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Abstract

Belief propagation (BP) is an algorithm with a wide range of applications where it is used
to solve inference problems defined on probabilistic graphical models, e.g. computing the
marginal distributions of a distribution function defined on a factor graph. It belongs to
a family of algorithms called message passing algorithms, since it is updated by passing
messages over the edges of the graphical models on which it is defined. Problems arise
when the graph contains cycles, or loops, since there is only a guarantee of convergence
to the exact solution when the graph is of a tree structure. This thesis studies the
convergence properties on Ising models of a proposed modification of the standard BP
algorithm based on homotopy, where the factor graph is gradually changed from a solvable
structure into a loopy graph. We also investigate how well it compares to the uniformly
reweighted BP (URW-BP). The performance of the algorithms are tested by running
Monte Carlo simulations and computing the Kullback-Leibler divergence (KLD) between
the exact and the approximate solutions, and also by computing bit and word error
rates. Additionally we transfer these methods to a tracking problem application over a
sensor network. The Monte Carlo simulations on the Ising model indicate that the URW-
BP algorithm exceeds the performance of the standard BP, and the homotopy methods
seem to perform in parity with serial updating BP, but conserve the possibility of using
distributed computations. Our results from the tracking problem simulations show that
the URW-BP on a loopy graph performs equally well, or even better than the standard
BP on a tree graph.

i



Acknowledgments

Firstly, we would like to thank our thesis advisor Assistant Professor Henk Wymeersch
for the motivation and guidance he has given us during the work. The weekly meetings
were always something to look forward to, to get some interesting comments and views
on how our work was progressing. Henk’s support made the work more interesting and
rewarding than we ever thought it would be when we began writing this thesis, and
Henk most certainly increased our fascination of science. We would also like to thank
Lennart Svensson for initiating the contact with Henk, for giving advise and for interesting
discussions about the research. Thanks also to everyone else in the Communication
Systems group who has been involved in the research in any way, it has been a privilege
to work with this group. Finally, we would like to thank our families and beloved ones
for the unwavering love, support and encouragement you have given us. We would like to
conclude with a quote from Shay Maymon’s doctoral thesis: “The thesis ends; Research
continues forever”.

ii



Contents

1 Introduction 1

1.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Main findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Belief propagation on factor graphs 4

2.1 Basic factor graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 The Ising model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Belief propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.2 Homotopy methods . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.3 Reweighted methods . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Monte Carlo simulations on Ising models 11

3.1 Measure of performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3.1 Results from simulations on Distribution 1 . . . . . . . . . . . . . 15
3.3.2 Results from simulations on Distribution 2 . . . . . . . . . . . . . 16
3.3.3 Results from simulations on Distribution 3 . . . . . . . . . . . . . 17
3.3.4 Results from simulations on Distribution 4 . . . . . . . . . . . . . 18

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 The tracking problem 21

4.1 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.4 Measure of performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5 Conclusions 32

iii



Chapter 1

Introduction

Belief propagation (BP) is used to calculate marginal distributions of an underlying joint
density function defined on graphs such as factor graphs, Markov random fields and
Bayesian networks [1]. It is actually true that a number of different methods are special
cases of the BP algorithm. Such special cases include for example the Kalman filter, the
forward-backward algorithm, the Viterbi algorithm and iterative decoding algorithms for
Gallager codes [2], and turbo codes [3], (for further information, see [4], [5] and [6]). Due
to the high complexity of computing these marginal distributions by using the definition
of the marginals or other exact inference algorithms, the BP algorithm is used in a wide
range of applications, from artificial intelligence [7], to various applications in the field of
communication [1]. But the algorithm, which can also be seen as finding fixed points of
the Bethe approximation to the free energy [8], is only exact in some special cases, i.e.
when the algorithm finds the global minimum of the approximation to the free energy.
This special case corresponds to a finite tree on a factor graph [9]. For a general graph
structure, however, there is no guarantee for convergence to the exact solution [9]. In the
alternative interpretation of an optimisation problem, this would mean that the problem
may not be of a convex nature. Therefore, this thesis aims at exploring whether the
performance of the BP algorithm on loopy factor graphs can be improved by applying
some different homotopy and reweighted methods to an Ising model, which has been
shown to improve convergence of BP [10]. Furthermore, the BP algorithm is applied
to a tracking problem where a network of sensors producing Gaussian measurements is
mapped on the factor graph and serves as the underlying model.

