
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Investigation of Lagrangian Coherent Structures 

- To Understand and Identify Turbulence 

 

JOHAN JAKOBSSON 

 

Department of Chemical and Biological Engineering 
Division of Chemical Reaction Engineering 
CHALMERS UNIVERSITY OF TECHNOLOGY 
Gothenburg, Sweden, 2012  



1 
 

 

 

 

Investigation of Lagrangian Coherent Structures 

-To Understand and Identify Turbulence 

 

 

 

JOHAN JAKOBSSON 

 

 

Examiner: Prof. Bengt Andersson 

Supervisor: Dr. Ronnie Andersson 

 

 

 

 

 

 

 

 

 

 

 

Department of Chemical and Biological Engineering 
Division of Chemical Reaction Engineering 

CHALMERS UNIVERSITY OF TECHNOLOGY 
Gothenburg, Sweden, 2012  

 



2 
 

Investigation of Lagrangian Coherent Structures  
-To Understand and Identify Turbulence 
Johan Jakobsson 
 
© Johan Jakobsson, 2012. 

Department of Chemical and Biological Engineering 
Division of Chemical Reaction Engineering 
Chalmers University of Technology 
SE-412 96 Göteborg, Sweden 
Telephone: + 46 (0)31-772 1000 
 
Cover: 
The cover shows a finite time Lyapunov exponent (FTLE) field with 
superimposed vectors of the two space components perpendicular to the 
streamwise direction. More details can be found in figure 22 on page 24. 

Göteborg, Sweden 2012  

  

 

 
  



3 
 

Investigation of Lagrangian Coherent Structures 
-To Understand and Identify Turbulence 
Johan Jakobsson 
Department of Chemical and Biological Engineering 
Division of Chemical Reaction Engineering 
Chalmers University of Technology 
 
 
 
 
Abstract 
The finite time Lyapunov exponent (FTLE) field was calculated from advected 
tracer particles for various flow fields and particularly investigated for a pipe 
with a length of 20 cm, diameter of 5 cm and with low Reynolds number (20,000) 
obtained from a large eddy simulation (LES). The FTLE field was then 
compared to the velocity field, the turbulent kinetic energy (TKE) and an 
Eulerian method for identifying turbulence (the Q-criterion). It was found that 
the FTLE field reveals coherent structures not directly evident from 
instantaneous properties, e.g. the velocity field or TKE. The FTLE field has a 
better fit, or overlap, with TKE than the Q-criterion, yet it is not a perfect match 
as ridges of high FTLE values can indicate attracting or repelling coherent 
structures or high shear. Furthermore, the FTLE field is not in itself suitable for 
producing three dimensional coherent structures, rather it produces two 
dimensional surfaces indicating transport paths of tracer particles. Even so, 
enclosed three dimensional volumes might be produced by combining attracting 
and repelling Lagrangian coherent structures (LCS). 

 

Keywords: finite time Lyapunov exponent, FTLE, Lagrangian coherent 
structures, LCS, Q-criterion. 
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1 Introduction 

1.1 Background 
Previously prof. Bengt Andersson and Dr. Ronnie Andersson at the 
Department of Chemical and Biological Engineering, Division of Chemical 
Reaction Engineering (CRE), Chalmers University of Technology, have studied 
break-up of bubbles and drops in turbulent flows. It was found that single eddies 
interact with the bubbles and drops in order to achieve break-up (Andersson 
and Andersson 2006a; Andersson and Andersson 2006b). It is therefore 
important to be able to describe turbulence and turbulent structures in order to 
develop models for the interaction between eddies and particles, such as bubbles 
and drops. Recently at the same department Farideh Ghasempour et al. have 
studied the description and identification of turbulent structures using Eulerian 
methods (Ghasempour, Andersson et al. 2011). The research group is now 
interested in Lagrangian methods as a complementary and possibly an 
alternative way to characterize turbulent structures, and as such a method for 
the Lagrangian investigation of turbulent structures needs to be developed. 
There is also the need for more knowledge to deepen the understanding of 
turbulence. 

1.2 Purpose 
The main purpose of the project is to make a large eddy simulation (LES) of 
water flowing in a tube with particles injected into coherent structures and 
develop a Lagrangian method for investigating data generated by LES and the 
particle tracks in MATLAB. The particle tracks should reveal turbulent 
structures that can be analyzed. The goal is develop the tools needed to calculate 
a Lagrangian method for identifying coherent structures in order to understand 
turbulence, such knowledge that can be used to develop new models. 

1.3 Limitations 
As the main focus is to develop the method to investigate the data generated the 
choice of different models will not be dealt with at any deeper level. As such 
simulations will be performed using “best practice” guides and conventional and 
well tested simulation methods. The validity of LES will also not be investigated 
in depth but generally taken to be able to represent reality correctly for the 
purposes at hand. This is not to say that motivations for the choice of LES will 
be completely left out or that an analysis of the validity and appropriateness of 
LES will not be conducted at all for instance, but it is not the main focus. 
Furthermore, the topic of simulation methods in terms of different code 
packages will not be dealt with at all.  

1.4 In Depth Purpose 
The purpose of analyzing the data generated by Lagrangian particle tracks from 
velocity fields calculated through LES simulations is to be able to answer 
questions such as the following: 
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 What are the different alternatives for identifying coherent turbulent 
structures? 

 What is the most appropriate way to determine the size of an eddy? 
 How can these structures be tracked in time? 
 How can the birth and death of turbulent structures be defined so that 

the lifetimes of eddies can be quantified? 
 What distributions of lifetimes, size, turbulent kinetic energy etc. of 

eddies are there? 

2 Method 

2.1 Introduction 
As stated above the purpose is to simulate water flowing in a pipe at Re = 

20000, the pipe being 20 cm in length and 5 cm in diameter, the specifications of 
the pipe previously investigated by Farideh Ghasempour at CRE. Periodic 
boundary conditions will be used to make the result less dependent on initial 
conditions. The LES simulations will resolve the larger scales and individual 
turbulent structures can therefore be identified. The MATLAB program should 
be able to indentify coherent turbulent structures and or indentify particles 
belonging to the same eddy. Simulations will be performed with the ANSYS 
computational fluid dynamics (CFD) software Fluent. Furthermore, the large 
amount of data generated by LES will be analyzed and visualized with MATLAB 
and ANSYS Fluent. 

