investigated
by taking a first-order expansion of (3.4) around γ = 0+. The authors of [61], [62], how-
ever, demonstrated that this approach can mislead the analysis in the low-SNR regime. For
this reason, the low-SNR performance of MIMO systems is typically analyzed via the nor-
malized receive energy per bit (Er

b /N0) rather than via the per-symbol SNR. This capacity
representation is given in [61] as

Cerg
(
Eb

N0

)

≈ S0 log2

(
Eb

N0

Eb

N0 min

)

(3.29)

Eb

N0 min
=

1

Ċerg(0)
and S0 = −2 ln 2

(

Ċerg(0)
)2

C̈erg(0)
(3.30)

where Eb/N0min and S0 are the minimum normalized energy per information bit required
to convey any positive rate reliably and the wideband slope, respectively, while Ċerg(0) and
C̈erg(0) denote the first- and second-order derivatives of the ergodic capacity in (3.5) w.r.t.
the SNR, respectively [61].
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Proposition 3.3. For D-MIMO systems with optimal receivers in RIG fading channels, the
minimum energy per information bit and the wideband slope are

Eb

N0

opt

min

=
L ln 2

Nr

(
L∑

i=1

µiD
−υ
i

)−1

(3.31)

Sopt
0 =

2

1
Nr

+ 1
Nt

(
∑L

i=1

(

µ2
i+

µ3
i

λi

)

D−2υ
i

(
∑L

i=1 µiD
−υ
i )

2

) . (3.32)

Proof. First, we recall that

d

dx
ln (det (I+ xA))

∣
∣
x=0

= tr(A). (3.33)

Now, we set γ → 0 in (3.8) and evaluate Ċerg as

Ċerg(0) = E [tr(ZHZ)] =
Nt

LNt ln 2

L
∑

i=1

∫ ∞

0

∫ ∞

0

ξiϕi

Dv
i

p(ϕi) p(ξi) dϕi dξi (3.34)

=
1

L ln 2

L
∑

i=1

1

Dv
i

∫ ∞

0

ϕi p(ϕi) dϕi

∫ ∞

0

ξi p(ξi) dξi (3.35)

where Z = HΞ1/2 and ξiϕi/Dv
i are the real, non-negative diagonal elements of ZHZ.

Now, we substitute (3.2) and (3.3) into (3.35). The first integral in (3.35) is the mean (first
moment) of Gamma RV in (3.3), whereas the second integral is the mean of an IG RV in
(3.2). Using [1, Eq. (3.381.4)], we can easily find the mean of Gamma RV as E [ϕi] = Nr.
Combining E [ϕi] and (A.4) with (3.35) gives

Ċerg(0) =
Nr

L ln 2

L
∑

i=1

µiD
−υ
i . (3.36)

The inverse of (3.36) directly yields (3.31). For the wideband slope Sopt
0 , we invoke a

classical result from randommatrix theory on correlated Rayleigh MIMO channels [62, Eq.
(19)]

Sopt
0 =

2LNtNr

LNt ζ(ΘR) +Nr ζ(ΘT )
(3.37)

where ζ(Θ) is the dispersion of random matrixΘ, which is defined as [62, Eq. (8)]

ζ(ΘT ) =
LNt E [tr(Θ2

T )]

E2[tr(ΘT )]
. (3.38)
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Assuming no correlation at the receiver, we can evaluate Sopt
0 by substituting ΘR = INr

and ΘT = Ξ in (3.37). Combining (A.8) and (A.9) with (3.38) and substituting into (3.37)
gives

Sopt
0 =

2NtNr

(
∑L

i=1 µiD
−υ
i

)2

Nt

(
∑L

i=1 µiD
−υ
i

)2
+Nr

(
∑L

i=1

(

µ2
i +

µ3
i

λi

)

D−2υ
i

) . (3.39)

Thus, the proof is concluded by simplifying (3.39).

Note that Eb/N0
opt

min in (3.31) is independent of Nt, which agrees with the results of
[61] and [62], while a higher Nr improves the low-SNR capacity in (3.29) by reducing
Eb/N0

opt

min. On the other hand, the presence of the large-scale fading mean parameter µi

increases Eb/N0
opt

min, especially in severe fading conditions (i.e., small values of µi). Note
that the wideband slope in (3.32) is by definition always greater than one.

For i.i.d Rayleigh fading conditions (L = 1,Ξ = INt), the two low-SNR metrics sim-
plify to

Eb

N0

opt

min

=
ln 2

Nr
and Sopt

0 =
2NtNr

Nt +Nr
(3.40)

which coincide with [61, Eq. (206)] and [62, Eq. (17)], [62, Eq. (19)], respectively.

We can now validate all the above theoretical expressions via a set of Monte-Carlo
simulations. We generate 10,000 random realizations of the small- and large-scale fading
matrices, H and Ξ (using [63]), respectively. In Fig. 3.1, the simulated ergodic capacity
of (3.5) is compared with the analytical low-SNR approximation in (3.29) against transmit
energy per bit Eb/N0 (i.e., γ/Nr). In this case, the large-scale fading parameters are kept
constant in each L radio port (i.e., µi = µ, λi = λ, and Di = D, ∀i = 1, . . . , L) and
validated for the different number of receive antennas. Clearly, we can observe that the
low-SNR ergodic capacity increases in terms of the wideband slope when the number of
receive antennas, Nr grows large.

In Fig. 3.2, the simulated ergodic capacity of (3.5) is compared with the analytical low-
SNR approximation in (3.29). Here, we change only the large-scale fading mean parameter
µi and keep all other fading parameters constant. We can clearly observe that the low-SNR
capacity increases, whereas the wideband slope decreases when µi gets larger. On the other
hand, the analytical approximation becomes tighter for small values of µi.
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Figure 3.1: Simulated ergodic capacity and analytical low-SNR approximation against the transmit
Eb/N0 (Nt = 2, L = 3, µi = µ = 4, λi = λ = 3, Di = D = 1500m (∀i = 1, . . . , L), and v = 4).

3.2.3 High-SNR analysis

We now examine the ergodic capacity in the high-SNR (i.e., γ → ∞) regime. To get
better insights into the high-SNR capacity performance, we can invoke the following affine
capacity expansion, which was originally applied in the context of multiple access systems
with random spreading [64] and thereafter in the analysis of MIMO systems [65]:

Cerg = S∞ (log2(γ)− L∞) + o(1) (3.41)

where S∞ is the so-called high-SNR slope in bits/s/Hz per 3-dB units, given by

S∞ = lim
γ→∞

Cerg
log2(γ)

(3.42)

while L∞ is the zero-th order term or high-SNR power offset, in 3-dB units, given by

L∞ = lim
γ→∞

(

log2(γ)−
Cerg
S∞

)

. (3.43)

Proposition 3.4. For D-MIMO systems with optimal receivers in RIG fading channels, the
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Figure 3.2: Simulated ergodic capacity and low-SNR approximation against the transmit Eb/N0

for different values of the large-scale fading mean parameter µi = µ (Nr = 12, Nt = 2, L = 3,
λi = λ = 3, Di = D = 1500m (∀i = 1, . . . , L), and υ = 4).

high-SNR slope and offset parameters are respectively given by

Sopt
∞ = LNt (3.44)

Lopt
∞ = log2(LNt)−

1

L

L
∑

i=1

(

log2(µi)− υ log2(Di)

+
1

ln 2
exp

(
2λi

µi

)

Ei

(
−2λi

µi

)
)

− 1

LNt ln 2

LNt−1
∑

k=0

ψ(Nr − k). (3.45)

Proof. For MIMO systems with optimal receivers, the slope and the offset are obtained by
[16, Eq. (16), (17)]

Sopt
∞ = min(Nr, LNt) (3.46)

Lopt
∞ = log2(LNt)−

1

LNt ln 2
E
[

ln
(

det
(

ΞHHH
))

]

. (3.47)

Combining (3.23) with (3.47) gives (3.45) after simplifications.

From the high-SNR power offset in (3.45), we can infer that the small- and large-scale
fading terms are decoupled in the high-SNR regime. Furthermore, the higher Tx-Rx dis-
tances, Di, effectively reduce the ergodic capacity due to the increased path-loss attenua-
tion. Note that the high-SNR slope in (3.44) verifies that the high-SNR ergodic capacity
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Figure 3.3: Simulated ergodic capacity, analytical high-SNR approximation, analytical lower
bound, and simulated upper bound against the average SNR (Nt = 2, L = 3, µi = [4, 2, 3],
λi = [3, 5, 7], Di = [1000m, 1500m, 2000m], where i = 1, . . . , L, and υ = 4).

increases linearly with the minimum number of antennas, which is in line with [6], [59],
[60], and [66].

In Fig. 3.3, the simulated ergodic capacity of (3.5) is compared with the analytical high-
SNR approximation (3.41), the analytical lower bound (3.21), and the simulated upper
bound (3.8). Both the upper and lower bounds become tighter when the number of receive
antennas, Nr, increases. Also, we can easily observe that the high-SNR approximations
become exact even at moderate SNR values. In the low-SNR regime, both the lower/upper
bounds converge asymptotically to the empirical values of the ergodic capacity. These
observations are in line with the results of [12], [59], and [67].

3.3 Ergodic capacity analysis of optimal receivers in spe-
cific cases

In this section, we analyze the high-SNR, low-SNR and the upper/lower bound analytical
expressions of optimal receivers for specific cases. From these results, we can work out the
D-MIMO characteristics and understand the impact of the fading parameters.
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3.3.1 Point-to-point MIMO systems

When the communication system has a single radio port at the transmit side (i.e., L = 1),
all the above ergodic capacity analytical expressions simplify to

Eb

N0

opt

min

=
Dυ ln 2

µNr
(3.48)

Sopt
0 =

2
1
Nr

+ 1
Nt

(

1 + µ
λ

) =
2 Nt Nr

Nt +Nr +Nr
µ
λ

(3.49)

CLB = Nt log2

(

1 +

(

γµ

Nt Dυ

)

exp

(

exp

(

2λ

µ

)

Ei

(

−2λ

µ

)

+
1

Nt

Nt−1
∑

k=0

ψ(Nr − k)

))

.

(3.50)
At high-SNRs, we can approximate (3.50) by

C∞
LB = Nt

(

log2

(
γµ

Nt Dυ

)

+
1

ln 2
exp

(
2λ

µ

)

Ei

(

−2λ

µ

))

+
1

ln 2

Nt−1
∑

k=0

ψ(Nr − k).

(3.51)

3.3.2 Lower bound – Distance parameter analysis

In this subsection, we analyze the impact of the distance parameter (Di) on the ergodic
capacity lower bound in (3.21). We assume that all L radio ports experience the same
large-scale fading effects and they are placed at different distances w.r.t. the base station.
As such, we have µi = µ,λi = λ and Di varies for all L radio ports, where i = 1, . . . , L.
We now rearrange the ergodic capacity lower bound (3.21) as

CLB = LNt log2

(

1 +
γµ

LNt
exp

(

exp

(
2λ

µ

)

Ei

(
−2λ

µ

)

+
1

LNt

LNt−1
∑

k=0

ψ(Nr − k)

)

exp

(
L

∑

i=1

−v

L
lnDi

))

. (3.52)

We can now apply the following manipulations

exp

(
L

∑

i=1

−v

L
lnDi

)

= exp

(
L

∑

i=1

lnD
− v

L
i

)

=
L
∏

i=1

exp

(

lnD
− v

L
i

)

=
L
∏

i=1

D
− v

L
i . (3.53)

Using (3.53), we can rewrite (3.52) as

CLB = LNt log2

(

1 + b exp

(
L

∑

i=1

lnD
− v

L
i

))

(3.54)

= LNt log2

(

1 + b

(
L
∏

i=1

D
− v

L
i

))

(3.55)
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where b ! γµ
LNt

exp
(

exp
(

2λ
µ

)

Ei

(
−2λ
µ

)

+ 1
LNt

∑LNt−1
k=0 ψ(Nr − k)

)

. Now, let us take the
second derivative of (3.55) w.r.t. Di. We first recall that

d

dx

(
k

∏

i=1

fi(x)

)

=

(
k
∏

i=1

fi(x)

)(
k

∑

i=1

f ′
i(x)

fi(x)

)

. (3.56)

The first derivative of (3.55) w.r.tDi is given by

dCLB
dDi

= −vNt b

ln 2





(
∏L

i=1D
− v

L
i

)(
∑L

i=1D
−1
i

)

(

1 + b
(
∏L

i=1D
− v

L
i

))



 (3.57)

and the second derivative of (3.55) w.r.tDi is given by

d2CLB
dD2

i

=
v2Nt b

L ln 2

( L
∏

i=1

D
− v

L
i

)

×






(
∑L

i=1D
−1
i

)2

+ L
v

(
∑L

i=1D
−2
i

)

+ bL
v

(
∑L

i=1D
−2
i

)(
∏L

i=1D
− v

L
i

)

(

1 + b
(
∏L

i=1D
− v

L
i

))2




 . (3.58)

The result of the second derivative (3.58) is always positive for Di > 0 and b > 0.
Hence, we can conclude that CLB is convex with respect toDi. Alternatively, this convexity
can be verified by exploiting the fact that log2(1 + α exp(x)) is convex in x for α > 0 and
invoke a result from Lemma A.3.5.

In order to better assess the impact of distances, we analyze the lower bound in (3.54)
using some basic results from majorization theory2. Combining the above convexity result
with Lemmas A.3.3 and A.3.4, we can infer the following useful fact: Radio ports should be
placed at unequal distances to the base station (i.e., non-symmetric deployment) when they
experience the same level of large-scale fading; this implies that a symmetric deployment
of radio ports (i.e., equal distances to the base station) cannot in practice maximize the
capacity.

3.3.3 Lower bound – Large system analysis

In the context of MIMO communication systems, when the number of receive or transmit
antennas grows to infinity, it is commonly referred as Large-MIMO systems (a.k.a. mas-
sive MIMO, or large-scale multiple-antennas systems). Large-MIMO system is a recent
research topic both in antenna systems, electronics, communication theory, and embedded

2For the basics of majorization theory, interested readers are referred to Appendix A.3 and [69].
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systems. The ultimate vision is that arrays will consist of small active antenna elements,
and each antenna will be using extremely low power (in the order of mW). More impor-
tantly, the design is extremely robust in that the failure of one or a few of the antennas
would not affect the system appreciably and malfunctioning individual antennas may be
hot-swapped. Large arrays may also be used for improved positioning and location-based
services both indoors and outdoors (see [68] and references therein).