1.1 Purpose

The motivation for this thesis is the unreliability of BP when used on factor graphs
with cycles. Thus, this thesis aims at exploring how the algorithm behaves on these
loopy factor graphs and also how the performance can be improved by using variations
of the original BP algorithm to solve the desired inference problem. We will investigate a
homotopy approach to the edges of the factor graph, and also implement a URW-BP. The
main contribution is in doing Monte Carlo simulations to test and verify the variations of
BP on the Ising model, and applying the most promising modified algorithm on a sensor
network. The results from the Monte Carlo simulations will then be compared with the
exact marginal probabilities to provide a measure of performance, in several different
ways. The thesis will hopefully increase our understanding of why the BP algorithm
performs badly on these particular Ising models, and relate these results to the tracking
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problem application. The aim of the study of the tracking problem application is to
relate the tracking model to the Ising model and compare the results. The main goal is
to compare the chosen modified algorithm and the original algorithm to see if the we can
transfer the results from one model to the other and to find out if the variational method
can provide better solutions and in that case analyse at what cost.

1.2 Methodology

Given the theoretical statement of the belief propagation algorithm, we implemented it
in a MATLAB environment. The code was implemented such that it allowed for great
variation and freedom in constructing the Ising models, since this would facilitate the
future modifications of the algorithm. To evaluate the performance of the different meth-
ods, some kind of measure was needed. Consequently, the Kullback-Leibler divergence
was determined to be the appropriate measure for assessment of the algorithms, but we
also looked at bit error rates. Following this, a number of tests were designed and run
to test the algorithms’ performances on the Ising model. The acquired results were then
used in order to determine which modifications could be used in a real-world application
of message-passing algorithms. Moving from the Ising models to the tracking problem
application required modifications of the algorithms to make the variables take states on
a grid rather than binary values. Again, the KL divergence measure was used in the eval-
uation process of the methods, but as this model was more complex, two other relevant
measures were developed. To test how well the nodes converged to the same opinion,
we computed the disagreement among the nodes. Also, the error in the expected value
of the variables under the beliefs as the probability measure was considered. This was
computed with respect to the expected value according to the true marginals, and served
then as a complement to the probabilistic distance in the form of KL divergence.

1.3 Main findings

In this thesis we have studied the performance and convergence properties of a number of
message-passing methods, including belief propagation, on loopy factor graphs through
Monte Carlo simulations. We have found that particularly the URW-BP seems to be
an appropriate choice of modification to the standard BP algorithm on Ising models in
order to increase performance but at the same time preserve the important property of
parallelism of the computations. This argument, it turns out, can also be applied to other
models than Ising models. Experiments on a tracking problem, showed that the results
improved the performance on this Gaussian model as well.

1.4 Thesis outline

The problem formulation in this thesis could be divided into two subproblems. The first
problem concerns investigation of the Ising model on factor graphs. Here, we will apply
the standard BP, as well as the homotopy approach and the URW-BP. The second part
deals with the application of BP in a network of sensors. The thesis is divided in four
chapters:
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1. Chapter 1 introduces the topic and the relevance of our research. It also gives a
brief background to the problem and shortly describes the algorithm used.

2. Chapter 2 gives a more elaborate description of the factor graph and the Ising
model associated with the problem. The method of computing exact marginal
distributions is also explained. We describe in detail the implementation of the
message-passing algorithms in focus, and how they were derived from the traditional
belief propagation algorithm.

3. Chapter 3 first explains how the Monte Carlo simulations were done using the
algorithms on different sets of parameters in the Ising model. It also gives an
interpretation to these cases in an informal and intuitive way. Furthermore, we give
the results from the Monte Carlo simulations that were carried out. To make it
easy to compare the performance of the different methods, the results are grouped
according to which distribution the model parameters were generated from. The
results are to a great extent supported by graphs and figures.

4. Chapter 4 formulates the tracking problem application and how belief propagation
could be used to determine the position of an object on a grid. A detailed descrip-
tion of the implementation and the method is given and the different performance
measures used to assess the message-passing methods are presented. We also briefly
give an example of how prediction can be used to improve the performance. Lastly,
the results are given with support from figures and plots along with a discussion.

5. Chapter 5 concludes this thesis by summing up our results and stating what we
achieved during the work, and how it has improved our knowledge about message-
passing algorithms.
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Chapter 2

Belief propagation on factor graphs

2.1 Basic factor graphs

(a) (b)

Figure 2.1: (2.1a) shows a simplified factor graph with cycles for an Ising model with N = 16,
while (2.1b) shows a simplified factor graph with a tree structure for a similar model. All the
variable vertices are shown as circles. Each vertex is associated with a local parameter θn and all
edges with a bipartite parameter θnm describing the dependency relation between two variables.

