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Göteborg, Sweden 2012



Modelling and Experiments of an
Electromagnetic Measurement System for
Fluidised Beds
Johan Nohlert

c©Johan Nohlert, 2012

Report No. 2012-44
Department of Signals and Systems
Chalmers University of Technology
SE-412 96 Göteborg
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Abstract

This thesis, conducted in cooperation with AstraZeneca, presents a novel microwave-
based measurement technique for 3D monitoring of fluidised bed processes in phar-
maceutical industry. Fluidised beds can be used for spray-coating of particles,
which is an important step in the manufacturing process for certain tablets.

The process to be monitored is hosted by a closed metallic vessel, which is
treated as a microwave cavity resonator. The resonance frequencies of this cavity
are utilized to reconstruct the permittivity distribution inside it. The permittivity
can, in a post-processing step, be related to other quantities of interest for process
control, such as the density of particles and their moisture content. By using the
electric and magnetic field solutions for the lowest eigenmodes, a set of parameters
in a low-order description of the effective permittivity are determined from the
measured resonance frequencies using a perturbation approach.

A simplified experiment used to validate the basic principle of the measure-
ment system is built and tested with promising results. Moreover, a real fluidised
bed process equipped with microwave sensors is used to evaluate the performance
of the measurement system under realistic process conditions. The presence of
particles in the fountain region of the vessel is shown to be clearly detecteable,
although more sophisticated measurements are required to be able to accurately
determine the particle density and moisture content in the fountain. Temperature
variations are shown to have significant impact on the measurements in the current
experimental setup, but there are several ways to mitigate disturbances caused by
varying temperatures in a refined version of the experiment.

Keywords: Pharmaceutical process, fluidised bed, particle coating, microwave mea-
surements, cavity resonators
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Abbrevations

ECT Electrical Capacitance Tomography
PEC Perfect Electric Conductor
FEM Finite Element Method
MCC Microcrystalline Cellulose

Notations

ω Angular frequency (rad/s)
E Electric field (V/m)
D Electric flux density (C/m2)
H Magnetic field (A/m)
B Magnetic flux density (T)
P Polarization (C/m2)
M Magnetization (A/m)
F Force (N)
J Current density (A/m2)
ρ Volume charge density (C/m3)
εr Relative permittivity
ε Absolute permittivity (F/m)
µr Relative permeability
µ Absolute permeability (H/m)
χe Electric susceptibility
χm Magnetic susceptibility
σ Conductivity (S/m)
c0 Speed of light in vacuum (299, 792, 458 m/s)
µ0 Permeability of vacuum (4π · 10−7 H/m)
ε0 Permittivity of vacuum (approx. 8.85418782 · 10−12 F/m)
j Imaginary unit

In this thesis, vector quantities are represented by bold symbols and complex
quantities by bars, as illustrated by the following examples.

X Real vector
X̄ Complex vector
X Real scalar
X̄ Complex scalar
X̄∗ Complex conjugate of X̄
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Chapter 1

Introduction

This chapter presents the background to this thesis work with a description of
the industrial problem considered, together with the objective, limitations and
methodology of the work.

1.1 Background

In pharmaceutical industry, fluidised beds are commonly used in the process of
tablet production. Fluidised bed processes can be used to coat layers of active
pharmaceutical substances onto the surface of binding particles, which are later
compressed into tablets or filled into capsules. The particle coating procedure
makes it possible to control the release properties of the active substances, to cover
unpleasant taste or to improve the swallowing properties of the pharmaceutical
products.

The basic principle of the particle coating process is to spray a liquid substance
onto the particles (which are also called pellets, or granules) from a nozzle, while
the particles are simultaneously lifted and circulated by an airflow. One type of
equipment that is often used for particle coating and drying is the Wurster-type
fluidised bed, which is illustrated in Fig. 1.1.

This process consists of a cylindrical metal tube that is connected to a trun-
cated cone in the bottom. At the bottom of the cone, there is a distributor plate
with perforated holes that controls the inflow of air. Above the distributor plate
stands a small cylindrical tube (the Wurster tube) which is supported by three
thin rods. The Wurster tube is important to achieve a circulating flow of particles
in the fluidised bed.

Accurate monitoring of the particle coating process in the Wurster type flu-
idised bed is of great importance. Especially, it is important to avoid a too high
spraying rate, since this may cause the particles to form agglomerates that can
destroy the process batch. A too slow spraying rate may on the other hand lead
to unnecessarily long processing times.

Many conventional measurement techniques, e.g. spectroscopic methods, pro-
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Figure 1.1: Illustration of a Wurster type fluidised bed.

vide mainly local information from the vicinity of the measurement probes, which
therefore must extend into the process. Electrical tomography is a group of tech-
niques that are currently being used for industrial process monitoring, which are
able to monitor e.g. the permittivity or conductivity distribution in a large part of
the process volume. Electrical capacitance tomography (ECT) which belongs to
this group, has been sucessfully applied to fluidised bed monitoring [1], but the low
frequencies and associated long wavelenghts of these techniques limits the spatial
resolution.

1.2 Microwave measurements

This thesis presents a microwave-based measurement technique for monitoring of
fluidised bed processes in pharmaceutical industry. Microwaves are non-destructive
and non-invasive and have the ability to penetrate the whole process volume with-
out disturbing or interfering with the process. As compared to low-frequency
electrical tomography techniques, the relatively short wavelength of microwaves
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allows for a higher spatial resolution.
The technique exploits the fact that the metallic vessel that confines the process

can be considered as a microwave cavity resonator, whose resonance frequencies
are affected by the presence of dielectric materials inside the cavity. The technique
utilises the resonance frequencies of the cavity to monitor the permittivity distri-
bution inside it. The permittivity can, in a post-processing step, be related to
other quantities of interest for process control, such as the volume fraction of par-
ticles and their moisture content. Due to the relatively high dielectric constant of
water at microwave frequencies (εr ∼ 80), microwave measurements are in general
well-suited for moisture measurements.

Due to its physical size, the cavity becomes resonant at frequencies in the order
of 109 Hz, which is in the microwave range of the electromagnetic spectrum.

Theory and practical aspects of microwave resonator sensors is given by e.g.
Nyfors and Pertti [2], where a number of existing applications of microwave res-
onator sensors are presented. These include moisture measurements in paper [3]
[4], measurements of flows in liquid or gas pipes [5] and measurements of air hu-
midity [6]. Many of these applications have in common that only one or a few
eigenmodes are utilised for the measurement. One mode is often used as a refer-
ence to compensate for undesirable effects, and another mode is used to perform
the actual measurement. In contrary to these applications, the measurement prin-
ciple described in this thesis aims to utilise as many eigenmodes as possible.

1.3 Objective

The aim of this thesis work is to investigate the feasibility of a measurement
system based on microwave resonance frequencies, applied to a pharmaceutical
fluidised-bed process. This is to be done by means of computational modelling
and microwave measurements.

First, a prototype experiment in the form of a cylindrical cavity is used to verify
that the principle of the measurement system is working as expected, i.e. that
the resonance frequencies of the cavity can be used to identify a dielectric object
inside it. Secondly, the measurement system is applied to a real fluidised-bed
process intended for particle coating in small scale batches, where the feasibility
and performance of the measurement principle is to be investigated.

1.3.1 Limitations

In order to model the electromagnetic material properties of the granules in the
vessel on the scale of the wavelength, simple mixing formulas that are available in
literature are used. Hence, detailed studies of homogenisation theory is not part
of the project.

Simple descriptions of the material distribution in the fluidised bed are used in
the numerical simulations. These descriptions may be inspired by e.g. empirical
models from the literature and previous master thesis works [7], but fluid dynamical
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modelling is outside the scope of the project.

1.4 Methodology

The measurement principle presented in this thesis relies on close interaction be-
tween microwave measurements and modelling of the underlying electromagnetic
field problem.

The electromagnetic modelling is done by means of analytical and numerical
computations. The simple geometry of the prototype experiment allows for an-
alytical solutions to Maxwell’s equations, while the more complicated geometry
of the realistic process cavity is modelled by means of the finite element method
(FEM).

In the experimental setups, a network analyser connected to measurement
probes on the wall of the cavity is used to perform the measurements. The use-
ful information, i.e. the resonance frequencies, are extracted from the network
analyser’s measurement data in a post-processing step.
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Chapter 2

Theory

This chapter presents the theory on which the rest of the thesis relies. The gen-
eral theory of classical electromagnetics is reviewed, including the electromagnetic
properties of materials. Microwave cavity resonators are introduced and their main
properties are described. Analytical results for a cylindrical cavity resonator are
presented and numerical computations using the finite element method are de-
scribed. Electromagnetic mixing formulas applicable to the materials considered
in this thesis are presented, as well as a perturbation theory that describes the
linearised relationship between the dielectric material parameters and resonance
frequencies of a cavity resonator.

2.1 Electromagnetic field theory

The theory of classical electromagnetics can be described by the well-known Maxwell’s
equations, which in differential form reads

∇ · D̄ = ρ̄ (2.1)

∇ · B̄ = 0 (2.2)

∇× Ē = −jωB̄ (2.3)

∇× H̄ = J̄ + jωD̄, (2.4)

where the fields and sources are represented by complex phasors in frequency
domain.

Equation (2.1), known as Gauss’ law, describes how the electric field diverges
from electric charges. Eq. (2.2) states that there are no magnetic charges in na-
ture, which implies that magnetic flux lines form closed loops. Faraday’s law of
induction, expressed through Eq. (2.3), describes how electric fields are induced
from time varying magnetic fields and Eq. (2.4), known as Ampère’s law, finally
describes how magnetic fields are circulating around electrical currents. The last
term in Eq. (2.4) is known as the displacement current and is Maxwell’s correc-
tion term to Ampère’s law, which resulted in a consistent electromagnetic model.
Maxwell’s four equations describe how electric charges and currents act as sources
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for the electric and magnetic fields. Together with Lorentz’s force law, they can
be used to explain and predict all known macroscopic electromagnetic phenomena
[8].

2.1.1 Constitutive relations

Electric and magnetic fields in the presence of matter are affected by the properties
of the material. In the following, we assume isotropic materials.

An external electric field Ē applied to a dielectric material results in electric
polarisation of the atoms or molecules in the material, which induces an electric
dipole moment that contributes to the total electric displacement field D̄ according
to

D̄ = ε0Ē + P̄ . (2.5)

Here, P̄ denotes the polarisation vector, or the volume density of electric dipole
moment. In a linear and isotropic material, the polarisation vector is directly
proportional to the applied electric field, and we may write

P̄ = ε0χeĒ, (2.6)

where χe is the electric susceptibility of the material. The total displacement field
can thus be written

D̄ = ε0Ē + ε0χeĒ = ε0 (1 + χe) Ē = ε0εrĒ = εĒ (2.7)

where εr denotes the relative permittivity of the material.
Similarly, an external magnetic field H̄ may align the magnetic dipole moments

in a magnetic material, which yields a magnetisation vector M̄ that contributes
to the total magnetic flux density B̄ according to

B̄ = µ0

(
H̄ + M̄

)
. (2.8)

For a linear and isotropic magnetic material, the magnetisation is proportional to
H̄ according to

M̄ = χmH̄, (2.9)

where χm is the magnetic susceptibility. The magnetic flux density may thus be
written

B̄ = µ0H̄ + µ0χmH̄ = µ0 (1 + χm) H̄ = µ0µrH̄ = µH̄, (2.10)

where µr is the relative permeability of the material.
The permittivity ε and permeability µ of a linear and isotropic material deter-

mines the relation between the electric and magnetic field quantities according to
the constituitive relations

B̄ = µH̄ (2.11)

D̄ = εĒ. (2.12)
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The dielectric properties of a material is often characterised by a complex per-
mittivity ε̄ = ε′ − jε′′. The real part ε′ represents the capacitive, or energy-storing
ability of the material while the imarginary part ε′′ represents dissipative processes
that yield energy losses. The ratio ε′′/ε′ is called the loss factor or loss tangent and
is commonly denoted tan δ where δ is the loss angle. The complex permittivity is
for most materials strongly dependent on the frequency, since the different polari-
sation processes (such as electronic-, molecular- and interfacial polarisation) occur
on different timescales. The frequency dependent complex permittivity ε̄(ω), which
is sometimes called the dielectric function, is an attribute of a given material.

