
Chalmers Publication Library

Sequence Planning Using Multiple and Coordinated Sequences of Operations

This document has been downloaded from Chalmers Publication Library (CPL). It is the author´s

version of a work that was accepted for publication in:

IEEE Transactions on Automation Science and Engineering (ISSN: 1545-5955)

Citation for the published paper:
Bengtsson, K. ; Bergagård, P. ; Thorstensson, C. (2012) "Sequence Planning Using Multiple
and Coordinated Sequences of Operations". IEEE Transactions on Automation Science and
Engineering, vol. 9(2), pp. 308-319.

http://dx.doi.org/10.1109/TASE.2011.2178068

Downloaded from: http://publications.lib.chalmers.se/publication/160025

Notice: Changes introduced as a result of publishing processes such as copy-editing and

formatting may not be reflected in this document. For a definitive version of this work, please refer

to the published source. Please note that access to the published version might require a

subscription.

Chalmers Publication Library (CPL) offers the possibility of retrieving research publications produced at Chalmers
University of Technology. It covers all types of publications: articles, dissertations, licentiate theses, masters theses,
conference papers, reports etc. Since 2006 it is the official tool for Chalmers official publication statistics. To ensure that
Chalmers research results are disseminated as widely as possible, an Open Access Policy has been adopted.
The CPL service is administrated and maintained by Chalmers Library.

(article starts on next page)

http://dx.doi.org/10.1109/TASE.2011.2178068
http://publications.lib.chalmers.se/publication/160025

308 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 9, NO. 2, APRIL 2012

Sequence Planning Using Multiple and
Coordinated Sequences of Operations
Kristofer Bengtsson, Patrik Bergagård, Carl Thorstensson, Bengt Lennartson,

Knut Åkesson, Chengyin Yuan, Sajed Miremadi, and Petter Falkman

Abstract—The sequential behavior of a manufacturing system
results from several constraints introduced during the product,
manufacturing, and control logic development. This paper pro-
poses methods and algorithms for automatically representing and
visualizing this behavior from various perspectives throughout the
development process. A new sequence planning approach is intro-
duced that uses self-contained operations to model the activities
and execution constraints. These operations can be represented
and visualized from multiple perspectives using a graphical and
formal language called Sequences of Operations (SOPs).

The operations in a manufacturing system are related to each
other in various ways, due to execution constraints expressed
by operation pre- and post-conditions. These operation relations
include parallel, sequence, arbitrary order, alternative, and hier-
archy relations. Based on the SOP language, these relations are
identified and visualized in various SOPs and sequences. A soft-
ware tool, Sequence Planner, has been developed, for organizing
the operations into SOPs that visualize only relevant operations
and relations.

Note to Practitioners— This paper proposes methods and algo-
rithms for a new sequence planning approach in which sequences
are automatically created based on the relations among operations
instead of having to be manually constructed. Using various views,
the sequences of operations related to, for example, part flow, robot
operations, and operator tasks, can be visualized. The use of var-
ious views helps the user better understand the relations between
cell control and mechanical design, and between product design
and total system behavior.

Index Terms—Automation design, control logic design, formal
methods, sequence planning, sequences of operations.

Manuscript received January 17, 2011; revised August 29, 2011; accepted
November 10, 2011. Date of publication January 31, 2012; date of current ver-
sion April 03, 2012. This paper was recommended for publication by Associate
Editor B. Turchiano and Editor Y. Narahari upon evaluation of the reviewers’
comments. This work was carried out at the Wingquist Laboratory VINN Ex-
cellence Centre within the Area of Advance Production at Chalmers, supported
in part by the Swedish Governmental Agency for Innovation Systems (VIN-
NOVA) and within the CAPE Research School, and in part by the Knowledge
Foundation, and in part by General Motors and SAAB Automobile.

K. Bengtsson is with Sekvensa AB, Trollhättan 46153, Sweden (e-mail:
kristofer.bengtsson@sekvensa.se).

P. Bergagård, C. Thorstensson, B. Lennartson, K. Åkesson, S. Miremadi, and
P. Falkman are with the Automation Research Group, Department of Signals
and Systems, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
(e-mail: patrik.bergagard@chalmers.se; carl.thorstensson@gmail.com; bengt.
lennartson@chalmers.se; knut.akesson@chalmers.se; miremads@chalmers.se;
petter.falkman@chalmers.se).

C. Yuan was with the Research and Development, General Motors, Warren,
MI, USA. He is now with Pride Power System Technology Co., Ltd., Beijing,
102606 China (e-mail: chengyin.yuan@gmail.com).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TASE.2011.2178068

I. INTRODUCTION

T HE famous motto “There is more than one way to do
it” [27] was influential when the software language Perl

was being developed. Perl’s inventor, Larry Wall, a trained lin-
guist, believed that sometimes another phrasing could make the
meaning of a design clearer. The truth of this motto is even more
obvious in the research field of information visualization, where
Bertin stated: “A graphic is no longer drawn once and for all: it
is constructed and reconstructed (manipulated) until all the re-
lationships which lie within it have been perceived A graphic
is never an end in itself: it is a moment in the process of decision
making” [23].

When developing an automation system, many engineering
disciplines work together to create a functional system. Such
an effort involves product designers, process planners, tool
designers, robot programmers, automation engineers, logistic
planners, etc. Most of these engineers have differing views of
the system and the design process. It is therefore important to
be able to represent design information from multiple perspec-
tives, to make it clear to everyone in the design team.

A common method for visualizing complex information is to
use multiple views to represent different projections of the infor-
mation [23]. This research area, which is called coordinated and
multiple views (CMVs) [17], has identified many interesting
techniques and guidelines [2]. The present paper presents a tool
that can be used to visualize and manage information related to
sequence planning in multiple views. In particular, two CMV
research areas are emphasized in this tool: data processing and
preparation, and view generation.

A. Sequence Planning

The purpose of sequence planning, when developing an au-
tomation system, is to determine in what order operations could
or should execute. Sequence planning integrates high-level re-
quirements, such as cycle time and product quality issues, with
low-level sequencing constraints, such as mutual exclusion,
safety concerns, and actuator actions. In the present research,
the operations describe the logical behavior of tasks executed
by an automation system to accomplish a specific objective.
The relations among operations are defined by execution con-
ditions governing when and how an operation can execute,
for example, to ensure that one particular operation always
precedes another.