A factor graph G consists of three main elements (V ,F ,E). The set of variable vertices,
or nodes, are denoted by V and the set of edges connecting the vertices E. There is also
the set of factor vertices F . We construct the graph with consideration to our model
such that each vertex corresponds to a variable, the factor vertices describe the relation
between two variables in an undirected way and the edges connect the variable vertices
with the factor vertices. Given a probability density function f(x1,x2, . . . ,xN) which can
be represented by a factorisation of the function in the following way

f(x1,x2, . . . ,xN) =
N
∏

i=1

φi(xi)
∏

(m,n)∈E

ψmn(xm,xn) (2.1)

This way each variable xm will be associated with a local factor φm ∈ F and each
interacting pair of vertices xm and xn with a common factor ψmn ∈ F , and thus this
creates a probabilistic map onto our factor graph. Henceforth when investigating the
Ising model, we will frequently work with the following notations: the set of variables
x = {xi : i ∈ V} and the set of edges E = {(n,m) : θn,m 6= 0}. For convenience we group
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the factor vertices together with the edges and only specify the parameters θmn, not the
whole mutual factor functions, and similarly we specify only the local parameters θn of
the local factor functions. Now, if there is a path from one vertex back to itself over a
set of edges, then that set forms what is called a cycle. When there exists no cycles on a
graph, then the graph is said to have a tree structure. The set of neighbouring vertices to
vertex m is called Nm, i.e. this set contains all the vertices connected to vertex m with
a nonzero parameter θmn.

2.2 The Ising model

The model that nowadays is called the Ising model was first used by Ernst Ising in his
doctoral thesis in 1924, after it was suggested by his doctoral advisor Wilhelm Lenz in
1920 [11]. What Ising did, was that he tried to explain observed data from ferromagnetic
materials using this model. Hence, the term spin is used to describe the two states that
a variable can assume in the Ising model. We introduce a probability space (Ω,Fσ,P ) to
this model. Here, Ω is the set of all sequences of outcomes ω = (ω1,ω2, . . . ,ωN), Fσ is the
σ-algebra of Ω and P is the probability measure assigned to Ω. Now, ωm can have either
the up (+) or down (−) spin. We can let the map xm : ωm → {−1,1} be such that if
ωm = + then xm(ω) = 1, and if ωm = − then xm(ω) = −1. Introduce, for each ω, the
energy U(ω)

U(ω) = −J
∑

m,n

xm(ω)xn(ω)−mH
∑

m

xm(ω) (2.2)

where m,n are neighbouring points. The assumption made here is that only neighbouring
points affect each other, and therefore only neighbouring interactions need to be consid-
ered, i.e. J = 0 for (n,m) not neighbours. The constant J characterises the type of
interaction that is in effect between the points. If J > 0 then two neighbouring points
will tend to the same spin. This case is therefore called attractive, while the other case
when J < 0 is called repulsive. The constants in the second term of equation (2.2) is due
to effects from external magnetic fields. Ising then introduced the probability measure
on Ω to be given by

p(ω) =
1

Z
exp

(

−
1

kT
U(ω)

)

(2.3)

From this we then get the model that we use in this thesis. Changing the notation a
bit and introducing different interaction constants between all pairs as well as different
external effects to all vertices yields the following expression

p(x) =
1

Z
exp





N
∑

n=1

θnxn +
∑

(n,m)∈E

θnmxnxm



 (2.4)

where θn,θnm ∈ R, E = {(n,m) : θn,m 6= 0} and Z ∈ R
+ is a normalising constant. When

testing the algorithm on this model, the parameters θn and θnm are assumed to be known,
therefore they are determined prior to any calculations.

2.3 Belief propagation

To obtain the marginal distributions of a joint distribution p(x), one can use the definition
of the marginal distribution. It is done, by summing in the discrete case (if we don’t want
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to use the Stieltjes integral) or integrating in the continuous case, the joint probability
distribution function over all possible values of the variables except the variable regarded
in the marginal distribution. For the discrete Ising model this is done in the fallowing
way

pi(xi) =
∑

x\{xi}

p(x) for i = 1,2, . . . ,N (2.5)

It can be shown, that the complexity of these calculations are proportional to O(2NN3),
which makes this method impractical with just a few variables. The dominating term
O(2N) arises from the N number of variables and the two possible states that each vari-
able can take. Comparing with a model also of N variables but with s number of states,
the complexity of finding the marginals with this brute force approach would be domi-
nated by a term O(sN), which makes the approach intractable for many states.