2.2 Cavity resonators

Electromagnetic fields may be confined inside enclosures that are bounded by
electrically conducting walls. Such devices are called cavity resonators.

The solutions to Maxwell’s equations in a cavity resonator without excitation
are referred to as the eigenmodes of the cavity. Each eigenmode is associated
with an eigenvalue that is directly related to the resonance frequency. For each
eigenmode, electric and magnetic energy is stored inside the cavity by the electric
and magnetic fields. This energy may be dissipated from the cavity by means of
power losses, where two important contributions are conduction losses in the cavity
walls and losses in the dielectric. The quality factor (or Q-value) of an eigenmode
is defined as

Q = ω0
W

P
= 2π

stored energy

energy dissipated during one period
(2.13)

where W is the energy stored inside the cavity by the electric and magnetic fields,
P is the dissipated power and ω0 is the angular resonance frequency [9].

For a cavity resonator where energy is dissipated through conduction losses in
the walls (Pc) and through dielectric losses (Pd), the total Q-value can be written

1

Q
=

1

Qc
+

1

Qd
(2.14)

where Qc and Qd are the Q-values associated with the conduction and dielectric
losses, respectively. Any source of energy losses can thus be associated with a
Q-value that reduces the total Q-value of the cavity. For instance, an external
measurement circuit connected to the cavity yields additional losses of energy,
which lowers the total Q-value.

An eigenmode described by a resonance frequency ω0 and quality factor Q
may be represented in terms of a complex resonance frequency ω̄ which can be
expressed according to

ω̄ = ω0

(
1 + j

1

2Q

)
(2.15)

if the losses are small (Q � 1) [9]. As the losses tend to zero, Q → ∞ and the
complex resonance frequency approaches ω0.
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2.2.1 Analytical results for a circular cylinder

In this section, the analytical solution of the electromagnetic eigenvalue problem for
a finite circular cylinder, referred to as a cylindrical cavity resonator, is presented
in terms of the electric and magnetic fields, resonance frequencies and Q-values.
The cavity is assumed to have a homogenous dielectric with permittivity ε and
permeability µ, which are both assumed to be real. In this section a brief outline of
the calculations is presented, whereas the full derivation can be found in Appendix
A.

The eigenmodes of a cylindrical cavity resonator can be divided in two groups
of solutions, which are denoted transverse electric (TE), and transverse magnetic
(TM) modes. TM modes are characterised by a longitudinal magnetic field com-
ponent that is zero (Hz = 0), and similar for TE modes for which Ez = 0. The
axial direction ẑ is here considered as the longitudinal direction.

Maxwell’s equations are combined into the Helmholtz equation for the electric
and magnetic fields

∇2Ē + ω2µεĒ = 0 (2.16)

∇2H̄ + ω2µεH̄ = 0. (2.17)

The cavity walls are modeled as perfect electric conductors (PEC) which yields
the following boundary condition for the electric field on the cavity walls

n̂× Ē = 0. (2.18)

The PEC boundary condition is a very good approximation for metallic walls in
our context, due to the excellent conducting properties of metals.

Equation (2.16) together with the boundary condition (2.18) can be solved by
means of separation of variables for a cylindrical geometry if the dielectric material
is assumed to be homogenous and non-dispersive.

This yields analytical expressions for the electric and magnetic fields Ē(r) and
H̄(r), and the resonance frequencies.

The Q-value, defined in Eq. (2.13), is calculated from the stored energy W
and the power losses P . The time-averaged electric and magnetic energies, We

and Wm, can be calculated by integrating the electric and magnetic fields over the
cavity volume V , according to

We =
1

4

∫
V
ε|Ē|2 dv (2.19)

Wm =
1

4

∫
V
µ|H̄|2 dv. (2.20)

The total energy in the cavity is the sum of the electric and magnetic energies, i.e.
W = We +Wm.

Similarly, the power losses Pc caused by currents flowing on the surface of the
cavity walls can be calculated by integrating the surface current density J̄ s = n̂×H̄
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over the surface S of the cavity walls. Here, n̂ denotes the unit normal to the
boundary surface that points into the cavity, and H̄tang is the tangential magnetic
field at the boundary surface. Thus, we have

Pc =
1

2

∫
S
Rs|J̄ s|2ds =

1

2

∫
S
Rs|H̄tang|2ds, (2.21)

where Rs denotes the surface resistance of the cavity walls. A dielectric with non-
zero conductivity σd features conduction losses, which can be calculated according
to

Pd =
1

2

∫
V
σd|Ē|2dv. (2.22)

The conduction losses and dielectric losses are summarised to yield the total
loss power

P = Pc + Pd (2.23)

which is used to calculate the Q-value from Eq. (2.13).
In the calculations, the resonance frequency and the electric and magnetic

fields are calculated for a cavity with lossless dielectric (σd = 0) and perfectly con-
ducting walls. The resonance frequency and the fields are then used to calculate
the conduction losses and dielectric losses that arise from non-perfectly conduct-
ing walls and a lossy dielectric (σd 6= 0). Thus, we assume that the resonance
frequencies and field solutions in the lossy cavity differs from the lossless only by
a small amount, which allows for a perturbative treatment of the losses. The res-
onance frequency for a lossless cavity is the real part ω0 of the complex resonance
frequency in Eq. (2.15).

The analytical results for TE and TM modes are presented in Tables 2.1 and
2.2. Here, σd denotes the conductivity of the dielectric material and Rs the sur-
face resistance of the cavity walls, which may be expressed in terms of the wall
conductivity σc according to [9]

Rs =

√
ω0µ

2σc
. (2.24)

Moreover, Jm(x) denotes the Bessel function of the first kind of order m, and
J ′m(x) = d

dxJm(x) its derivative. Further, χmn denotes the n:th zero of Jm(x)
and χ′mn the n:th zero of J ′m(x). The parameters m,n and p are integers that
determine the spatial variation of the eigenmodes in the radial, azimuthal and
axial direction, respectively. For TM modes, these integers take on the values
m = 0,1,2,..., n = 1,2,3,... and p = 0,1,2,.... For TE modes, p = 0 is not allowed
and we have m = 0,1,2,..., n = 1,2,3,..., and p = 1,2,3,....

For a perfect axi-symmetric cavity, the modes with m 6= 0 are degenerated, i.e.
there are two eigenmodes with equal eigenvalues, where the two eigenmodes differ
in that their electric and magnetic fields are angularly displaced by 90◦ about the
ẑ axis. If the cavity is modified in terms of its geometry or dielectric content so
that the axi-symmetry is lost, the eigenvalues of a degenerated mode-pair may be
splitted which results in two distinct resonance frequencies.
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Modes with m = 0 are not degenerated due to their rotational symmetry, i.e.
their fields are independent of the azimuthal coordinate φ.

Table 2.1: Electric and magnetic field components expressed in the cylindrical
coordinates (r,φ,z), angular resonance frequency ω0 and Q-value for TM modes in
a cylindrical cavity resonator of radius a and length L.

Ēr −Ē0
pπ
L

a
χmn

J ′m(χmn
a
r) cos(mφ) sin(pπ

L
z)

Ēφ Ē0
pπ
L

a2

χ2
mn

m
r
Jm(χmn

a
r) sin(mφ) sin(pπ

L
z)

Ēz Ē0Jm(χmn
a
r) cos(mφ) cos(pπ

L
z)

H̄r −Ē0(jωε) a2

χ2
mn

m
r
Jm(χmn

a
r) sin(mφ) cos(pπ

L
z)

H̄φ −Ē0(jωε) a
χmn

J ′m(χmn
a
r) cos(mφ) cos(pπ

L
z)

H̄z 0

ω0
1√
µε

√(
χmn
a

)2
+
(
pπ
L

)2

Q (p 6= 0) (ωµL) /
(
Rs

(
4 + 2L

a

)
+ σdL

µ
ε

)
Q (p = 0) (ωµL) /

(
Rs

(
2 + 2L

a

)
+ σdL

µ
ε

)
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Table 2.2: Electric and magnetic field components expressed in the cylindrical
coordinates (r,φ,z), angular resonance frequency ω0 and Q-value for TE modes in
a cylindrical cavity resonator of radius a and length L.

Ēr H̄0(jωµ) a2

χ′2
mn

m
r
Jm(χ

′
mn

a
r) sin(mφ) sin(pπ

L
z)

Ēφ H̄0(jωµ) a
χ′
mn
J ′m(χ

′
mn

a
r) cos(mφ) sin(pπ

L
z)

Ēz 0

H̄r H̄0
pπ
L

a
χ′
mn
J ′m(χ

′
mn

a
r) cos(mφ) cos(pπ

L
z)

H̄φ −H̄0
pπ
L

a2

χ′2
mn

m
r
Jm(χ

′
mn

a
r) sin(mφ) cos(pπ

L
z)

H̄z H̄0Jm(χ
′
mn

a
r) cos(mφ) sin(pπ
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2.3 Electromagnetic computations using the

finite element method

For a cavity resonator with a dielectric that is described by a relative permittivity
εr, conductivity σd and relative permeability µr = 1, the electromagnetic field
problem can be formulated as a system of first-order differential equations, i.e.
Faraday’s law and Ampère’s law, according to

∇× Ē = −jωµ0H̄ (2.25)

∇× H̄ = σdĒ + jωε0εrĒ (2.26)

where σĒ represents the conduction current.
These equations can be written in compact form, according to[

0 −∇×
∇× −Z0σd

] [
c0B̄
Ē

]
=
jω

c0

[
1 0
0 εr

] [
c0B̄
Ē

]
. (2.27)

Here, we solve for the electric field Ē and the magnetic flux density B̄ = µ0H̄,

and normalise by using the wave impedance of vacuum, Z0 =
√

µ0
ε0

, and the speed

of light in vacuum, c0 = 1/
√
µ0ε0. The dielectric material parameters σd and εr

may be space dependent.
The formulation in Eq. (2.27) yields a linear eigenvalue problem for the cases

where the dielectric losses can be represented by a frequency-independent conduc-
tivity σd.

By means of the finite element method (FEM), Eq. (2.27) can be solved for
a wide range of geometries and material distributions. The electric field Ē is ex-
panded in terms of curl-conforming elements (edge elements) and the magnetic flux
density B̄ in terms of divergence-conforming elements (facet elements) on tetra-
hedral meshes. This field representation is known to perform well for Maxwell’s
equations [10].

2.4 Electromagnetic mixing formulas

The material distribution in a fluidised bed can be regarded as a heterogenous
mixture of air and solid particles. In pharmaceutical processes, the particles are
commonly composed of microcrystalline cellulose (MCC). The effective permit-
tivity εeff of this mixture on the scale of the wavelength, is mainly a function of
the volume fraction of the particles and their permittivity. The permittivity of
MCC is, in turn, strongly dependent on the moisture content [11] [12]. Thus, the
volume fraction of particles and their permittivity may provide important informa-
tion about the state of the process, but the electromagnetic measurement system
measures the effective permittivity. Hence, a relation between the properties of
the diverse particles and the effective permittivity of the mixture is required. For
this purpose, electromagnetic mixing formulas from the literature are used.
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Consider a mixture of homogenous particles of permittivity εp randomly dis-
persed in a backgound medium of permittivity εb, where the volume fraction of
particles is denoted f . The situation is illustrated in Fig 2.1. The effective per-
mittivity of this mixture can be described by

εeff = εb + 3fεb
εp − εb

εp + 2εb − f (εp − εb)
, (2.28)

which is known as the Maxwell-Garnett mixing formula [13]. This formula is
derived from the quasi-static approximation and is hence valid only if the inclusions
are much smaller than the wavelength of the electromagnetic field. Worth noting
is that the size of the particles does not explicitly enter this expression, but only
the volume fraction f . Hence, mixtures consisting of either a few big particles or
many small ones may result in the same effective permittivity, according to the
Maxwell-Garnett rule.