2.2 Turbulence Modeling 
The goal in modeling turbulent flows is to solve the Navier-Stokes (N-S) 
equations, which for a Newtonian fluid are (Andersson 2011) 

 
   

  
   

   

   
  

 

 

  

   
  

 

   
 
   

   
 

   

   
      (2.1)  

where    is the instantaneous velocity,   is the time,    is the spatial dimension,   
is the pressure,   is the density,   is the viscosity and    is the gravitational 
constant. In (Pope 2000) a valuable distinction between modeling and simulating 
equations is made. When modeling a system of equations the equations are 
solved for some mean or average quantity, say the mean velocity      defined as 
time average (Crowe 2011) at some point   

         
 

 
           

   

    

 (2.2)  

where   is the averaging time. In order for the time average to be valid the 
averaging time must be of appropriate length, i.e. much larger than the time 
scale of the fluctuating velocity field and much smaller than the characteristic 
time scale of the large scale flow. On the other hand, a simulation of a system of 
equations means that the instantaneous velocity field is solved directly. 
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As the intended study is of phenomena occurring during very short time scales, 
i.e. interactions with single eddies, the solving of average properties will not 
suffice. Therefore we will have to look at simulation techniques. The choice thus 
breaks down to basically two options; direct numerical simulation (DNS) and 
large eddy simulation (LES) (Pope 2000; Andersson 2011; Crowe 2011). The 
main difference between DNS and LES is that the former simulates all scales 
while the latter models the smaller scales and simulates the intermediate and 
large scales. Because the N-S equations perfectly describe the flow and DNS 
computes these directly all scales of      as well as the time scales are calculated 
and resolved (Pope 2000; Andersson 2011). This is both the advantage and 
disadvantage of DNS; huge amount of data with high resolution but with large 
computational demand is generated. The computational cost of DNS is 
proportional to     (Pope 2000; Andersson 2011), however, 99% of the demand 
is devoted to the dissipation range (Pope 2000).  The dissipation range length 
scale,   , is according to (Andersson 2011) sixty times the Kolmogorov length 
scale            , where   is the viscosity and   is the turbulent kinetic energy 
dissipation rate. This together with the fact that it is only the computational cost 
of the smaller scales,     , that is proportional to     while the cost of the 
larger scales are only weakly dependent on    (Pope 2000) makes LES and 
attractive choice. In (Andersson and Andersson 2006a; Andersson and 
Andersson 2006b) it is suggested that only the energy containing eddies are 
capable of deforming a bubble or drop to cause breakup, models of which are 
the very kind of phenomena this study aims to provide knowledge for, whose 
length scales are simulated in LES . This means that the important length scales 
that are of interest are still simulated even though DNS is not used and the 
smaller scales are modeled leading to less data and lower computational cost. In 
addition, the smaller scales displays more isotropy making them more suitable to 
model (Andersson 2011). 

2.3 On Coherent Turbulent Structure Identification 
There are two different kinds of methods to indentify coherent turbulent 
structures (eddies); Eulerian and Lagrangian. However, there is no universally 
accepted method of identifying a coherent structure (Haller 2005; Green, 
Rowley et al. 2007). Many of the Eulerian methods involve the velocity gradient 
tensor    (Dubief and Delcayre 2000; Chakraborty, Balachandar et al. 2005; 
Green, Rowley et al. 2007) 

      
   

   
  (2.3)  

One commonly mentioned method is the Q-criterion (Green, Rowley et al. 
2007), defined as 

   
 

 
             (2.4)  

where     is the Frobenius matrix norm and the tensors   and   are the 
symmetric and anti-symmetric invariants of    
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          (2.5)  

   
 

 
          (2.6)  

where    marks the transpose of A. Coherent eddies are then defined as regions 
of the flow with positive values of   and lower pressure than the immediate  
surroundings (Chakraborty, Balachandar et al. 2005), these can easily be 
visualized as isosurfaces. The  -criterion thus identifies regions where the 
vorticity is stronger than the rate of strain (Haller 2005; Green, Rowley et al. 
2007). Other common Eulerian methods include the  -criterion defined as 

    
 

 
 
 

  
       

 
 

 

    (2.7)  

and the   -criterion for 2D-analysis, where       is the second largest 
eigenvalue of a matrix   with three eigenvalues (Haller 2005), defined as 

            . (2.8)  

Which means that the  -criterion indentifies the cores of turbulent structures 
(Chakraborty, Balachandar et al. 2005) while the   -criterion is a somewhat 
looser criterion than the  -criterion but that guarantees local pressure minima 
within the 2D plane (Dubief and Delcayre 2000; Chakraborty, Balachandar et al. 
2005). The drawback of the Eulerian methods is that they are not independent 
of the reference frame, i.e. they are not objective, and as (Green, Rowley et al. 
2007) also point out they require the user to effectively chose the thresholds 
discretionally (as     may be changed to a higher value for instance in order 
to more easily visualize the eddies). 

To solve the problem of frame independence Lagrangian methods utilizes 
particle tracks of tracer particles in order to identify Lagrangian coherent 
structures (LCS). Perhaps the most widely used is the finite-time Lyapunov 
exponent (FTLE) method (Peacock and Dabiri 2010). This method relies on 
identifying ridges where the degree of separation, calculated by integrating in 
time, of different particle tracks is the greatest in order to define coherent 
structures. Even though this approach solves the problem of objectivity it is 
oftentimes computationally heavy (Peacock and Dabiri 2010). In (Brunton and 
Rowley 2010) the procedure for calculating the FTLE field is explained and will 
be restated here. If       is a flow field in three dimensions and the 
vector     ,        , gives the position of a particle at time   with starting time 
   and starting position     which satisfies the condition that the time derivative 
of   is equal to the velocity in the flow field at time   

 

   

  
                 

 

(2.9)  
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then a flow map   
  of a finite number of particles with the above properties can 

be constructed, defined as 

   
                                                   

 

 

  (2.10)  

where            is the position of the particle with starting time    and starting 
position    at time   (omitted elsewhere for simplicity). The method now aims to 
calculate the degree of separation, that was mentioned above, between particle 
trajectories and infinitesimal perturbation of the starting positions,   , of each 
trajectory (Haller 2001; Shadden, Lekien et al. 2005). This is achieved by 
calculating the Jacobian of the flow map,    

    and multiplying it with its 
transpose which gives the Cauchy-Green deformation tensor   

       
      

   
   

 

  
 

 
   

 

  
  (2.11)  

The greatest degree of separation between a trajectory and a perturbed 
trajectory occurs when the starting position of the perturbed trajectory is chosen 
such that it is aligned with the largest eigenvector      of   (Shadden, Lekien et 
al. 2005). Let            denote a perturbed trajectory of           , then it can 
be shown that (Shadden, Lekien et al. 2005) 

                             
 
   

                   
      (2.12)  

where         is the maximum eigenvalue of a symmetric matrix  . Finally the 
FTLE field is defined as the exponent in eq. (12) 

     
      

 

   
                 (2.13)  