The BP algorithm, which is a message passing algorithm, works instead by letting the
variables, represented as vertices in the factor graph, communicate with each other by
sending information in the form of messages, which we call µm→n(xn) where xn is the
variable associated with vertex n. These messages contain the information sent by the
transmitting vertexm influencing the destination vertex n and they are sent over the edges
of the factor graph. If there is a message µm→n(xn) there is also a message µn→m(xm).
After a certain number of iterations, tmax, the incoming information in each vertex is eval-
uated and then the beliefs, i.e. the approximate marginal distributions, are calculated
based on this.

This method requires a factorisation of p(x) so that the problem can be formulated
on a factor graph. A nice property of BP is that the factorisation can be done on an
unnormalised function p̃(x) such that p̃(x)

Z
= p(x), where Z is the normalisation constant.

BP is valid for a general joint distribution p(x) of either continuous or discrete variables x,
and general factorisations. In this thesis we consider only mutual factors of two variables,
and local factors of one variable. This is the case when dealing with the Ising model, and
also for the extension to the tracking model. For further reading of belief propagation on
more general factorisations and factor graphs, please read [1] and [5]. For a discrete fac-
torised model with local factors φi(xi) and mutual factors ψmn(xm,xn), where (m,n) ∈ E
and i ∈ V according to (2.1), the message in the factor graph will be updated at each
iteration t+ 1, and the beliefs bn(xn) will be computed, in the following way

µ(t+1)
m→n(xn) ∝

∑

xm



ψmn(xm,xn)φm(xm)
∏

l∈Nm\{n}

µ
(t)
l→m(xm)



 (2.6)

bn(xn) ∝
∏

l∈Nn

µ
(tmax)
l→n (xn)φn(xn) (2.7)

In the continuous case the summation in (2.6) will be replaced by an integration. Af-
ter factorisation of (2.4), the factors in the Ising model will be φi(xi) = exp(θixi) and
ψmn(xm,xn) = exp(θmnxmxn), where (m,n) ∈ E and i ∈ V . By calculating approximate
marginals this way, we utilize a method whose complexity scales linearly as a function of
the number of variables, [12], and quadratically with the number of states each variable
can take, [13].
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2.3.1 Implementation

For all directed pairs (n,m) ∈ E a message µm→n(xn) is introduced. µm→n(xn) then
denotes a messages from node variable xm to node variable xn. This means that the
algorithm passes messages in each direction over the edges in the factor graph. These
messages are functions such that µ : {−1,1} → [0,1]. The algorithm starts at iteration
index t = 0 and then updates the messages in the graph tmax times as shown below in
equation (2.8). Also, the beliefs are then proportional to the expression on the right hand
side of equation (2.9).

µ(t+1)
m→n(xn) ∝

∑

xm



exp(θmxm + θnmxmxn)
∏

l∈Nm\{n}

µ
(t)
l→m(xm)



 (2.8)

bn(xn) ∝
∏

l∈Nn

µ
(tmax)
l→n (xn)exp(θnxn) (2.9)

Here, µ
(t)
m→n denotes the message from xm to xn at iteration t and bn denotes the belief

calculated for vertex n in the Ising model. As initial condition we set µ
(0)
m→n(xn) = 1 for

all (n,m) ∈ E.

The updating according to equation (2.8) can be done in different ways. Either all
pairs or just some pairs can be updated in each iteration, and also different pairs may
be updated each iteration. In this thesis two different updating schemes are investigated.
The first one is an updating scheme such that all the pairs in E are updated at each
iteration t. We will refer to this scheme as the flooding updating scheme and in the
results this will be denoted F . The benefit of the flooding updating scheme is that it
can be implemented in a distributed fashion, where one computational node can compute
one message, as the messages only depend on the existing information from the previous
iteration. If the letter F is written after the name of a method we mean that the flooding
updating scheme is used for the method. The other method of updating that is tested in
this thesis is to only update one message each iteration, hence always using the newest
information available at each iteration. In this case parallel computations cannot be im-
plemented, as the computation of each message requires the incoming messages to contain
information from the same iteration. Thus, this updating scheme is computed in a serial
fashion instead. When testing this method, the messages are always updated equally
many times. This method also gave the possibility to use different paths of updating
through the model, which might affect the outcome of the results. Though, throughout
our tests all the messages are updated in one cycle and in the same order, and we make
no special investigation on certain updating paths. We will refer to this as the serial
updating scheme and denote it S. If the letter S is written after the name of a method
we mean that the serial updating scheme is used for the method.