The challenges involved in planning operation sequences
are addressed in many research areas, for example, project
management [11], business process automation [6], product
assembly planning [28], manufacturing task planning [18],

1545-5955/$26.00 © 2011 IEEE

BENGTSSON et al.: SEQUENCE PLANNING USING MULTIPLE AND COORDINATED SEQUENCES OF OPERATIONS 309

workflow scheduling [8], computer-aided manufacturing [14],
computer-aided process planning [13], and control design
[19]. Academics have focused mostly on optimization-based
planning problems, but the industrial impact has been quite
limited so far, probably due to the complexity of solving real
problems. The industry focus has instead been on representing
and visualizing sequences and tasks and on simulating them.

B. Gantt Chart

Since the operation specification of an automation system is
central [3], all involved stakeholders must understand the opera-
tion specification and how various design decisions influence it.
The most widespread industrial tool for specifying operations is
probably the Gantt chart [29], which is easy to use and under-
stand and intuitive to work with [9]. However, it was soon rec-
ognized that planning complex, large-scale production systems
was too complicated for the Gantt chart [29]. The chart does
not really represent logical relations among system elements,
but rather their durations and start and stop times. For example,
Gantt charts cannot handle alternatives and arbitrary order or
represent interdependent and network-like relations [29].

Since sequence planning is fundamentally logical, planning
using Gantt charts alone can increase the development prob-
lems. Today, it is fairly common for certain sequences to be
specified early in the development process to avoid complexity
and to fit them into a Gantt chart. Indirectly, this over specifies
all operations. This is a problem, especially in early develop-
ment phases and platform development [7], when it is important
to retain as much freedom as possible in terms of parallelism,
and to increase flexibility, adaptivity, and optimality. Moreover,
early specification of sequences to avoid complexity can com-
plicate the introduction of changes in the product or manufac-
turing process later on in the development process.

C. Method for Planning Operations and Sequences

These drawbacks tend to result in inconsistent and contra-
dictory understandings of system behavior. Therefore, a new
method for planning operation sequences has been proposed
by Lennartson et al. [12] and Bengtsson et al. [4], who present
a graphical and formal language, Sequences of Operations
(SOPs).

The SOP language is based on self-contained operations that
include only relevant conditions as to when and how every oper-
ation can execute, i.e., no information is stored dealing explic-
itly with a particular sequence, as in a Gantt chart. The relations
within a set of operations can then be identified and visualized
graphically from various perspectives, based on the constraints
on each operation. Examples of these perspectives are operation
sequences related to part flow through manufacturing, the exe-
cution sequence of a specific robot, and operations related to a
specific safety system.

A multiplicity of perspectives helps the user better understand
the relation between cell control and mechanical design, and be-
tween product design and total system behavior. The suggested
method considers not only the industrial need for easy visual-
ization and improved understanding of sequential behavior, but
also the need to optimize and verify the system (e.g., [10] and
[26]).

Fig. 1. An operation in the SOP language.

The SOP language focuses on how to organize, prepare, and
process data related to manufacturing operations, to be able to
visualize the information in multiple views. Using the SOP lan-
guage and earlier research findings, this paper focuses on how
to generate these multiple views, covering both necessary CMV
research areas.

This paper, together with an earlier one by the same au-
thors [5], presents algorithms for organizing operations into
sequences, identifying and visualizing the relations between
them automatically, and coordinating the various SOPs. These
algorithms are implemented in a tool called Sequence Planner
(SP) [16], which is used not only to visualize the operations in
various coordinated views to help engineers plan the sequences,
but also to verify, synthesize, and optimize the sequences.

The next section introduces the formal language, Sequences
of Operations (SOPs). Section III demonstrates how to identify
relations among operations, while Section IV presents a method
for automatically visualizing sequences. The SP tool is intro-
duced in Section V, which also describes how to manage the
coordination among operations and SOPs.

II. SEQUENCES OF OPERATIONS (SOPS)

This section presents the method introduced by Lennartson et
al. [12] and Bengtsson et al. [4] together with an example that
will be referred to throughout the paper.

The core object of the graphical language SOPs is the op-
eration. An operation specifies, at various levels of detail, an
action or task executed by an automation system. An operation
can describe, for example, the assembly of a complete product
or the action of sending a signal to an actuator. This is handled
by including suboperations in an operation. The level of detail
of an operation specification is related to the purpose of the SOP
model. Sometimes only high-level operations are relevant, but
in other cases, for example, when implementing the operations
in a control system, greater detail is needed.

An operation is visualized in the SOP language as in Fig. 1.
Each operation includes a set of conditions, describing when
and how the operation will execute. The preconditions specify
when an operation can start to execute and may include guard
expressions related to other operations, the state of a resource,
and product or safety interlocking expressions. The precondi-
tions also cover actions describing what should happen when
the operation starts.

The operation will continue to execute until the postcondi-
tions are satisfied. Like the preconditions, the postconditions
also include both guards and actions. The algorithms presented
here use a formal mathematical model of the operations based
on automata.

A. A Formal Operation Model

The operation model can be represented formally by extended
finite automata (EFA) [21], a generalization of automata in-

310 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 9, NO. 2, APRIL 2012

Fig. 2. EFA for operation � .

cluding guards and actions. The guards and actions are asso-
ciated with the transitions in the automation. A transition in an
EFA is enabled if and only if its corresponding guard formula is
evaluated to be true; when the transition is undertaken, a set of
variables may subsequently be updated. Formal tools for EFAs
are available; see [15], [24], and [26]. Hence, both formal ver-
ification and synthesis can be applied directly in the suggested
EFA models.

Definition 1 (Extended Finite Automaton): An extended finite
automaton is a 6-tuple

The set is the extended finite set of states, where is a
finite set of locations and is the finite domain of definition of
the variables, is a nonempty finite set of events (the alphabet),

is a set of guard predicates over , is a collection of action
functions, is a state transition relation,
and is the initial state.

For notational purposes, the guards and actions are grouped
into a set, , of transition conditions. These transition con-
ditions include both the current and next values of the vari-
ables after a transition. The variable values after a transition
(next values) are denoted . The conditions are a map

, . Consider, for example, a guard,
, combined with an action, ,

which is expressed as a single transition condition,
.

The following definition states how an operation can be mod-
eled by an EFA.

Definition 2 (Operation): An operation can be de-
scribed formally by an EFA where the set of locations

, the event set , the set of
transition conditions , the transition relation

, and the initial

location (see Fig. 2).
First observe that the guards and actions in Definition 1 of an

EFA are replaced in Definition 2 with the corresponding transi-
tion conditions. The transition for operation from the initial
location to the execution location is enabled when pre-
condition is satisfied, after which the transition can be fired
and the start event occurs. In the same way, completion event

can only occur when postcondition is fulfilled. For oper-
ations that need to be repeated, the operation model in Fig. 2 is
modified. A reset transition is then introduced, from to ,
such that operation can be repeated from its initial location,

, when a reset event, , has been fired. This can happen
when reset condition is satisfied. Resettable operations are
not considered in this paper.