Figure 2.1: Spherical inclusions with permittivity εp randomly dispersed in a back-
ground medium with permittivity εb. Each particle occupies a volume V and the
number of particles per unit volume is n, hence the volume fraction of particles in
the mixture is given by f = nV .

The effective permittivity of a mixture with spherical scattering particles can
be written in terms of the polarisability α of the particles (i.e. the dipole moment
induced by an electric field of unit strength), the number of particles per unit
volume, n, and the permittivity εb of the background medium according to the
Clausius-Mosotti formula [13]

εeff = εb +
nα

1− nα
3εb

. (2.29)

The polarisability of a homogenous dielectric sphere of volume V and permit-
tivity εp immersed in a medium of permittivity εb can be written

α = 3εbV
εp − εb
εp + 2εb

. (2.30)

By inserting this expression into the Clausius-Mosotti formula, the Maxwell-Garnett
rule is recovered.
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Figure 2.2: Dielectric sphere with two layers of different permittivity, dispersed in
a background medium of permittivity εb.

For inhomogenous scattering particles consisting of a spherical core covered by
a layer of uniform thickness, as shown in Fig. 2.2, the polarisability is given by

α = 3εbV
(ε1 − εb)(ε2 + 2ε1) +

a32
a31

(2ε1 + εb)(ε2 − ε1)

(ε1 + 2εb)(ε2 + 2ε1) + 2
a32
a31

(ε1 − εb)(ε2 − ε1)
. (2.31)

Here, V denotes the total volume of one particle and the other quantities are
defined in Fig. 2.2. In the limit where a1 → a2 and ε1 → ε2, the polarisability for
a homogenous sphere given in Eq. (2.30), is recovered.

The effective permittivity of a mixture with two-layer scatterers can be ob-
tained from Eq. (2.29), given the expression above for the polarisability. Mixing
formulas for two-layer spherical scatterers can be applied e.g. to coated particles
in pharmaceutical processes, which makes them interesting in our context.

2.5 Material perturbations

The resonance frequencies of a cavity resonator are affected by the permittivity
distribution inside the cavity. This is the main idea behind the measurement
principle described in this thesis.

In this section, the relationship between a small perturbation to the permittiv-
ity distribution and the resulting change in the resonance frequencies is presented.
The permittivities and permeabilities are here assumed to be real (i.e. the dielectric
is lossless).

Consider a cavity resonator that occupies the volume V , with a dielectric ma-
terial that is characterised by the permittivity ε and permeability µ. A certain
eigenmode m in this cavity has the electric and magnetic fields Ē

0
m and H̄

0
m, and

the resonance frequency ω0
m. A perturbation ∆ε = ε0∆εr and ∆µ = µ0∆µr to

the material parameters yields a change in the fields and resonance frequency, and
we denote the fields in the perturbed cavity by Ēm and H̄m and the resonance
frequency by ωm = ω0

m + ∆ωm, for the mode m. The situation is illustrated in
Fig. 2.3.

, Signals and Systems, Master of Science Thesis 2012:44 17



Figure 2.3: A cavity resonator subject to a material perturbation.

It can be shown [9] that the relative change in resonance frequency resulting
from the material perturbation ∆ε, ∆µ is given by

∆ωm
ωm

= −

∫
V

(
∆εĒ

∗
m · Ē

0
m + ∆µH̄

∗
m · H̄

0
m

)
dv∫

V

(
εĒ
∗
m · Ē

0
m + µH̄

∗
m · H̄

0
m

)
dv

. (2.32)

Equation (2.32) holds for an arbitrary material perturbation but requires that
the fields Ēm and H̄m in the perturbed cavity are known. However, if the per-
turbation is small, the fields in the perturbed cavity will be nearly the same as for
the unperturbed cavity. Under the assumption that Ēm ' Ē

0
m and H̄m ' H̄

0
m,

Eq. (2.32) reduces to

∆ωm
ωm

' −

∫
V

(
∆ε|Ē0

m|2 + ∆µ|H̄0
m|2
)

dv∫
V

(
ε|Ē0

m|2 + µ|H̄0
m|2
)

dv
. (2.33)

This relation can be thought of as a linearisation of the relationship between
a material perturbation (∆ε,∆µ) and the resulting shift in resonance frequencies,
where the explicit calculation of the fields in the perturbed cavity can be avoided.
Eq. (2.33) states that an increase in the permittivity or permeability in any part of
a cavity resonator results in a decrease in the resonance frequencies. The decrease
of the resonance frequency for a certain eigenmode depends on the magnitude of
the electric field at the location where the increase in permittivity occurs and,
similarly, the magnitude of the magnetic field at the location of the increase in
permeability.
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Chapter 3

Method

In order to evaluate the feasibility of the microwave measurement system, two
different experimental setups are considered

• A circular-cylindrical cavity resonator, with microwave sensors attached to
its walls, is used to validate the basic principles of the measurement system.
This setup allows for accurate control of the objects inside the cavity being
monitored by the measurement system, hence the material distribution in
the cavity is known a priori. The cylindrical cavity has the same geometry
as the upper cylindrical part of the Wurster-type process vessel used in the
second experiment.

• A fluidised bed process of the Wurster-type, intended for small scale batches
of granules is used to evaluate the performance of the measurement system
under realistic conditions. A process machine called Spiritus at AstraZeneca
R&D in Mölndal is used for this purpose. Microwave sensors are mounted
on the wall of the vessel and microwave measurements are carried out while
the process passes through a number of representative process states.

The principles of the measurement system, the electromagnetic computations
and the measurement equipment required to carry out the experiments above are
described in the rest of this chapter.

3.1 Principles of the measurement system

3.1.1 Permittivity reconstruction

The measurement system aims at measuring the effective permittivity in different
regions of the process volume. More specifically, a perturbation to the permittivity
is estimated, where the perturbation ∆εr is relative to a given reference permittivity
ε0r .

The reference permittivity could for instance be an empty cavity, where ε0r =
1 everywhere inside the cavity. This is an appropriate choice if objects of low
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contrast, such as the particle fountain in the Wurster-type process, is monitored.
The permittivity distribution in the perturbed cavity may be written as

εr(r) = ε0r (r) + ∆εr(r). (3.1)

For the reference permittivity, we denote the resonance frequencies of the cavity
by ω0

m, where the index m = 1,2,...,M represents the different eigenmodes. As
discussed earlier, the resonance frequencies are shifted as a result of a perturbation
to the permittivity distribution. Thus, we may write

ωm = ω0
m + ∆ωm (3.2)

where ∆ωm is the perturbation of the m:th resonance frequency caused by a per-
turbation ∆εr(r) in the permittivity. The perturbation theory presented in section
2.5 describes how a small variation in the permittivity and permeability perturbs
the resonance frequencies. In the following, we consider lossless and non-magnetic
materials. The permittivity perturbation may be expanded in terms of a given set
of basis functions ϕk(r) and unknown coefficients ∆εr,k according to

∆εr(r) =

N∑
k=1

∆εr,kϕk(r). (3.3)

The cavity volume V is partitioned into N volumes Vk and the basis functions are
chosen to be piecewise constant, i.e.

ϕk(r) =

{
1 if r ∈ Vk
0 otherwise.

(3.4)

In the following, we denote the normalised shift in resonance frequency for the
eigenmode m by

∆ξm =
∆ωm
ωm

=
ωm − ω0

m

ωm
. (3.5)

If we now insert Eqs. (3.3) and (3.4) into the perturbation formula (2.33), we
obtain

∆ξm = −

∫
V

(
ε0
∑N

k=1 ∆εr,kϕk(r)|Ē0
m|2
)

dv∫
V

(
ε0ε0r |Ē

0
m|2 + µ0|H̄

0
m|2
)

dv
=

= −
N∑
k=1

∆εr,k

∫
Vk
ε0|Ē

0
m|2dv∫

V

(
ε0ε0r |Ē

0
m|2 + µ0|H̄

0
m|2
)

dv
=

= −
N∑
k=1

∆εr,kAmk (3.6)

, Signals and Systems, Master of Science Thesis 2012:44 20



where

Amk =

∫
Vk
ε0|Ē

0
m|2dv∫

V

(
ε0ε0r |Ē

0
m|2 + µ0|H̄

0
m|2
)

dv
=

W k
e,m

We,m +Wm,m
. (3.7)

As previously, Ē
0
m and H̄

0
m denote the electric and magnetic fields in the unper-

turbed cavity. Here, we see that the entries Amk of the matrix A is the ratio of the
electric energy in the volume Vk and the total energy in the cavity, for the eigen-
mode m. Hence, the resonance frequency of a certain mode is more sensitive to
permittivity variations in the regions where the electric field has a high magnitude.

By arranging the perturbations in permittivity and frequency in vectors ac-
cording to

∆εr = [∆εr,1 . . .∆εr,N ]T , (3.8)

and
∆ξ = [∆ξ1, . . . ,∆ξM ]T (3.9)

Eq. (3.6) can be written in matrix form according to

A∆εr = ∆ξ. (3.10)

Thus, we have a system of linear equations that relate the permittivity ∆εr,k in
the sub-domains Vk to the resonance frequency shift for a set of eigenmodes.

For an ideal measurement situation, i.e. if we had access to an arbitrary number
of resonance frequencies measured with sufficient precision, it may appear as it is
possible to determine the permittivity in an arbitrary number of sub-domains or
voxels. The spatial resolution of the reconstructed permittivity distribution would
in this case depend on the size of the voxels. Consequently, the spatial resolution
is limited by the number of measured eigenfrequencies. However, it is important
that the system of linear equations has a well-defined and unique solution. Thus,
there are also other aspects that limit the reconstruction of the permittivity.

One such limitation is that the permittivity distribution may not be uniquely
determined by the resonance frequencies due to certain symmetries of the cavity.
For example, a cylindrical cavity of circular cross-section is symmetric with respect
to rotation around its axis. It is also symmetric with respect to the mid-plane
perpendicular to its axis, which divides the cylinder in two equal parts. This
implies for instance that for the subdivisions shown in figures 3.1(a) and 3.1(b),
the permittivity in each of the subdomains cannot be uniquely determined by the
resonance frequencies. If, for example, one of the wedges in Fig. 3.1(a) has a relative
permittivity that is larger than unity and the other wedges are void of a dielectric
medium, it cannot be concluded from the resonance frequencies in which wedge the
dielectric material is located. Similarly for Fig. 3.1(b), it cannot be concluded from
the resonance frequencies whether a dielectric material with constant permittivity
occupies the volume V1 or V2. The symmetries lead to identical columns in the
matrix A, whose elements are given by Eq. (3.7). The matrix is thus rank deficient
and Eq. (3.10) lacks a unique solution.
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(a) (b)

Figure 3.1: Examples of subdomains in a cylindrical cavity that yields non-unique
solutions for the permittivity distribution: (a) the cylinder is divided in wedges
symmetrically distributed around the cylinder axis; and (b) the volumes V1 and
V2 are symmetric with respect to the mid-plane perpendicular to the cylinder axis
at z = L/2.
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3.1.2 Relation between permittivity and particle prop-
erties

The microwave measurements yield an effective permittivity for the mixture of air
and granules in different parts of the cavity. The effective permittivity is mainly
a function of the volume fraction of particles f and their permittivity εp. Suitable
electromagnetic mixing formulas may be used to describe the effective permittivity
as function of the volume fraction of particles and their permittivity. However,
there might be several combinations of volume fraction and particle permittivity
that yield the same value of the effective permittivity, i.e. the measured effective
permittivity might not provide sufficient information to determine all parameters
in the material distribution.

The permittivity of the particles may be related to their moisture content. For
granules of a bulk material that is dispersive, the frequency dependent permittivity
may be expressed in terms of a small set of real parameters. In such situations,
it could be possible to estimate the particle volume fraction and the particles’
permittivity seperately, ifthe effective permittivity is measured at sufficiently many
resonance frequencies.