Note that in the results from using serial updating the notation tmax will be slightly
abused in the sense that tmax will denote the number of times each message has been
updated. To make the beliefs and messages obey the second axiom of probability, they
both have to sum up to 1 as explained below

∑

xn

µ(t+1)
m→n(xn) = 1 (2.10)
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∑

xn

bn(xn) = 1 (2.11)

As stated before, the beliefs will only converge to the exact probabilities every time if
the factor graph is a tree, i.e. the set E contains no cycles. For convenience, let T ⊂ E
denote the set of all (n,m) belonging to the tree structure.

2.3.2 Homotopy methods

The continuous maps p0, p1 : X → Y are called homotopic if there is a continuous map
F (x,λ) : X × Λ → Y , where x ∈ X and λ ∈ Λ = [0,1], such that p0 and p1 are continu-
ously connected through this map, i.e. F (x,0) = p0(x) and F (x,1) = p1(x) for all x ∈ X,
[14]. The map F is called a homotopy from p0 to p1. For all λ ∈ Λ there is a distribution
function pλ(x) = F (x,λ). To apply the homotopy approach to the Ising model, p0(x) is
chosen such that it is possible to compute the exact marginal distribution p0,n(xn) with
BP. When using this as a starting problem in the algorithm and iteratively increasing λ,
the problem converges to p(x) as λ→ 1. The goal of utilising homotopy is, by introduc-
ing memory in the messages between the different pλ’s, to access more information about
the model and this way decrease the error of the beliefs. Ideally, the BP algorithm will
converge to the exact marginal distributions, i.e. bλ,n(xn) → pλ=1,n(xn) as λ→ 1.

Two different homotopies are investigated in this thesis. In both cases the function
corresponding to λ = 1, i.e. p1(x), is equal to the function found in equation (2.4). In
the first case, the factor graph is grown from a tree into a full graph with cycles as λ is
increased from 0 to 1. The second case is initiated with all θnm = 0, i.e. there are no
connections at all, and then all edges are increased in a parallel sense. The corresponding
p0’s equal the following functions

p0(x) =
1

Z
exp





N
∑

n=1

θnxn +
∑

(n,m)∈T

θnmxnxm



 (2.12)

p0(x) =
1

Z
exp

(

N
∑

n=1

θnxn

)

(2.13)

Consequently, by combination of equation (2.4) and equations (2.12), (2.13) the following
equation is acquired for the homotopy from pλ=0 to pλ=1, with λ increasing from 0 to 1.

pλ(x) =
1

Z
exp





N
∑

n=1

θnxn +
∑

(n,m)∈T

θnmxnxm + λ
∑

(n,m)∈E\T

θnmxnxm



 (2.14)

The set T is the set of all (n,m) belonging to the tree of the factor graph in the first
case, but in the second case there are no edges at all at the start of the algorithm, hence
T = ∅. We will refer to the first homotopy as method T and the second as method H.
In this thesis both methods are tested with the flooding and the single updating scheme.
This yields four different homotopy methods, and in the figures in the results they will
be referred to as HF , HS, TF and TS, where the letters F and S denote the type of
updating scheme coupled with each method.
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The implementation is done by partitioning λ into K parts on the interval [0,1] such
that 0 = λ0 < λ1 < λ2 < , . . . , < λK−1 = 1 and λk = k/(K − 1), k = 0, . . . ,K − 1. To
each λk we then have a corresponding probability mass function pλk

(x). BP is then run
for each pλk

(x), hence K · tmax steps of BP are performed with tmax iterations for each λk.

This yields messages µ
(t)
m→n,λk

(xn) for all (n,m) ∈ E and for these messages we set the

initial condition µ
(0)
m→n,λ0

(xn) = 1. Equation (2.15) shows how the messages are computed
using the homotopy approach, and equation (2.16) shows what the corresponding beliefs
to each λk will be according to the homotopy-based BP.