TABLE I
NOTATIONS

B. Condition-Based Operation Relations

The conditions are logical expressions impinging on variable
set . The operation will interact with the outside by reading
and changing the values of these variables, which are defined
by resources, products, and other operations. The conditions in-
clude both the current and the next values of the variables after
the operation state.

To include requirements impinging on the operation locations
in the pre- and postconditions, these locations are also repre-
sented as Boolean variables , , and included in vari-
able set . Each of these variables, called operation variables,
is equal to one when the corresponding location is active.

If an operation includes an operation variable in its transition
condition, it is defined as directly related to that operation. If
the precondition of is, for example, , then
is directly related to the operations and . Operation is
also directly related to other operations that use , , or
in their transition conditions.

Every operation is represented by this three-state model and
is described as self-contained, since the relations among opera-
tions are stored in each operation. These relations are extracted
from the operations when the sequences are visualized in the
SOP language. This gives a flexible modeling language for com-
plex systems, a language in which operations can be grouped
into various sequences.

C. Sequences of Operations, SOPs

Each operation will start in its initial location and wait for
its precondition to be fulfilled. If there are no preconditions, all
operations will execute unrelated to each other. In practice, a
number of relations between the operations restrict the behavior.
For example, operation preconditions can be generated based on
specific product assembly requirements [3]. To formally model
the execution of the operations, the full synchronous compo-
sition operator , defined for EFA by Sköldstam et al. [22] is
used. For operations, , the composite opera-
tion model is . A SOP is defined as follows.

Definition 3 (SOP): SOP is defined by the composite
model , all restrictions being rep-
resented by pre- and postconditions included in the individual
operation models. The operations involved in are included
in the set .

An operation can be included in other SOPs as well,
and is not dependent on any graphical model. Thus, it can also
be grouped and visualized from various perspectives. A SOP
can be represented graphically by a set of sequences,

, a sequence being defined as follows.

BENGTSSON et al.: SEQUENCE PLANNING USING MULTIPLE AND COORDINATED SEQUENCES OF OPERATIONS 311

Fig. 3. Four SOPs representing the operations of the manufacturing cell shown
in Fig. 4. Examples of SOP language notations: (a) sequence, (b) hierarchy,
(c) parallel, and (d) alternative.

Fig. 4. A manufacturing system with six resources: a conveyor (1), a fixture
(2), three robots (3,4,5), and an automated guided vehicle (6).

Definition 4 (Sequence): Sequence is a graph that con-
nects a set of operations or groups of operations related to each
other. The operation conditions in the sequence are represented
by arrows, lines, and Boolean expressions.

Observe that here the sequence represents not only strictly se-
quential operation relations, but can also include groups of op-
erations. The SOP language can group operations into parallel,
alternative, arbitrary order, and hierarchical groups.

1) Example 1 (The SOP Language): Fig. 3 shows the four
SOPs, , , , and ; these present operations

(see Table II), which are executed by the man-
ufacturing cell shown in Fig. 4. The cell assembles a product
with two parts and consists of a conveyor (1), a fixture (2), three
robots (3–5), and an automated guided vehicle (6). Henceforth,
the activities of the fixture and the work of the three robots will
be examined.

The first SOP, , includes two se-
quences. The left sequence describes operations realized by the
fixture, and the right sequence operations performed by Robot
3. Operation fixates the product by means of two subopera-
tions, and , denoted by box . places the product in

TABLE II
THE OPERATIONS OF �

the fixture; as it is realized by both the robot and the fixture, it
is included in both the left and the right sequences.

Operation closes the clamps of the fixture, which can
only happen after has finished, i.e., a sequential relations
indicated by the arrow . has an extra postcondition,

, which is an action that assigns variable the value
of the sensor when occurs. This sensor checks what
type of product is located in the fixture and decides whether to
execute operation or later on.

The parallel lines at represent a parallel relation, meaning
that both and are subject to as a precondition. Since

has the extra precondition , the complete precondition
for is . Operation will release the product
from the fixture, which can be executed in parallel with and

. Operations and write production information to a
logging system.

The operations realized by Robot 3 are shown in the right se-
quence of in Fig. 3 starting with , which places part in
the fixture. After that, changes the robot’s tool from a gripper
to a drill. Based on the type of product located in the fixture, ei-
ther drilling operation or is executed. This alternative
branch is shown at and is modeled by adding an alternative
booking variable to each operation. Operation rivets the last
holes shared by the two product types, but after and ,
which are realized by other robots shown in . The final pre-
condition for is .

As can be seen in Fig. 3, it is not obvious when graphic con-
nections or Boolean expressions should be used to describe the
complex operation conditions. For example, if every operation
in a normal industrial manufacturing cell is included in a single
sequence, it is usually very complicated to understand the op-
eration relations. Even creating that sequence can sometimes
be almost impossible. A challenge when representing relations
among operations is therefore to decide which operations to in-
clude in a given sequence.

D. Operation Relations in Multiple SOPs

SOP in Fig. 3 includes operations . These
can be graphically represented in many ways; in the figure they
are structured in two sequences, one for each resource. An op-
eration can have multiple attributes defining its properties, and
these attributes determine how the operation is structured. An
attribute can be related to product information, executing re-
sources, safety constraints, etc. These attributes are used to ex-
tract operations into SOPs and to graphically structure them in
different sequences and SOPs.

1) Example 2 (Structure Operations): Let us go back to the
cell in Fig. 4 and consider operations to , which ac-
cording to in Fig. 3 are related to Robots 4 and 5. The

312 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 9, NO. 2, APRIL 2012

product sequence is represented by , which includes only
operations directly involved in assembling the product (see [3]).
The product consists of two parts that are placed and fixated in
the fixture by followed by , processed by , released
by , and finally moved away by . This sequence is based
on the product requirements and design and can be described in
early design phases.

The operations in are assigned to different resources
during the layout design of the cell. The process operation is
complicated since it involves two robots. Therefore, the subop-
erations of are shown in a separate SOP, . The SOP
language allows these suboperations to be included in , but
in this case are not interesting to the designer of .