Since the integration can be done in either forward or backward time the 
absolute value of   is needed. The choice of integration time affects the 
identification of Lagrangian coherent structures; forward time integration 
identifies ridges of repelling LCS and backward time identifies attracting LCS 
(Shadden, Lekien et al. 2005; Green, Rowley et al. 2007). In (Haller 2002) the 
direct finite-time Lyapunov exponent (DLE) is defined and the DLE field is 
calculated as 

        
      

 

  
                   (2.14)  

which is basically equivalent to the FTLE field and the DLE method will not be 
investigated. In (Haller 2002) another Lagrangian method based on the Okubo-
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Weiss criterion is discussed. This method is based on the same idea of particle 
trajectories            fulfilling eq. (9) as the FTLE method. Here, the main 
criterion for identifying a particle trajectory as belonging to a coherent structure 
is based on the determinant of the gradient of eq. (9) 

                    (2.15)  

2.3.1 Numerical Approach of FTLE 
The solution of the CFD computations will be exported as large files of data at 
discrete points in time and space containing velocities and velocity gradients to 
be read into MATLAB. The algorithm for advecting particles and calculating the 
FTLE field will then be: 

1. Create a structured grid of particles. 
2. Read the data file for the starting time step. 
3. Create a linear interpolant of the velocity field. 
4. Calculate velocities at particle locations. 
5. Calculate the particle locations for the next time step by adding the 

product of the length of the time step by the velocity at the particle 
location to the current location. 

6. Load the data file of the next time step and repeat until the final time 
step is reached. 

7. Calculate the deformation gradient for each particle and subsequently 
the FTLE field. 

The procedure above gives the flow map. The length of the time step will be the 
same as the length of the time step that have been used in Fluent. That is, the 
flow properties will be regarded as being constant between time steps. Note that 
particles can be advected both forward and backward in time which will affect in 
which direction the properties for a particular time step will be constant. The 
particles location will typically lie in between mesh grid point resulting in the 
need of interpolation also in space. Here a built in function of MATLAB called 
triscatteredinterp.m will be used with the linear option. 

Once the flow map is obtained the Cauchy-Green deformation gradient must be 
evaluated. In (Shadden 2011) a method for calculating the deformation gradient 
from discrete data points using finite differencing is given. Let                 
and         be the positions       of the particle located at the vertices     and   

of a structured grid at time   and the let the starting time be   and the final time 
be  . Then the deformation gradient can be approximated as   
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(2.16)  

Once the deformation gradient is obtained the FTLE field is straightforward to 
calculate from eq. (2.11)-(2.13). 

2.4 Vortex Identification Criterion 
To evaluate how good different methods are in identifying turbulence requires 
some objective measure. This work will utilize a concept described in 
(Ghasempour, Andersson et al. 2011). The assumption is that the turbulent 
kinetic energy (TKE) of a flow should be wholly contained in the turbulent 
structures themselves. The turbulent kinetic energy   for a three dimensional 
system is defined as (Andersson 2011) 

   
 

 
       

 

 
    

      
      

     (2.17)  

where    is the velocity due to turbulence. The decomposition of the velocity, 
termed   , used in LES is (Garnier 2009; Andersson 2011) 

                    
        (2.18)  

where     is the velocity of the resolved large scales and  
  is the velocity of the 

sub grid modeled scales. With the average velocity     , see equation (2.2), the 
different velocities can be related by 

                  
        (2.19)  

The method thus compares the turbulent kinetic energy captured by an 
identification scheme to the total TKE in the flow. This is achieved by the ratio 
of the TKE inside the volumes of turbulent structures to the total TKE. 

A benchmark for this method that will be used is the Q-criterion for the Lamb-
Oseen vortex that was calculated in (Ghasempour, Andersson et al. 2011) and 
will be restated here. The tangential velocity for the Lamb-Oseen vortex can be 
written (Devenport, Rife et al. 1996) 
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       (2.20)  

where    is the velocity in the tangential direction,     is the peak tangential 
velocity,           is a constant,   is the radius from the center of the vortex 
and    is the core radius defined as 

             (2.21)  

where   is the viscosity of the fluid and   is the time. The vortex will dissipate 
away due to viscosity and the time dependence of the core radius. A plot of 
velocity vectors for the Lamb-Oseen vortex can be seen in figure 2 below, and 
from the figure it can be seen that the magnitude of the velocity is constant for a 
given radius. Given that the TKE is proportional the square of the fluctuating 
velocity and that a vortex is that fluctuation the TKE of the Lamb-Oseen vortex 
is given by squaring the velocity field directly. A plot of TKE and the Q-criterion 
can be seen in figure 1 below. The amount of TKE captured by the Q-criterion is 
about 28 % of the total TKE up to a radius of 0.025 m and the cutoff is at the 
core radius. 

 

 

 

 

 

 
 

 

 

 

 

It is thus desirable to find a method that captures more than 28 % of the total 
TKE in order to be able to give a better description of turbulence. 

Figure 1. Plot of TKE and Q-criterion as a 
function of the radius, the benchmark 
cutoff is at about 28 % of the total TKE. 
The values of the Q-criterion have been 
rescaled by a factor of 5.2e-6 to fit in the 
same window. 

Figure 2. Plot of velocity vectors 
for a Lamb-Oseen vortex with 
 =1.25643,    =0.25 m/s, 
 =0.001003 Pa s (water) and 
 =0.006231 s. 
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3 Results 

3.1 FTLE of Some Analytical Functions 
The approach of revealing turbulent structures by particle trajectories was 
initially tested on a few analytical equations aimed at describing two dimensional 
flows in order to make sure that the MATLAB code performs well. 

3.2 Time-variant Double Gyre 
Initially the FTLE fields were calculated for a standard case that is used in the 
literature (Shadden, Lekien et al. 2005; Brunton and Rowley 2010). The double 
gyre flow field is defined in a domain                     by the stream 
function   

 
                               (3.1)  

                                                     (3.2)  

where    and   are constants. To get the velocity field the gradient is utilized 

     
  

  
     

  

  
  (3.3)  

The velocity field is plotted at three different time instants in figure 4 below, 
from which an oscillating nature of the line of separation of the two gyres is 
evident. The FTLE field is plotted in figure 3 below. Here the particles were 
tracked backwards in time revealing attracting Lagrangian coherent structures 
(aLCS). 

 

 

 

 

 

 

 

 

 

 

Figure 3. The FTLE field of the double gyre at    . 
Here              and         has been used, 
these specifications apply to all double gyre FTLE plots. 
The integration time was        The ridges of highest 
FTLEs separates the aLCS. 
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The time evolution of the FTLE field was studied and tracer particles were 
followed simultaneously. In figure 5 the FTLE field and current positions of a 
few tracer particles are plotted at consecutive time steps. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Four plots at different times that show the time dependence of the 
double gyre. Here              and         has been used. The 
plane of separation between the two gyres oscillates with frequency      
and is displaced a distance approximately equal to   (Shadden, Lekien et al. 
2005). 