In this section, we analyze the lower bound analytical expression in the “large-system
regime”. In our first approach, we take Nr large and thereafter simplify the lower bound
analytical expression. However, it is important to note that when Nr → ∞ while Nt, L,

and γ are kept fixed, the receiver captures more power with no bound. In the context of
large-MIMO systems, a more interesting scenario is when the available transmit power is
normalized by the large number of antennas at the receiver. With the aid of this normaliza-
tion, we assure that the total received power does not diverge as Nr → ∞. As such, we
assume that the transmit power, P , is scaled downNr times such that the effective transmit
SNR can be defined as γu ! γ/Nr, where γ is kept fixed and finite. We then have the
following insightful result:

Corollary 3.2. When the number of receive antennas grows large (i.e., Nr → ∞) and Nt,
L are kept fixed, while the effective SNR is given by γu ! γ/Nr, the ergodic capacity lower
bound CLB becomes

CLB
Nr→∞
= LNt log2

(

1 +
γuNr

LNt
exp

(

1

L

L
∑

i=1

(

lnµi − υ lnDi

+ exp

(
2λi

µi

)

Ei

(
−2λi

µi

)
)))

(3.59)

= LNt log2

(

1 +
γ

LNt
exp

(

1

L

L
∑

i=1

(

lnµi − υ lnDi

+ exp

(
2λi

µi

)

Ei

(
−2λi

µi

)
)))

. (3.60)

At high-SNRs, we can approximate the above expression as

C∞
LB

Nr→∞
= LNt log2

(
γ

LNt

)

+Nt

L
∑

i=1

(

log2 µi − υ log2Di

+
1

ln 2
exp

(
2λi

µi

)

Ei

(
−2λi

µi

)
)

. (3.61)
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Proof. First, we recall that [57, Eq. (6.3.18)]

ψ(x) ≈ ln x, if x → ∞. (3.62)

Substituting (3.62) into (3.21) gives (3.59) after appropriate simplifications. At high-SNRs,
first we approximate the ergodic capacity lower bound in (3.21) and then by using (3.62),
we can easily obtain (3.61) after simplifications.

From the large-system result in (3.60) and (3.61), we can clearly conclude that the
small-scale fading effects are asymptotically averaged out and only the large-scale fading
effects remains, when the number of receive antennas grows large, which is in line with
the results of [68]. More importantly, even by scaling down the transmit power with the
number of receive antennas, we can still average out the effects of fading and, at the same
time, serve L radio ports (e.g., users). On the other hand, a linear increase with the number
of transmit antennas per radio port and a logarithmic increase with the SNR can still be
acquired.

In the next approach, we analyze an important case when both LNt and Nr grow large.
More specifically, when LNt → ∞ we need to separately analyze two cases based on
Nt → ∞ (keep L fixed) and L → ∞ (keep Nt fixed). Also, we assume that β = Nr

LNt
> 1,

and based on this fixed and finite ratio, we examine the ergodic capacity lower bound in the
following two cases.

(i) L : Fixed and Nr → ∞, Nt → ∞:

Corollary 3.3. When the number of receive and transmit antennas grow large (i.e., Nr →
∞, Nt → ∞), while L is kept fixed, the normalized ergodic capacity lower bound w.r.t. the
number of transmit antennas, Nt, is given by

CLB
Nt

Nt,Nr→∞
= L log2

(

1 +
γββ

exp(1)(β − 1)(β−1)

× exp

(

1

L

L
∑

i=1

lnµi−υ lnDi+exp

(
2λi

µi

)

Ei

(
−2λi

µi

)
))

. (3.63)
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Proof. Using (3.62), we first express the last sum term in (3.21) as follows:

1

LNt

LNt−1
∑

k=0

ψ(Nr − k) ≈ lnNr +
1

LNt

LNt−1
∑

k=0

ln

(

1− k

Nr

)

(3.64)

≈ lnNr +
1

LNt

∫ LNt

0

ln

(

1− k

Nr

)

dk (3.65)

= lnNr + (β − 1) ln

(
β

β − 1

)

− 1 (3.66)

where in (3.65), we expressed the sum term in (3.64) in terms of an integral function and
then, we used the following integral identity [70] to obtain (3.66)

∫ M

0

ln
(

1− x

N

)

dx = (N −M) ln

(
N

N −M

)

−M, if N > M. (3.67)

Substituting (3.66) into (3.21) gives (3.63) after simplifications.

From (3.63), we can infer that the capacity increases linearly with the number of trans-
mit antennas for any β > 1.

In Fig. 3.4, the simulated ergodic capacity of (3.5) is compared with the analytical
lower bound (3.21), and analytical large-system lower bound (3.63), against the number
of transmit antennas, Nt, for L = 1. We can easily observe that the ergodic capacity
curve converges very fast to the deterministic asymptote, even for the small number of
transmit antennas (i.e., around Nt = 8); the exact lower bound and large-system lower
bound remain sufficiently tight across the entireNt range regardless of the number of radio
ports, L. Note also that the exact lower bound follows the simulated ergodic capacity curve
sufficiently tight regardless of the number of transmit antennas. An important observation
from this analysis is that, in the large-system regime, for fixed L, increasing Nt does not
have a beneficial impact on the ergodic capacity, since it slightly increases the number
of interfering data streams (i.e., the decrease in normalized ergodic capacity is marginal
∼ 0.05 bits/s/Hz).

(ii) Nt : Fixed and L → ∞, Nr → ∞: In this case, we assume that all radio ports are
uniformly distributed in a circle of radius R0, centered by the base station and experience
the same large-scale fading effects. As such, we can set µi = µ,λi = λ fixed values and
Di varying for all L ports, where i = 1, . . . , L.
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Corollary 3.4. When the number of receive antennas and radio ports grow large (i.e.,
Nr → ∞, L → ∞), while Nt is kept fixed, the normalized ergodic capacity lower bound
w.r.t. radio ports L, is given by

CLB
L

L,Nr→∞
= Nt log2

(

1 + aR−υ
0 exp

(υ

2

))

(3.68)

where a ! γµββ(β − 1)(1−β) exp
(

exp
(

2λ
µ

)

Ei

(
−2λ
µ

)

− 1
)

.

Proof. First, we rearrange the large-system lower bound in (3.63) as

CLB = LNt log2

(

1 + a exp

(

1

L

L
∑

i=1

lnD−υ
i

︸ ︷︷ ︸

I3

))

. (3.69)

When L → ∞, the argument in the exponential term (i.e., I3) is nothing but an ensemble
average w.r.t. Di (distribution of distances). Next, we give the corresponding probability
distribution of the distance between radio ports and base station as [71, Eq. (7)]

pD(x) =
2x

R2
0

, 0 ≤ x ≤ R0. (3.70)
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Now, we can express (3.69) as

CLB
L

L,Nr→∞
= Nt log2

(

1 + a exp

(

EDi

[

lnD−υ
i

]
))

. (3.71)

We now recall L’Hospital’s rule to get

lim
x→0+

x ln(x) = lim
x→0+

ln(x)

1/x
= lim

x→0+

1/x

−1/x2
= 0. (3.72)

Combining [1, Eq. (2.723.1)] with (3.72), we can obtain the following

EDi

[

lnD−υ
i

]

= −2υ

R2
0

∫ R0

0

ln(Di) Di dDi (3.73)

= −2υ

R2
0

[
D2

i ln(Di)

2
− D2

i

4

]R0

0

= − υ

R2
0

(
R2

0 ln(R
2
0)

2
− R2

0

2

)

(3.74)

= −υ ln(R0) +
υ

2
. (3.75)

Substituting (3.75) into (3.71) gives

CLB
L

L,Nr→∞
= Nt log2

(

1 + a exp
(

−υ ln(R0) +
υ

2

))

. (3.76)

Now, we can easily obtain (3.68) by appropriate simplifications.

From (3.68), we can clearly infer that a large cell radius R0 decreases the ergodic ca-
pacity logarithmically.

3.3.4 Wideband slope Sopt

0 characteristics

In this subsection, we analyze the effect of the large-scale fading parameters (µi,λi) and
distance (Di) on the wideband slope.

(i) Fixed Di = D; µi,λi are varying for all L ports:

Sopt
0 =

2

1
Nr

+ 1
Nt

(
∑L

i=1

(

µ2
i+

µ3
i

λi

)

(
∑L

i=1 µi)
2

) . (3.77)

From this specific case analysis we can infer the following: When all radio ports are
equally placed (i.e., symmetric deployment) then the values of distances do not have any
impact on the wideband slope.
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(ii) Fixed µi = µ,λi = λ; Di is varying for all L ports:

Sopt
0 =

2

1
Nr

+ 1
Nt

(

1 + µ
λ

)

(
∑L

i=1 D
−2v
i

(
∑L

i=1 D
−v
i

)2

︸ ︷︷ ︸

I4

) . (3.78)

This specific case analysis clearly indicates that the wideband slope depends only on
the distances power ratio (i.e., I4) rather than the actual distances, when all other fading
parameters are kept fixed. Note that this ratio is always smaller than 1 for L > 1 and the
wideband slope increases with Di and/or L. Furthermore, when all radio-ports are equally
placed (i.e., symmetric deployment) then the ratio depends only on the number of radio
ports L (i.e., I4 becomes equal to 1/L), which agrees with the analysis of (3.77).

3.4 Achievable sum rate analysis of ZF receivers

Linear ZF receiver refers to a form of linear equalization algorithm used in communication
systems which applies the inverse of the channel frequency response to the received signal,
to restore the original transmitted signal at the receiver. The name ‘zero-forcing’ corre-
sponds to bringing down the inter-symbol interference (ISI) to zero level in a noise free
case. This is particularly useful when ISI is significant compared to the noise impairing
the communication channel. Linear ZF receivers have many useful applications, especially
for MIMO systems. For example, this has been studied for IEEE 802.11n (MIMO), where
prior knowledge of channel allows recovery of the two or more data streams, which will be
received on top of each other on each antenna.

In this section, we investigate the sum rate performance of D-MIMO ZF receivers over
composite RIG fading channels. For the case under consideration, the ZF filter is expressed
as G = (P/LNt)−1/2Z†, where P is the total transmit power. The instantaneous received
SNR at the i-th ZF filter output (1 ≤ i ≤ LNt) is equal to [14]

γzfi !
γ

LNt [(ZHZ)−1]ii
=

γ [Ξ]ii
LNt [(HHH)−1]ii

(3.79)

where γ = P/N0 is the average SNR and N0 is the noise power. The second equality
follows from the fact that Ξ is diagonal. Assume that the independent decoding at the
receiver and the achievable sum rate is determined as

Rzf !

LNt∑

i=1

E
[

log2(1 + γzfi )
]

(3.80)
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where the expectation is taken-over all channel realizations of H, Ξ and the channel is
assumed to be ergodic. The main challenge in analytically evaluating (3.80) is the lack of
closed-form expressions for the p.d.f. of γzfi in the case of RIG fading. Therefore, analysis
of ZF receiver becomes tedious. We overcome this problem in the following section by
deriving some new, tractable bounds on the sum rate of D-MIMO ZF receivers.

3.4.1 Exact analysis

The sum rate generic bounds of MIMO ZF receivers were initially proposed in [72] for
the case of point-to-point MIMO systems. In [72], the authors did not consider the effects
of large-scale fading in their generic bounds, whereas in D-MIMO systems, the effects
of large-scale fading are very critical. Hence, let us propose the following new sum rate
bounds for D-MIMO ZF receivers over composite RIG fading channels. Capitalizing on
the results of [72], we now derive both upper and lower sum rate bounds in the following
proposition.

Proposition 3.5. For D-MIMO systems with ZF receivers in RIG fading channels, the
achievable sum rate in (3.5) is upper bounded byRzf

UB and lower bounded byRzf
LB, with

Rzf
UB = LNt log2

(

1

Nr − LNt
+

γ

NtL2

L
∑

i=1

µiD
−v
i

)

+
LNt

ln 2
ψ(Nr − LNt + 1) (3.81)

Rzf
LB = Nt

L
∑

i=1

log2

(

1 +
γµi

LNtDv
i

exp

(

exp

(
2λi

µi

)

Ei

(

−2λi

µi

)

+ ψ(Nr − LNt + 1)

))

.

(3.82)
Proof. Applying the generic bounding techniques of [72, Th. 1] and [72, Th. 3], and
thereafter taking into account (3.79), gives

Rzf
UB = LNt log2

(

E
[

Ω−1
]

+
γ

(LNt)2
E
[

tr(Ξ)
]
)

+
LNt∑

i=1

E
[

log2
(

det
(

HHH
))

− log2
(

det
(

HH
i Hi

))
]

(3.83)

Rzf
LB =

LNt∑

i=1

log2

(

1 +
γ

LNt
exp

(

E
[

ln
(

[Ξ]ii
)

+ ln
(

det
(

HHH
))

− ln
(

det
(

HH
i Hi

))
]
))

(3.84)

where Ω is an unordered eigenvalue of HHH. The first negative moment of Ω is given by
[72, Prop. 1]

E
[

Ω−1
]

=
1

Nr − LNt
. (3.85)
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Figure 3.5: ZF receivers: Simulated sum rate, analytical upper and lower bounds against the av-
erage SNR (Nt = 2, L = 3, µi = µ = 4, λi = λ = 3, Di = D = 1500m (∀i = 1, . . . , L), and
υ = 4).

Combining (3.85), (A.8), and (3.27) with (3.83) and basic simplifications give (3.81). We
can obtain (3.82) by combining (A.7) and (3.27) with (3.84) and then simplifying it.

Clearly, the sum rate tends to monotonically increase with the mean and scale param-
eters of large-scale fading. The higher Tx-Rx distances tend to effectively reduce the sum
rate due to the increased path-loss attenuation.

In Fig. 3.5, we examine the tightness of both bounds by comparing the simulated sum
rate with the analytical upper bound (3.81) and the analytical lower bound (3.82). We can
easily observe that the performance of D-MIMO ZF receivers is systematically improved
with the number of receive antennas, which is due to the mitigation of the noise enhance-
ment effect. The upper bound remains sufficiently tight across the entire SNR range. On
the other hand, the lower bound becomes tighter at high-SNRs and/or when the number of
receive antennas grow large. These observations are in line with the results of [12], [59],
and [67].

In Fig. 3.6, we examine the effect of the number of radio ports L on the sum rate for
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Figure 3.6: ZF receivers: Simulated sum rate, analytical upper/lower bounds against the average
SNR (Nr = 12, Nt = 2, µi = µ = 4, λi = λ = 3, Di = D = 1500m (∀i = 1, . . . , L), and υ = 4).