Programming the various control systems calls for more de-
tailed operations that describe every task. However, this is com-
plicated in the case of operations structured as in . Instead a
structure based on their realizing resources, shown in and

, could be used, in which the operations are structured in
sequences based on each resource. The relations between the
resources are shown using Boolean expressions, for example,
indicating that operation must wait for the completion of

and . These added Boolean expressions convey a clear
understanding of the operation sequence for each resource. Most
of the operations shown in Table II also include suboperations,
for example, , which adds multiple rivets, but is not defined
at this stage.

It is very complicated to understand and manually organize
all operations in a real development project since hundreds of
operations may be involved. One aid could be to automatically
create a set of sequences that represents a SOP. For example, if
the control designer is interested in the interaction between the
robots and the fixture, involving and , the
SOP

(1)

would be interesting to visualize graphically. This is done by
first identifying the relations among the operations, as discussed
in the next section, and then visualizing the identified relations
in sequences, as presented in Section IV.

III. RELATION IDENTIFICATION

The direct relations between operations stem from various
design requirements and decisions, such as product assembly
or manufacturing safety constraints. However, most operations
will not be directly related to each other, even though they are
related in some way. For example, if we look at operations ,

, and from Fig. 3, with preconditions and
, i.e., a sequence, then and are not

directly related but will always precede . They are thus
indirectly related.

To use multiple SOPs, it is crucial to identify these indirect
relations among operations. Therefore, let us examine the types
of relations that exist between operations and how to identify
them.

A. Operation Relation Types

To analyze and reason about the relations between operations,
the possible locations of an operation, related to when an event

is enabled, will be studied. If we have a set of operations
that defines the complete behavior of a system,

the composition model defines the relations
among them. The finite set of locations of is denoted .

Operation will be located in one of its three locations,
, in every composition location
, according to the synchronization operator. The com-

position location therefore includes the current location of
each individual operation in , i.e., . The
events that are enabled in location are denoted as ,
and two location sets related to an event can be defined as
follows:

• —the locations in ,
where is enabled;

• —the
locations of operation where is enabled.

There are seven possible location combinations of ,
i.e., , , , , , ,

and . For example, if , then opera-
tion will only start when operation is in its final location.
To define the possible relations between operations and ,

all four location sets, i.e., , , , and , must be
identified and compared. The possible combinations of these
state sets can be grouped into the following relation types.

Definition 5 (Relations Between and):
• Always in sequence:

• Sometimes in sequence:

• Parallel:

• Alternative:

• Arbitrary order:

• Hierarchy:

BENGTSSON et al.: SEQUENCE PLANNING USING MULTIPLE AND COORDINATED SEQUENCES OF OPERATIONS 313

Fig. 5. An automaton and a SOP describing a sometimes in sequence relation:
� � .

• Other:

Always in sequence, , indicates that always pre-
cedes , e., the start event is only enabled when is in
its final location. This is the normal sequential relation in which
two operations are executed one after the other.

Sometimes in sequence, , indicates that some-
times precedes . This relation is almost the same as always
in sequence, in which will only start when is in its initial
location, but can start when is in either its final or initial
location. Consider Fig. 5, which shows an automaton and a SOP
with a sometimes in sequence relation between and , and

. If is executed, then is always enabled
when is in its initial location , and is enabled when
is located in . However, when is executed instead of ,

is also enabled when is in , i.e., .
Parallel, , indicates that and can execute in

parallel, i.e., any combination of events exists in the complete
behavior of a system.

Alternative, , indicates that if or is not located
in the initial location, the other one cannot start. This relation is
usually due to an alternative branch, modeled by the booking of
a mutually exclusive resource.

Arbitrary order, , indicates that and will not
execute at the same time, but does not specify the order in which
they execute. This normally happens when two operations re-
quire the same resource, which hinders them from executing si-
multaneously. This means that once an operation has started, it
must complete before the other operation can start, but the order
in which the operations are executed is not specified.

Hierarchy, , indicates that is a parent of . This
relation implies that starts and completes when is located
in its executing location.

Other, , indicates that is related to in some
way, i.e., all other possible location combinations. Obviously,
these relations are interesting, but are not currently handled by
the visualization algorithms introduced in Section IV. New op-
eration relations will be defined and managed in future research.

Observe that all four location sets, i.e., , , , and

, must be considered when defining the relations between
two operations. Consider, for example, the definition of arbitrary
order in Definition 5. Operation can start when is in either
its initial or final location and stop when is in either its initial
or final location. However, cannot start in and stop in

, since does not start or stop in the execution location of

, according to . Hence,
when one operation starts, it must be completed before the other
operation starts.

B. Identifying Relations

To identify the relations among a set of operations
, where and in-

cludes every operation of the system, Algorithm 1 is used.

Algorithm 1: Identify operation relations

Input: ,
Result: RelationTable

foreach in do

;

;
end

;
foreach in do

foreach in do
RelationTable ;

end
end

Algorithm 1 takes and as input and returns a table de-
scribing the pairwise relation between the operations. The first
step of the algorithm is to synchronize the operation models
with the full synchronous composition operator and store the
result in . Then, the location set is calculated including

the elements and , where , by the first FOR
loop. After that, the operations are extracted into and iter-
ated through and compared pairwise according to Definition 5,

i.e., location sets , , , and , where ,
, and , are created and the relations are matched.

In the following example, the relations among the operations
in SOP in (1)will be identified.

1) Example 3 (Relation Identification): Consider SOP
with the operations . First, the
complete system is calculated, the location
names in being built of the location of every operation, for
example, the initial location is named .

After that, the location sets and , where
, are calculated, i.e., the locations in

which the start and stop events of the operations in are
enabled, in the complete system . This is actually done
simultaneously with the synchronization to avoid iterating the
locations once again. Two of the locations sets are

Since we are interested in only the relations among the oper-
ations in , the above sets are reorganized based on when the
event is enabled relative to the locations of the operations in .

314 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 9, NO. 2, APRIL 2012

The location sets and are the result. Below, only the
sets for the start event of each operation are shown

Based on this information, it is possible to identify when an
event is enabled relative to the locations of the other operations.
These relation patterns can now be used to match the operations
pairwise against Definition 5, and the relations between all pairs
of operations are defined. The result is shown below

These relations are based on both direct and indirect
relations.

C. Computation

When the relations within only a small subset of operations
in a system are identified, all the operations in the system must
still be synchronized in any case. Since these computations usu-
ally involve large state set analysis, state-space explosion can be
an issue in real systems. This can be handled using binary de-
cision diagrams (BDDs) [1], as in Vahidi [25] and Miremadi
et al. [15]. Recent results [20] indicate that a controller can be
synchronized and synthesized based on EFA operation models
and on BDDs for systems with reachable states using the
software tool Supremica [24]. The implementation details are
omitted here due to space constraints.