For example, a material characterised by a real permittivity ε′ and conductivity
σ, the frequency dependent complex permittivity may be written

ε̄(ω) = ε′ − j σ
ω

(3.11)

where ε′ and σ are the parameters to be determined.

3.2 Computational modelling

The microwave based measurement principle proposed in this thesis relies on ac-
curate modelling of the electromagnetic field problem.

The numerical computations are mainly carried out using an in-house elec-
tromagnetic field solver implemented in Matlab, which is based on the problem
formulation described in section 2.3. The commercial simulation software Comsol
Multiphysics [14] is also used for electromagnetic modelling, and especially for the
visualisation of the electric and magnetic field solutions.

The field problem is solved for the cylindrical cavity resonator of the validation
experiment and for the geometry of a Wurster type fluidised-bed process. The
electromagnetic fields from the computations are used in the perturbation theory
described in section 2.5, in order to reconstruct the permittivity distribution in
the cavity resonator from the measured shifts in resonance frequencies.

In order to analyse the sensitivity of the measurement system with respect to
fluctuations in the material distribution in a real process, large-scale numerical
computations are performed using the high performance computing resources at
C3SE at Chalmers [15]. A parameter study is carried out, where the response of
the measurement system is calculated for a large number of material distributions

, Signals and Systems, Master of Science Thesis 2012:44 23



that are described by a set of parameters. The parameter-space for which the
measurement response is computed, is intended to cover an important part of all
the material distributions that could occur in the real process. The computational
results, which are stored in a database, could also be used as a look-up table to
identify the state of the process, given a measured response of the measurement
system.

3.3 Microwave measurements

This section describes how the microwave measurements are performed, including
the measurement instrument, the excitation of the cavity resonators, and how the
resonance frequencies are extracted from measurement results.

The microwave measurements in this thesis are performed using the network
analyser E8361A by Agilent [16], which operates in the frequency range 10MHz-
67GHz. The network analyser is connected to a PC by a GPIB interface, which
allows the instrument to be automatically controlled from the PC using the In-
strument Control Toolbox in Matlab [17].

The complex permittivity for some of the material samples used in the exper-
iments is measured with the 85070E Dielectric Probe Kit from Agilent [16].

3.3.1 Measurement probe

In order to excite the cavity resonator and measure its response, an electromagnetic
probe in the form of a coupling loop is mounted inside the cavity, and connected
to a network analyser via a coaxial cable.

The coupling loop is illustrated in Fig. 3.2. Here, a current I flows on the loop
wire which yields a magnetic flux Φ through the loop that excites the cavity, where
the excitation can be described as a magnetic dipole tangential to the cavity wall.
Similarly, the magnetic field of an eigenmode yields a time varying magnetic flux
through the loop, which induces a voltage at the probe.

The performance of the coupling loop depends strongly on where it is located
and how it is oriented, since it may only couple to eigenmodes with a magnetic field
that passes through the loop. To find a suitable location and orientation of the
probe, we exploit the analytical expressions for the magnetic field of the eigenmodes
in a cylindrical cavity presented in section 2.2.1. From these expressions, we see
that a coupling loop placed in the upper corner of the cylinder oriented with its
loop face area perpendicular to the φ̂-direction, may couple to all eigenmodes
except for the axi-symmetric TE-modes. Thus, this is a rather good choice for a
measurement system with only one probe.

Ideally, the coupling loop should not influence the behaviour of the cavity
resonator. However, the loop itself becomes resonant at frequencies where an
integer multiple of the wavelength is close to the circumference of the loop. In
the proximity of these frequencies, the probe behaves like a loop antenna which
makes it more complicated to measure the resonances of the cavity. To avoid such

, Signals and Systems, Master of Science Thesis 2012:44 24



Figure 3.2: Illustration of a coupling loop used for excitation and measurement
on a cavity resonator. The loop is made by extending the center conductor of the
feeding coaxial cable into the cavity and grounding it to the cavity wall to form a
loop.

problems, the size of the loop is kept as small as possible. However, the area of
the loop must be sufficiently large in order to achieve acceptable coupling to the
eigenmodes. The size of the loop must therefore be chosen to obtain good coupling
while avoiding resonant behaviour associated with the loop itself. The suitable
compromise is found through physical experiments and the final loop dimensions
are presented in section 5.1.

3.3.2 Extracting resonance frequencies from measure-
ment data

The network analyser measures the scattering matrix S̄(ω), which contains the
complex-valued scattering parameters, i.e. the reflection and transmission coeffi-
cients of an N -port network. In our experimental setup, two ports are used and
the scattering matrix takes the form

S̄ =

[
S̄11 S̄12

S̄21 S̄22

]
. (3.12)

At port j, the network analyser transmits a monochromatic voltage wave with
amplitude V̄ t

j that propagates along the transmission line towards the cavity res-

onator. The reflected voltage-wave amplitude V̄ r
i is measured at port i. Given

these amplitudes, the scattering parameters S̄ij in Eq. (3.12) are given by

S̄ij =
V̄ r
i

V̄ t
j

(3.13)

with voltages according to Fig. 3.3.
The useful information, i.e. the resonance frequencies and Q-values of the cav-

ity resonator, can be extracted from the scattering parameters in a post-processing
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Figure 3.3: Illustration of a measurement setup with a network analyser with two
ports connected to a cavity resonator by means of coupling loops.

step. A very simple approach to this problem is illustrated in Fig. 3.4. Here, the
resonance frequency andQ-value of the resonant measurement object are estimated
from the absolute value of the reflection coefficient, i.e. the phase is omitted. This
simple technique works satisfactory when a single resonance is to be determined
from a high quality signal. However, if several adjacent resonances are to be mea-
sured simultaneously (which is often the case for cavity resonators), or if the signal
is weak, other techniques that involve more advanced signal processing algorithms
might be necessary.
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Figure 3.4: Power reflection coefficient |Γ̄|2 at a resonator with resonance frequency
f0 and quality factor Q. The Q-value, which corresponds directly to the width of
the resonance peak, is measured halfway down the peak in the |Γ̄|2-curve according
to |Γ(f0 ±∆f)|2 = 1

2 (1 + |Γ(f0)|) where ∆f = f0/(2Q). The estimated resonance
frequency f0 is taken as the minima of the curve.
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Chapter 4

Computational results

In this chapter the computed eigenmodes and resonance frequencies for the cylin-
drical cavity and the Wurster-type process cavity are presented together with a
comparative discussion. The sensitivity of the resonance frequencies with respect
to variations in the material distribution is also presented. All visualisations of the
electric and magnetic field solutions presented in this chapter are computed and
rendered by means of Comsol Multiphysics [14].

4.1 Eigenmodes of the cylindrical cavity

The eigenmodes of the cylindrical cavity resonator used in the validation experi-
ment can be divided into transverse electric (TE) and transverse magnetic (TM)
modes, which are presented in analytical form in section 2.2.1. These eigenmodes
and their resonance frequencies can also be computed by means of the finite ele-
ment method, cf. section 2.3. As an example for illustration purposes, the electric
and magnetic fields of the eigenmodes TE111 and TM010 are shown in Fig. 4.1.
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(a) TE111 (b) TM010

Figure 4.1: Eigenmodes TE111 and TM010 with resonance frequencies 796 MHz
and 918 MHz, respectively, in a cylindrical cavity of height 0.4 m and radius 0.125
m. The red lines represent electric field lines, blue lines represent the magnetic
field lines. The colour scale illustrates the magnitude of the electric field, where
red corresponds to high magnitude and blue corresponds to zero magnitude.

, Signals and Systems, Master of Science Thesis 2012:44 28



4.2 Eigenmodes of the Wurster-type process

vessel

The eigenmodes associated with the Wurster-type process vessel can be arranged in
two categories. The eigenmodes of the first category have strong similarities with
the TE and TM eigenmodes of a cylindrical cavity. The electric and magnetic fields
of these modes are in most cases strong in the upper cylindrical part of the cavity
and weak in the conical bottom part of the vessel. Fig. 4.2 shows two eigenmodes
that belongs to this category. The similarities with the modes in Fig. 4.1 are
significant.

For eigenmodes with higher resonance frequency, the wavelengths are shorter
which allows the fields to penetrate further down in the bottom part of the vessel.
Fig. 4.3 shows the fields of the TE114 mode in a cylindrical cavity, and its equivalent
in the process vessel. The field pattern is significantly deformed and the fields
penetrate far down into the truncated cone.

(a) TE111 (b) TM010

Figure 4.2: Eigenmodes in the Wurster-type process cavity that resemble the
modes (a) TE111 and (b) TM010 of a cylindrical cavity, with resonance frequen-
cies 736 MHz and 929 MHz, respectively. The colour scale shows the electric field
magnitude and the red and blue lines represent electric and magnetic field lines,
respectively.
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(a) TE114 in cylinder (b) TE114 in the Wurster process vessel

Figure 4.3: (a) A cylindrical cavity and its mode TE114 with resonance frequency
1.66 GHz and (b) the process vessel and its corresponding deformed mode with
resonance frequency 1.21 GHz. The colour scale shows the electric field magnitude
and the red and blue lines represent electric and magnetic field lines, respectively.

The eigenmodes of the second category have strong fields only in the bottom
part of the cavity near the Wurster tube, whereas the fields are very weak in the
upper part. The mode with lowest resonance frequency in this category is shown
in Fig. 4.4. Figure 4.5 shows an eigenmode in a Wurster-type process cavity that
is equipped with a horizontal metallic net at the top of the Wurster tube, where
the net has an annular shape such that it only extends over the region outside the
Wurster tube as illustrated in Fig. 4.6. The net is intended to screen the bottom
part of the cavity from the upper part and it is described further in section 4.3.
The eigenmode in Fig. 4.5 is localised below the screening net, which significantly
reduces the magnitude of the fields above the net.
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Figure 4.4: Eigenmode in the Wurster-type process cavity which is localised near
the Wurster-tube. The resonance frequency is approximately 650 MHz when the
cavity is empty, but it is strongly affected by dielectric materials in the vicinity of
the Wurster tube, and by the length and position of the Wurster tube. The colour
scale shows the magnitude of the electric field and the red and blue lines represent
electric and magnetic field lines, respectively.

Figure 4.5: Eigenmode in a Wurster-type process cavity equipped with a screening
net at the top of the Wurster tube. The eigenmode is localised below the net and
its resonance frequency depends strongly on the permittivity in the bottom region.
For an empty cavity, the resonance frequency is 1.44 GHz. The colour scale shows
the magnitude of the electric field and the red and blue lines represent electric and
magnetic field lines, respectively.
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Figure 4.6: The Wurster-type process equipped with a metal net that screens the
bed region.

4.3 Sensitivity with respect to material fluc-

tuations

The bed of fluidised particles in a Wurster-type process may have a packing density
that varies or fluctuates during the process. In this case the volume occupied by
the bed and the volume fraction of particles in the bed varies, while the total
amount of particles is constant.

In order to study how such fluctuations affect the measurement system, the
resonance frequencies are computed for a large number of material distributions
in a parameter study. This is done for two geometries: (i) the original Wurster-
type process cavity and (ii) the process cavity equipped with a horizontal metal
net located at the top of the Wurster tube, 82 mm above the distributor plate,
as illustrated in Fig 4.6. The metal net in the second geometry is intended as an
electromagnetic screen between the lower and upper regions of the cavity. Such an
arrangement may help mitigating disturbances to the resonance frequencies caused
by fluctuations in the material distribution in the bottom part of the vessel.

In the parameter study, the fluidised bed is assumed to consist of a homogenous
mixture of air and particles, where the particles are homogenous with permittivity
εp and conductivity σp, and the total volume of the particles is equal to Vp. The
volume fraction of particles is assumed to vary with the height z above the distrib-
utor plate at the bottom of the vessel, according to the profile shown in Fig. 4.7.
The height h of the fluidised bed is varied in order to simulate different process
conditions, where ∆h/h = 10 % for all h. The volume fraction is assumed to be
constant in the horizontal directions.