Nr = 12 and Nt = 2. When L = 1 (i.e., point-to-point MIMO systems), both the bounds
become almost exact across the entire SNR range. When L grows large, the upper bound
becomes looser due to the scaling of SNR inside the first term of upper bound (3.81).
In all cases, the lower bound remains sufficiently tight across the entire SNR range. An
another important observation from this analysis is that, small values of L seem to have
beneficial impact on the sum rate at low-SNRs, whereas higher L yields higher sum rate
only when SNR increases. This is expected since at low-SNRs, the system is dominated
by interference and higher values of L increase the interference. At high-SNRs, higher L
implies higher scaling of the sum rate.

3.4.2 Lower bound – Distance parameter analysis

In order to better assess the effects of the radio port distances, we analyze the lower bound
Rzf

LB with the with the aid of majorization theory.

Corollary 3.5. When µi = µ and λi = λ, the lower bound Rzf
LB is Schur-convex function

with regard to Di, where i = 1, . . . , L.
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Proof. When µi = µ and λi = λ, the lower bound (3.82) reduces to

Rzf
LB = Nt

L
∑

i=1

log2

(

1 +
d

Dv
i

)

(3.86)

where d ! γµ
LNt

exp
(

exp
(

2λ
µ

)

Ei

(

−2λ
µ

)

+ ψ(Nr − LNt + 1)
)

. Let us define the func-
tion f(x) ! log2(1 +

d
xv ) and its second derivative is

d2f(x)

dx2
=

dv

ln 2

((v + 1)xv + d)

(xv+1 + dx)2
> 0. (3.87)

Hence, f(x) is convex w.r.t x. As such, we can prove that lower boundRzf
LB is Schur-convex

function by invoking the result from Lemma A.3.5.

Combining Corollary 3.5 with the majorization theory Lemmas A.3.3 and A.3.4, we can
infer that radio ports should be placed at unequal distances to the base station when they
experience the same level of large-scale fading effects; this implies that a non-symmetric
deployment of radio ports can be implemented in practice to maximize the sum rate. This
result agrees with the results corresponding on optimal receivers, which we have already
proved in Section 3.3.2.

In Fig. 3.7, we investigate the impact of the radio ports’ deployment on the sum rate. In
this analysis, we consider two different type of configurations with the same total distance
constraint. The first configuration is a symmetrical configuration, where all radio ports are
placed in different locations with same distance to the base station (D1 = D2 = D3 =

1500m) and the second configuration is a anti-symmetrical configuration (D1 = 1000m,
D2 = 1500m, D3 = 2000m). As suggested by Corollary 3.5 and the majorization theory
lemmas, the anti-symmetrical configuration yields higher sum rate due to the weaker path-
loss effects (i.e., it is always beneficial to put radio ports close to the base station to get
stronger signals). On the other hand, both bounds, especially the upper bound, are tighter
for the symmetrical configuration across the entire SNR range.

3.4.3 Lower bound – Large system analysis

In this section, we analyze the lower bound analytical expression in the large-system regime.
We assume, either the number of receive or transmit antennas or both grow to infinity in
the large-system regime.
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Figure 3.7: ZF receivers: Simulated sum rate, analytical upper/lower bounds against the average
SNR for two different configurations (Nr = 12, L = 3, Nt = 2, µi = µ = 4, λi = λ = 3,
(∀i = 1, . . . , L), υ = 4 with (a) anti-symmetrical configuration: D1 = 1000m, D2 = 1500m,
D3 = 2000m and (b) symmetrical configuration: D1 = D2 = D3 = 1500m).

Corollary 3.6. When the number of receive antennas grows large (i.e., Nr → ∞) and Nt,
L are kept fixed, while the effective SNR is given by γu ! γ/Nr, the lower bound Rzf

LB

becomes

Rzf
LB

Nr→∞≈ LNt log2

(

γ

LNt

)

+Nt

L
∑

i=1

(

log2(µi)− v log2(Di)

+
1

ln 2
exp

(
2λi

µi

)

Ei

(
−2λi

µi

))

. (3.88)

Proof. By applying (3.62) into the lower bound (3.82) and thereafter appropriate simplifi-
cations.

Clearly, Corollary 3.6 indicates that the small-scale Rayleigh fading effects are aver-
aged out and only the slowing varying large-scale fading effects remains when Nr → ∞.
Even though the transmit power is scaled down with the number of receive antennas, we
can still average out the effects of fading and, at the same time, serve L radio ports (e.g.,
users). On the other hand, a linear increase with the number of transmit antennas per radio
port and a logarithmic increase with the SNR can still be acquired. These results are in line
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with the results corresponding to optimal receivers, provided in Section 3.3.3 and previous
results on i.i.d. Rayleigh MIMO channels of optimal receivers [11, Eq. (13)], and [60, Eq.
(8)].

We now examine the case when both Nr and LNt grow large with a fixed and finite
ratio, such that β = Nr

LNt
> 1. More specifically, when LNt → ∞ we need to separately

analyze the two cases based on Nt → ∞ (keep L fixed) and L → ∞ (keep Nt fixed). In
the former case, it can be shown that

Rzf
LB

Nt

Nr ,Nt→∞
=

L
∑

i=1

log2

(

1 +
γµi(β − 1)

Dv
i

exp

(

exp

(
2λi

µi

)

Ei

(

−2λi

µi

)))

. (3.89)

For any β > 1, the sum rate is shown to scale linearly with Nt, due to the increased inter-
ference cancellation capabilities of ZF receivers, which is consistent with [11], [60], and
[72].

In Fig. 3.8, the simulated sum rate of (3.80) is plotted along with exact lower bound in
(3.82) and its asymptote in (3.89), against the number of transmit antennas, Nt. We can
easily observe that the sum rate curve converges fast to the deterministic asymptote, for
moderate number of transmit antennas (i.e., around Nt = 30). Note also that the exact
lower bound remains sufficiently tight regardless of the number of transmit antennas.

In the second case, we assume that radio ports are uniformly distributed in a circle of
radius R0, centered by the base station. As such, the corresponding p.d.f. is already given
in (3.70). We also assume that all radio ports experience same large-scale effects (i.e.,
µi = µ and λi = λ, where i = 1, . . . , L). Now, we follow the same methodology, which
we have already proved for Corollary 3.4. Thus, the normalized lower bound with regard
to radio ports L, is given by

Rzf
LB

L
Nr ,L→∞

= Nt EDi

[

log2

(

1 +
γµ(β − 1)

Dυ
i

exp

(

exp

(
2λ

µ

)

Ei

(

−2λ

µ

)))
]

(3.90)

=
Nt

2c ln 2

(

cυ − 2Rυ
0Φ

(

−Rυ
0

c
, 1,

2 + υ

υ

)

+ 2c ln

(

1 +
c

Rυ
0

))

(3.91)

where c ! γµ(β−1) exp
(

exp
(

2λ
µ

)

Ei

(

−2λ
µ

))

and Φ(z, s,α) !
∑∞

k=0
zk

(α+k)s for |z| < 1

and α ,= 0,−1,−2, . . . is the Lerch transcendent [1, Eq. (9.550)]. For different values of
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the path-loss exponent υ, we can obtain the following set of useful expressions:

Rzf
LB

L
Nr,L→∞

=
Nt

R2
0 ln 2

(

c ln

(

1 +
R2

0

c

)

+R2
0 ln

(

1 +
c

R2
0

))

, υ = 2 (3.92)

=
Nt

R2
0 ln 2

(

2
√
c arctan

(

R2
0√
c

)

+R2
0 ln

(

1 +
c

R4
0

))

, υ = 4 (3.93)

=
Nt

ln 2

(

3 2F1

(
1

3
, 1;

4

3
;−R6

0

c

)

+ ln

(

1 +
c

R6
0

))

, υ = 6 (3.94)

where pFq(·) is the generalized hypergeometric function with p, q non-negative integers
[1, Eq. (9.14.1)].

3.4.4 Upper bound – High-SNR analysis

In order to get some additional insights into the tightness of the upper bound Rzf
UB, we

consider the following bounding error at high-SNRs, which is quantified as a fixed rate
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offset

∆Rzf ! Rzf
UB −Rzf (3.95)

γ→∞
= LNt log2

(

1

L

L
∑

i=1

µiD
−υ
i

)

−Nt

L
∑

i=1

(

log2(µi)− υ log2(Di) +
1

ln 2
exp

(
2λi

µi

)

Ei

(
−2λi

µi

))

(3.96)

where (3.96) follows by taking γ → ∞ in (3.81) and (3.82), and basic simplifications. We
can infer that the offset is only a function of the large-scale fading parameters, Tx-Rx dis-
tances, the number of radio ports and the number of transmit antennas, and is independent
of the number of receive antennas. In general, the upper bound Rzf

UB is tighter for small
number of radio ports, low number of transmit antennas and small Tx-Rx distances. For
the special case L = 1, (3.96) simplifies to

∆Rzf γ→∞
=

Nt

ln 2
exp

(

2λ1

µ1

)

Ei

(

−2λ1

µ1

)

. (3.97)

From (3.97), we can infer that, when L is fixed, the upper bound is tighter for a smaller
number of transmit antennas and smaller large-scale fading parameters. In other words, the
upper bound is tighter when the fluctuations of large-scale fading are not very severe.

3.4.5 Low-SNR analysis

We now examine the sum rate performance of D-MIMO ZF receivers in the power-limited
(wideband) regime. We have already introduced the low-SNR characterization in Section
3.2.2 and hence, we directly give the following proposition.

Proposition 3.6. For D-MIMO systems with ZF receivers in RIG fading channels, the min-
imum energy per information bit and the wideband slope are respectively

Eb

N0

zf

min

=
L ln 2

Nr − LNt + 1

(
L∑

i=1

µiD
−υ
i

)−1

(3.98)

Szf
0 =

2Nt(Nr − LNt + 1)
(
∑L

i=1 µiD
−υ
i

)2

(Nr − LNt + 2)
(
∑L

i=1

(

µ2
i +

µ3
i

λi

)

D−2υ
i

) . (3.99)

Proof. First, we rewrite (3.80) as

Rzf(γ) =
1

ln 2

LNt∑

i=1

E
[

ln

(

1 + γ
1

LNt

ξixi

Dυ
i

)]

(3.100)
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where xi = 1/
[

(HHH)−1
]

ii
. The p.d.f. of xi was defined in [14, Th. 1]

p(xi) =
e−xi

(Nr − LNt)!
xNr−LNt
i . (3.101)

By taking the first derivate of (3.100) w.r.t. γ → 0, we can obtain

Ṙzf(0) =
1

ln 2

LNt∑

i=1

E





1
LNt

ξixi

Dv
i

1 + γ 1
LNt

ξixi

Dv
i

∣
∣
∣
∣
∣
γ=0



 =
1

LNt ln 2

LNt∑

i=1

E
[
ξixi

Dv
i

]

(3.102)

=
Nr − LNt + 1

LNt ln 2

LNt∑

i=1

µi

Dv
i

. (3.103)

The expectation in (3.102) should be taken w.r.t. ξi and xi. Using (A.4) and [1, Eq.
(3.381.4)], we can obtain (3.103) from (3.102) after basic simplifications. Similarly, we
can obtain the second derivative of (3.100) as

R̈zf(0) = − 1

ln 2

LNt∑

i=1

E






(
1

LNt

ξixi

Dυ
i

)2

(

1 + γ 1
LNt

ξixi

Dv
i

)2

∣
∣
∣
∣
∣
γ=0




 =

1

(LNt)2 ln 2

LNt∑

i=1

E
[
(
ξixi

Dv
i

)2
]

(3.104)

= −(Nr − LNt + 2)(Nr − LNt + 1)

(LNt)2 ln 2

LNt∑

i=1

µ2
i +

µ3
i

λi

D2v
i

. (3.105)

Using (A.5) and [1, Eq. (3.381.4)], we can obtain (3.105) from (3.104) after appropriate
simplifications. To conclude the proof, we combine (3.103) and (3.105) with the definitions
in (3.30).

Note that Eb

N0

zf

min
in (3.98) depends on the number of receive antennas, number of radio

ports, large-scale fading mean parameter, and the number of transmit antennasNt, whereas
for optimal receivers, (3.31) is independent ofNt. This is a key difference between optimal
and ZF receivers and is in agreement with [61], [62]. For fixed Nr, having more number
of transmit antennas is not beneficial for ZF receivers since the minimum energy per in-
formation bit increases due to the additional power that is required to cancel out the extra
interferers.

For the specific case LNt = 1, ZF detection becomes optimal ((3.98) becomes equal to
(3.31)). This is due to the fact that single transmit antenna transmission scheme is optimal
since there are no interfering streams to be cancelled out. Additionally, we can compare

45



Szf
0 with Sopt

0 to verify this behavior in terms of wideband slope. It is thus of interest to
consider the following ratio when LNt = 1

Szf
0

Sopt
0

=
Nr +

1

(1+µ
λ)

Nr + 1
. (3.106)

Note also that the above ratio becomes one for i.i.d. Rayleigh fading conditions.

For i.i.d. Rayleigh fading conditions (L = 1,Ξ = INt), the two low-SNR metrics
simplify to

Eb

N0

zf

min

=
ln 2

Nr −Nt + 1
and Szf

0 =
2Nt(Nr −Nt + 1)

Nr −Nt + 2
(3.107)

which coincide with [73, Eq. (25)] and [73, Eq. (26)], respectively.

3.4.6 High-SNR analysis

In this case, we examine the sum rate performance of ZF receivers in the high-SNR regime.
We have already introduced the high-SNR parameters in Section 3.2.3 and hence, we can
directly give the following proposition.

Proposition 3.7. For D-MIMO systems with ZF receivers in RIG fading channels, the high-
SNR slope and offset parameters are respectively given by

Szf
∞ = LNt (3.108)

Lzf
∞ = log2(LNt)−

1

ln 2
ψ (Nr − LNt + 1)

− 1

L

L
∑

i=1

(

log2(µi)− v log2(Di) +
1

ln 2
exp

(

2λi

µi

)

Ei

(

−2λi

µi

))

. (3.109)

Proof. For MIMO systems with ZF receivers, the slope and offset parameters are obtained
by

Szf
∞ = min(Nr, LNt) = LNt (3.110)

and

Lzf
∞ = log2(LNt)−

1

LNt ln 2

LNt∑

i=1

E
[

ln
(

[Ξ]ii
)

+ ln
(

det
(

HHH
))

− ln
(

det
(

HH
i Hi

))
]

.