Figure 5. Plot of tracer particles injected at     s and snapshots at     s, 
    s and     s with the corresponding backward time (integration time 
      s) FTLE field. The particles are injected into two differenc aLCS and 
by time     s it can be seen that both vortices are leaving a trail of particles 
behind while other particles are still contained within the vortex. 
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When integrating, or advecting, particles forward in time repelling LCS (rLCS) 
are revealed. In figure 6 the FTLE field of rLCS is plotted. 

 

 

 

 

 

 

 

 

 

 

 

When the ridges of highest FTLE for the rLCS are extracted and plotted on top 
of the FTLE field of aLCS sections vortices are divided into parts that will leave 
the structure at different time scales. Figure 7 shows the FTLE field of aLCS 
with ridges of rLCS on top of it and figure 8 shows snapshots of particles injected 
into different section of an aLCS at consecutive time steps. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Plot of the FTLE field of rLCS. The same 
specifications as in figure 3 apply here excepts that the 
integration time is      s. 

Figure 7. Plot of a FTLE field with aLCS and ridges of 
repelling ridges (material lines) in top of it to indicate 
what sections of certain attracting structures will be 
transported together. 
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3.3 FTLE of Lamb-Oseen Vortex 
The Lamb-Oseen vortex described in section 2.4 was first considered for a case 
without the time dependence of the core radius. The core radius was set to 
         m. Furthermore, several interacting vortices were introduced by 
overlapping velocity fields of Lamb-Oseen vortices with vortex centers located 
near each other in different constellations. In figure 9 the FTLE field of three 
vortices placed in a triangle with equal sides is plotted. 

Figure 8. Plot of tracer particles at consecutive time steps after having been 
injected into three different sections of an aLCS divided by ridges of high 
FTLE values (>64 % of max). Initially at time     s all particles (yellow, 
orange and red) are contained in the vortex. First to leave are the red 
particles, approximately at     s, and soon afterwards the orange particles as 
well at     s. At the last time step plotted,      s, particles of different 
colors are contained in wholly different vortices with only yellow particles in 
the original vortex where some of them have started to trail behind. 
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The LCS indentified depends on the distance between vortex centers and the 
arrangement of the vortices. In figure 10 the FTLE field of three vortices in line 
is plotted. 

 

 

 

 

 

 

 

 

 

When the FTLE field from a single Lamb-Oseen vortex is calculated no 
coherent structure can be discerned. This is the result of the fact that at no point 
in the velocity filed does two neighboring advected particles end up very far 
from each other. In order for advected particles to be able to indentify coherent 
turbulent structures there must be two or more Lamb-Oseen vortices present. 
This also results in the fact the shape and size of the LCS depends on how the 
different vortices are places in relation to each other. In figure 11 the FTLE field 
of three vortices placed in the same arrangement as those in figure 9 is plotted. It 

Figure 9. Plot of three Lamb-Oseen vortices 
whose vector fields have been superimposed. 
The distance between the different vortex 
centers is 29 cm. A pseudo steady state core 
radius was used for this case. 

Figure 10. The FTLE field of tree Lamb-Oseen votrices in line. The 
regions identified as coherent are of unequal size when comparing 
the vortex in the middle to those to the right and left eventhough 
they have the same velocity field functions. Integration time was 
     s. 
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can be seen that shape is more round and the size is larger compared to the LCS 
identified in figure 9b. Also in figure 11 a comparison is made between 
integrating forwards and backwards in time. This produces similar structures, the 
difference being that the rotation is opposite, since revering the time is equal to 
reversing the rotation the same time direction. 

 

 

 

 

 

 

 

 

 

 

 

 

For water the Lamb-Oseen vortex dissipates rather quickly so that the transient 
core radius term makes the vortex dissipate rather quickly. A transient core 
radius was therefore considered for a fictitious fluid with very low viscosity, i.e. 
         Pa s, such that the vortex is the strongest at approximately time 
     s. Repelling LCS could then be calculated by advecting particles forward 
in time with integration time      s. In figure 12 below the rLCS in the FTLE 
field can be seen for three vortices placed in a triangle with equal sides      
cm. The shapes of the LCS in figure 12 are slightly oval; however, to find some 
value to compare to the performance of the Q-criterion the radius at a certain 
location of a LCS was measured. Vector fields of three vortices placed in the 
same way as in figure 12 with different spacing were investigated. The radius of 
the lowest placed vortex in the negative y-axis direction for     was measured. 
The radius was measured by injecting particles near the ridge of the LCS and 
tracking them to see which rotate only around the vortex enclosed by the LCS-
ridge. In figure 13 the way particles were injected can be seen and in table 1 the 
results. 

 

 

 

Figure 11. Three Lamb-Oseen vortices superimposed at a distance of      cm in a 
and 50 cm in b. In a the integration time was       s and in b      s. The 
shorter distance show more interaction in a. It is worth noting the reversed direction 
of the ridges as reversing time is equal to revering the flow direction in the same 
time direction. 
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It was found that the largest distance from the center of the vortex at which a 
particle could be injected and still remain within the LCS surrounding the vortex 
center, here defined as the coherent radius, was a constant fraction of the 
distance   separating the three vortex centers.  

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Plot of FTLE field for the double 
gyre with a distance of      cm between 
vortex centers and with particles advected 
forward in time (integration time      s) 
revealing repelling LCS. 

Figure 13. Plot of particles injected and advected forward in time to 
determine the exact radius at a specific location on the ridge of the 
LCS. The left figure shows the injection location. The right figure 
shows the particles tracks, the red track indicates the track of the 
particle that was injected furthest away from the vortex center and still 
belonged to the LCS. To get more accurate results more new particles 
were injected around the starting point of the red track with more 
densely location particles. 
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For comparison the FTLE field and Q-criterion was calculated for three vortices 
located at a distance of       cm apart from each other. Again a fictitious fluid 
with very low viscosity was used,            Pa s, and the particles were 
injected at time t    s, and the Q-criterion was also calculated that time, and 
advected forward in time, T    s. The result is plotted in figure 14 below. 