When all operations have been synchronized, pairwise iden-
tification will be done only on the subset of operations to be vi-
sualized. The maximum number of comparisons is

, where is the number of operations to be visualized.
The proof-of-concept implementation is promising for real in-
dustrial systems, but further investigation is needed, especially
concerning how to recompute the relations when only some of
the operations have been changed.

IV. RELATION VISUALIZATION

The relations among operations in a SOP can be visualized
in many ways, since the relations can be presented both graph-
ically and using Boolean expressions. For example, based on
operation attributes such as resource names and product parts,
it is possible to visualize the operations in different sequences,
such as in and in Fig. 3. However, it is also possible
to create only one sequence including all the operations in the
SOP.

The algorithm presented in this section takes a set of opera-
tions and creates a sequence including all operations in the given
set. If the operations in the SOP are to be organized based on an
operation attribute, the operations must be structured according
to the attributes before the algorithm can create the sequences.

A. Grouping

The visualization algorithm is divided into four stages:
relation identification, grouping, sequencing, and drawing. The
relations within a set of operations are first identified as in
Section III. After that, the operations are grouped based on hi-
erarchy, alternative, arbitrary order, or parallel relations, called
related relations. After the operations have been grouped,
they are sorted based on whether they are predecessors or
successors (always and sometimes in sequence). Finally, the
sequence graph is drawn. The other relations are not handled
by the algorithm (see the end of this section).

To sort the operations into groups and sequences, each op-
eration and group becomes a node in a data structure. Group
and operation nodes are almost the same, except that a group
can contain other nodes and the relation between the group and
other nodes is based on all operations included in the group (and
its subgroups). For example, if a group precedes an operation,
this means that all nodes in the group precede the operation.

An operation node for each operation is created and added to
the list . An operation node always represents an opera-
tion and is therefore sometimes also referred to as an operation.
The list is then used as input to Algorithm 2.

Algorithm 2: Grouping of operations

Input
Result groupList := new Node
List;
foreach n in Nodes do

If n is parent then
gH := New Hierarchy group;
foreach k in Nodes do

If k child of n then
gH.add(k);

end
end
groupList.add(gH);

end
end
Nodes := ResolveGroups(groupList, Nodes);

foreach n in Nodes do

end
Nodes := ResolveGroups(groupList, Nodes);

foreach n in Nodes do
end
Nodes := ResolveGroups(groupList, Nodes);

foreach n in Nodes do
end
Nodes := ResolveGroups(groupList, Nodes);

The grouping Algorithm 2 creates hierarchy, alternative, ar-
bitrary order, and parallel groups. First, the hierarchies are iden-

BENGTSSON et al.: SEQUENCE PLANNING USING MULTIPLE AND COORDINATED SEQUENCES OF OPERATIONS 315

Fig. 6. Example of the grouping algorithm.

tified and created, which checks each node in to see
whether it is a parent (i.e., whether the operation has subopera-
tions). When a parent is found, a new hierarchy group is created
and the child nodes from are added. The command k
child of n checks the previously identified operation relation, to
determine whether is a child of . Some of the created groups
can contain the same nodes, since a parent can also be a parent to
a child of a child. The groups are therefore resolved and merged
if they are referencing the same nodes.

ResolveGroups is a recursive method that merges created
groups if they share nodes. The set repre-
sents the groups in , where is a set of the nodes
in a group. If , a new group is created
including the nodes of both groups, . New
intersections with and the remaining groups in are
resolved recursively. After that, new groups are created in the
same way based on the groups not included in .

The result of is a new list containing
the created hierarchy groups and remaining nodes not included
in a group. This list is then used when alternative groups are cre-
ated and resolved. The method for creating alternative groups is
the same, except that alternatives are also identified inside each
hierarchy group. An alternative group includes nodes that share
at least one alternative relation. Observe that not all nodes in the
group must have an alternative relation with every other node in
the group. Arbitrary order and parallel groups are created recur-
sively in the same way as are the alternative groups.

1) Example 4 (Grouping): Consider the operations from
the relation identification example. A list is created
including these operations, shown in Fig. 6(a). There are no
hierarchy, alternative, or arbitrary order relations, but rather
there are parallel relations. First, each operation is studied;
when it has parallel relations with other operations, a parallel
group is created. In Fig. 6, three groups are created: ,

, and . Operations and do not have any
parallel relations.

As can be seen in Fig. 6, the three groups are related to each
other since they share nodes. First, is
calculated, i.e., they share node . The new group

is created, including nodes , , and (b).
The new is tested with the remaining group,

, which results in . All groups
are now resolved and included in .

The Resolve method adds the new group to and re-
moves the nodes that were included in the group from .
The result is .

When all groups have been identified and created, the sequen-
tial relations need to be identified, which is handled by the se-
quencing algorithm.

B. Sequencing

To structure the elements in sequentially, each node
is given a set of attributes. Two attributes are references

to the closest preceding node, , and the successor
node, ; these are used to organize the nodes into a
tree structure. Three other attributes are the lists ,

, and used to sort a set of nodes related
to . The list from the grouping algorithm is the input to the
recursive sequencing Algorithm 3.

Algorithm 3: Sequencing nodes

Seq(Nodes) return root Node
If Nodes.Empty then return null;
root := ExtractNode(Nodes);
If root is group then return Seq(root.nodes);
foreach n in Nodes do

If n is Pred to root then root.PredList.add(n);
else If n is Succ to root then root.SuccList.add(n);
else root.RelList.add(n);

end
root.Pred := GetLast(Seq(root.PredList));
root.Succ := Seq(root.SuccList);
Seq(root.RelList);
return Structure(root);

The recursive method takes a list of nodes and returns
the root node of a tree. The first line terminates the recursive
algorithm. The next line extracts one of the nodes from the set

that is used as by the algorithm. If is a group,
the nodes inside it are also sorted by the Seq method.

Each remaining node in is sorted according to whether
it is a predecessor of, successor to or only related to and
added to , or .

The nodes in the lists of root are then sorted by . This re-
cursive method terminates when a leaf is reached, meaning that
a list is empty. The returning node from the sorting of
and is first in a subsequence, but the predecessor to
root is the last node in the subsequence the GetLast method finds
it and assigned it to . The returning node is assigned
to , hence, a tree is constructed with as the first
node.