(3.111)
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Since Hi is Rayleigh distributed, the term HH
i Hi follows a central Wishart distribution

(zero-mean) [60]. Using [60, Eq. (A.8.1)], the last term in (3.111) is expressed as

E
[

ln
(

det
(

HH
i Hi

))
]

=
LNt−2
∑

k=0

ψ(Nr − k). (3.112)

Substituting (A.7), (3.27), and (3.112) into (3.111) gives

Lzf
∞ = log2(LNt)−

1

ln 2

LNt−1
∑

k=0

ψ(Nr − k) +
1

ln 2

LNt−2
∑

k=0

ψ(Nr − k)

− 1

LNt ln 2

(

−Ntv
L

∑

i=1

lnDi +Nt

L
∑

i=1

(

ln(µi) + exp

(

2λi

µi

)

Ei

(

−2λi

µi

)))

.

(3.113)

Thus, the proof of (3.109) is concluded by simplifying (3.113).

Note that (3.108) verifies that the high-SNR sum rate increases linearly with the mini-
mum number of antennas, which agrees with [6], [59], [60], and [66].

3.5 Achievable sum rate analysis of MMSE receivers

Linear ZF receiver removes all ISI, and is ideal when the channel is noise free. However,
when the channel is noisy, ZF receiver amplifies the noise when the channel frequency
response has a small magnitude, in the attempt to invert the channel completely. A more
balanced linear receiver in this case is MMSE receiver, which does not usually eliminate
ISI completely but instead minimizes the total power of the noise and ISI components in
the output. Linear MMSE receiver minimizes the squared error in the presence of noise in
the channel, and becomes equivalent to ZF receiver when no noise is present. In addition,
the performance of MMSE receiver is very similar to ZF receiver at high SNRs, but far
more robust at low SNRs [3].

In this section, the sum rate performance of D-MIMO MMSE receivers in RIG fading
channels is analyzed. The instantaneous received SNR at the i-th MMSE filter output
(1 ≤ i ≤ LNt) is equal to [16]

γmmsei !
1

[
(

ILNt +
γ

LNt
ZHZ

)−1
]

ii

− 1 (3.114)
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Assuming independent decoding at the receiver, the achievable sum rate is expressed as

Rmmse !

LNt∑

i=1

E [log2(1 + γmmsei )] (3.115)

where the expectation is taken-over all channel realizations ofH, Ξ and the channel is as-
sumed to be ergodic. Since an exact SNR analysis is tedious for MMSE receivers operating
over RIG fading channels, we present an useful analytic framework of the achievable sum
rate in the following section.

3.5.1 A generic framework

We now present a generic framework for investigating the achievable sum rate of D-MIMO
systems employing linear MMSE receivers.

Proposition 3.8. For D-MIMO systems with MMSE receivers in RIG fading channels, the
achievable sum rate is expressed as

Rmmse = LNt E
[

log2

(

det
(

ILNt +
γ

LNt
ΞHHH

))]

−
LNt∑

i=1

E
[

log2

(

det
(

ILNt−1 +
γ

LNt
ΞiiH

H
i Hi

))]

. (3.116)

Proof. First, we recall that

[

W−1
]

ii
=

det(Wii)

det(W)
. (3.117)

Using the above expression, we can rewrite (3.114) as

γmmsei =
det

(

ILNt +
γ

LNt
ZHZ

)

det
((

ILNt +
γ

LNt
ZHZ

)

ii

) − 1. (3.118)

Substitute Z ! HΞ1/2 and using the following determinant property,
det(In +An×mBm×n) = det(Im +Bm×nAn×m), we can rearrange (3.118) as follows:

γmmsei =
det

(

ILNt +
γ

LNt
ΞHHH

)

det
((

ILNt +
γ

LNt
ΞHHH

)

ii

) − 1. (3.119)

48



Now, substituting (3.119) into (3.115) and simplification gives

Rmmse =
LNt∑

i=1

E
[

log2

(

det
(

ILNt +
γ

LNt
ΞHHH

))]

−
LNt∑

i=1

E
[

log2

(

det
(

ILNt +
γ

LNt
ΞHHH

)

ii

)]

(3.120)

=
LNt∑

i=1

E
[

log2

(

det
(

ILNt +
γ

LNt
ΞHHH

))]

−
LNt∑

i=1

E
[

log2

(

det
(

ILNt−1 +
γ

LNt
(ΞHHH)ii

))]

. (3.121)

Thus, we can conclude the proof, using the following matrix minor property (ΞHHH)ii =

ΞiiH
H
i Hi.

3.5.2 Low-SNR analysis

We now examine the sum rate performance of D-MIMO MMSE receivers in the power-
limited (wideband) regime. We have already introduced the low-SNR analysis in Section
3.2.2 and hence, we directly give the following proposition.

Proposition 3.9. For D-MIMO systems with MMSE receivers in RIG fading channels, the
minimum energy per information bit and the wideband slope are respectively

Eb

N0

mmse

min

=
ln 2

Nr

(

Nt

∑L
i=1 µiD

−v
i − 1

LNt

∑LNt

i=1

∑LNt
j=1

j "=i

µjD
−v
j

) (3.122)

Smmse
0 =

2LNt

2LNt−1
Nr

+ L2Nt

∑L
i=1

(

µ2
i+

µ3
i

λi

)

D−2v
i

(
∑L

i=1 µiD
−v
i )2

− (LNt−1)2

LNt

∑LNt

i=1






∑LNt
j=1
j "=i

(

µ2
j+

µ3
j

λj

)

D−2v
j

(

∑LNt
j=1
j "=i

µjD
−v
j

)2






.

(3.123)

Proof. For proving (3.122), we need to take the first derivative of (3.116) w.r.t. γ → 0.
Using (3.33), we can easily evaluate the first derivative as

Ṙmmse(0) =
1

ln 2
E
[

tr
(

ΞHHH
)]

− 1

ln 2

LNt∑

i=1

E
[

1

LNt
tr
(

ΞiiH
H
i Hi

)
]

. (3.124)
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Now, we split (3.124) as Ṙmmse(0) = Ṙmmse
1 − Ṙmmse

2 . We have already evaluated Ṙmmse
1 in

(3.36) and hence, we evaluate Ṙmmse
2 as

Ṙmmse
2 =

1

LNt ln 2

LNt∑

i=1

E






LNt∑

j=1

j "=i

ξj
Dυ

j

ϕj




 (3.125)

=
1

LNt ln 2

LNt∑

i=1

LNt∑

j=1

j "=i

1

Dv
j

E [ξj]E [ϕj]. (3.126)

The expectations are the same as in (3.35). Therefore, we have that

Ṙmmse(0) =
NrNt

ln 2

L
∑

i=1

µi

Dυ
i

− Nr

LNt ln 2

LNt∑

i=1

LNt∑

j=1

j "=i

µj

Dυ
j

. (3.127)

The inverse of (3.127) directly yields (3.122). For the wideband slope Smmse
0 , we invoke a

classical result from randommatrix theory on correlated Rayleigh MIMO channels [16, Eq.
(75)]

Smmse
0 =

2LNtNr

(2LNt − 1) ζ(ΘR) +Nr

(

LNtζ(ΘT )− LNt−1
LNt

∑LNt

i=1 ζ(ΘT ii)
) . (3.128)

Assuming no correlation at the receiver, we can express Smmse
0 by substituting ΘR = INr

andΘT = Ξ into (3.128). ζ(Ξ) is deduced in Section 3.2.2, whilst ζ(Ξii) is given by

ζ(ΘT ii) = ζ(Ξii) =
(LNt − 1) E

[

tr(Ξ2
ii)
]

E2
[

tr(Ξii)
] =

(LNt − 1)
∑LNt

j=1

j "=i

(

µ2
j +

µ3
j

λj

)

D−2υ
j

(
∑LNt

j=1

j "=i

µjD
−v
j

)2 .

(3.129)

Substituting (A.8) and (A.9) into (3.38) gives (3.129) and substituting all the above results
into (3.128) gives the wideband slope as

Smmse
0 =

2LNtNr

(2LNt − 1) +NrL2Nt
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(
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µ3
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2 − Nr(LNt−1)2
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


∑LNt
j=1
j "=i

(

µ2
j+

µ3
j

λj

)

D−2v
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j "=i

µjD
−v
j

)2





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(3.130)

Thus, the proof is concluded by simplifying (3.130).

In Fig. 3.9, the simulated sum rate of (3.115) and the analytical low-SNR linear approx-
imation are plotted against the transmit Eb/N0. Clearly, we can observe that the low-SNR
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Figure 3.9: MMSE receivers: Low-SNR simulated sum rate and analytical linear approximation
against the transmit Eb/N0 (Nt = 3, L = 3, µi = µ = 4, λi = λ = 13, Di = D = 1500m
(∀i = 1, . . . , L), and υ = 4).

performance of MMSE receivers is systematically improved with the number of receive
antennas,Nr, which is due to the additional degrees-of-freedom for canceling interference.
Also, the linear approximation remains sufficiently tight across the entire SNR range.

In Fig. 3.10, we compare the performance of optimal, linear ZF and MMSE receivers in
the low-SNR regime. The simulated low-SNR ergodic capacity/sum rates and the analyti-
cal linear approximations are plotted against the transmit Eb/N0. The figure illustrates the
big performance gap between optimal and ZF receivers, which is due to the high number
of total transmit antennas (LNt = 6), that corresponds to the number of interfering data
streams. On the other hand, we can easily conclude that MMSE receivers are optimal in
terms of Eb/N0min. MMSE receivers sub-optimality is only reflected via a reduced wide-
band slope.

We now compare Smmse
0 with Sopt

0 to understand the effects of shadowing on the wide-
band slope. It is thus of interest to consider the following ratio for analyzing the wideband
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Figure 3.10: Low-SNR simulated sum rate (optimal, ZF, and MMSE) and analytical linear ap-
proximations against the transmit Eb/N0 (Nr = 12, Nt = 2, L = 3, µi = µ = 1, λi = λ = 10
(∀i = 1, . . . , L), Di = [1000m, 1500m, 2000m], and υ = 4).

slopes further

LNt

2LNt − 1
≤ Smmse

0

Sopt
0

≤ LNt +Nr

2LNt +Nr − 1
· (3.131)

The result reveals that in the low-SNR regime, the shadowing decreases the ratio and
subsequently reduces the achievable sum rate of MMSE receivers through a reduction in
wideband slope. Interestingly, when LNt = 1, the ratio becomes unity, which reveals that
MMSE receivers are optimal when there is no interfering data streams to be cancelled out.
It is also important to note that when Nr → ∞, for fixed LNt, MMSE receivers operate
optimally, due to the additional captured power and the enhanced interference suppression
capabilities of the receive array, which coincides with [16].

3.5.3 High-SNR analysis

We now examine the sum rate performance of MMSE receivers in the high-SNR regime.
We recall that, at high-SNRs, both ZF and MMSE receivers behave equivalently in terms
of sum rate [15]. We have already introduced the high-SNR parameters in Section 3.2.3
and hence, we can directly give the following proposition.
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Proposition 3.10. For D-MIMO systems with MMSE receivers in RIG fading channels, the
high-SNR slope and offset parameters are respectively given by

Smmse
∞ = LNt (3.132)

Lmmse
∞ = log2(LNt)−

1

ln 2
ψ(Nr − LNt + 1)

−Nt

L
∑

i=1

(

log2 µi − υ log2 Di +
1

ln 2
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(
2λi
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)

Ei

(
−2λi

µi

))

+
1

LNt

LNt∑
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LNt∑

j=1

j "=i

(

log2 µj − υ log2Dj +
1

ln 2
exp

(

2λj

µj

)

Ei

(

−2λj

µj

))

. (3.133)

Proof. For MIMO systems with MMSE receivers, the slope and offset parameters are ob-
tained by [16, Eq. (19), (20)] as follows:

Smmse
∞ = min(Nr, LNt) (3.134)

Lmmse
∞ = log2(LNt)− E

[

log2

(

det
(

ΞHHH
))]

+
1

LNt

LNt∑

i=1

E
[

log2

(

det
(

ΞiiH
H
i Hi

))]

. (3.135)

For the offset calculations, using the following identity det(AB) = det(A) det(B), we
can rewrite (3.135) as

Lmmse
∞ = log2(LNt)− E

[

log2

(

det
(

ΞHHH
))]

+
1

LNt ln 2

LNt∑

i=1

E
[

ln(det(Ξii))
]

+
1

LNt ln 2

LNt∑

i=1

E
[

ln
(

det
(

HH
i Hi

))]

. (3.136)

Since Ξii is also diagonal, we can apply (3.26) directly to evaluate the above expectation
as follows:
LNt∑

i=1

E
[

ln(det(Ξii))
]

=
LNt∑

i=1

LNt∑

j=1

j "=i

(

log2 µj − υ log2Dj +
1

ln 2
exp

(
2λj

µj

)

Ei

(
−2λj

µj

))

.

(3.137)
Combining (3.23), (3.137), and (3.112) with (3.136) gives

Lmmse
∞ = log2(LNt)−

1

ln 2

LNt−1
∑

k=0

ψ(Nr − k) +
1

LNt ln 2

LNt∑

i=1

LNt−2
∑

k=0

ψ(Nr − k)

−Nt

L
∑

i=1

(

log2 µi − υ log2 Di +
1

ln 2
exp

(
2λi

µi

)

Ei

(
−2λi

µi

))

+
1

LNt

LNt∑

i=1

LNt∑

j=1

j "=i

(

log2 µj − υ log2Dj +
1

ln 2
exp

(
2λj

µj

)

Ei

(
−2λj

µj

))

. (3.138)
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Thus, the proof of (3.133) is concluded by simplifying (3.138).

Similar to optimal and ZF receivers, the high-SNR sum rate increases linearly with the
minimum number of antennas. As anticipated, higher Tx-Rx distances effectively reduce
the sum rate due to the increased path-loss attenuation.
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Chapter 4

Effective Capacity Analysis of MISO
Systems

A plethora of emerging applications, such as video tele-conferencing and VoIP, impose
stringent delay constraints that have to be appropriately accounted for, using a suitable
metric. Unfortunately, the classical Shannon’s ergodic capacity fails to do so. Hence, the
concept of effective capacity arises which can efficiently characterize communication sys-
tems in terms of data rate, delay and delay-violation probability. In this thesis, we will
be using the terminology effective rate instead of effective capacity, since we perform no
optimization over the input covariance matrix Q = E [xxH ]. For a detailed discussion, in-
terested readers are referred to [17].

In this chapter, we present a detailed effective rate analysis of MISO systems operat-
ing over RIG and G fading channels in two different channel formulations. Since an exact
analysis is tedious, we derive new analytical expressions for the effective rate in the asymp-
totically low- and high-SNR regimes. By doing so, we are able to obtain additional physical
insights into the implications of several parameters (e.g. fading parameters, number of an-
tennas, delay constraints) on the system performance.