µ
(t+1)
m→n,λk

(xn) ∝
∑

xm



exp(θmxm + θ̃nm,kxmxn)
∏

l∈Nm\{n}

µ
(t)
l→m,λk

(xm)



 (2.15)

bn,λk
(xn) ∝

∏

l∈Nn

µ
(tmax)
l→n,λk

(xn)exp(θnxn) (2.16)

where

θ̃nm,k =

{

θnm , if(n,m) ∈ T

λkθnm , if(n,m) ∈ E\T
(2.17)

When increasing λ the messages are set such that µ
(0)
m→n,λk+1

(xn) = µ
(tmax)
m→n,λk

(xn). As
mentioned before, messages are only introduced between nodes where there is a nonzero
connection, i.e. a nonzero θmn and in this case a nonzero θ̃mn,k. When implementing the
homotopy method there is no need to introduce messages for the pairs (n,m) /∈ T during
iterations on λ0, since the constants θnm,k would then be zero for the pairs (n,m) ∈ E\T
according to equation (2.17). The implementation could then be done such that messages
are introduced only for the pairs (n,m) ∈ T when running the algorithm for λ0 and as λ is
gradually increased to λ1, new messages for the pairs (n,m) ∈ E\T with initial condition

µ
(0)
m→n,λ1

(xn) = 1 are introduced. But the same result is also achieved by introducing

messages for all pairs (n,m) ∈ E even for λ0 with initial condition µ
(0)
m→n,λ0

(xn) = 1.

2.3.3 Reweighted methods

Another variational method to compute the marginals is to use a family of reweighted
message-passing algorithms. These algorithms might solve some of the convexity issues
that arise when a graph contains cycles, and have been shown to have better convergence
properties in some cases, [10]. We acquire this family of tree-reweighted algorithms by
introducing weights ρ = {ρ0,ρ1, . . . ,ρM}, where M is the number of nonzero interactions
in the graph, and each ρi is paired with one of the interaction parameters θmn. We also

divide the incoming messages to vertex m by
(

µ
(t)
n→m(xm)

)1−ρ

, [15]. But, to avoid the

high-dimensional optimisation problem over ρ we impose a restriction to a fixed ρi = ρ ∀i,
as suggested in [16]. Hence, this message passing algorithm is called uniformly reweighted
belief propagation (URW-BP).

The implementation of URW-BP requires some modifications of the original BP algo-
rithm. The inference calculations are done instead according to the following updating
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equations for the messages and the beliefs.

µ(t+1)
m→n(xn) ∝

∑

xm






exp(θmxm +

1

ρ
θnmxmxn))

∏

l∈Nm\{n}

(

µ
(t)
l→m(xm)

)ρ

(

µ
(t)
n→m(xm)

)1−ρ






(2.18)

bn(xn) ∝
∏

l∈Nn

(

µ
(tmax)
l→n (xn)

)ρ

exp(θnxn) (2.19)

Here ρ is a constant that should be chosen between 0 and 1. Note that ρ = 1 corresponds
to the original BP algorithm. The theory says that there exists a value of ρ < 1 that
gives a better approximation of the marginals than the original algorithm. This optimal
ρ can be approximated as ρ∗ ≈ |V |−1

|E|
, where |V | is the number of the vertices in the graph

and |E| is the number of edges in the graph, [15].
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Chapter 3

Monte Carlo simulations on Ising

models

BP was implemented to calculate the beliefs of the Ising models on a factor graph structure
using MATLAB. The implementation of the homotopy method was done by creating a
vector of values in MATLAB to represent a partition of λ, and a similar approach was
done to implement the URW-BP. For generation of tree graphs in the homotopy approach,
an algorithm generating random tree graphs was created. To test the performance of
the algorithms, a sequence of Monte Carlo simulations were done on the two model
parameters θn and θmn. Tests were made in both “normal-” and log-domain, to ensure
that the numerical issues that could arise from the software would not affect the results.
When generating random sets of the parameters θmn and θn, MATLAB’s random number
generator rand() was used. The plots depicting the results provided by the computations
were all produced by the plot functions plot(), semilogy() and contourf() embedded
in MATLAB.

3.1 Measure of performance

To measure performance of the computed approximate marginal distributions in relation
to the true marginals the Kullback-Leibler divergence was used. This is a probability
distance from the distribution b(x) to the distribution p(x) defined by the following ex-
pression

DKL(b||p) =
∑

x

b(x)log
b(x)

p(x)
(3.1)

where b(x) and p(x) are probability mass functions. With this measure the distance in
probability from the beliefs to the exact marginals can be computed. This measure was
visualized by averaging over all nodes, the KL divergence from each node to its respective
true marginal.