 

 

 

 

 

 

 

 

 

 

 

3.4 FTLE from CFD Solution Data 

3.4.1 CFD Simulation 
The simulations were performed within the ANSYS Workbench environment. 
The domain was a pipe with length      cm and diameter     cm with 
periodic boundary conditions for the “inlet” and “outlet”. The wall had a no slip 
boundary condition. The medium in the pipe was water with an average speed of 
      m/s. This gives a Reynolds number of Re                    

Distance d [cm] coherent radius r [cm] r/d 
13.9 2.08 0.1500 
29.4 4.42 0.1500 
34.6 5.20 0.1500 
45.0 6.76 0.1500 
62.4 9.36 0.1501 

Table 1. The results of measuring the coherent radius 
show that the coherent radius is a function of the distance 
  between vortices. 

 

 

Figure 14. The two plots illustrate the difference between FTLE and 
Q-criterion for identifying coherent regions. The vortex centers are 
located a distance        cm apart. The two methods give quite 
opposite results; the Q-criterion give a picture of three small 
independent vortices far apart while the FTLE filed show large 
structures with strong interactions. 
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      . To start up the calculations a stationary k-  model was used and because 
of the Reynolds number the low Re k-  was chosen. When a reasonably 
converged solution was obtained the model was changed to a Large Eddy 
Simulation (LES) model. For the sub grid scale model the Smagorinsky-Lilly 
model was chosen. The simulation was then carried out with a time step of 
            s and the solution was advanced for about 4000 time steps to 
obtain a “stationary” behavior of the flow and then the solutions for time steps 
between approximately 4300 and 5300 was exported and used to calculate FTLE 
fields in MATLAB. About 82 % of the turbulent kinetic energy was resolved on a 
relatively coarse structured mesh of 407,900 cells. The resolution in the 
streamwise direction was 2 mm and the average side length in the wall normal 
direction was 0.69 mm. To save computational time smaller sections of the pipe 
was chosen for calculations of the FTLE field. In order to find an interesting 
region the Q-criterion of the entire pipe was studied and such a plot can be seen 
in figure 15.  

 

 

 

 

 

 

 

 

One vortex that was identified by the Q-criterion was located in the domain   

                              mm, illustrated in figure 16. 

 

 

 

 

 

 

 

3.4.2 FTLE Field 
The FTLE field was calculated with the Matlab code attached in Appendix A1. 
In figure 17 the surface plot of a cross section with constant z-value of the 

Figure 15. Plot of iso-surfaces of the normalized Q-criterion for a value 
of        . The vortices are colored by velocity magnitude. 

Figure 16. Plot of iso-surface of a vortex contained in the 
domain                                 mm, for 
which a FTLE field was calculated. The vortex is colored by 
velocity magnitude. 



22 
 

domain                                 mm, described in section 3.4.1 
above, is shown together with a surface plot of the same area with the Q-
criterion for comparison. In figure 18 the FTLE field of a cross section of the 
whole pipe at the same z-value is shown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the mesh produced in Ansys for CFD calculations had 4180 grid points for a 
cross section of the pipe. However, the number of particles needed to get a high 

Figure 17. The surface plot of a cross section of the domain           
                      mm at         cm; shown with a FTLE field on 
the left and the normalized Q-criterion on the right. The FTLE field was 
calculated with an integration time        s (500 time steps).  

Figure 18. The FTLE field of a cross section of 
the entire pipe at         cm is showing 
attracting LCS. It can be seen that the vortex 
studied in figure 18, seen here around the point 
(-0.01,-0.015), is possibly paired with another 
vortex to the left which is not indicated from 
the Q-criterion. The integration time was 
       s (500 time steps). 
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resolution FTLE field can be much higher. For comparison, in figure 19 and 20 
the FTLE field of high and low resolution respectively is plotted. It can be seen 
that no additional structures are revealed, only the detail is improved. Another 
difference is the value of the FTLE ridges, with higher resolution the FTLE 
ridges will have higher peaks and they will also be narrower. 

 

 

 

 

 

 

 

 

 

 

 

The overlap of the FTLE field to that of the turbulent kinetic energy (TKE) and 
the velocity field was also studied. In figures 21 and 22 the comparison between 
FTLE and TKE and FTLE and the velocity field respectively for a cross section 
is plotted. 

 

 

 

 

 

 

 

 

 

 

 

Figure 20. The resolution of the FTLE 
field is 188,549 particles per cross section 

Figure 19. The resolution of the FTLE 
field is 2,095,237 particles per cross 
section. 

Figure 21. The figure shows a FTLE field of 
aLCS with iso-levels of turbulent kinetic energy. 
The gray scale indicates FTLE values and the 
red iso-lines TKE (compare fig. 24). 
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4 Discussion 

4.1 Double Gyre Example 
The main purpose for studying this flow field was to begin to develop the 
MATLAB code and approach to calculating FTLE fields and to get a basic 
understanding of Lagrangian coherent structures. The results of (Shadden, 
Lekien et al. 2005; Brunton and Rowley 2010), where among other flow fields 
that of the double gyre is studied, could be replicated in the results section 3.2, 
e.g. see figure 3. The results also show that the FTLE fields are a powerful tool 
for describing the flow and transport phenomena not revealed by the 
instantaneous properties, such as the instantaneous velocity field or Eulerian 
measures as the Q-criterion. The FTLE field shows which locations where 
particles are moving together and where the transport of particles in and out of 
the LCS is taking place as is evidenced by figure 5. It could also be established 
which locations of particles of a LCS that will stay together for a longer period of 
time, i.e. where most of the transport in and out of the LCS is taking place. 
Figure 8 show that repelling LCS (rLCS) reveals which parts of the attracting 
LCS (aLCS) will stay together longer during the time evolution of the aLCS.  

4.2 Lamb-Oseen Vortices 
The purpose of studying the Lamb-Oseen vortex was to some extent to further 
test the method, however the main purpose was to deepen the understanding of 
LCS. No previous work has been indentified on LCS applied to the Lamb-
Oseen; yet, it cannot be assured that this is because of its non existence. 
However, this led to a rather unexpected result, namely that a single Lamb-
Oseen vortex is not identified as a LCS, i.e. a LCS with sharp ridges as opposed 
to slowly varying height of the ridges (the use of “sharp ridge” is not defined 

Figure 22. The forward time FTLE field 
with the x and y components of the 
velocity field superimposed. The x and y 
components are perpendicular to the 
streamwise component z. 
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rigorously, it is has a qualitative meaning here).  The realization that several 
vortices are needed is quite telling about the nature of LCS, if a sharp ridge is to 
exist two neighboring particles must have markedly different end locations when 
advected by the flow. The reason that a single vortex does not produce a LCS 
with sharp ridges is because the equations governing the flow are only describing 
the turbulent velocity and not the entire velocity field, i.e. the equivalent of the 
fluctuating velocity of the Reynolds decomposition (see equation 2.18). In the 
case of the Lamb-Oseen vortex the turbulent velocity slowly dies out as the 
radius from the vortex center is increased making the difference in final position 
of adjacent particles trajectories decrease in the same manner and no sharp 
ridges are formed. If a bulk flow was present this would likely not be the case as 
the ratio of the turbulent velocity, or the fluctuating velocity, to the mean 
velocity would flatten quite fast past the core radius (see equations 2.20 and 
2.21), i.e. the turbulent velocity would be completely damped in the bulk. 