4.1 MISO system model

4.1.1 RIG fading channels

Consider a typical MISO systemwithNt transmit antennas whose input-output relationship
is expressed as

y = hΞ1/2x+ n (4.1)
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where x ∈ CNt×1 is the transmitted signal vector, while n is the complex AWGN with
zero-mean and variance N0. The large-scale coefficients are represented by the diagonal
matrix Ξ ∈ RNt×Nt whose structure is Ξ = diag{INtξi/D

υ
i } for i = 1, . . . , Nt. The large-

scale coefficients ξi are modeled as independent IG RVs, ξi ∼ IG(µi,λi) according to (3.2).

The entries of the channel fading vector h ∈ C1×Nt are assumed to be i.i.d. Rayleigh
RVs, i.e., hi ∼ CN (0, 1), where i = 1, . . . , Nt. We now invoke that a squared Rayleigh RV
follows the Gamma distribution with scale parameter 1 [30]. As such, i.i.d. Gamma RVs
with scale parameter 1 are distributed as ϕi ∼ Gamma(1, 1), or

p(ϕi) = exp(−ϕi), ϕi ≥ 0. (4.2)

We assume that the transmitter sends uncorrelated circularly symmetric zero-mean
complex Gaussian signals and uniform power allocation across the transmit antennas; hence,
the effective rate can be expressed as [74]

R(θ, γ) = − 1

A
log2

(

E
[
(

1 +
γ

Nt
hΞhH

)−A
])

bits/s/Hz (4.3)

whereA ! θTB/ ln 2, withB denoting the bandwidth of the system, while γ is the average
transmit SNR.

4.1.2 G fading channels

In this section, we consider the entries of the channel vector h to be i.i.d. Nakagami-
m/IG RVs with fading parameters µ,λ, and m ≥ 0.5. We also assume that the large-scale
coefficients in this fading channel are kept constant throughout this chapter. As such, we
express a typical MISO system with Nt transmit antennas input-output model as,

y = hx + n (4.4)

where x ∈ CNt×1 is the transmitted signal vector, while n is the complex AWGN with
zero-mean and variance N0. Then, the p.d.f. of x = |hi|2, where i = 1, . . . , Nt, is given
by [55, Eq. (6)]

p|hi|2(x) =
Cxm−1

(√
α+ βx

)m+ 1
2

Km+ 1
2

(

b
√

α + βx
)

, x > 0 (4.5)

whereKv(·) denotes the v-th order modified Bessel function of second kind [1, Eq. (8.407.1)]
and the following constants have been used:

C !
(µλ)

1+2m
4

Γ(m)

√

2λ

πµ
exp

(
λ

µ

)(
m

µ

)m

, b !
1

µ

√

λ

µ
, α ! µλ, β ! 2mµ. (4.6)
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Using the moment generating function (m.g.f.) of the G distribution [55, Eq. (9)], we
obtain the first two moments of the squared G envelope (i.e. |hi|2) as follows:

E
[

|hi|2
]

= µ (4.7)

E
[(

|hi|2
)2
]

= µ2

(

1 +
1

m

)
(

1 +
µ

λ

)

. (4.8)

Now, using [55, Eq. (7)] and [55, Eq. (9)], we introduce the m.g.f. of the sum of the
squared G envelope (i.e. z = hhH =

∑Nt

i=1 |hi|2) as follows:

E
[
(

hhH
)k
]

= E
[

zk
]

=

√

2λ

πµ
exp

(
λ

µ

)
( µ

m

)k Γ(mNt + k)

Γ(mNt)
Kk− 1

2

(
λ

µ

)

(4.9)

while the k-th negative moment is given by

E
[

z−k
]

=

√

2λ

πµ
exp

(
λ

µ

)
( µ

m

)−k Γ(mNt − k)

Γ(mNt)
K−k− 1

2

(
λ

µ

)

(4.10)

=

(
m

µ

)k Γ(mNt − k)

Γ(mNt)

k
∑

n=0

(k + n)!

n! (k − n)!

( µ

2λ

)n
. (4.11)

By using (4.9), we give the first two moments of the sum of squared G envelope as follows:

E [z] = Ntµ (4.12)

E
[

z2
]

= N2
t µ

2

(

1 +
1

mNt

)
(

1 +
µ

λ

)

. (4.13)

We now assume that the transmitter sends uncorrelated circularly symmetric zero-
mean complex Gaussian signals and uniform power allocation across the transmit antennas.
Then, the effective rate in this fading channel is expressed as [74]

R(θ, γ) = − 1

A
log2

(

E
[
(

1 +
γ

Nt
hhH

)−A
])

bits/s/Hz (4.14)

where A ! θTB/ ln 2 with B denoting the bandwidth of the system, while γ is the average
transmit SNR.

4.2 Low-SNR analysis

In this section, we present a detailed effective rate analysis of MISO systems in RIG and
G fading channels in the low-SNR regime. Following the generic methodology of [17],
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we can assess the low-SNR performance via a second-order expansion of the effective rate
around γ → 0+ according to

R(θ, γ) = Ṙ(θ, 0)γ + R̈(θ, 0)
γ2

2
+ o(γ2) (4.15)

where Ṙ(θ, 0) and R̈(θ, 0) denote the first- and second-order derivatives of the effective
rate in (4.3) (or in (4.14)) w.r.t. the SNR γ, respectively. We point out that these derivative
expressions are inherently related with the notions of the minimum normalized energy per
information bit to reliably convey any positive rate and the wideband slope respectively,
originally proposed in [61]. For the case of QoS constraints, the latter two metrics are
respectively defined as,

Eb

N0 min
! lim

γ→0

γ

R(θ, γ)
=

1

Ṙ(θ, 0)
and S0 = −2 ln 2

(

Ṙ(θ, 0)
)2

R̈(θ, 0)
. (4.16)

4.2.1 RIG fading channels

Proposition 4.1. For MISO systems in RIG fading channels, the minimum energy per in-
formation bit and the wideband slope are

Eb

N0

RIG

min

= ln 2 Nt

(
Nt∑

i=1

µi

)−1

(4.17)

SRIG
0 =

2
(
∑Nt

i=1 µi

)2

(A+ 1)

((

2
∑Nt

i=1

(

µ2
i +

µ3
i

λi

))

+

(
∑Nt

i=1

∑Nt
j=1

j "=i

µiµj

))

−A
(
∑Nt

i=1 µi

)2
.

(4.18)

Proof. Recalling that, for IG distributed RVs, the first two moments about zero are E [ξi] =
µi and E [ξ2i ] = µ2

i +
µ3
i

λi
, respectively [33]. For Gamma distributed RVs with scale parameter

1, the first two moments about zero are E [ϕi] = 1 and E [ϕ2
i ] = 2, respectively [30].

Using the results in [74, Appendix I], we can easily find the first- and second-order
derivatives in (4.16). Thus, the former is given by

Ṙ(θ, 0) =
1

ln 2 Nt
E
[

hΞhH
]

=
1

ln 2 Nt
E
[

tr
(

ΞhHh
)]

(4.19)

=
1

ln 2 Nt
E
[

Nt∑

i=1

ξiϕi

]

=
1

ln 2 Nt

Nt∑

i=1

E [ξi] E [ϕi] (4.20)

=
1

ln 2 Nt

Nt∑

i=1

µi (4.21)
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where in (4.20), we have used the statistical independence property. Now, we can easily
get (4.17) using (4.21). Next, the second-order derivative in (4.16) is given by

R̈(θ, 0) = − 1

θTB

A(A+ 1)

Nt
2 E

[
(

hΞhH
)2
]

+
1

θTB

A2

Nt
2

(

E
[

hΞhH
])2 (4.22)

= − 1

θTB

A(A+ 1)

Nt
2 E

[

tr2
(

ΞhHh
)]

︸ ︷︷ ︸

I1

+
1

θTB

A2

Nt
2

(
Nt∑

i=1

µi

)2

. (4.23)

The expectation term in (4.23) is evaluated by

I1 = E





(
Nt∑

i=1

ξiϕi

)2


 = E
[

Nt∑

i=1

(ξiϕi)
2

]

+ E






Nt∑

i=1

Nt∑

j=1

j "=i

ξiξjϕiϕj




 (4.24)

=
Nt∑

i=1

E
[

ξ2i
]

E
[

ϕ2
i

]

+
Nt∑

i=1

Nt∑

j=1

j "=i

E [ξi] E [ϕi] E [ξj] E [ϕj] (4.25)

= 2
Nt∑

i=1

(

µ2
i +

µ3
i

λi

)

+
Nt∑

i=1

Nt∑

j=1

j "=i

µiµj (4.26)

where in (4.25), we have used the statistical independence property. Substituting (4.26)
into (4.23) gives

R̈(θ, 0) = − 1

θTB

A(A+ 1)

Nt
2






(

2
Nt∑

i=1

(

µ2
i +

µ3
i

λi

)
)

+






Nt∑

i=1

Nt∑

j=1

j "=i

µiµj











+
1

θTB

A2

Nt
2

(
Nt∑

i=1

µi

)2

. (4.27)

Now, using the first- and second-order derivatives in (4.23) and (4.27) respectively, we
can easily find the wideband slope as

SRIG
0 =

−2 ln 2
(

1
ln 2 Nt

∑Nt

i=1 µi

)2

− 1
θTB

A(A+1)
Nt

2

((

2
∑Nt

i=1

(

µ2
i +

µ3
i

λi

))

+

(
∑Nt

i=1

∑Nt
j=1

j "=i

µiµj

))

+ 1
θTB

A2

Nt
2

(
∑Nt

i=1 µi

)2

(4.28)

=
2
(
∑Nt

i=1 µi

)2

sA(A+1)
Nt

2

(
(

2
∑Nt

i=1

(

µ2
i +

µ3
i

λi

))

+

(
∑Nt

i=1

∑Nt
j=1

j "=i

µiµj

))

− sA2

Nt
2

(
∑Nt

i=1 µi

)2
(4.29)

where s = ln 2 N2
t

θTB . Thus, we can conclude the proof after simplifying the above expression.
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We can easily observe that Eb

N0

RIG

min
is independent of delay constraints, whereas SRIG

0 is
a monotonically decreasing function in A, which implies that the strict delay constraints
effectively reduce SRIG

0 and, in turn, the effective rate.

Corollary 4.1. For MISO systems in RIG fading channels with constant large-scale fading
parameters, the low-SNR metrics are given by

Eb

N0

RIG

min

=
ln 2

µ
(4.30)

SRIG
0 =

2
A+1
Nt

(

1 + 2µ
λ

)

+ 1
. (4.31)

Proof. The proof is trivial and therefore omitted.

Interestingly, Eb

N0

RIG

min
is now independent of number of transmit antennas, whereas SRIG

0

is a monotonically decreasing function in A and an increasing function in Nt. This implies
that strict delay constraints affect the effective rate in terms of SRIG

0 whereas the effective
rate can be improved by increasing the number of transmit antennas.

4.2.2 G fading channels

In this section, capitalizing on the results of [55], we analyze the effective rate of MISO
systems in G fading channels.

Proposition 4.2. For MISO systems in G fading channels, the minimum energy per infor-
mation bit and the wideband slope are

Eb

N0

G

min

=
ln 2

µ
(4.32)

SG
0 =

2
A+1
Nt

(
1
m

(

1 + µ
λ

)

+ µ
λ

)

+ 1
. (4.33)

Proof. Using the results in [74, Appendix I], we can easily find the first- and second-order
derivatives of the effective rate in (4.14) w.r.t. SNR γ. Thus, the former is given by

Ṙ(θ, 0) =
1

ln 2 Nt
E
[

hhH
]

(4.34)

=
1

ln 2 Nt
E
[

Nt∑

i=1

|hi|2
]

=
1

ln 2 Nt
Nt E

[

|h1|2
]

(4.35)

=
µ

ln 2
(4.36)
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where in (4.35), we have used the statistical independence property. We obtained (4.36)
using (4.7) and thus, we can easily get (4.32). Next, the second-order derivative of the
effective rate is given by

R̈(θ, 0) = −(A + 1)

Nt
2 ln 2

E
[
(

hhH
)2
]

︸ ︷︷ ︸

I1

+
A

Nt
2 ln 2

(

E
[

hhH
])2 (4.37)

The expectation term in (4.37) is evaluated by

I1 = E





(
Nt∑

i=1

|hi|2
)2



 = E
[

Nt∑

i=1

(

|hi|2
)2

]

+ E






Nt∑

i=1

Nt∑

j=1

j "=i

|hi|2|hj|2




 (4.38)

=
Nt∑

i=1

E
[
(

|hi|2
)2
]

+
Nt∑

i=1

Nt∑

j=1

j "=i

E
[

|hi|2 |hj |2
]

(4.39)

= NtE
[
(

|h1|2
)2
]

+Nt(Nt − 1)
(

E
[

|h1|2
])2 (4.40)

= Ntµ
2

(

1 +
1

m

)
(

1 +
µ

λ

)

+Nt(Nt − 1)µ2 (4.41)

where in (4.40), we have used the statistical independence property. We obtained (4.41)
using (4.7) and (4.8). Substituting (4.41) into (4.37) gives

R̈(θ, 0) = −(A+ 1)µ2

Nt ln 2

(((

1 +
1

m

)
(

1 +
µ

λ

)
)

+Nt − 1

)

+
Aµ2

ln 2
. (4.42)

Now, using (4.37) and (4.42), we can easily find the wideband slope as

SG
0 =

−2 ln 2
(

µ
ln 2

)2

µ2

ln 2

(

−A+1
Nt

(((

1 + 1
m

) (

1 + µ
λ

))

+Nt − 1
)

+ A
) (4.43)

=
2

A+1
Nt

(((

1 + 1
m

) (

1 + µ
λ

))

+Nt − 1
)

−A
. (4.44)

Thus, we can conclude the proof after simplifying (4.44).

Note that, when m = 1, the low-SNR metrics of G fading channels reduce to RIG fad-
ing model, as evidently we can compare with Corollary 4.1.