The Maxwell-Garnett formula (2.28) is used to calculate the effective permit-
tivity of the particle-air mixture, which is used in the computation of the resonance
frequencies. The distribution of the computed resonance frequencies for the ge-
ometry with and without the screening net is shown in figures 4.8 and 4.9. Here,
the particles have a constant permittivity εp/ε0 = 6 and conductivity σp = 0. The
volume fraction of particles changes with the height of the bed, while the total
amount of particles is constant with a total particle volume Vp = 600 cm3.

In Fig. 4.8 the height of the bed is varied between 57 mm (which corresponds
to a particle volume fraction of 100 %) and 100 mm. Thus, the height of the bed
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Figure 4.7: Profile for the volume fraction of particles in a simple model of the
fluidised bed. The volume fraction is f0 for 0 < z < h and decreases linearly to
zero for h < z < h+ ∆h.

does in some cases exceed the height of the net which is located 82 mm above the
distributor plate. In Fig. 4.9, the height of the bed is varied between 57 mm and
75 mm, and in this case the particles always stay below the net.

First, we consider the case where a screening net is used. In this case, the
resonance frequencies associated with modes localised above the net are relatively
unaffected by variations in the bed, as long as all particles are located below the
net. Eigenmodes that are completely localised below the net are also present, such
as the mode in Fig. 4.5. The resonance frequencies of these modes are strongly
affected as the height of the bed is varied. This can be seen in figures 4.8 and 4.9
in terms of the low bars that appear in a wide frequency range. It should be noted
that a probe located close to the upper lid of the cavity couples very weakly to the
modes located below the net. Thus, measurements performed by such a probe are
relative insensitive to material variations in the bed. Modes localised below the
net may be measured by means of probes placed below the net.

For the case where no screening net is used there are resonance frequencies
appearing around 0.4 GHz, which are not present in the cavity equipped with a
net. These resonances are associated with the eigenmode shown in Fig. 4.4. The
resonance frequency of this mode varies substantially as the height of the bed
changes, because of the strong electric fields in the bottom of the vessel. Despite
the absence of a screening net, the resonance frequencies of the other eigenmodes
are fairly well localised (although not as well as if a net is used), since the fields
of these modes generally are weak in the bed region.
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Figure 4.8: Distribution of computed resonance frequencies with a screening net
(top figure) and without a screening net (bottom figure). The height of the bed
varies between 57 mm and 75 mm, i.e. the bed does not exceed the height of the
screening net.
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Figure 4.9: Distribution of computed resonance frequencies with a screening net
(top figure) and without a screening net (bottom figure). The height of the bed
varies between 57 mm and 100 mm, i.e. the bed does in some cases exceed the
screening net.
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Chapter 5

Measurement results

In this section the microwave measurement results for the validation experiments
and process measurements are presented.

In the validation experiment, dielectric objects with known shape are placed
inside the cylindrical cavity, and their permittivity is reconstructed from the mi-
crowave measurements. The test objects are assumed to be lossless, which is a
reasonable approximation for the materials considered.

A small scale fluidised bed process machine called Spiritus at AstraZeneca R&D
in Mölndal is used to perform microwave measurements on a realistic fluidised bed
process. Microwave sensors are mounted on the wall of the process vessel and
connected to a network analyser in the experimental setup.

5.1 Validation experiments

Two validation experiments are presented, where the aim is to determinine the
permittivity of test objects made of polystyrene and MCC-powder. This is done
using the cavity shown in Fig. 5.1(a), which is a circular cylinder of height 40 cm
and radius 12.5 cm. The top and bottom lids (not shown in the figure) are mounted
on the cylindrical tube by screw connections to ensure good electrical contact
between the tube and the lids.

Figure 5.1(b) shows the two coupling loops that are used in the measurements.
The upper loop is oriented with its surface area perpendicular to the φ̂-axis and
the surface area of the lower loop is perpendicular to the ẑ-axis. The working
principle of the coupling loop is described in section 3.3.1. By using two probes,
the full 2-port scattering matrix from the network analyser can be exploited, and
better coupling to the different eigenmodes can be achieved as compared to using
only one probe.

35



(a) Cylindrical cavity (b) Coupling loops

Figure 5.1: The cylindrical cavity (without the bottom and top lids) and the two
coupling loops used in the validation experiments. The upper loop is oriented with
the area perpendicular to φ̂ and the bottom loop area is perpendicular to ẑ. Both
loops have an area of 500 mm2.
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5.1.1 Validation experiment 1

In the first validation experiment, cylindrical pieces of styrofoam with cirular cross-
section are used as test objects. These objects are shown in Fig. 5.2. The relative
permittivity of styrofoam is low, which means that it has similarities with the
fountain region in the fluidised bed, where the particle density and hence the
effective permittivity is low.

Figure 5.2: Pieces of styrofoam used in validation experiment 1.

Four different styrofoam cylinders of heights 196 mm, 98 mm, 50 mm and 20 mm
have been used. For each measurement, one of the cylinders are placed centered
at the bottom of the cavity and the resonance frequencies ωm are measured for the
5 lowest eigenmodes. The resonance frequencies of the empty cavity, ωm are also
measured, and the relative shift in resonance frequencies are formed according to

∆ξm =
ωm − ω0

m

ωm
(5.1)

where m = 1,2,...,M denotes the mode index. The values of ∆ξm are used to
calculate the permittivity of the test object by applying the reconstruction method
described in section 3.1.1.

Here, the cavity is divided into two volumes: V1 which is the volume occupied
by air; and V2 which is the volume occupied by the styrofoam. These volumes are
determined based on the dimensions of the styrofoam cylinder and its position in
the cavity.

The average permittivity perturbations ∆εr1 and ∆εr2 in volumes V1 and V2

can now be calculated from the (over-determined) system of linear equations

A

[
∆εr1
∆εr2

]
= ∆ξ (5.2)

where ∆ξ = [∆ξ1, . . . ,∆ξM ]T and the matrix A is given by Eq. (3.7). The cal-
culated values of the permittivity of the styrofoam and of the air for the different
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test objects are presented in Tab. 5.1. The frequency shifts are larger for the big-
ger objects, as expected. Noteworthy is that the calculated permittivity of the
styrofoam is consistent among all the cylinders of different height, and that the
calculated relative permittivity of air is close to unity.

Table 5.1: Calculated relative permittivity of styrofoam for cylindrical test objects
of different height with diameter 60 mm, and the estimated permittivity of the air.
The relative shift in resonance frequency (in per mil) for the 5 lowest eigenmodes
are also presented.

Cylinder εr of εr ∆ξ1[h] ∆ξ2[h] ∆ξ3[h] ∆ξ4[h] ∆ξ5[h]
height styrofoam of air

196 mm 1.0514 1.0002 -1.2926 -2.3899 -2.0489 -1.3479 -1.4421
98 mm 1.0495 1.0001 -0.2311 -1.1418 -1.5905 -0.6056 -0.6756
50 mm 1.0497 1.0001 0 -0.5301 -0.9005 -0.0891 -0.5489
20 mm 1.0476 1.0001 0.0290 -0.1943 -0.3361 0.0008 -0.2554

5.1.2 Validation experiment 2

In the second validation experiment, a shallow container made from a trimmed
paper cup is filled with MCC-powder as shown in Fig. 5.3. The paper cup is
used instead of an ordinary glass beaker to contain the MCC-powder, in order to
minimize the impact on the measurement imposed by the container. The object is
disc-shaped with height 4 mm and diameter 45 mm, and thus it occupies a fraction
of 3.2 · 10−4 of the total cavity volume.

The permittivity of the MCC-powder is also measured by using the open-ended
coaxial probe described in section 3.3. The resulting real part of the permittivity
is εr = 1.6 in the frequency range 0.5-1.5 GHz. The measured loss factor at these
frequencies is 0.04. In the cavity measurements, we assume a lossless dielectric
which is an acceptable approximation for materials with a loss factor of this size.

The permittivity measured by the coaxial probe however depends on the pack-
ing density of the powder. In order to get good contact with the probe, the sample
must be pressed relatively hard against the probe, which results in a more densely
packed powder and thus a higher value for the measured permittivity as compared
to a more loosely packed powder.

The measured shifts in resonance frequencies for the 5 lowest eigenmodes are
shown in Tab. 5.2. Here, we see that the TM modes are shifted more than the
TE modes, which is in accordance with theory. For the TE modes, Ez = 0 by
definition and at the bottom lid also the radial and azimuthal components of the
electric field, Er and Eφ, vanish due to the boundary condition implied by the
metal. Since the test object is only extending 4 mm above the metal surface, the
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Figure 5.3: MCC powder filled into the bottom part of a paper cup.

electric field (and electric energy density) is basically zero in the region occupied
by the test object for the TE modes. Thus, their resonance frequencies are there-
fore not significantly influenced by the presence of the test object, according to the
perturbation theory in section 2.5. TM modes may however have non-zero electric
fields (Ez 6= 0) inside the object, and the resonance frequencies are therefore sub-
stantially shifted.

Table 5.2: Relative shift in resonance frequency (in per mil) for the 5 lowest
eigenmodes used to reconstruct the permittivity of the MCC sample.

Mode TE111 TM010 TM011 TE112 TM012

∆ξ [h] -0.0031 -0.2806 -0.4740 -0.0559 -0.3911

In order to calculate the permittivity of the test object, we follow the approach
of section 3.1.1. Again, we denote the volume occupied by air by V1 and the volume
of the test object by V2, and solve for the permittivity perturbations ∆εr1 and ∆εr2
in these volumes. The results are

∆εr1 = 0.00

∆εr2 = 0.48,

i.e. the calculated permittivity of the MCC powder is 1.48.
The difference to the value measured by the coaxial probe (εr = 1.6) falls

within the uncertainity caused by the packing density of the MCC powder and the
uncertainities in the cavity measurement described in section 5.1.3. In addition,
the estimation is based on a linearisation and this approximation induces a larger
error for dense materials such as the packed MCC-powder.
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5.1.3 Error estimation

The accuracy in the resonance frequencies is limited by the frequency resolution
of the network analyser. In the measurements above, 16001 frequency points
(the highest possible of the instrument) are used to sample the frequency range
700 MHz - 2 GHz, which yields a frequency resolution ∆f = 124 kHz. Since each
resonance frequency is estimated from one single point in the measured spectrum,
e.g. the minimum of the reflection coefficient, the accuracy of the resonance fre-
quencies is the same as the frequency resolution of the measurement. Based on
this error contribution, we may thus estimate the relative error according to

∆f

|f − f0|
≈ 124kHz

1MHz
≈ 12% (5.3)

where 1 MHz is used as a typical value for the absolute resonance frequency shifts.
The diameter and height of the cylindrical test object is measured with an

accuracy of approximately 1 mm, which yields a relative error of up to 8 % in the
volume of the object.

The calculated value of the permittivity is, to leading order, linearly depen-
dent on the object’s volume and the measured frequency shifts. Thus the total
error in the calculated value for εr in the test objects from volume and frequency
uncertainities, amounts to approximately 20 %.

The error contribution from the resonance frequencies can be significantly re-
duced by employing signal processing algorithms to the process of estimating the
resonance frequencies from the measurement data.

5.2 Process measurements

The fluidised bed process machine Spiritus at AstraZeneca equipped with mi-
crowave sensors is used to run a set of representative process batches in a mea-
surement campaign.

The machine allows for accurate control and monitoring of the flow, temper-
ature and humidity of the fluidising air as well as the pressure and airflow in
the atomizer (i.e. the spraying nozzle). The flow rate of the spraying liquid is
controlled via an external pump.