Other measures used to test the performance include the bit error- and the word er-
ror rates. From both the true marginals and the beliefs the most likely state of a variable
can be computed. If this state is not the same in the true marginals as in the beliefs for a
variable this gives a bit error. The number of incorrect bits divided by the total number
of bits in a sequence is then defined as the bit error rate. If one or more bit errors are
detected, then the method used generated a word error, i.e. the word error is one if at
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least one state for a variable is different in the beliefs and the true marginals, and zero
if all the states are the same. The number of trials producing word errors divided by
the total number of trials is then the word error rate. Both the KL divergence, the bit
error rate, and the word error rate were measured on all the methods in the simulations.
For the computation of the KL divergence, the logarithmic operator with the base 2 was
used.

3.2 Simulations

To generate the results Monte Carlo simulations of the model were performed. In the
simulations Ising models of 9 variables were used to make it easy to compute the exact
marginals with the brute force approach, and hence made it possible to compute the er-
ror of the beliefs with respect to the exact marginal distributions. The simulations were
performed with all pairwise connections nonzero, i.e. the set E contained all pairs in the
square Ising model.

The goal of the simulations was to find out for which types of Ising models a certain
method performed well and evaluate which method that gave the best results according
to bit error, word error and KL divergence measures. For the homotopy methods the goal
was to find out how to choose K, the number of partitions of λ, and tmax, the number
of iterations to run the BP algorithm for each λ, to achieve the best results. For the
URW-BP the goal was to find the ρ which gave the best result and compare this to the
theory. Also common for the modifications to BP, we wanted to find cases where they
outperformed the original algorthm.

To investigate how the algorithms would behave in different cases, four different types
of distributions were distinguished between, from which the parameters θmn and θn were
generated.

• Distribution 1

Both θnm and θn were chosen uniformly from 40 different equally spaced values in the
interval [-4,4], which then yielded a total of 1600 trials. Distribution 1 yielded the
most simple set of probability distributions from which the parameters θn and θnm
were drawn in our tests. These tests served as a first hint of how the relation between
the strength (magnitude) of the local information θn and the mutual information
θnm affected the error of the beliefs with respect to the true marginals.

• Distribution 2

θnm = 10, ∀ (n,m) ∈ E, while each θn = ±10 with +10 and −10 appearing
with equal probability. A total of 1500 trials were made using this distribution.
The second distribution from which the model parameters were generated, can be
described in an intuitive and slightly näıve way as a case when some of the variables
are very confident in being −1 and some being very confident in being +1, but the
mutual parameters θnm are trying to force everyone to the same value (be it −1 or
+1). This effect is achieved by letting the magnitude of all values, i.e. |θn|, of the
parameters be equal to a large number, in our case we choose 10, but with different
signs. Then, we let θnm be of equal magnitude, but always positive, to make it
enforce uniform values over the whole model. The purpose with tests from this
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distribution was to generate cases when the BP algorithm almost always failed, and
see if the homotopy or reweighted methods could improve the performance.

• Distribution 3

θn = 10, ∀ n, while each θnm = ±10, ∀ (n,m) ∈ E, with +10 and −10 appearing
with equal probability. A total of 1500 trials were made using this distribution. To
interpret Distribution 3 in the same sense as we did Distribution 2, this means that
the variables had very strong opinions about the local value being +1, but also a
strong opinion about the neighboring node variables since |θnm| was quite large for
all interactions (n,m) ∈ E. The mutual parameters θnm were either +10 or −10,
which means that some parameters tried to enforce opposite signs while others tried
to enforce same signs between two nodes. As with the tests on distribution 2, these
tests aimed at finding scenarios where the homotopy or reweighting methods could
exceed the performance of the standard BP algorithm.

• Distribution 4

Each θnm = Z, θn = Z where Z is a random variable Z = XY , and where in turn
X was a continuous random variable such that X ∈ U(3,4) and Y was a discrete
random variable of the Rademacher distribution. 1500 trials of this distribution
were tested. The fourth and last case which was investigated was also the most
general case studied. The variables could have any local information about the
sign, and also different magnitude, while the mutual information could be either
repulsive or attractive with varying magnitude.