The first node in the sequence can be found when the
branch is followed. To better represent the real sequence,

the tree is restructured based on the sequence order, i.e., only the
branch exists. For example, if is root and

and , then B replaces A as root and
and , i.e., the tree is restructured
with the first node in the sequence at the top.

1) Example 5 (Sequencing): In Fig. 7, the list from grouping
example (a) is input to the sequencing algorithm. is picked
as root and the other nodes are sorted into and

, represented by the and arrows in (b). Since

316 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 9, NO. 2, APRIL 2012

Fig. 7. Example of the sequencing algorithm.

Fig. 8. SOP �� and its sequence.

only is in , that branch is resolved, i.e.,
. The node in is a group, and

its included nodes are sorted in the same way: is picked
as root, precedes and is added to , and

has a parallel relation with and is therefore not sorted.
Finally, in (d), the nodes are restructured based on the sequence
order. is returned as root node.

Once the node tree has been created, it is straightforward to
generate the resulting sequence graph.

C. Drawing

When drawing the sequence, each node in the tree is drawn,
one at a time: first the root node is drawn, after that the successor
node, which is connected to the root node, and then the node
after that until the last node has been drawn. If the node is a
group, the nodes in the group are drawn inside the group type
notation (cf. the parallel group in Fig. 8, where the parallel
lines are drawn above and below the included operations).

The lines between the operations and groups that define the
sequential relations are drawn differently if the relation is direct,
i.e., is defined in the operation condition, or indirect. If the rela-
tion is indirect, a dashed line is used instead.

1) Example 6 (Drawing): SOP , based on the sorting
and grouping example above, is shown in Fig. 8, including one
sequence. All of the relations are indirect except between
and , since .

One limitation of the presented algorithm is that operations
that have an other relation with at least one operation in the se-
quence cannot be included. These operations are placed next to
the sequence showing their conditions as Boolean expressions.
Another limitation is that no loops can be included, since they
are not explicitly identified in the relation identification. These
limitations are an area for future research.

D. Visualizing a SOP

Methods for identifying and visualizing operations in one se-
quence have now been presented. However, one of the main fea-
tures of the SOP language is that it lets one present the SOP op-
erations in multiple sequences. It is usually complicated or even
impossible to represent all operation relations in only one se-
quence. In Fig. 9, a SOP with four sequences is visualized, the

Fig. 9. A SOP with four sequences.

Fig. 10. Sequence planner.

relations between the sequences being presented using Boolean
expressions.

When visualizing multiple sequences, the relations among the
SOP operations are first identified. After that, each sequence
is sorted and visualized individually. When the sequences are
drawn, all operation relations that are not represented by graph-
ical notations in any of the sequences are then described by
Boolean pre- and postconditions. For example, the precondition
of operation in Fig. 9 is , where
and are represented graphically in the second and fourth se-
quences and is described by the Boolean expression.

The next section presents a software tool called SP [16] that
visualizes and manages operations and their relations, and co-
ordinates changes and updates among the operations and the
SOPs.

V. SEQUENCE PLANNER (SP)

Sequence Planner (SP) is a prototype software tool devel-
oped to manage the SOP language and all involved operations.
A screen shot is shown in Fig. 10. SP has a central repository
storing all operations used in a project, shown in the upper left in
the figure. In addition, a resource structure and a product struc-
ture are available. The operations are stored separately from the
SOPs and the graphical representation.

SP allows the creation of any number of SOPs, one of which
is shown in Fig. 10. A SOP can be created, for example, by
clicking on a resource, showing all operations realized by
that resource, or manually by dragging operations into the
SOP window. In a SOP, new conditions on the operations
can be added by either creating sequences or adding Boolean

BENGTSSON et al.: SEQUENCE PLANNING USING MULTIPLE AND COORDINATED SEQUENCES OF OPERATIONS 317

expressions. Changes related to the operations and SOPs can
also come from external applications such as PLM, simula-
tion, verification, optimization, or synthesis tools, or can be
manually changed in SP. Operation conditions may change,
new operations be added, or product and/or resource data be
updated. One challenge in SP is therefore to coordinate changes
among the SOPs and the operations.

A. Updating Operations in Various SOPs

Every self-contained operation is stored in SP in set , which
is unrelated to the SOPs. is the main operation set for the
whole model and is the interface with external applications, not
only receiving changes but also sending out operation informa-
tion. An operation is not fully included in the project until it has
been included in .

It is possible to create new operations, or extract operations
from , when creating a new SOP. However, when updating and
managing changes between the SOPs and , it is not feasible
for each SOP to directly change the operations in . Therefore,
the SOP uses copies of the operations, and when changes are
made in one SOP, they are saved to and coordinated with the
other SOPs.

Since the same operation can exist in multiple copies, an op-
eration object is used to keep them apart, defined as follows.

Definition 6 (Operation Object): Operation object is a data
object representing operation . Object has two important
attributes: the id of the operation, , and the operation
information-like conditions and realizing resources, stored in

.
If two operation objects and , where , have the

same id, , they represent the same operation,
i.e., . The different operation objects, however, can end up
with differing values, which must be managed by SP.

Each operation in the SOPs and in is represented by an op-
eration object. For simplicity, in the rest of this section, repre-
sents all operation objects and represents operation objects
for SOP .

When an operation object is changed in a SOP or in , other
operation objects representing the same operation have differing
values and need to be updated. To identify differing operation
objects in set compared with set , the set is
introduced, which is defined as follows.

Definition 7 (Differing Operation Objects): The differing op-
eration object set, , is defined as the set of operation
objects , such that

.
It is also interesting to identify operations included only in

set but not in . The new operation object set is defined as
follows.

Definition 8 (New Operation Objects): The new operation
object set, , is defined as the set of operation objects

, such that , .
When an operation object is changed in a SOP, it will first be

saved to . After that, the other SOPs are notified of the change
and will update the changed operation and related sequences.
No new changes can be added to in this period. This can be
formulated in the following algorithmic steps.

1) When the changes made to are saved, and
are calculated. The differing operation objects

in replace the old versions in . The new oper-
ation objects, , are added to .

2) Every other view where creates an
updated version of .

When new operation relations requirements are introduced in
one SOP, the impact of these changes could be better understood
in other views. For example, if a product SOP is created, the
work of building, for example, safety or resource requirements
might result in changes to the sequences in the product SOP,
leading to a need to change how the product is built. Completely
understanding complex operation information and how changes
affect system behavior calls for viewing the operations using
multiple and coordinated SOPs.