In its original form, the conical part of the process vessel is equipped with

windows that provides a visual interface to the process, as shown in Fig. 5.5(a). In

a microwave measurement, these windows cause significant radiation losses, which

is a disadvantage for the measurement. Therefore, a metallic insertion is mounted

inside the conical part of the vessel in order to screen the windows and make the

cavity ”electromagnetically sealed”. The insertion is shown i Fig. 5.5(b). For the
same reason, a metallic net is mounted at the top of the cavity in order
to prevent radiation losses, where the net allows the air to escape from the
cavity. The top net is shown in Fig. 5.6.
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Figure 5.4: Experimental setup of the process measurements with the Wurster-
type process vessel in the machine Spiritus to the left, and the network analyser
connected to a PC to the right.

(a) Conical bottom part of the vessel
with windows.

(b) Screening insertion in the conical
bottom part of the vessel.

Figure 5.5: The conical bottom part of the process vessel seen from above: (a)
the windows are visible; and (b) a screening insertion is mounted that covers the
windows.

The measurements are performed in steps, starting from very simple mea-
surement situations and progressively adding components one by one. The
following measurement situations are considered.

1. Fluidisation air is blown through the empty cavity, while the tempera-
ture is sucessively increased from room temperature up to 70 ◦C.

2. MCC-pellets with low moisture content are circulated inside the vessel,
with and without a particle fountain.
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Figure 5.6: The upper cylindrical part of the process vessel together with the
screening net at the top of the cavity.

3. MCC-pellets with an initially high moisture content are being dried in
the process.

4. MCC-pellets being sprayed with water, where the spraying rate is su-
cessively increased until agglomeration starts and the process collapses.

The measurement results from the process situations above are presented
in the following.

5.2.1 Varying temperature

In order to investigate the sensitivity of the measurement system towards
temperature expansion effects, a trial is made with a completely empty pro-
cess where the inlet temperature of the fluidising air is successively increased.
Figure 5.7 shows the result from this trial, in terms of the resonance frequency
shifts and the logged temperatures of the inlet and outlet air. Here, we notice
that the resonance frequencies of the TM modes decrease, while those of the
TE modes increase, as the temperature rise. As can be seen in the figure, the
changes in resonance frequencies take place very quickly (within a minute)
after the temperature is increased.

Next, we perform a similar measurement with the screening net at the top
of the cavity flipped upside down, and the measurement results are shown in
Fig. 5.8. Here, we see clearly that the resonance frequencies of the TE modes
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Figure 5.7: Process measurement with no material in the cavity where the tem-
perature of the inlet air is increased in steps up to 70 ◦C. The resonance frequency
shifts for the 6 lowest eigenmodes, and the logged temperature of the inlet and
outlet air, is shown as function of the measurement time.

are shifted downwards and those of the TM modes upwards as the tempera-
ture increases, i.e. the perturbation of the resonance frequencies is reversed
as compared to the previous experiment. Since the only difference between
the experimental setups is the orientation of the top net, this component is
concluded to be the dominant contributor to the disturbances in resonance
frequencies caused by temperature variation. This is also verified by com-
putations, where the top lid of the cavity protrudes inwards or outwards.
Such protrusions are likely to be similar to thermal expansions of the top net
which is fixed to an annular metal ring as shown in Fig. 5.6. Here, the net is
welded to the metal ring and this ring is not substantially influenced by the
temperature of the outlet air.
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Figure 5.8: Process measurement with no material and no spraying where the tem-
perature of the inlet air is increased successively. The experiment is set up identi-
cally as the one presented in Fig. 5.7, with the only difference that the screening
net at the top of the vessel is flipped upside down.
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5.2.2 Circulation of pellets with and without fountain

In this measurement, 200 g of initially dry MCC pellets of size 500-700µm are
circulated with and withouht a particle fountain. The resonance frequencies
are measured several times while the process parameters are kept constant,
in order to investigate the sensitivity of the resonance frequencies to random
fluctuations in the material distribution. In order to have a fountain of parti-
cles, a sufficiently high air pressure in the atomizer is required, thus the foun-
tain can be switched on and off during the process by adjusting the atomizer
pressure. A fluidisation airflow of 30 m3/h with a constant inlet tempera-
ture of 30 ◦C is used, in order to minimize the effects of thermal expansion.
The moisture content of the pellets is measured to be 5.04 mass-% before
the process and 2.0 mass-% afterwards, using a loss-on-drying instrument.
The actions taken at different times during the experiment are presented in
Tab. 5.3

Table 5.3: Changes in process conditions at times measured from start of mea-
surement. The following abbrevations are used: FF = fluidising airflow, AP =
atomizer pressure.

Time (min) Action
0.0 empty cavity, FF = 30 m3/h, Tin = 30 ◦C
3.20 pellets added, AP = 0.4 Bar (fountain off)
38.0 AP = 2.0 Bar (fountain on)

Figure 5.9 shows the distribution of measured resonance frequencies with
the particle fountain either switched on or off. The measured resonances
are generally very well gathered, both with and without the fountain. An
exception is the resonance at 1.22 GHz (which is the mode TE114) which
fluctuates more than the others. The same measurement is also presented
in Fig. 5.10 where the relative shifts in resonance frequencies are shown over
time, with the fountain either on or off. For all modes in the figure, except
TE114, the resonance frequencies are shifted downwards as the fountain is
switched on, which qualitatively agrees well with theory. The resonance
frequencies of these modes are also relatively stable as the process parameters
are kept constant. The resonance frequency of the TE114-mode is strongly
shifted downwards as the pellets are added and being fluidised without a
fountain, and it also fluctuates significantly. These observations agree with
modelling results, which show that the TE114-mode has strong electric fields
far down in the truncated cone of the vessel (see Fig. 4.3), and thus is expected
to be sensitive to permittivity variations at the bottom of the vessel.
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Figure 5.9: Distribution of measured resonance frequencies for a process where
200 g of 500-700µm pellets are being circulated. The top figure shows the distri-
butions with the fountain off, and the bottom figure with the fountain on.
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Figure 5.10: Measured shifts in resonance frequencies for the lowest eigenmodes.
The arrows indicate when pellets are added to the cavity, and when the fountain
is started. The first measurement, intended as a reference, is done for an empty
cavity.
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5.2.3 Drying of pellets

In this measurement trial, MCC pellets of size 500-700µm with initially high
moisture content are being dried. The process is run with a fluidising airflow
of 30 m3/h with an inlet temperature of 50 ◦C and an air pressure of 2 Bar in
the atomizer to create a fountain of particles. The fountain is switched on and
off during the measurement (by reducing or increasing the atomizer pressure),
in order to study to what extent the fountain affects the measurements in
different stages in the process. The moisture content is measured to be
21.7 mass-% before the drying and 1.1 mass-% afterwards, using a loss-on-
drying instrument. The actions taken during the experiment are presented
in Tab. 5.4.

Table 5.4: Changes in process conditions for the drying experiment, at times
measured from the start of the measurement. The following abbrevations are
used: FF = fluidising airflow, AP = atomizer pressure.

Time (min) Action
0.0 empty cavity, FF = 0 m3/h, AP = 0.4 Bar
1.5 pellets added
2.5 FF = 30 m3/h, Tin = 28 ◦C
3.5 AP = 2.0 Bar (fountain on)
5.0 Tin = 50 ◦C
37.5 AP = 0.4 Bar (fountain off)
40.5 AP = 2.0 Bar (fountain on)

The measured resonance frequency shifts together with process tempera-
tures are shown in Fig. 5.11. Here, we notice a general decrease in the res-
onance frequencies as the fountain is switched on after 3.5 min. In the time
interval 2.5 - 15 min, the outlet temperature first drops below room temper-
ature due to the evaporating moisture, and then it starts to increase. As the
temperature increases, the resonance frequencies of the TE modes increase
and the resonance frequencies of the TM modes decrease. This behaviour
is consistent with the controlled temperature increase in the experiments
presented in section 5.2.1.

At the end of the drying process, the fountain is turned off and later
turned on again. As expected, the resonance frequencies decrease as the
fountian is turned off, and decrease as it is turned on again. The changes in
the resonance frequencies are clearly observable.

The permittivity of MCC varies substantially with the moisture content
(cf. [11] [12]). The relative permittivity of MCC is of the order εr ' 10
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Figure 5.11: Relative shifts in resonance frequencies (with respect to the empty
cavity at room temperature) and logged temperatures, for a process measurement
where 200 g of 500-700µm MCC pellets are being dried at 50 ◦C. The points where
the fountain is switched on or off is indicated by arrows.

at 20 % moisture content, while εr ' 2 for dry MCC [18]. The permittivity
of the particles is thus expected to be substantially higher before the drying
starts as compared to the end of the drying process. Therefore, it is somewhat
surprising that we do not observe a bigger change in the resonance frequencies
as the particles are dried, given that the presence of dry particles in the
fountain clearly influences the resonance frequencies.

One possible explanation to this could be that a substantial part of the
moisture already has evaporated before the fountain is switched on the first
time, i.e. after 3.5 minutes. The fluidising airflow is switched on after 2.5
minutes, which means that the particles have been dried by the fluidising air
during 1 minute before the fountain is started.

In a better designed experiment, the fountain should be switched on im-
mediately as the drying starts, in order to study the effects on the resonance
frequencies from the very beginning of the drying process.

Worth noting is also the dramatic behaviour of the resonance frequency of
the mode TE113 during the first 5 minutes. As the particles are added (after

, Signals and Systems, Master of Science Thesis 2012:44 49



1 min), the resonance frequency increases substantially to +4 h as compared
to the empty cavity at room temperature. After the fluidisation air is started,
the resonance frequency decreases instantaneously to −4 h, and then starts
to slowly increase. This behaviour may be related to the relatively strong
electric fields of this mode in the bed region, which makes the resonance
frequency sensitive to the material in the bottom of the vessel. However, the
increase in the resonance frequency that occurs as the particles are added,
can not be explained by means of the perturbation theory described in section
2.5.

5.2.4 Pellets sprayed with water

In this trial, 200 g of MCC pellets of size 500-700µm are being sprayed with
tap water, in order to simulate the coating process. A fluidising airflow of
30 m3/h with an inlet temperature of 60 ◦C is used. The fluidising air is
humidified with a dew point of 10 ◦C that corresponds to 7.6 g water per
kg of air. The air pressure of the atomizer is increased to 2.0 Bar in the
beginning of the process. Water is being pumped into the atomizer by an
external pump, where the water flow rate is successively increased. The
water spraying rate is measured by continuously weighing the water container
that supplies the pump using an accurate scale. The water spraying rate is
increased in steps from approximately 4 g/min up to 22 g/min, which results
in heavy agglomeration of the pellets at the end of the process. This could
be observed as the process vessel is disassembled, as a large amount of pellets
were adhered to the cavity walls and to each other.

The actions taken during the experiment are presented in Tab. 5.5.
The result from the measurement is shown in Fig. 5.12 in terms of the

relative shifts in resonance frequncies together with the water spraying rate
and the logged outlet temperature as function of time.

After approximately 3 min, the inlet temperature of the fluidising air is
increased to 60 ◦C which yields an increase in the resonance frequencies for
TE modes and a decrease for TM modes, which is consistent with the results
in section 5.2.1. After 12 min, the fountain is started which can be observed
in that all resonance frequencies decrease. As the water spraying starts,
the temperature of the outlet air drops significantly due to evaporation of
the spraying water. This temperature drop yields the previously described
changes in the resonance frequencies, as the TM modes increase and TE
decrease.

From 20-25 min measurement time, as the spraying rate is 13.6 g/min, a
clear decrease in the resonance frequency of the TE113 mode can be observed.
Also, TE112 and TE111 are shifted downwards during this period. Since the
TM modes do not increase to the same extent, it is suspected that the de-
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Table 5.5: Changes in process conditions for the spraying experiment, at times
measured from the start of the measurement. The following abbrevations are used:
FF = fluidising airflow, AP = atomizer pressure, DP = dew-point of fluidising air,
WC = water content in fluidising air, SR = water spraying rate.