Rather than constructing a mean velocity field, that arguably would have to been 
constructed in three dimensions, to work around the problem of not producing 
sharp edges several vortices were introduced. By simply introducing several, in 
this case three, vortex centers particles tracks became more complex. When 
there are three vortex centers, with their respective velocity field added to each 
other, some particles will rotate only around one vortex while others will rotate 
around all three vortices. This leads to the formation of very sharp edges of the 
FTLE field and coherent structures can be identified. However, since the Lamb-
Oseen vortex is dissipated by viscosity the dissipation rate can be too high if the 
viscosity is not very low in order to produce sharp ridges. Therefore a “pseudo 
steady state” approximation without the dissipation was initially studied. From 
figures 9 and 10 (see p. 15) it can be concluded that the shapes LCS depends on 
the interaction between different vortices, i.e. how the different vortex centers 
are placed in relation to each other. 

It was also found that not only the placement of vortices in terms of the 
formation but also the distance had an influence, to some extent in shape but 
largely in size. For vortices placed in a triangle the coherent radius in one 
direction was found to be about 15 % of the distance between vortex centers, see 
figure 13 and table 1. One can speculate that this dependence would disappear 
for larger distances if a bulk flow was present as the interaction would not be 
significant at larger distances, yet, the coherent radius would then depend on the 
strength of the bulk flow. This leads to the regrettable inability of the FTLE 
method of producing an “objective” cut off criterion for a coherent region for 
the Lamb-Oseen vortex, like the one for the Q-criterion (see figure 1), that was 
sought after. That is, the region defined as coherent by the FTLE field is not 
really dependent on the coherent radius like the Q-criterion is. This is in a way a 
rather surprising conclusion and brings into question what a turbulent structure 
really is or how it should be defined. The Q-criterion seems to suggest that 
turbulence consists of basically individual rotating cylinders of varying size and 
energy that are largely independent of each other in terms of the definition of 
their respective coherent structures. This lead to the conclusion that if a cloud of 
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tracer particles were to be injected into such a structure they should on the most 
part during the life time of the structure remain within it, i.e. the fluid elements 
should be same. The picture painted by the FTLE method is in contrast to the 
one of the Q-criterion, the difference in size and interaction is obvious from 
figure 14. The differences in the FTLE view that can be concluded from the 
Lamb-Oseen vortex is that the shape and size of turbulent structures depends on 
all vortices present in the flow field. However, there are similarities as well; 
turbulence can still be thought of as structures of rotating cylinders, even if they 
influence each other. Yet, that is how the Lamb-Oseen vortex is constructed, so 
it is not surprising. Therefore, with the aid of CFD calculations, it will be seen 
how the divide between the Eulerian and Lagrangian views is bridged or further 
distinguished in the next section. 

4.3 CFD Calculated Vortices 
In this work the velocity field and the vortices obtained from CFD solutions of 
the Navier-Stokes equation are taken to more or less accurately describe real 
turbulence. The FTLE fields that were calculated shed light on what a turbulent 
structure is. The gap that was created by study of the Lamb-Oseen vortex is now 
widened. The results of the FTLE fields obtained from vortices calculated by 
solving the N-S equations not only show strong interaction, by adjoining FTLE 
ridges, between closely located vortices but the general shape is different. The 
clear pictures of the Q-criterion is muddied even further, not all coherent 
structures found be the FTLE method have clear boundaries. Rather than being 
three dimensional volumes of coherent regions they are generally two 
dimensional surfaces. This indicates that in some regions of the coherent 
structures there is a constant transport of fluid elements, some are being left 
behind and some are being engulfed. That is, the fluid elements that make up 
the turbulent structures are not constant in any discernible time frame but are 
dynamically changing. However, there are still coherent boundaries separating 
the vortices. Figure 17 (p. 20) shows the discrepancy between the two views, 
even though they both show a structure in middle, the one showed in its entirety 
in figure 16 by the Q-criterion, and some corresponding structures around it, 
still, there is a structure in the upper left corner by the Q-criterion that is not 
reproduced in the FTLE field. In figure 23 below the two methods are compared 
for a cross section of the pipe. 
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It can be seen that the two methods do not correlate completely and that there 
are discrepancies between the two. However, there are also overlaps and for 
some vortices great similarities.  

The FTLE field shows rather good overlap for turbulent kinetic energy as seen 
in figure 21 on page 21. This is an improvement from the Q-criterion; in figure 24 
the normalized Q-criterion with iso-levels of TKE can be seen for comparison. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24. The figure shows the normalized Q-
criterion with iso-levels of turbulent kinetic 
energy. The gray scale indicates Q-values and 
the colored scale TKE [m2/s2]. 

Figure 23. The figure shows a cross 
section of filled contours of the 
normalized Q-criterion with 
superimposed ridges of FTLE values 
larger than about 60 % of max. 
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Still, even if the overlap seems better for the FTLE field it is not perfect; there 
are instances of high TKE but no apparent structure and there are structures 
even though the TKE is not peaking over it. Even so, there are some striking 
overlaps for the FTLE method that does not seem as prevalent for the Q-
criterion. 

The goal of constructing three dimensional structures from calculated FTLE 
fields, so that for instance the amount of TKE captured by the method could be 
calculated, is not feasible without constructing some additional criteria on how 
to extract these volumes from what essentially are two dimensional surfaces. 
One such strategy, which is described in (Shadden, Dabiri et al. 2006; Olcay and 
Krueger 2008), looks at the enclosed volume between attracting and repelling 
LCS. This approach can have difficulties, by examination of figure 8 on page 14 
concerning FTLE fields of the double gyre it is clear that the structure is not 
divided into a single volume, or area rather as this is two dimensional, but three 
which can lead to ambiguity. Another difficulty in general for determining 
coherent structure is that the ridges of the FTLE field can be quite close 
together and separate at times and then be adjoined at other places. The 
difficulty arises in interpreting if this is an indication of several separate 
structures or due to numerics or perhaps gradients within a single coherent 
structure. According to (Haller 2011) the ridges of the FTLE field of three 
dimensional flows show surfaces of locally the strongest attraction, repulsion or 
shearing surface. Haller has also developed a mathematical method to 
distinguish them. This could further rule out some ridges, even so, no three 
dimensional surfaces would appear. However, this explains the fact that the 
turbulent kinetic energy is not completely in accordance with the FTLE field. 
This is a topic to study if further investigation, to continue the present work, 
should be conducted in the future. 