VI. CONCLUSION

The relations among operations tend to be highly complex
when developing an automation system. These relations are
constantly changing throughout the development process,
which makes it difficult to keep them up to date. Therefore, it
would be more natural to consider sequence planning as an iter-
ative process, in which sequences are viewed based on current
requirements, rather than as a manual construction process.
Using a graphic, formal language called Sequences of Opera-
tions (SOPs), this paper presents algorithms and methods that
visualize the operation relations from multiple perspectives.

A set of sequences is used to structure the operations, for ex-
ample, based on the resources used to realize them or based on
how different parts are manufactured in the system. The struc-
turing can be automated by using different user-assigned opera-
tion attributes, such as what resource was used to realize the op-
eration. When the operations are structured, the relations among
them are identified. This is accomplished by modeling the op-
erations using EFA, which are synchronized in order to iden-
tify when an operation can execute relative to other operations.
Based on the identified operation relations, a set of sequences
can be created with a set of algorithms that visualizes the rela-
tions in the SOP language.

The proposed algorithms are implemented in a software tool
called Sequence Planner, which uses the tool Supremica for
automata calculations. Initial results and case studies indicate
that the proposed approach is promising from both the com-
putational and usability points of view. Further development is
needed, focusing especially on how to recompute the relations
when only some of the operations have changed.

An industrial case study is currently being conducted in
which the approach is being evaluated during the design and
installation of a complete manufacturing system. In addition,
how to adapt Sequence Planner to other virtual process planning
tools is being evaluated.

REFERENCES

[1] S. B. Akers, “Binary decision diagrams,” IEEE Trans. Comput., vol.
27, no. 6, pp. 509–516, Jun. 1978.

[2] M. Q. W. Baldonado, A. Woodruff, and A. Kuchinsky, “Guidelines for
using multiple views in information visualization,” in Proc. Working
Conf. Advanced Visual Interfaces, AVI ’00, 2000, pp. 110–119.

318 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 9, NO. 2, APRIL 2012

[3] K. Bengtsson, B. Lennartson, and C. Yuan, “The origin of operations:
Interactions between the product and the manufacturing automation
control system,” in Proc. IFAC Symp. Inform. Control Problems in
Manuf., INCOM’09, 2009. [Online]. Available: http://www.ifac-paper-
sonline.net/Detailed/40587.html

[4] K. Bengtsson, B. Lennartson, C. Yuan, P. Falkman, and S. Biller,
“Operation-oriented specification for integrated control logic devel-
opment,” in Proc. IEEE Conf. Autom. Sci. Eng., CASE, 2009, pp.
183–190.

[5] K. Bengtsson, C. Thorstensson, B. Lennartson, K. Åkesson, C. Yuan,
S. MIremadi, and P. Falkman, “Relations identification and visual-
ization for sequence planning and automation design,” in Proc. IEEE
Conf. Autom. Sci. Engineering, CASE, Toronto, ON, Canada, 2010, pp.
841–848.

[6] A. Hofstede, W. Aalst, M. Adams, and N. Russell, Modern Business
Process Automation, YAWL and its Support Environment. New York:
Springer, 2010.

[7] W. Hsu and B. Liu, “Conceptual design: Issues and challenges,”
Comput.-Aided Design, vol. 32, no. 14, pp. 849–850, 2000.

[8] H. Hu and Z. Li, “Modeling and scheduling for manufacturing grid
workflows using timed Petri nets,” Int. J. Adv. Manuf. Technol., vol.
42, pp. 553–568, 2009.

[9] H. Kerzner, Project Management: A Systems Approach to Planning,
Scheduling, and Controlling, 9th ed. New York: Wiley, 2006.

[10] A. Kobetski and M. Fabian, “Time-optimal coordination of flexible
manufacturing systems using deterministic finite automata and mixed
integer linear programming,” J. Discrete Event Dynamic Syst., vol. 19,
no. 3, pp. 287–315, 2009.

[11] S. H. Lee, F. Pena-Mora, and M. Park, “Dynamic planning and control
methodology for strategic and operational construction project man-
agement,” Autom. Construction, vol. 15, pp. 84–97, 2005.

[12] B. Lennartson, K. Bengtsson, C. Yuan, K. Andersson, M. Fabian, P.
Falkman, and K. Åkesson, “Sequence planning for integrated product,
process and automation design,” IEEE Trans. Autom. Sci. Autom., vol.
7, no. 4, pp. 791–802, Oct. 2010.

[13] H. B. Marri, A. Gunasekaran, and R. J. Grieve, “Computer-aided
process planning: A state of art,” Int. J. Adv. Manuf. Technol., vol. 14,
no. 4, pp. 261–268, 1998.

[14] H. Miao, N. Sridharan, and J. Shah, “Cad-cam integration using ma-
chining features,” Int. J. Comput. Integr. Manuf., vol. 15, no. 4, pp.
296–318, 2002.

[15] S. Miremadi, K. Åkesson, and B. Lennartson, “Symbolic com-
putation of reduced guards in supervisory control,” IEEE Trans.
Autom. Sci. Autom., vol. 8, no. 4, pp. 754–765, Oct. 2011. [Online].
Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?ar-
number=5764846

[16] E. Ohlson and C. Torstensson, Development, implementation and
testing of sequence planner — A concept for modeling of automation
systems Dept. Signals and Systems, Chalmers Univ. Technol., Göte-
borg, Sweden, Tech. Rep. EX/2009, 2009.

[17] J. C. Roberts, “State of the art: Coordinated & multiple views in ex-
ploratory visualization,” in Proc. 5th Int. Conf. Coordinated and Mul-
tiple Views in Exploratory Visualization, 2007, pp. 61–71.

[18] A. Shabaka and H. Elmaraghy, “A model for generating optimal
process plans in RMS,” Int. J. Comput. Integr. Manuf., vol. 21, no. 2,
pp. 180–194, 2008.

[19] W. Shen, L. Wang, and Q. Hao, “Agent-based distributed manufac-
turing process planning and scheduling: A state-of-the-art survey,”
IEEE Trans. Syst., Man, Cybern., vol. 36, no. 4, pp. 563–577, Jul.
2006.

[20] M. R. Shoaei, B. Lennartson, and S. Miremadi, “Automatic genera-
tion of controllers for collision-free flexible manufacturing systems,”
in Proc. IEEE Conf. Autom. Sci. Eng., CASE, Toronto, ON, Canada,
2010, pp. 368–373.