Time (min) Action
0.0 empty cavity, FF = 0 m3/h, AP = 0.4 Bar
1.0 pellets added
1.5 FF = 30 m3/h
2.5 Tin = 60 ◦C
4.5 DP = 10 ◦C, WC = 7.6 g/kg
11.5 AP = 2.0 Bar, SR = 0 g/min
15.0 SR = 4.1 g/min
16.5 SR = 9.1 g/min
20.0 SR = 13.5 g/min
25.0 SR = 17.6 g/min
30.0 SR = 21.8 g/min

crease for the TE modes is actually caused by an increasing permittivity due
to the water spray. From 30 min to the end of the measurement, all reso-
nance frequencies decrease. This could be due to a higher permittivity of wet
pellets in the fountain and/or due to that the pellets start to adhere to the
cavity walls.
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Figure 5.12: Process measurement where 200 g of 500-700µm pellets are being
sprayed with water. Top figure: relative shifts in resonance frequencies for the
lowest eigenmodes as function of the measurement time. The arrow indicates the
time when the fountain is started. Bottom figure: Water spraying rate in g/min,
and logged values of the outlet temperature in ◦C.
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Chapter 6

Conclusions and future work

In this thesis, a novel measurement technique based on microwave cavity
resonances applied to pharmaceutical fluidised bed processes have been in-
vestigated. The work is mainly a proof-of-concept study where the focus
is to investigate the basic principles of the measurement technique, rather
than developments towards a fully-functioning measurement system. In this
chapter, the main findings of the work are presented together with a set of
topics for future work.

6.1 Conclusions

In the validation experiment, the cavity-resonance measurement technique is
used to estimate the permittivity of a set of test objects with known shape
that are placed inside a circular cylindrical cavity. The results clearly show
that this technique is able to measure the permittivity of small objects and
with low contrast in permittivity to the surrounding medium.

Only some minor modifications are required to make a real fluidised bed
process vessel work as an efficient cavity resonator at microwave frequencies.
A metallic cone inserted in the bottom part of the vessel, which covers the
windows and other openings in the original vessel, together with a metallic
grid attached to the top of the vessel provide sufficient confinement of the
microwaves without disturbing the process significantly.

Process measurements using the screened process vessel show that the
presence of particles in the fountain region clearly influences the resonance
frequencies in a way that agrees with modelling results.

The process temperature is shown to have a significant influence on the
measurement results in the experimental setup considered in this thesis.
These disturbances are found to be associated with thermal expansion of
the screening metal net at the top of the vessel.
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A majority of the eigenmodes in the Wurster type process cavity have
strong electric and magnetic fields mainly in the upper part of the cavity. The
resonance frequencies of these modes are therefore relatively insensitive to
fluctuations in the material distribution in the bottom region of the process,
which is an advantage if the permittivity in the fountain is to be monitored.

Extensive modelling work in terms of analytical calculations and com-
puter simulations at an early stage increases the understanding of the mea-
surement situation, which facilitates the design of the experimental setup
and shortens the time required in the lab.

6.2 Future work

In this work, measurements are performed using a network analyser and the
resonance frequencies are extracted from the measurement data by simply
localising minimas and maximas in the absolute values of the reflection and
transmission coefficients. More sophisticated signal processing algorithms
applied to the existing measurement data (which exploits also the phase in-
formation) would improve the accuracy of the resonance frequencies. This
would also allow for extraction of the Q-values, which can be represented
in terms of complex resonance frequencies. The time required to perform
a single measurement using the network analyser is long compared to the
timescales of the dynamics in the fluidised bed process. By employing time-
domain measurement techniques, it might be possible to shorten the mea-
surement time significantly.

A perturbation formula that relates a perturbation in the complex per-
mittivity to the resulting variations in the complex resonance frequencies,
would give the ability to monitor a dielectric with losses.

Several ways of mitigating the disturbances caused by varying process
temperatures have been considered, but not yet investigated. In a refined
version of the experiment, the metal net at the top of the cavity could be re-
placed by a metal disc with perforated holes, manufacured in a material with
low thermal expansion coefficient. It might also be possible to compensate
for the remaining disturbances from varying process temperatures.

The eigenmodes that are localised in the bottom part of the process cavity
have not been utilised for measurements at this point. The strong electric
fields of these modes in the bottom region of the process could be useful
for monitoring of the process state in this region. To be able to measure
the resonance frequencies of these eigenmodes, a different kind of coupling
probe is required that is localised in the vicinity of the Wurster tube or its
supporting rods.
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Appendix A

Analytical derivation of
eigenmodes in a cylindrical
cavity resonator

Consider a cylindrical cavity of radius a and height L described by a cylin-
drical coordinate system (r,φ,z).The cylinder has metallic boundaries with
conductivity σ and the cavity contains a homogeneous dielectric medium
with permittivity ε and permeability µ.

The eigensolutions to Maxwell’s equations in this cavity resonator obey
the boundary value problem

∇× Ē(r,ω) = −jωµH̄(r,ω) (A.1)

∇× H̄(r,ω) = jωεĒ(r,ω)

n̂× Ē(r, ω) = 0 r ∈ S = ∂V. (A.2)

Here, V denotes the cavity volume with boundary surface S and Ē(r,ω)
denotes the phasor representation of the electric field. In the following, all
quantities will be represented by means of complex phasors in frequency
domain, unless otherwise stated. The time dependent quantities are related
to their corresponding phasors by

F (r,t) = Re
[
F̄ (r,ω)ejωt

]
. (A.3)
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A.1 Field solutions and resonance frequen-

cies

Equation (A.1) can be simplified to Helmholtz’s equation for the electric and
magnetic fields

∇2Ē + k2Ē = 0 (A.4)

∇2H̄ + k2H̄ = 0. (A.5)

The wave number in Eqs. (A.4) and (A.5) is k = ω/c = ω
√
µε, where c is

the speed of wave propagation inside the cavity. The solutions of Eq. (A.1)
subject to the boundary condition (A.2) can be divided into two groups of
solutions, which are denoted transverse electric (TE) and transverse magnetic
(TM) eigenmodes of the cavity. The TM modes are characterised by H̄z = 0
and the TE modes by Ēz = 0, where ẑ denotes the axial direction. For the TM
modes, the ẑ-component of the electric field in Eq. (A.4) can be separated
from the transverse components, which reduces Helmholtz’s equation to a
scalar equation for the longitudinal component Ēz

∇2Ēz + k2Ēz = 0. (A.6)

From the solution Ēz of Eq. (A.6), the transverse field components can be
extracted from Ampère’s law and Faraday’s law, although this is a tedious
task in cylindrical coordinates. A more convenient approach [19] is therefore
to express the electric and magnetic fields Ē and H̄ in terms of the vector
potentials Ā and F̄ according to

Ē = −jωĀ+
1

jωµε
∇
(
∇ · Ā

)
− 1

ε
∇× F̄ (A.7)

H̄ =
1

µ
∇× Ā− jωF̄ +

1

jωµε
∇
(
∇ · F̄

)
. (A.8)

By using the Lorentz gauge

∇ · Ā = −jωµεφ̄e
∇ · F̄ = −jωµεφ̄m (A.9)

Maxwell’s equations reduce to Helmholtz equation for the vector potentials
Ā and F̄

∇2Ā+ k2Ā = 0 (A.10)

∇2F̄ + k2F̄ = 0. (A.11)

TM and TE modes are treated separately in the following sections.
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A.1.1 TM modes

For the TM modes, we make the following particular choice of the vector
potentials

Ā = ẑĀz(r,φ,z)

F̄ = 0. (A.12)

Eq. (A.10) then reduces to the scalar Helmholtz equation for Āz in cylin-
drical coordinates

∇2Āz + k2Āz =
1

r

∂

∂r

(
r
∂Āz
∂r

)
+

1

r2

∂2Āz
∂φ2

+
∂2Āz
∂z2

+ k2Āz = 0. (A.13)

Following the method of separation of variables, we make the following
ansatz

Āz(r,φ, z) = R̄(r)Φ̄(φ)Z̄(z). (A.14)

which reduces Eq. (A.13) to three ordinary differential equations for R̄(r), Φ̄(φ)
and Z̄(z). The solutions to these equations yield the following result for Āz

Āz(r,φ,z) = Ā′0 [A1Jm(krr) + A2Ym(krr)] [B1 cos(mφ) +B2 sin(mφ)] ·
· [C1 cos(kzz) + C2 sin(kzz)] . (A.15)

Here, Jm and Ym are Bessel functions of the first and second kind of order
m, with m = 0,1,2,... and k2

r + k2
z = k2. The parameters Ā′0, A1, A2, B1, B2,

C1 and C2 are coefficients to be determined.
The electric and magnetic fields can now be evaluated according to Eqs.

(A.7) and (A.8). In the current situation, the solution is constrained by the
following boundary conditions

• Ēφ = Ēr = 0 at z = 0 and z = h

• Ēz = Ēφ = 0 at r = a

• The fields must be finite everywhere

• The fields must be periodic in φ with the period 2π.

Thus, we arrive at the following result for Āz

Āz(r,φ,z) = Ā′′0Jm(krr) [B1 cos(mφ) +B2 sin(mφ)] cos(kzz). (A.16)

where we have introduced a new coefficient Ā′′0 to represent the amplitude of
the vector potential.

The following relations apply to the parameters in Eq. (A.16).
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• m = 0,1,2,..., n = 1,2,3,..., p = 0,1,2,...

• kr = kr,mn = χmn
a

where χmn is the n-th zero of Jm.

• kz = kz,p = pπ
L

• k2
r,mn + k2

z,p = k2
mnp = µεω2

mnp, where ωmnp is the resonance angular
frequency for the mode characterised by m, n and p.

By chosing B2 = 0, Eq. A.16 reduces to

Āz(r,φ,z) = Ā0Jm(krr) cos(mφ) cos(kzz) (A.17)

where Ā0 is the amplitude of the vector potential. It should be noted that
for m 6= 0, two degenerate solutions exist, which correspond to cos(mφ) and
sin(mφ) respectively, where both solutions are equally valid. By expressing
the electric and magnetic fields in their cylindrical components, we have

Ē = Ērr̂ + Ēφφ̂+ Ēz ẑ

H̄ = H̄rr̂ + H̄φφ̂+ H̄z ẑ. (A.18)

The field components above can be evaluated from the expression for Āz in
Eq. (A.17) by using Eqs. (A.7) and (A.8). It is convenient to express the field

amplitudes in terms of Ē0 = Ā0
k2r
jωµε

or H̄0 = Ē0/Z
TM
mnp where ZTM

mnp = kz
ωε

is
the wave impedance for TM modes. Note that the wave impedance vanishes
for TM modes with p = 0, so this situation requires special treatment, e.g.
by avoiding expressions involving H̄0.

Ēr =
1

jωµε

∂2Āz
∂r∂z

= −Ē0
kz
kr
J ′m(krr) cos(mφ) sin(kzz)

= −H̄0
k2
z

ωεkr
J ′m(krr) cos(mφ) sin(kzz) (A.19)

Ēφ =
1

jωµε

1

r

∂2Āz
∂φ∂z

= Ē0
kz
kr

m

krr
Jm(krr) sin(mφ) sin(kzz)

= H̄0
k2
z

ωεkr

m

krr
Jm(krr) sin(mφ) sin(kzz) (A.20)
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Ēz =
1

jωµε

(
∂2

∂z2
+ k2

)
Āz =

1

jωµε

(
−k2

z + k2
)
Āz

=
k2
r

jωµε
Āz = Ā0

k2
r

jωµε
Jm(krr) cos(mφ) cos(kzz)

= Ē0Jm(krr) cos(mφ) cos(kzz)

= H̄0
kz
ωε
Jm(krr) cos(mφ) cos(kzz) (A.21)

H̄r =
1

µ

1

r

∂Āz
∂φ

= −Ē0
jωε

kr

m

krr
Jm(krr) sin(mφ) cos(kzz)

= −H̄0
jkz
kr

m

krr
Jm(krr) sin(mφ) cos(kzz) (A.22)

H̄φ = − 1

µ

∂Āz
∂r

= −Ē0
jωε

kr
J ′m(krr) cos(mφ) cos(kzz)

= −H̄0
jkz
kr
J ′m(krr) cos(mφ) cos(kzz) (A.23)

H̄z = 0 (A.24)

The resonance frequency fTM
mnp for the mode TMmnp is given by

fTM
mnp =

ω

2π
=

k

2π
√
µε

=
1

2π
√
µε

√(χmn
a

)2

+
(pπ
L

)2

. (A.25)

A.1.2 TE modes

For TE modes, we have Ēz = 0 which makes the following choice of vector
potentials favourable

Ā = 0

F̄ = ẑF̄z(r,φ,z). (A.26)

Helmholtz equation (A.5) then simplifies to a scalar equation for F̄z, which
can be solved by separation of variables. The solution F̄z, that satisfies the
conditions stated in section A.1.1, is given by

F̄z(r,φ,z) = F̄0Jm(krr) cos(mφ) sin(kzz). (A.27)
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The degeneracy in φ for modes with m 6= 0 is not stated explicitly and
the solution is expressed only in terms of cos(mφ). The following relations
apply for the parameters in (A.27):

• m = 0,1,2,..., n = 1,2,3,..., p = 1,2,3...