Even if it is the case that the Lagrangian method of FTLE is not a complete 
match with the Eulerian methods is not at odds with other research in the field. 
In (Green, Rowley et al. 2007) the FTLE method is compared to some Eulerian 
methods and the same result is found, the different methods do find different 
structures as is the case in this work. Green et al. point out that Eulerian 
methods rely on derivatives of the velocity field that is claimed to often be noisy, 
which could explain some of the discrepancy, and that the Lagrangian methods 
do away with having to deal with user defined thresholds. What is meant here is 
for instance that for the normalized Q-criterion a value, typically between 0.1 
and 0.5, needs to be arbitrarily chosen by the user in order to define the coherent 
structures. What has been found in this work is that a similar threshold is also 
needed for the FTLE method, namely when extracting ridges a threshold of the 
maximum value needs to be chosen in a similar manner. 

When calculating FTLE field a grid of particles is advected that typically is 
denser than the grid of the solution data of the velocity field being studied. As 
commented in (Green, Rowley et al. 2007) the level of detail that can  be 
obtained from FTLE fields is greater than that of Eulerian methods. This is a 
drawback as well as an advantage since more computational effort is required 
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when calculating FTLE fields. Yet, the level of resolution will not affect the size 
and location of coherent structures as evidenced by figures 19 and 20 on page 21.  

5 Conclusions 
The purpose of the present work was to look into the method of Lagrangian 
particle tracking in order to indentify turbulence. It was soon realized after 
consulting the literature that finite time Lyapunov exponents (FTLE) method 
was the most widely used and therefore most appropriate for the purposes at 
hand in terms of finding documentation on how to use it and to be able to 
compare results with. The FTLE method was then investigated for three types of 
flow; a double gyre, the Lamb-Oseen vortex and finally for a CFD calculated 
LES simulation of a turbulent pipe flow. 

It was found that the FTLE field indeed shows structures that are not apparent 
when studying the instantaneous properties of the flow. Results in the literature 
regarding the double gyre could be replicated. And the behavior of particles was 
predicted by the FTLE coherent structures. Furthermore, the most important 
finding was that of the very definition of turbulent structures. Are they three 
dimensional structures as suggested by Eulerian methods or are they largely two 
dimensional surfaces indicating a more dynamic picture. The FTLE method of 
describing turbulence thus seems to suggest that turbulent structures should be 
considered as structures whose properties and fate not only depends on their 
inherent properties bur also on other structures in the vicinity as well. That is, if 
certain properties of coherent structures were to be determined for predicting 
the future of the structure some of them would be independent on the structure 
itself, in terms of size, energy etc., as they would depend on the surrounding 
structures. The failure of the FTLE method to produce three dimensional 
coherent structures, at least in this work, might be related the procedure of 
calculating the FTLE field. Since the particles are advected for a total of half a 
second that time period is influential on what structures one find. It might be the 
case that only the most stable part of the coherent structures get captured and 
that the some parts are changing direction and location too fast for the FTLE 
field to capture the behavior. This also means that the integration time is 
important. Vortices located in the bulk and near the walls have different life 
times and subsequently might require different integration times to adequately 
reveal coherent structures. Furthermore, the short life times and fast growth of 
eddies near the wall region might muddy the FTLE field if too long integration 
times are used. For instance, say that a grid of particles is injected near the wall 
and currently there is no vortex there, then along the integration a vortex might 
quickly grow and create high FTLE ridges, yet they were not there at the 
injection time. This leads to the risk of having fast growing vortices with short 
life times superimpose themselves backward or forward in time if too long 
integration times are being used. Another problem with the near wall region is 
that several vortices might grow and die out during the integration time that is 
needed to reveal structures in the bulk, so that several vortices are superimposed 
on top of each other in the FTLE field. A closer inspection of the FTLE field 
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from LES simulations, e.g. see figures 18 or 20, show that the FTLE field in the 
near wall region seems to have ridges overlapping and crossing each other, 
maybe the result of several vortices having been formed and died out during the 
integration time. 

The good overlap of the attracting LCS with TKE and the velocity field show, 
which can be seen in figure 21 and 22, that the method is worth investigating 
further to create a method to construct three dimensional volumes such that the 
amount of TKE for instance can be calculated and compared to Eulerian 
methods. If this was possible in a meaningful way it would give a method to 
compare how much TKE is captured by the LCS and the Q-criterion as the 
structures produced by the two methods are typically different in location and 
size. If it is not possible then that would redefine the meaning of what a 
turbulent structure is, and that would be perhaps even more interesting. As such, 
future work should be focused on this part. 
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Appendix 

A.1 Calculation of FTLE 
The main program for calculating the FTLE field from exported CFD solution 
data is LITS_FTLE.m (LITS stands for Lagrangian investigation of turbulent 
structures) that utilizes one sub routine called lyapunov3D.m. The solution 
data is exported from fluent as ASCII files and then read into MATLAB. 

LITS_FTLE.m 

%-------------------------------------------------------------------------% 

%      Calculate 3D FTLE field of solution data obtained from Fluent      % 

%-------------------------------------------------------------------------% 

% matrix columns of sol_data: 

% 1 nodenumber 

% 2 x-coordinate 

% 3 y-coordinate 

% 4 z-coordinate 

% 5 x-velocity 

% 6 y-velocity 

% 7 z-velocity 

%-------------------------------------------------------------------------% 

%% create injection grid 

% set grid-resolution 

grid_res_xy=1.4e-4; 

grid_res_z=3e-4; 

x=[-0.013 0.001]; 

y=[-0.021 -0.0075]; 

z=[0.11 0.145]; 

nx=floor((x(2)-x(1))/grid_res_xy)+1; 

ny=floor((y(2)-y(1))/grid_res_xy)+1; 

nz=floor((z(2)-z(1))/grid_res_z)+1; 

% make interval even 

x(2)=x(1)+(nx-1)*grid_res_xy; 

y(2)=y(1)+(ny-1)*grid_res_xy; 

z(2)=z(1)+(nz-1)*grid_res_z; 

% set interval of all three space dimensions 

x0=linspace(x(1),x(2),nx)'; 

y0=linspace(y(1),y(2),ny)'; 

z0=linspace(z(1),z(2),nz)'; 

% create vectors of all grid points 

x=x0*ones(1,ny); 

x=x(1:end)'; 

x=x*ones(1,nz); 

x=x(1:end)'; 

y=ones(nx,1)*y0'; 

y=y(1:end)'; 

y=y*ones(1,nz); 

y=y(1:end)'; 

z=ones(nx,1)*z0'; 

z=z(1:end)'; 

z=ones(ny,1)*z'; 

z=z(1:end)'; 