[21] M. Sköldstam, K. Åkesson, and M. Fabian, “Modelling of discrete
event systems using finite automata with variables,” in Proc. 46th
IEEE Conf. Decision and Control, New Orleans, LA, Dec. 2007, pp.
3387–3392.

[22] M. Sköldstam, K. Åkesson, and M. Fabian, Supervisory control ap-
plied to automata extended with variables—Revised Chalmers, Göte-
borg, Sweden, Tech. Rep. R001/2008, Signals and Systems, 2008.

[23] R. Spence, Information Visualization—Design for Interaction, ISBN
0132065509, 2nd ed. Upper Saddle River, NJ: Pearson Education,
2006.

[24] Supremica. [Online]. Available: http://www.supremica.org
[25] A. Vahidi, “Efficient analysis of discrete event systems,” Ph.D. disser-

tation, Dept. Signals and Systems, Chalmers Univ. Technol., Göteborg,
Sweden, 2004.

[26] A. Voronov and K. Åkesson, “Verification of process operations using
model checking,” in Proc. IEEE Conf. Autom. Sci. Eng., Bangalore,
India, Aug. 2009, pp. 415–420.

[27] L. Wall, “Perl, the first postmodern computer language,” 1999. [On-
line]. Available: http://www.perl.com/pub/a/1999/03/pm.html

[28] L. Wang, S. Keshavarzmanesh, H.-Y. Feng, and R. Buchal, “Assembly
process planning and its future in collaborative manufacturing: A
review,” Int. J. Adv. Manuf. Technol., vol. 41, pp. 132–144, 2009,
10.1007/s00170–008-1458–9.

[29] J. M. Wilson, “Gantt charts: A centenary appreciation,” Eur. J. Oper.
Res., vol. 149, no. 2, pp. 430–437, 2003.

Kristofer Bengtsson received the M.S. degree in au-
tomation and mechatronics from Chalmers Univer-
sity of Technology, Gothenburg, Sweden, in 2007.
Currently, he is working towards the Ph.D. degree
supported by General Motors, Wingquist Laboratory
VINN Excellence Centre at Chalmers University of
Technology, and CAPE Research School, since 2007.

From 2001 to 2005, he was with Advanced Flow
Control AB developing control systems, and from
2005 to 2011 with Teamster AB, an automation firm
in Gothenburg. Currently, he is with Sekvensa AB, a

research consulting firm. His current research interest includes design methods
for control logic development for manufacturing automation.

Patrik Bergagård received the B.Sc. degree in engi-
neering physics and the M.Sc. degree in automation
from Chalmers University of Technology, Gothen-
burg, Sweden, in 2007 and 2009, respectively. He has
been working towards the Ph.D. degree supported by
the EU 7th FP FLEXA and Chalmers University of
Technology, since 2009.

His research interests involve modeling and restart
functionality of manufacturing systems.

Carl Thorstensson received the B.Sc. degree in busi-
ness administration from Gothenburg School of Busi-
ness and Law, Gothenburg, Sweden, in 2009 and the
M.Sc. degree in engineering physics from Chalmers
University of Technology, Gothenburg, in 2009.

Since 2010, he is employed by the automation and
power technology company ABB, where he currently
is working with product management of low voltage
products.

Bengt Lennartson was born in 1956 in Gnosjö,
Sweden. He received the Ph.D. degree in automatic
control from Chalmers University of Technology,
Gothenburg, Sweden, in 1986.

Since 1999, he has been a Professor of the Chair
of Automation at the Department of Signals and Sys-
tems. He was Dean of Education at Chalmers Univer-
sity of Technology from 2004 to 2007, he is a member
of the Wingquist Laboratory, a research center for vir-
tual product and production development, and since
2005 he is also Guest Professor at University West,

Trollhättan. His main areas of interest include discrete event and hybrid sys-
tems, especially for manufacturing applications, as well as robust feedback con-
trol. He has been an Associate Editor forAutomatica, and the Chairman of the
Ninth International Workshop on Discrete Event Systems, WODES’08. He is
the (co-)author of two books and � ��� peer reviewed international papers
with � ���� citations (GS).

BENGTSSON et al.: SEQUENCE PLANNING USING MULTIPLE AND COORDINATED SEQUENCES OF OPERATIONS 319

Knut Åkesson received the M.S. degree in computer
science and engineering from Lund Institute of Tech-
nology, Lund, Sweden, in 1997, and the Ph.D. degree
in control engineering from Chalmers University of
Technology, Gothenburg, Sweden, in 2002.

Currently, he is an Associate Professor at the De-
partment of Signals and Systems, Chalmers Univer-
sity of Technology, where his main research interest
is to develop and applying formal methods for verifi-
cation and synthesis of control logic.

Chengyin Yuan received the B.S. and M.S. de-
grees in mechanical engineering from Tsinghua
University, Beijing, China, and the Ph.D. degree in
manufacturing automation controls from the Uni-
versity of Illinois at Urbana–Champaign, Urbana, in
1997, 1999, and 2004, respectively.

From 2005 and 2010, he was with the General Mo-
tors Research and Development Center, Warren, MI,
where he was a Senior Researcher in the Manufac-
turing Systems Research Laboratory. Since 2010, he
has been with Pride Power System Technology Co.,

Ltd., Beijing, China. His current research interests include virtual manufac-
turing, math-based automation system design and validation, distributed sys-
tems and simulation, and reconfigurable automation controls.

Sajed Miremadi was born in 1983 in Linköping,
Sweden. He received the B.Sc. degree in computer
engineering from Sharif University of Technology,
Tehran, Iran, in 2006 and the M.Sc. degree in com-
puter science from Linköping University, Linköping,
Sweden, in 2008. He has been working towards the
Ph.D. degree in automation at Chalmers University
of Technology, Gothenburg, Sweden, since 2008.

His current research interests include supervisory
control and optimization of (timed) discrete event
systems, using formal methods.

Petter Falkman received the M.Sc. degree in
automation and the Ph.D. degree in electrical
engineering both from Chalmers University of Tech-
nology, Gothenburg, Sweden, in 1999 and 2005,
respectively.

He is currently a Senior Lecturer at the Depart-
ment of Signals and Systems, Chalmers University
of Technology, where he is also part of the Wingquist
Laboratory, a research center for virtual product and
production development. Since 2009, he has been
Program Director for the Automation and Mecha-

tronic Program at Chalmers University of Technology. His main research topic
concerns virtual preparation, specification and optimization of discrete event
systems for production systems. This research is performed in collaboration
with and support from a number of companies including ABB, Dassault
Systemes, Siemens, and Volvo.