• kr = kr,mn = χ′
mn

a
where χ′mn is the n:th zero of J ′m.

• kz = kz,p = pπ
L

• k2
r,mn + k2

z,p = k2
mnp = µεω2

mnp.

The electric and magnetic field components are now evaluated from F̄z
according to Eqs. (A.7) and (A.8). The field amplitudes are expressed in

terms of H̄0 = F̄0
k2r
jωµε

or Ē0 = ZTE
mnpH̄0, where ZTE

mnp = ωµ
kz

is the wave
impedance for TE modes. Since p 6= 0 for all TE modes, the wave impedance
is always well defined in this case. Thus, we have

H̄r =
1

jωµε

∂2F̄z
∂r∂z

= H̄0
kz
kr
J ′m(krr) cos(mφ) cos(kzz)

= Ē0
k2
z

ωµkr
J ′m(krr) cos(mφ) cos(kzz) (A.28)

H̄φ =
1

jωµε

1

r

∂2F̄z
∂φ∂z

= −H̄0
kz
kr

m

krr
Jm(krr) sin(mφ) cos(kzz)

= −Ē0
k2
z

ωµkr

m

krr
Jm(krr) sin(mφ) cos(kzz) (A.29)

H̄z =
1

jωµε

(
∂2

∂z2
+ k2

)
F̄z =

1

jωµε
(−k2

z + k2)F̄z

= F̄0
k2
r

jωµε
Jm(krr) cos(mφ) sin(kzz)

= H̄0Jm(krr) cos(mφ) sin(kzz) =

= Ē0
kz
ωµ

Jm(krr) cos(mφ) sin(kzz) (A.30)
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Ēr = − 1

εr

∂F̄z
∂φ

=

= H̄0
jωµ

kr

m

krr
Jm(krr) sin(mφ) sin(kzz)

= Ē0
jkz
kr

m

krr
Jm(krr) sin(mφ) sin(kzz) (A.31)

Ēφ =
1

ε

∂F̄z
∂r

=

= H̄0
jωµ

kr
J ′m(krr) cos(mφ) sin(kzz)

= Ē0
jkz
kr
J ′m(krr) cos(mφ) sin(kzz) (A.32)

Ēz = 0 (A.33)

The resonance frequency fTE
mnp for the mode TEmnp is given by

fTEmnp =
ω

2π
=

k

2π
√
µε

=
1

2π
√
µε

√(
χ′mn
a

)2

+
(pπ
L

)2

. (A.34)

A.2 Energy, losses and Q-values

The quality factor or the Q-value of a cavity resonator is defined as

Q = ω
W

P
(A.35)

where W is the total energy stored by the fields in the resonator and P
the dissipated power, at the resonance frequency ω. The dissipated power is
associated with conduction losses in the cavity walls (Pc) and dielectric losses
(Pd), which both contribute to the total Q-value, according to

Qc = ω
W

Pc

Qd = ω
W

Pd

Q =

(
1

Qc

+
1

Qd

)−1

. (A.36)
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The total energy W in the cavity is the sum of the energy in the electric
and magnetic fields averaged over one period, which are denoted We and Wm

respectively. We and Wm are inherently equal for all eigenmodes, i.e.

W = We +Wm = 2We = 2Wm. (A.37)

The electric and magnetic energy can be calculated by integrating the
electric and magnetic fields over the cavity volume V . Thus, we haves

We =
ε

4

∫
V

|Ē|2 dv (A.38)

Wm =
µ

4

∫
V

|H̄|2 dv (A.39)

Conduction losses in the walls can be calculated as the real part of the
Poynting vector S̄ = 1

2
Ē× H̄∗ that corresponds to the energy transport out

from the cavity volume V through the surface S, and we have

Pc =
1

2
Re

[∫
S=∂V

Ē × H̄∗ · ds
]

=
1

2
Re

[∫
S

η̄|H̄|2ds

]
=
Rs

2

∫
S

|H̄|2ds.

(A.40)
The metal walls are characterised by a complex surface impedance η̄ and,

for good conductors, it can be approximated by

η̄ ' (1 + j)

√
ωµ

2σc

' (1 + j)
1

σδ
(A.41)

where σc is the conductivity of the cavity walls and δ '
√

2
σcωµ

is the skin

depth at the frequency ω [9]. The real part of the surface impedance is called
the surface resistance Rs which is related to the active power dissipated in
the walls, i.e.

Rs = Re(η̄) '
√
ωµ

2σc

. (A.42)

A dielectric with non-zero conductivity σd features conduction losses,
which are given by

Pd =
σd

2

∫
V

|Ē|2dv. (A.43)

A.2.1 TM modes

Using the field expressions given by Eqs. (A.19) to (A.24) for the TM modes
together with the expressions (A.37), (A.40) and (A.43) for W,Pc and Pd, an-
alytical expressions for the Q-values can be calculated. The analytic integrals
that arise have to be treated separately for the following cases
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• m 6= 0, p 6= 0

• m = 0, p 6= 0

• m 6= 0, p = 0

• m = 0, p = 0

For details regarding the evaluation of the following integrals, see Appendix
B. Analytical results for the stored energy, conduction losses and dielectric
losses for the above cases are presented below.

Stored Energy

• m 6= 0, p 6= 0 :

W = 2Wm =
µ

2

∫
V

µ|H̄|2dV =

=
µ

2

∫ a

0

∫ 2π

0

∫ L

0

[
|H̄r|2 + |H̄φ|2

]
rdrdφdz =

=
µ

2

(
ωε|Ē0|
kr

)2
πL

2

∫ a

0

[
J ′2m(krr) +

m2

k2
rr

2
J2
m(krr)

]
rdr =

=
µπL

8

(
ωε|Ē0|a2

χmn

)2

J ′2m(χmn) (A.44)

• m = 0, p 6= 0 or m 6= 0, p = 0 :

W =
µπL

4

(
ωε|Ē0|a2

χmn

)2

J ′2m(χmn) (A.45)

• m = 0, p = 0 :

W =
µπL

2

(
ωε|Ē0|a2

χmn

)2

J ′2m(χmn) (A.46)
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Conduction losses in the cavity walls

• m 6= 0, p 6= 0 :

Pc =
Rs

2

∫
S

|J̄ s|2ds =
Rs

2

∫
S

|H̄tang|2ds =

=
Rs

2

(∫ L

0

∫ 2π

0

(
|H̄φ|2 + |H̄z|2

)
r=a

adφdz + 2

∫ a

0

∫ 2π

0

(
|H̄φ|2 + |H̄r|2

)
z=0

rdrdφ

)
=

=
Rs

2

(
ωε|Ē0|
kr

)2(
J ′2m(χmn)

πaL

2
+ 2π

∫ a

0

(
J ′2m(krr) +

m2

k2
rr

2
J2
m(krr)

)
rdr

)
=

=
πRs

2

(
ωε|Ē0|a
χmn

)2

J ′2m(χmn)

(
aL

2
+ a2

)
(A.47)

• m = 0, p 6= 0 :

Pc = πRs

(
ωε|Ē0|a
χ0n

)2

J ′20 (χ0n)

(
aL

2
+ a2

)
(A.48)

• m 6= 0, p = 0 :

Pc =
πRs

2

(
ωε|Ē0|a
χmn

)2

J ′2m(χmn)
(
aL+ a2

)
(A.49)

• m = 0, p = 0 :

Pc = πRs

(
ωε|Ē0|a
χ0n

)2

J ′20 (χ0n)
(
aL+ a2

)
(A.50)

Losses in the dielectric medium

Pd =
σd

2

∫
V

|Ē|2dv =
σd

ε
W (A.51)

A.2.2 TE modes

Analytical expressions for W,Pc and Pd for TE modes are presented below,
where the case m = 0 is treated separately.
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Stored energy

• m 6= 0 :

W = 2We =
ε

2

∫
V

|Ē|2dv =
ε

2

∫ a

0

∫ 2π

0

∫ L

0

(
|Ēr|2 + |Ēφ|2

)
rdrdφdz =

=
πεL

4

(
ωµ|H̄0|
kr

)2 ∫ a

0

(
J ′2m(krr) +

m2

r2k2
r

J2
m(krr)

)
rdr =

=
πεL

8

(
ωµ|H̄0|a2

χ′mn

)2(
1− m2

χ′2mn

)
J2
m(χ′mn) (A.52)

• m = 0 :

W =
επL

4

(
ωµ|H̄0|a2

χ′0n

)2

J2
0 (χ′0n) (A.53)

Conduction losses in the cavity walls

• m 6= 0 :

Pc =
Rs

2

∫
S

|J̄ s|2 ds =
Rs

2

∫
S

|H̄tang|2ds =

=
Rs

2

(∫ L

0

∫ 2π

0

(
|H̄φ|2 + |H̄z|2

)
r=a

adφdz + 2

∫ a

0

∫ 2π

0

(
|H̄φ|2 + |H̄r|2

)
z=0

rdrdφ

)
=

=
πRs|H̄0|2

2
J2
m(χ′mn)

(
aL

2

(
1 +

(
pπam

Lχ′2mn

)2
)

+

(
pπa2

Lχ′mn

)2(
1− m2

χ′2mn

))
(A.54)

• m = 0 :

Pc = πRs|H̄0|2J2
0 (χ′0n)

(
aL

2
+

(
pπa2

Lχ′0n

)2
)

(A.55)

Losses in the dielectric medium

Pd =
σd

2

∫
V

|Ē|2dv =
σd

ε
W (A.56)
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Appendix B

Table of integrals

Some of the results for analytical integrals that are frequently used in this
thesis are here summarised. In the following, Jm(x) refers to the m:th order
Bessel function of the first kind, and J ′m(x) is its derivative. Further, χmn is
the n:th zero of Jm(x) while χ′mn is the n:th zero of J ′m(x). Equations (B.6)
and (B.7) are found for instance in Microwave Engineering by Pozar [9] but
they can also be derived using the recurrence formulas (B.1) to (B.3).

J ′m(x) =
1

2
[Jm−1(x)− Jm+1(x)] (B.1)

Jm(x) =
x

2m
[Jm−1(x) + Jm+1(x)] (B.2)∫

J2
m(x)xdx =

1

2

[
x2J ′2m(x) + (x2 −m2)J2

m(x)
]

(B.3)

J ′0(x) = −J1(x) (B.4)

J ′1(χ0n) = − 1

χ0n

J1(χ0n) (B.5)

∫ χmn

0

[
J ′2m(x) +

m2

x2
J2
m(x)

]
xdx =

χ2
mn

2
J ′2m(χmn) (B.6)

∫ χ′
mn

0

[
J ′2m(x) +

m2

x2
J2
m(x)

]
xdx =

(χ′mn)2

2

(
1− m2

(χ′mn)2

)
J2
m(χ′mn) (B.7)
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