We can clearly observe that Eb

N0

G
min

is independent of the Nakagami-m factor, delay
constraints, and number of transmit antennas, whereas SG

0 is an increasing function in Nt

andm-factor. We can validate the impact of them-factor using the following expression

dSG
0

dm
=

2Nt(A + 1)
(

1 + µ
λ

)

(

(A+ 1)
((

1 + µ
λ

)

+ mµ
λ

)

+mNt

)2 > 0 (4.45)
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whereas, the impact of Nt is validated by

dSG
0

dNt
=

2(A+ 1)
(

1
m

(

1 + µ
λ

)

+ µ
λ

)

(

(A+ 1)
(

1
m

(

1 + µ
λ

)

+ µ
λ

)

+Nt

)2 > 0. (4.46)

Now, we can obtain the minimum value of wideband slope form = 0.5 as

SG
0 =

2

(A+ 1)
(

2 + 3µ
λ

)

+Nt

(4.47)

and we can obtain its maximum value form → ∞ (i.e. AWGN channel) as

SG
0 =

2

(A+ 1)µλ +Nt
. (4.48)

Thus, we get the following bounds

2

(A+ 1)
(

2 + 3µ
λ

)

+Nt

≤ SG
0 ≤ 2

(A+ 1)µλ +Nt
. (4.49)

We can easily validate monotonically decreasing function in A using the following expres-
sion

dSG
0

dA
=

−2Nt

(
1
m

(

1 + µ
λ

)

+ µ
λ

)

(

(A+ 1)
(

1
m

(

1 + µ
λ

)

+ µ
λ

)

+Nt

)2 < 0. (4.50)

It is also important to analyze the case when A = 0, i.e., no delay constraint, in which
wideband slope reduces to

SG
0 =

2Nt
1
m

(

1 + µ
λ

)

+ µ
λ +Nt

. (4.51)

When A = 1, the wideband slope becomes

SG
0 =

2Nt

2
m

(

1 + µ
λ

)

+ 2µ
λ +Nt

. (4.52)

We now validate the analytical expressions presented in Section 4.2.1 and Section 4.2.2
through set of Monte-Carlo simulations. For Section 4.2.1, we first generate 10,000 ran-
dom realizations of Ξ and h according to (3.2) and (4.2), respectively. For Section 4.2.2,
we generate 10,000 random realizations of channel vector h according to (4.5). In Fig.
4.1, the simulated low-SNR effective rate of (4.3) is compared with the analytical linear
approximation in (4.15) for Nt = 6 and A = 4. We change only the large-scale fading
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Figure 4.1: Low-SNR effective rate and analytical linear approximation against the transmitEb/N0

(Nt = 6, A = 4, λ = 10, andm = 1).

mean parameter, µ, and keep all other parameters constant. We can clearly observe that
the low-SNR effective rate increases, whereas the wideband slope decreases when µ gets
larger. On the other hand, the analytical approximation becomes tighter for small values of
µ.

In Fig. 4.2, the simulated low-SNR effective rate of (4.3) is compared with the an-
alytical linear approximation in (4.15) for Nt = 6 with different delay constraints. The
graph indicates the accuracy of the analytical expressions and that the range for a good
approximation improves if the QoS requirement loosens. On the other hand, when the QoS
requirement becomes harsher (i.e. when A becomes larger), the wideband slope decreases
and therefore the effective rate is reduced. The analytical approximation becomes tighter
for small values of A and this we can evidently see in Fig. 4.3. The figure implies that the
tighter delay constraint causes a severe decrease in the effective rate. This effective rate
can be improved by increasing the number of transmit antennas.

Note that, in Fig. 4.1, Fig. 4.2 and Fig. 4.3, we considered the casem = 1 and therefore
the results are applicable for both Sections 4.2.1 and 4.2.2.
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Figure 4.2: Low-SNR effective rate and analytical linear approximation against the transmitEb/N0

(Nt = 6,m = 1, λ = 10, and µ = 0.5).

In Fig. 4.4, the simulated low-SNR effective rate of (4.14) is compared with the analyt-
ical linear approximation in (4.15) forNt = 6with differentm-factors in the G distribution.
The curves validate the accuracy of the analytical linear approximations. The fading pa-
rameter m affects the effective rate through the wideband slope rather than the minimum
Eb/N0. As such, for the larger values of m, the linear approximation becomes tighter and
the effective rate increases.

4.3 High-SNR analysis

In this section, capitalizing on the results of [55], we analyze the effective rate of MISO
systems in G fading channels in the high-SNR regime.

Proposition 4.3. For MISO systems in G fading channels, the effective rate at high SNRs
and for A < mNt, where A ∈ N, is given by

R∞(θ, γ) = log2

(

γµ

mNt

)

− 1

A
log2

(

Γ(mNt − A)

Γ(mNt)

)

− 1

A
log2

(
A

∑

n=0

(A+ n)!

n! (A− n)!

( µ

2λ

)n
)

. (4.53)
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Figure 4.3: Low-SNR effective rate and analytical linear approximation against the transmitEb/N0

(Nt = 6,m = 1, λ = 10, and µ = 0.5).

Proof. By taking γ large in (4.14) and using (4.11), we can easily get the desired result
after appropriate simplifications.

Note that the slope of the effective rate at high SNRs is equal to 1. For the particular
case A = 1, (4.53) simplifies to

R∞(θ, γ) = log2 (γµ) + log2

(

1− 1

mNt

)

− log2

(

1 +
µ

λ

)

(4.54)

= log2 (γ) + log2

(

1− 1

mNt

)

− log2

(
1

µ
+

1

λ

)

(4.55)

which indicates the beneficial impact ofm, due to the reduced fading fluctuations.

In Fig. 4.5, the simulated effective rate is compared with the analytical linear approx-
imation in (4.53) for different number of transmit antennas Nt. The curves validate the
accuracy of the analytical linear approximations. The linear approximations become exact
even at moderate SNRs (e.g., around γ = 20dB), while the tightness of the curves im-
proves for higher Nt. We can easily observe that the effective rate increases with Nt, but
the relative difference between the curves gets steadily smaller.
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Figure 4.4: Low-SNR effective rate and analytical linear approximation against the transmitEb/N0

(Nt = 6, A = 4, λ = 10, and µ = 0.5).
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Figure 4.5: High-SNR effective rate and analytical linear approximation against the SNR (A = 4,
m = 2, λ = 10, and µ = 2).
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Chapter 5

Conclusions

In this thesis, we have first presented a detailed performance analysis of D-MIMO systems
with optimal, linear ZF, and MMSE receivers operating over RIG fading channels. It has
been shown that its contributions are of both theoretical and practical interest and serve as
a good starting point for future research. In this concluding chapter, all the key findings
from different chapters are summarized and several future research areas are suggested.

5.1 Summary of results

• We have derived new closed-form upper and lower capacity bounds for D-MIMO
systems over RIG fading channels, which can apply for any arbitrary number of
antennas and remain sufficiently tight across the entire SNR range. More specifically,
the implications of small- and large-scale fading effects were analyzed in detail.

• With the help of these proposed bounds, we analytically explored the “large-system”
regime by assuming that either the number of receive or transmit antennas grows
large. In both cases, we explicitly demonstrated that the effects of small-scale Rayleigh
fading are averaged out and that the sum rate is affected only by the large-scale fading
effects. It is also clearly shown that the sum rate converges to deterministic asymp-
totes, which are explicitly derived and validated by Monte-Carlo simulations.

• In the high-SNR regime, we explicitly demonstrated that the lower bound becomes
exact and in the low-SNR regime, we derived new analytical expressions for the
minimum energy per information bit to reliably convey any positive rate and the
wideband slope. We also demonstrated that, at high SNRs, the sum rate reduction
is manifested via an increased power offset, whereas at low SNRs, it is through a
reduced wideband slope. Likewise, we have analyzed the effective rate of MISO
systems operating over G fading channels in the high and low SNR regimes.
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5.2 Future research areas

There are several areas of this thesis that can be expanded at a future stage and some of
these are being outlined below:

• We have analytically investigated the sum rate of D-MIMO systems employing linear
ZF and MMSE receivers over RIG fading channels, exploiting a simple but powerful
connection with the ergodic MIMO mutual information achieved with optimal re-
ceivers. Hence, we can extend this RIG distribution to other measures of performance
related to practical communication system design (such as outage performance anal-
ysis, average symbol/bit error rates) and to begin exploring the analytical methods
by which they may be evaluated.

• The main focus of the thesis was the performance analysis of D-MIMO systems with
different receivers on a single-cell scenario. We can extend the proposed RIG dis-
tribution and performance analysis to many other scenarios beyond those explicitly
studied in this thesis. These include, for example, multi-cell MIMO systems, MIMO
systems operating in the presence of interference [75–77], and amplify-and-forward
relaying systems [56], [78].

• We also highlight the fact that the presented effective rate analysis of MISO systems
can be extended to MIMO systems over G and RIG fading channels.
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Appendix A

Standard Results and Formulae

A.1 Modified Bessel function of second kind

The modified Bessel function of second kind and of order v is denoted by Kv(·). The
following results, taken from [1, Eq. (8.469.3)] and [1, Eq. (8.486.21)] are useful for
solving integral expressions in this thesis:

Kv(z)
∣
∣
∣
v=± 1

2

=

√

π

2z
exp(−z) (A.1)

∂

∂v
(Kv(z))

∣
∣
∣
v=± 1

2

= ∓
√

π

2z
exp(z)Ei(−2z). (A.2)

A.2 Properties of Inverse-Gaussian distributed RVs

The positive moments of an Inverse-Gaussian (IG) distributed RV, ξi ∼ IG(µi,λi) can be
determined by [33, Eq. (2.5)]

E
[

ξni

]

= µn
i

n−1
∑

m=0

(n− 1 +m)!

m!(n− 1−m)!

(
2λi

µi

)−m

. (A.3)

Using (A.3), we can obtain the first two moments about zero as follows:

E
[

ξi
]

= µi (A.4)

E
[

ξ2i

]

= µ2
i +

µ3
i

λi
. (A.5)

The following lemma will be particularly useful in the capacity analysis of MIMO
systems in RIG fading channels:
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Lemma A.2.1. The positive moments of an IG distributed RV can be alternatively ex-
pressed as

E
[

ξni
]

=

√

2λi

πµi
exp

(

λi

µi

)

µn
i Kn− 1

2

(

λi

µi

)

. (A.6)

The first log-moment of an IG distributed RV is given by

E
[

ln(ξi)
]

= ln(µi) + exp

(
2λi

µi

)

Ei

(

−2λi

µi

)

. (A.7)

The following key results will be particularly useful to obtain the dispersion of the
large-scale fading random matrix Ξ

E
[

tr(Ξ)
]

= Nt

L
∑

i=1

E
[

ξi
]

D−υ
i = Nt

L
∑

i=1

µiD
−υ
i (A.8)

E
[

tr
(

Ξ2
)
]

= Nt

L
∑

i=1

E
[

ξi
2
]

D−2υ
i = Nt

L
∑

i=1

(

µ2
i +

µ3
i

λi

)

D−2υ
i . (A.9)

Proof. Using [1, Eq. (3.471.9)], we can easily obtain (A.6) after basic simplifications. To
prove (A.7), we first recall the following integral identity [79, Eq. (2.6.22.8)]
∫ ∞

0

ln(x)x−1± 1
2 e−(px− q

x
)dx =

√
π

p

(

p

q

)(1∓1)/4 (1

2
e−2

√
pq ln

(

p

q

)

∓ e2
√
pq
Ei (−4

√
pq)

)

.

(A.10)

Using (A.10), we can directly obtain (A.7) after appropriate simplifications. Finally, using
(A.4) and (A.5), we can directly obtain (A.8) and (A.9), respectively.

A.3 Basic majorization theory results

Majorization theory is one of the most powerful tools to derive inequalities and it has been
widely used in wireless communications research field in recent years (see e.g., [11], [80],
and [81]). We now give some basic majorization theory results, which allow us to derive
our main results in this thesis. For additional definitions, examples, and other majorization
theory results, interested readers are referred to [11, App. I] and [69].

Lemma A.3.1. [69] For any vector x ∈ Rn, let x[1] ≥ x[2] ≥ . . . ≥ x[k] denote its
components in decreasing order.
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Lemma A.3.2. [69, 1.A.1] For any vector x,y ∈ Rn, x is majorized by y (or y majorizes
x) if

{∑k
i=1 x[i] ≤

∑k
i=1 y[i], 1 ≤ k ≤ n− 1

∑n
i=1 x[i] =

∑n
i=1 y[i].

(A.11)

The notation x ≺ y, or equivalently, by y / x, is used to denote the case where y majorizes
x.

Lemma A.3.3. [69, p. 7] For any vector x ∈ Rn, let a ∈ Rn denotes a constant vector
with the i-th element given by a[i] = (1/n)

∑n
k=1 x[k]. Then, x majorizes a, or a ≺ x. This

result indicates that the vector with identical entries is majorized by any vector with the
same sum value.

Lemma A.3.4. [69, 3.A.1] A real-valued function f(·) defined on a set A is said to be
Schur-convex on A if

x ≺ y on A ⇒ f(x) ≤ f(y). (A.12)

Lemma A.3.5. [69, 3.C.1] If I ⊂ R is an interval and g : I → R is convex, then

f(x) =
n

∑

k=1

g
(

x[k]

)

(A.13)

is Schur-convex on In. Consequently, x ≺ y on In implies f(x) ≤ f(y).

71



Appendix B

Original publications

1. V. Gopal, M. Matthaiou, and C. Zhong, “Performance analysis of distributed MIMO
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Abstract—In this paper, we pursue a performance evaluation
of distributed multiple-input multiple-output (MIMO) systems
in composite Rayleigh/Inverse-Gaussian fading channels. Capi-
talizing on some generic bounding techniques, we first derive
new closed-form bounds on the ergodic capacity of optimal
receivers. In order to gain useful insights into the impact of
fading parameters on optimal receivers’ performance, a detailed
characterization in the asymptotically high and low signal-to-
noise ratio regimes is also provided. In addition, we explore
the “large-system” regime and provide asymptotic expressions
when the number of antennas grows large. A similar performance
analysis is performed for the achievable sum rate of distributed
MIMO systems employing linear minimum mean-square error
receivers.