Np=nx*ny*nz; % no. particles 

check=sqrt(x.^2+y.^2)>=0.025; 

s=sum(check); 

if s>0 

    error('particles sided outside of domain') 

end 

clear x0 y0 z0 check s grid_res_xy grid_res_z 

%% calculate particle tracks 
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tstart=5300; % time step where advection begins 

tend=4801; % and the last time step 

% create vectors to store particle locations 

Nt=tstart-tend+1; % no. time steps 

X=zeros(Np,3); 

Y=X; 

Z=X; 

X(:,end)=x; 

Y(:,end)=y; 

Z(:,end)=z; 

X(:,2)=x; 

Y(:,2)=y; 

Z(:,2)=z; 

t=-0.001; % length of time step [s] 

h=waitbar(0,'Calculating flow map...'); 

for tstep=tstart:-1:tend 

    name=['solution_data-' num2str(tstep)]; 

    sol_data0=dlmread(name,'',1,0); 

    [~, m]=sort(sol_data0(:,4)); 

    sol_data0=sol_data0(m,:); % arrange according to z-value 

    % create interpolation function 

    x0=sol_data0(:,2); 

    y0=sol_data0(:,3); 

    z0=sol_data0(:,4); 

    vx0=sol_data0(:,5); 

    vy0=sol_data0(:,6); 

    vz0=sol_data0(:,7); 

    VIx0=TriScatteredInterp(x0,y0,z0,vx0); 

    VIy0=TriScatteredInterp(x0,y0,z0,vy0); 

    VIz0=TriScatteredInterp(x0,y0,z0,vz0); 

    % calculate relative position of z-coordinates within periodic boundary 

    Zrel=(Z(:,2)./0.2-floor(Z(:,2)./0.2))*0.2; 

    % interpolate new positions 

    X(:,1)=X(:,2)+t*VIx0(X(:,2),Y(:,2),Zrel); 

    Y(:,1)=Y(:,2)+t*VIy0(X(:,2),Y(:,2),Zrel); 

    Z(:,1)=Z(:,2)+t*VIz0(X(:,2),Y(:,2),Zrel); 

    X(:,2)=X(:,1); 

    Y(:,2)=Y(:,1); 

    Z(:,2)=Z(:,1); 

    waitbar((tstart+1-tstep)/(tstart+1-tend)) 

    clear x0 y0 z0 vx0 vy0 vz0 VIx0 VIy0 VIz0 sol_data0 name m Zrel 

end 

run=1; 

delete(h) 

name1=['flow_map-bt-' num2str(tstart) '-x-' num2str(run) '.txt']; 

name2=['flow_map-bt-' num2str(tstart) '-y-' num2str(run) '.txt']; 

name3=['flow_map-bt-' num2str(tstart) '-z-' num2str(run) '.txt']; 

save(name1,'X','-ascii','-double') 

save(name2,'Y','-ascii','-double') 

save(name3,'Z','-ascii','-double') 

clear i h tstep tstart tend tcrit t name1 name2 name3 run 

%% create flow map 

flow_map=zeros(Np,3,2); 

flow_map(:,:,1)=[X(:,end) Y(:,end) Z(:,end)]; 

flow_map(:,:,2)=[X(:,1) Y(:,1) Z(:,1)]; 

%% create index vectors 

x_index=zeros(Np,2); 

x_index(:,1)=(1:Np)'; 

x_index(:,2)=(1:Np)'; 

y_index=x_index; 

z_index=x_index; 

for i=1:nx:Np-nx+1 

    x_index(i:i+nx-1,1)=x_index(i:i+nx-1,1)-[0; ones(nx-1,1)]; 
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    x_index(i:i+nx-1,2)=x_index(i:i+nx-1,2)+[ones(nx-1,1); 0]; 

end 

for j=1:nx*ny:Np-nx*ny+1 

    y_index(j:j+nx*ny-1,1)=y_index(j:j+nx*ny-1,1)-[zeros(nx,1); nx*ones(nx*ny-

nx,1)]; 

    y_index(j:j+nx*ny-1,2)=y_index(j:j+nx*ny-1,2)+[nx*ones(nx*ny-nx,1); 

zeros(nx,1)]; 

end 

z_index(nx*ny+1:Np,1)=z_index(nx*ny+1:Np,1)-nx*ny*ones(Np-nx*ny,1); 

z_index(1:Np-nx*ny,2)=z_index(1:Np-nx*ny,2)+nx*ny*ones(Np-nx*ny,1); 

clear i j 

%% calculate FTLE 

T=Nt*0.001; 

FTLE=lyapunov3D(flow_map,Np,x_index,y_index,z_index,T); 

clear T 

 

lyapunov3D.m 

function FTLE=lyapunov3D(flow_map,Np,x_index,y_index,z_index,T) 

def_grad=zeros(3,3,Np); % matrix to store gradient for each particle 

FTLE=zeros(Np,1); % vector to store FTLE:s 

FTLEindex=zeros(Np,1); 

% calculate def_grad by finite differencing 

for k=1:Np 

    xyij=[x_index(k,:); y_index(k,:); z_index(k,:)]; 

    for i=1:3 

        for j=1:3 

            def_grad(i,j,k)=... 

                (flow_map(xyij(j,2),i,2)-flow_map(xyij(j,1),i,2))... 

                /(flow_map(xyij(j,2),j,1)-flow_map(xyij(j,1),j,1)); 

        end 

    end 

    def_grad(:,:,k)=def_grad(:,:,k)'*def_grad(:,:,k); 

    lambda=eig(def_grad(:,:,k)); 

    lambda_m=sort(lambda(1:end)); 

    FTLE(k)=1/T*log(sqrt(lambda_m(end))); 

End 
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B Nomenclature 
 

CFD computational fluid dynamics 

DNS direct numerical simulation 

FTLE finite time Lyapunov exponent 

LCS Lagrangian coherent structure 

LES large eddy simulation 

TKE turbulent kinetic energy 

  eigenvector 

  gravitational constant 

  Jacobian 

  turbulent kinetic energy 

  pressure 

  radius 

  integration time 

  time 

   instantaneous velocity of coordinate   

    resolved large scale instantaneous velocity 

     average velocity 

   velocity due to turbulence 

  
  modeled subgrid scale velocity 

      space coordinates 

    particle position 

  Cauchy-Green deformation tensor 

  eigenvalue 

  viscosity 

  density 

  FTLE 

  flow map 

  potential field 

  domain 

  symmetric invariant of    

  gradient 