I. INTRODUCTION
The potential of combining MIMO spatial multiplexing

gains with macro-diversity gains is realized by distributed
MIMO (D-MIMO) systems, that promise to improve the cell
coverage [1]–[3]. In D-MIMO systems, multiple antennas,
placed at one end of the radio link, are deployed into multiple
radio ports. In such configurations, each radio port experiences
different large-scale fading (a.k.a. shadowing) effects and path-
loss, due to the different propagation paths. This is the key
difference compared to conventional point-to-point MIMO
configurations, which makes the performance analysis of D-
MIMO systems a challenging mathematical problem. As such,
there are very few analytical works investigating the impact
of composite fading channels (i.e., mixture of both small-
scale and large-scale fading) on the performance of D-MIMO
systems.
The ergodic capacity of D-MIMO systems was explored

with the aid of majorization theory in [2] by deriving upper and
lower capacity bounds for the case of Nakagami-m/log-normal
fading channels. On the other hand, in [3], the analytically
friendlier gamma distribution was used, as an alternative to
the log-normal distribution, and the capacity of D-MIMO
systems was investigated over Nakagami-m/Gamma fading
(a.k.a. generalized-K fading) channels. Nevertheless, these
results, based on the gamma shadowing model, are essentially
approximations. More importantly, for the large variance case
or in the tails of the log-normal distribution, the gamma
distribution does not yield a good approximation [4]. Moti-
vated by these intrinsic deficiencies, the Inverse-Gaussian (IG)
distribution was recently proposed as a more accurate approx-
imation to the classical log-normal model to describe large-

scale fading effects [4]. In fact, the authors in [4] proved that
the composite Rayleigh/IG (RIG) distribution approximates
the Rayleigh/log-normal distribution more accurately than the
K distribution in terms of the Kullback–Leibler measure of
divergence. Note that the IG distribution has already been
used in the context of free-space optical systems [5], whereas
the composite Nakagami-m/IG distribution was first used in
[6] for the performance evaluation of communications systems
and in [7], in the context of relaying systems, respectively.
The main objective of this paper is to analytically investigate

the performance of D-MIMO systems with optimal and linear
minimum mean-squared error (MMSE) receivers over RIG
fading channels. It is important to note that, to the best of au-
thors’ knowledge, the results in this paper present the first-ever
analytical investigation of D-MIMO systems in RIG fading
channels. Motivated by the preceding, we hereafter derive tight
upper and lower sum rate bounds for this class of channels
using some recent bounding techniques [2]. With the help
of these proposed bounds, we analytically explore the “large-
system” regime by assuming that either the number of receive
or transmit antennas grows large. In both cases, we explicitly
demonstrate that the effects of small-scale Rayleigh fading are
averaged out and the ergodic capacity is affected only by the
large-scale fading. We also investigate the asymptotically high
and low signal-to-noise ratio (SNR) regimes. Our analytical
results are quite informative and insightful; for example, they
enable us to characterize the impact of large-scale fading
parameters as well as path-loss on the sum rate.
Notation: For any matrix, (·)H denotes the Hermitian

transpose, tr(·) the matrix trace, and det(·) the determinant
operation. The (i, j)-th minor of matrix A is denoted by Aij ,
while Ai is A with the i-th column removed. The symbol E [·]
stands for the expectation operation. The notation Γ(·) stands
for the well-known Gamma function [8, Eq. (8.310.1)], while
Ei(x) = −

�∞
−x

e−t

t dt is the exponential integral function [8,
Eq. (8.211.1)]. Finally, ψ(·) is Euler’s digamma function [8,
Eq. (8.360.1)].

II. MIMO SYSTEM MODEL

Consider a typical MIMO system with Nr receive antennas
and L radio ports each connected to Nt transmit antennas,
assuming that Nr ≥ LNt. The input-output model for this
D-MIMO system is

y =
√
γHΞ1/2x+ n (1)
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where x ∈ CLNt×1 and y ∈ CNr×1 are the transmitted and re-
ceived signal vectors, respectively, while n ∼ CN (0, N0INr )
is the complex AWGN term, whereN0 is the noise power. The
average SNR is defined as γ. The large-scale fading effects
are represented by the diagonal matrix Ξ ∈ RLNt×LNt whose
structure is Ξ = diag{INtξi/D

υ
i } for i = 1, . . . , L. Note that

all Nt antennas in the i-th radio port experience the same
large-scale fading. The distance between the receiver and the
i-th radio port is denoted by Di, while υ is the path-loss
exponent. The large-scale fading coefficients ξi are modeled
as independent IG random variables (RVs), ξi ∼ IG(µi,λi),
or

p(ξi) =

�
λi

2π
ξ
− 3

2
i exp

�
−λi(ξi − µi)2

2µ2
i ξi

�
, ξi > 0 (2)

where µi > 0,λi > 0 are the mean and the scale parameters
of the IG distribution, respectively [9].
The entries of the channel matrix H ∈ CNr×LNt are

assumed to be independent and identically distributed (i.i.d.)
Rayleigh RVs, i.e., hst ∼ CN (0, 1), where s = 1, . . . , Nr and
t = 1, . . . , LNt. We now invoke that a squared Rayleigh RV
follows the Gamma distribution with scale parameter 1 and
also that the sum of n i.i.d. Gamma RVs with common scale
parameter θ and shape parameters {ki}ni=1 is also Gamma
distributed with parameters

��n
i=1 ki, θ

�
[10]. As such, the

sum of Nr i.i.d. Gamma RVs with scale parameter 1 is
distributed as ϕi ∼ Gamma(Nr, 1), or

p(ϕi) =
ϕNr−1
i

Γ(Nr)
exp(−ϕi), ϕi ≥ 0. (3)

III. PERFORMANCE ANALYSIS OF D-MIMO SYSTEMS

In this section, we present a detailed performance analysis
of D-MIMO systems with optimal and linear MMSE receivers
in RIG fading channels.

A. Optimal receivers
We assume that the receiver has perfect channel state

information (CSI) while the transmitter has nor statistical
neither instantaneous CSI and as such performs uniform power
allocation across all the data streams. Then, the MIMO ergodic
capacity reads as

Cerg = E
�
log2

�
det

�
ILNt +

γ

LNt
ΞHHH

���
(4)

where the expectation is taken over all channel realizations of
H, Ξ and the channel is assumed to be ergodic.

1) Exact analysis: We now derive new ergodic capacity
upper and lower bounds for optimal receivers. Capitalizing
on the results of [2], we first derive an upper capacity bound.

Proposition 1: For D-MIMO systems with optimal re-
ceivers in RIG fading channels, the ergodic capacity in (4)
is upper bounded by CUB, with

CUB =
γ

2
√
π ln 2L Γ(Nr)

L�

i=1

1

Dυ
i

exp

�
λi

µi

� N�

j=1

wjVi(xj) (5)

where Vi(t) = t−
1
2 exp

�
− λ2

i

4µ2
i t

�
G1,3

3,2

�
γiµit

LNtλiDυ
i

���
−Nr,0,0

0,−1

�
,

{xj}Nj=1 are the zeros of the N -th order Laguerre polynomial,
{wj}Nj=1 are the weight factors tabulated in [11, Table 25.9],
and Gm,n

p,q =
�
x
��b1,...,bq
a1,...,ap

�
denotes the Meijer’s-G function [8,

Eq. (9.301)].
Proof: Using [2, Eq. (64)], we can rewrite the ergodic

capacity in (4) as

Cerg ≤ CUB =
Nt

ln 2

L�

i=1

E
�
ln

�
1 +

γ

LNt

ξiϕi

Dυ
i

��

� �� �
I1

. (6)

To evaluate I1 we first express ln(1 + ax) in terms of a
Meijer’s-G function using [12, Eq. (8.4.6.5)]. Then, combining
(3) with [8, Eq. (7.813.1)] gives

I1 =
1

Γ(Nr)

� ∞

0
G1,3

3,2

�
γiξi

LNtDυ
i

���
1−Nr,1,1

1,0

�
p(ξi) dξi. (7)

Substituting (2) into (7), applying a change of variables, ti =
(2ξiµ2

i /λi), and thereafter using [8, Eq. (9.31.5)], we end up
with the following expression

I1 =
γ exp

�
λi
µi

�

2
√
πLNtDv

i Γ(Nr)

� ∞

0
exp(−ti) Vi(ti) dti (8)

where Vi(ti) is defined in (5). The above integral can be
efficiently evaluated by Gauss-Laguerre quadratic integration
[11, Eq. (25.4.45)]. Thus, we can conclude the proof.
In the above proof, Gauss-Laguerre quadratic integration

has been used to approximate the integral expression. While
(5) can be used to compute the upper bound for D-MIMO
systems in RIG fading channels, the computation of Gauss-
Laguerre quadratic integration can still be time consuming,
especially at low SNRs (e.g., γ < −15 dB). More importantly,
the above upper bound, though in analytical form, provides
limited physical insights. It is thus of interest to consider the
high-SNR regime for further analyzing the upper bound.
Corollary 1: At high-SNRs (γ → ∞), the ergodic capacity

upper bound CUB simplifies to

C∞
UB = LNt log2

�
γ

LNt

�
+

LNt

ln 2
ψ (Nr) +Nt

L�

i=1

�
log2(µi)

− υ log2(Di) +
1

ln 2
exp

�
2λi

µi

�
Ei

�
−2λi

µi

��
. (9)

Proof: The proof is trivial and therefore omitted.
Clearly, the high-SNR upper bound in (9) effectively de-

couples the effects of small-scale and large-scale fading on
the ergodic capacity. Now, we give a new ergodic capacity
lower bound via the following proposition:
Proposition 2: For D-MIMO systems with optimal re-

ceivers in RIG fading channels, the ergodic capacity in (4)
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is lower bounded by CLB, with

CLB = LNt log2

�
1 +

γ

LNt
exp

�
1

L

L�

i=1

�
lnµi − υ lnDi

+exp

�
2λi

µi

�
Ei

�
−2λi

µi

��
+

1

LNt

LNt−1�

k=0

ψ(Nr − k)

��
. (10)

Proof: The proof relies on the application of Minkowski’s
inequality to (4), as proposed in [13, Th. 1]. Exploiting the fact
that ln(1+α exp(x)) is convex in x for α > 0, and thereafter
applying Jensen’s inequality, we can obtain the following
lower bound

CLB=LNt log2

�
1+

γ

LNt
exp

�
1

LNt
E
�
ln
�
det

�
ΞHHH

���

� �� �
I2

��
.

Recalling the identity det(AB) = det(A) det(B), we can
express the above expectation term as follows:

I2 = E
�
ln(det(Ξ))

�
+ E

�
ln
�
det

�
HHH

�� �
. (11)

Since Ξ is diagonal, the first term in (11) can be given as

E
�
ln(det(Ξ))

�
(50)
= −Ntυ

L�

i=1

lnDi

+Nt

L�

i=1

�
lnµi + exp

�
2λi

µi

�
Ei

�
−2λi

µi

��
. (12)

Since H is Rayleigh distributed, the term HHH follows a
central Wishart distribution (zero-mean) [14]. Using [14, Eq.
(A.8.1)], the last term in (11) can be easily evaluated. Thus,
we can conclude the proof.
Note that, in the high-SNR regime, the lower bound be-

comes by definition exact and equal to the ergodic capacity
[13].
2) Low-SNR analysis:We now examine the ergodic capacity

in the power-limited (or low-SNR) regime. The low-SNR
performance of MIMO systems is typically analyzed via the
normalized receive energy per bit (Er

b /N0) rather than via the
per-symbol SNR [15]. This capacity representation is given by

Cerg
�
Eb

N0

�
≈ S0 log2

�
Eb
N0

Eb
N0 min

�
(13)

Eb

N0 min

=
1

Ċerg(0)
and S0 = −2 ln 2

�
Ċerg(0)

�2

C̈erg(0)
(14)

where Eb/N0min and S0 are the minimum normalized energy
per information bit required to convey any positive rate
reliably and the wideband slope, respectively, while Ċerg(0)
and C̈erg(0) denote the first- and second-order derivatives of
the ergodic capacity in (4) w.r.t. the SNR, respectively [15].
Proposition 3: For D-MIMO systems with optimal re-

ceivers in RIG fading channels, the minimum energy per

information bit and the wideband slope are

Eb

N0

opt

min

=
L ln 2

Nr

�
L�

i=1

µiD
−υ
i

�−1

(15)

Sopt
0 =

2

1
Nr

+ 1
Nt




�L

i=1

�
µ2
i+

µ3
i

λi

�
D−2υ

i

(
�L

i=1 µiD
−υ
i )2





. (16)

Proof: First, we recall that
d

dx
ln (det (I+ xA))

��
x=0

= tr(A). (17)

Now, we set γ → 0 in (6) and evaluate Ċerg as

Ċerg(0) = E
�
tr
�
ZHZ

� �

=
Nt

LNt ln 2

L�

i=1

� ∞

0

� ∞

0

ξiϕi

Dυ
i

p(ϕi) p(ξi) dϕi dξi (18)

where Z = HΞ1/2 and ξiϕi/Dυ
i are the real, non-negative

diagonal elements of ZHZ. Substituting (2) and (3) into (18),
thereafter using [8, Eq. (3.381.4)] and the first moment of a
IG RV (E [ξi] = µi), we get

Ċerg(0) =
Nr

L ln 2

L�

i=1

µiD
−υ
i . (19)

For the wideband slope Sopt
0 , we invoke a classical result from

random matrix theory on correlated Rayleigh MIMO channels
[16, Eq. (19)]. We assume no correlation at the receiver (i.e.,
ΘR = INr and ΘT = Ξ) and we can obtain the dispersion of
random matrix Ξ [16, Eq. (8)] using (51) and (52). Thus, we
can conclude the proof.
Note that Eb/N0

opt
min in (15) is independent of Nt, which

agrees with the results of [15] and [16], while a higher Nr

improves the low-SNR capacity in (13) by reducingEb/N0
opt
min.

On the other hand, the presence of the large-scale fading mean
parameter µi increases Eb/N0

opt
min, especially in severe fading

conditions (i.e., small values of µi). Note that the wideband
slope in (16) is by definition always greater than one.

We can now validate the above theoretical expressions via
a set of Monte-Carlo simulations. We generate 10,000 random
realizations of the small- and large-scale fading matrices, H
and Ξ, respectively. In Fig. 1, the simulated ergodic capacity
of (4) is compared with the analytical low-SNR approximation
in (13). We change only the large-scale fading mean parameter
µi and keep all other fading parameters constant. We can
clearly observe that the low-SNR capacity increases, whereas
the wideband slope decreases when µi gets larger. On the other
hand, the analytical approximation becomes tighter for smaller
values of µi.

3) High-SNR analysis: We now examine the ergodic capac-
ity in the high-SNR (γ → ∞) regime. To get better insights
into the high-SNR capacity performance, we can invoke the
following affine capacity expansion, which was originally
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parameter (Nr = 12, Nt = 2, L = 3, λi = λ = 3, Di = D = 1500m
(∀i = 1, . . . , L), and υ = 4).

applied in the context of multiple access systems with random
spreading [17] and thereafter in the analysis of MIMO systems
[18]:

Cerg = S∞ (log2(γ)− L∞) + o(1) (20)

where S∞ is the so-called high-SNR slope in bits/s/Hz per
3-dB units, while L∞ is the zero-th order term or high-SNR
power offset, in 3-dB units [17], [18].

Proposition 4: For D-MIMO systems with optimal re-
ceivers in RIG fading channels, the high-SNR parameters are

Sopt
∞ = LNt (21)

Lopt
∞ = log2(LNt)−

1

L

L�

i=1

�
log2(µi)− υ log2(Di)

+
1

ln 2
exp

�
2λi

µi

�
Ei

�
−2λi

µi

��
− 1

LNt ln 2

LNt−1�

k=0

ψ(Nr − k). (22)

Proof: For MIMO systems with optimal receivers, the
slope and the offset are obtained by [19, Eq. (16), (17)]

Sopt
∞ = min(Nr, LNt) (23)

Lopt
∞ = log2(LNt)−

1

LNt ln 2
E
�
ln
�
det

�
ΞHHH

�� �
. (24)

Combining (11) with (24) gives (22) after simplifications.
From (22), we can infer that the small- and large-scale fad-

ing terms are effectively decoupled in the high-SNR regime.
Furthermore, larger values of Di, reduce the ergodic capacity
due to the increased path-loss attenuation. Note that the high-
SNR slope in (21) verifies that the high-SNR ergodic capacity
increases linearly with the minimum number of antennas,
which is in line with [13] and [14].
In Fig. 2, the simulated ergodic capacity is compared with

the analytical high-SNR approximation (20), the analytical
upper and lower bounds from (5) and (10), respectively.
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µi = [4, 2, 3], λi = [3, 5, 7], Di = [1000m, 1500m, 2000m], where
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Both the upper and lower bounds become tighter when the
number of receive antennas,Nr, increases. Also, we can easily
observe that the high-SNR approximations become exact even
at moderate SNR values. In the low-SNR regime, the lower
bound converges asymptotically to the empirical value of
ergodic capacity. These observations are consistent with the
results of [3], [13], and [20].

4) Large-system analysis: We now examine the ergodic
capacity lower bound in the large-system regime.
Corollary 2: When the number of receive antennas grows

large (i.e., Nr → ∞), while Nt, L are kept fixed, the ergodic
capacity lower bound becomes

CLB = LNt log2

�
1 +

γNr

LNt
exp

�
1

L

L�

i=1

�
lnµi − υ lnDi

+ exp

�
2λi

µi

�
Ei

�
−2λi

µi

����
. (25)

Proof: First, we recall that [11, Eq. (6.3.18)]

ψ(x) ≈ lnx, if x → ∞. (26)

Substituting (26) into (10) gives (25) after appropriate simpli-
fications.
From the large-system result in (25), we can clearly con-

clude that the small-scale fading effects are asymptotically
averaged out and only the large-scale fading effects remains,
when the number of receive antennas grows very large, which
agrees with the results of [21]. Note also that the capacity
increases logarithmically with the number of receive antennas.
Next, we analyze an important case when both LNt and

Nr grow large. More specifically, when LNt → ∞ we need
to analyze the two cases based on Nt → ∞ (L fixed) and
L → ∞ (Nt fixed) separately. Also, we assume β = Nr

LNt
> 1

and based on this fixed and finite ratio, we examine the ergodic
capacity lower bound in the following two cases:
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(i) L: Fixed and Nt → ∞, Nr → ∞: In this case, the
ergodic capacity lower bound (10) is given by

CLB
Nt

Nt,Nr→∞
= L log2

�
1 +

γββ

exp(1)(β − 1)(β−1)

× exp

�
1

L

L�

i=1

lnµi−υ lnDi+exp

�
2λi

µi

�
Ei

�
−2λi

µi

���
. (27)

Proof: Using (26), we express the last sum term in (10)
as follows:

1

LNt

LNt−1�

k=0

ψ(Nr − k) ≈ lnNr +
1

LNt

LNt−1�

k=0

ln

�
1− k

Nr

�
(28)

≈ lnNr +
1

LNt

� LNt

0
ln

�
1− k

Nr

�
dk (29)

= lnNr + (β−1) ln

�
β

β − 1

�
−1 (30)

where in (29), we expressed the sum term in (28) as an integral
function and then, we used the following integral identity [25]
to obtain (30)
� M

0
ln
�
1− x

N

�
dx=(N−M) ln

�
N

N−M

�
−M, if N>M.

Substituting (30) into (10) gives (27) after simplifications.
From (27), we can infer that the capacity increases linearly

with the number of transmit antennas for any β > 1.
(ii) Nt: Fixed and L → ∞, Nr → ∞: In this case, we

assume that all radio ports are uniformly distributed in a circle
of radius R0, centered by the base station and all radio ports
experience to have the same fading effects. As such, we can
set µi = µ,λi = λ fixed values and Di varying for all L ports,
where i = 1, . . . , L. The corresponding probability distribution
of the distance between the radio ports and base station is
given by [22, Eq. (7)]

pD(x) =
2x

R2
0

, 0 ≤ x ≤ R0. (31)

Next, we rearrange the large-system lower bound in (27) as

CLB = LNt log2

�
1 + a exp

�
1

L

L�

i=1

lnD−υ
i

��
(32)

where a � γµββ(β− 1)(1−β) exp
�
exp

�
2λ
µ

�
Ei

�
−2λ
µ

�
− 1

�
.

When L → ∞, the argument in the exponential term is nothing
but an ensemble average w.r.t. Di (distribution of distances).
As such, we can express (32) as
CLB
L

L,Nr→∞
= Nt log2

�
1 + a exp

�
EDi

�
lnD−υ

i

���
. (33)

We now recall L’Hospital’s rule to get

lim
x→0+

x ln(x)= lim
x→0+

ln(x)

1/x
= lim

x→0+

1/x

−1/x2
= 0. (34)

Combining [8, Eq. (2.723.1)] with (34), we can easily obtain
the following expression.

EDi

�
lnD−υ

i

�
= −υ lnR0 +

υ

2
. (35)

Substituting (35) into (33) gives
CLB
L

L,Nr→∞
= Nt log2

�
1 + aR−v

0 exp
�v
2

��
. (36)

At high-SNRs, we can further approximate (36) as
C∞
LB

L
L,Nr→∞

= Nt log2(a)− vNt log2(R0) +
vNt

2 ln 2
. (37)

From (37), we can clearly infer that a large cell radius R0

decreases the ergodic capacity logarithmically.

B. MMSE receivers
We can now pursue a similar sum rate analysis for the case

of MMSE receivers. Assuming independent decoding at the
receiver, the achievable sum rate is expressed as [19]

Rmmse = LNt E
�
log2

�
det

�
ILNt +

γ

LNt
ΞHHH

���

−
LNt�

i=1

E
�
log2

�
det

�
ILNt−1 +

γ

LNt
ΞiiH

H
i Hi

���
. (38)

Since an exact SNR analysis in tedious, we elaborate on the
low- and high-SNR regimes. We begin with the former:

1) Low-SNR analysis: We now examine the sum rate per-
formance of D-MIMO MMSE receivers in the power-limited
regime.
Proposition 5: For D-MIMO systems with MMSE re-

ceivers in RIG fading channels, the minimum energy per
information bit is given by

Eb

N0

mmse

min

=
ln 2

Nr

�
Nt

�L
i=1

µi

Dυ
i
− 1

LNt

�LNt

i=1

�LNt
j=1
j �=i

µj

Dυ
j

� (39)

while the wideband slope is given by (40) shown at the bottom
of this page.

Proof: For proving (39), we need to take the first deriva-
tive of (38) w.r.t. γ → 0. Using (17), we can easily express
the first derivative as

Ṙmmse(0) =
LNt

ln 2
E
�

1

LNt
tr
�
ΞHHH

��

− 1

ln 2

LNt�

i=1

E
�

1

LNt
tr
�
ΞiiH

H
i Hi

��
. (41)

Smmse
0 =

2LNt

2LNt−1
Nr

+ L2Nt

�L
i=1

�
µ2
i+

µ3
i

λi

�
D−2υ

i

(
�L

i=1 µiD
−υ
i )2

− (LNt−1)2

LNt

�LNt

i=1





�LNt
j=1
j �=i

�
µ2
j+

µ3
j

λj

�
D−2υ

j

�
�LNt

j=1
j �=i

µjD
−υ
j

�2





. (40)
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Di = [1000m, 1500m, 2000m], and υ = 4).

Now, we split (41) as Ṙmmse(0) = Ṙmmse
1 − Ṙmmse

2 . We have
already evaluated Ṙmmse

1 in (19) and hence, we evaluate Ṙmmse
2

as

Ṙmmse
2 =

1

LNt ln 2

LNt�

i=1

E




LNt�

j=1
j �=i

ξj
Dυ

j

ϕj



 . (42)

The expectation is the same as in (18). Therefore, we have
that

Ṙmmse(0) =
NrNt

ln 2

L�

i=1

µi

Dυ
i

− Nr

LNt ln 2

LNt�

i=1

LNt�

j=1
j �=i

µj

Dυ
j

. (43)

To evaluate the wideband slope in (40), we invoke a classical
result from random matrix theory on correlated Rayleigh
MIMO channels [19, Eq. (75)]. We assume no correlation at
the receiver (i.e., ΘR = INr and ΘT = Ξ). The dispersion of
random matrix Ξii denoted by ζ(Ξii), is given by

ζ(Ξii) =
(LNt − 1)

�LNt
j=1
j �=i

�
µ2
j +

µ3
j

λj

�
D−2υ

j

��LNt
j=1
j �=i

µjD
−υ
j

�2 . (44)

Combining (51) and (52) with [16, Eq. (8)] gives (44). Substi-
tuting all the above results into [19, Eq. (75)] and appropriate
simplifications give (40).

In Fig. 3, we compare the performance of optimal, linear
zero-forcing (ZF)1 and MMSE receivers in the low-SNR
regime. The simulated low-SNR ergodic capacity/sum rates
and the analytical linear approximations are plotted against
the transmit Eb/N0. The figure illustrates the big performance
gap between optimal and ZF receivers which is due to the high
number of total transmit antennas (LNt = 6), that corresponds

1The results for the case of ZF receivers have been omitted due to space
constraints.

to the number of interfering data streams. On the other hand,
we can easily conclude that the MMSE receivers are optimal
in terms of Eb/N0min. MMSE receivers sub-optimality is only
reflected via a reduced wideband slope. More importantly, all
the analytical linear approximations are sufficiently tight for a
wide range of SNR values.

2) High-SNR analysis: In this case, we examine the sum
rate performance of MMSE receivers in the high-SNR regime.
We recall that, at high-SNRs, both ZF and MMSE receivers
behave equivalently in terms of sum rate [23]. We have
already introduced the high-SNR parameters in Section-III-A
and hence, we can directly give the following proposition.
Proposition 6: For D-MIMO systems with MMSE re-

ceivers in RIG fading channels, the high-SNR parameters are

Smmse
∞ = LNt (45)

Lmmse
∞ = log2(LNt)−Nt

L�

i=1

�
log2(µi)− υ log2(Di)

+
1

ln 2
exp

�
2λi

µi

�
Ei

�
−2λi

µi

��
− 1

ln 2
ψ(Nr − LNt + 1)

+
1

LNt

LNt�

i=1

LNt�

j=1
j �=i

�
log2(µj)− υ log2(Dj)

+
1

ln 2
exp

�
2λj

µj

�
Ei

�−2λj

µj

��
. (46)

Proof: For MIMO systems with MMSE receivers, the
slope and offset parameters are obtained by [19, Eq. (19),
(20)] as follows:

Smmse
∞ = min(Nr, LNt) (47)

Lmmse
∞ = log2(LNt)− E

�
log2

�
det

�
ΞHHH

���

+
1

LNt

1

ln 2

LNt�

i=1

E
�
ln(det(Ξii))

�

+
1

LNt

1

ln 2

LNt�

i=1

E
�
ln
�
det

�
HH

i Hi

���
. (48)

Since Ξii is diagonal, we can directly apply (12) to get

LNt�

i=1

E
�
ln(det(Ξii))

�
=

LNt�

i=1

LNt�

j=1
j �=i

�
log2(µj)− υ log2(Dj)

+
1

ln 2
exp

�
2λj

µj

�
Ei

�
−2λj

µj

��
. (49)

SinceHi is Rayleigh distributed, the termHH
i Hi also follows

the central Wishart distribution (zero-mean) [14]. Using [14,
Eq. (A.8.1)], the last expectation term in (48) can be easily
evaluated. Then, substituting (11), (49) into (48), and appro-
priate simplifications give (46).
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Similar to optimal receivers, the small- and large-scale
fading terms are decoupled in the high-SNR regime, while (45)
verifies that the high-SNR sum rate increases linearly with the
minimum number of antennas. As anticipated, higher Tx-Rx
distances reduce the sum rate due to the increased path-loss
attenuation.

IV. CONCLUSION
In this paper, we have presented an analytical framework

to investigate the performance of D-MIMO systems with
optimal and linear MMSE receivers operating over RIG fading
channels. More specifically, the implications of small- and
large-scale fading effects were analyzed in detail. The main
motivation for our performance analysis has been the poor
accuracy of the gamma distribution to approximate the log-
normal distribution, when the variance of the latter is large. As
such, the RIG distribution can serve as an efficient approxima-
tion to the classical Rayleigh/log-normal model. At the same
time, the mathematical analysis becomes more challenging.
We derived new closed-form upper and lower capacity

bounds for this class of channels, which apply for any arbitrary
number of antennas and remain sufficiently tight across the
entire SNR range. In the high-SNR regime, we explicitly
demonstrated that the lower bound becomes exact and in the
low-SNR regime, we derived new analytical expressions for
the minimum energy per information bit to reliably convey
any positive rate and the wideband slope.

APPENDIX
Lemma 1: For IG distributed RV, ξi ∼ IG(µi,λi), the first

log-moment is given by

E
�
ln ξi

�
= lnµi + exp

�
2λi

µi

�
Ei

�
−2λi

µi

�
(50)

where i = 1, . . . , L. The following key results will be
particularly useful to obtain the dispersion of large-scale fading
random matrix Ξ.

E
�
tr(Ξ)

�
= Nt

L�

i=1

E
�
ξi
�
D−υ

i = Nt

L�

i=1

µiD
−υ
i (51)

E
�
tr
�
Ξ2

��
= Nt

L�

i=1

E
�
ξi

2�

D2υ
i

= Nt

L�

i=1

�
µ2
i +

µ3
i

λi

�
D−2υ

i . (52)

Proof: Using (2) and the integral identity [24, Eq.
(2.6.22.8)], we can easily obtain (50) after basic simplifica-
tions. We now recall that for IG distributed RVs, the first two
moments about zero are E [ξi] = µi and E [ξ2i ] = µ2

i + µ3
i

λi
,

respectively [9]. Using these two moments, we can directly
obtain (51) and (52), respectively.
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