3.3 Results

θ
n

θ nm

BPF

 

 

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

A
vg

. K
LD

 [l
og

]

−30

−25

−20

−15

−10

−5

0

(a)

θ
n

θ nm

BPS

 

 

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

A
vg

. K
LD

 [l
og

]

−30

−25

−20

−15

−10

−5

0

(b)

Figure 3.1: Plots of the average KLD in loge scale for the belief propagation algorithm with
the flooding updating scheme in figure (a) and the serial updating scheme in figure (b). Here
tmax = 100 for both the flooding and serial updating schemes. The data to generate the contour
plots originates from computations on generated values from distribution 1.

A smaller study of the convergence rates of the BP and its variations for the Ising
model was made. We found that in the convergent cases of the BP algorithm, the serial
updating scheme seemed to converge faster than the flooding. In these cases less than
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Figure 3.2: Figures (a), (b), (c) and (d) show plots of the average KLD in loge scale for all the
homotopy methods with the flooding and the serial updating scheme. K = 100 and tmax = 1
for all homotopy variations of BP. These figures shows computations for distribution 1.

tmax = 100 iterations were required for BP with flooding updating while only around 50
iterations were required for the serial updating to obtain convergence in the beliefs. The
URW-BP was in these cases also shown to converge faster than the standard BP. The
choice of K, the partitions in λ for the homotopy methods, and the balance between K
and tmax, seemed to have quite a low dependence on the results. In the convergent case of
BP, as for the standard BP a total of around 100 iterations were needed for convergence of
the homotopy variations of BP. Thus the only requirement for convergence in the beliefs
was to choose K and tmax such that K · tmax & 100. For the cases of convergence to
wrong solution and periodic beliefs, no combination of K and tmax seemed to be able to
fix this problem or improve the performance. For simplicity, all methods were simulated
with 100 iterations in total.

All in all, when using modifications of the BP algorithm, the message updating method
(flooding or serial) seems to have less importance than in the standard BP algorithm.
This was true for all distributions in the simulations on the Ising models. For the ho-
motopy modification, it seems that the choice of starting structure of the factor graph is
influencing the result in a more distinguishable way. The curves plotted in (3.4a), (3.5a)
and (3.6a) show quite different characteristics of the HS, HF curves and the TS, TF
curves.
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Note that even though word error rates are mentioned in the text, the plots of this
particular performance measure look almost the same as those for the bit error rate,
apart from the scale. Therefore, we choose to exclude these plots from the report, but
nonetheless tests comparing the word error rates were performed and are thus mentioned
in the text.

3.3.1 Results from simulations on Distribution 1

As can be seen below in figures (3.1a), (3.1b) and (3.2a)-(3.2d), the attractive case of
θnm gives good results, since it agrees well with what the local parameters θn say about
the variables. It can also be established that when θn approaches 0, which means little
or no local information about the variables, this yields almost always a bad result from
the algorithm. A third important observation that can be made is that as θnm gets
more repulsive, this increases the disagreement with the local parameter θn, and hence
the performance of the BP algorithm decreases. This happens since θn in this case is
uniform, and considers all variables to be either −1 or 1, which contradicts the repulsive
information in θnm. What we can see regarding the different methods, is that the original
BP coupled with a flooding updating scheme is the method that performs worst. The
original BP with serial updating and all the four different homotopy methods perform
almost equally well. From figure (3.3a) we can see that the URW-BP seems to improve
the correctness of the beliefs where the other methods fail. Note also that the transition
between the good and the bad cases in figure (3.1a) and (3.1b) are quite sharp, hence we
can really make a distinction between the two. Worth mentioning for this distribution is
that all the homotopy methods with both updating schemes and the standard BP with
the serial updating scheme give zero bit error in all trials, while the standard BP with
the flooding updating gives an average bit error of 16% over all trials.
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Figure 3.3: Figures (a) and (b) show the KL divergence in log10 and the bit error rate in [%]
respectively, for the URW-BP with respect to the parameter ρ. The figures also show results
for both updating schemes with tmax = 100. These are average plots over all 1600 trials from
distribution 1.
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Figure 3.4: Figures (a) and (c) show the average KL divergence in log10 scale and the average
bit error rate in [%] respectively, for all the homotopy methods with both the flooding and the
serial updating scheme. The performance measures are plotted with respect to the homotopic
parameter λ . Figure (b) and (d) also show the KL divergence in log10 and the bit error rate
in [%] respectively, but for the URW-BP with respect to the parameter ρ. These figures also
show results for both updating schemes. Here tmax = 100 for both the standard BP and the
URW-BP with flooding and serial updating, while K = 100 and tmax = 1 for all the homotopy
variations of BP. These are average plots over 1500 trials from distribution 2.

3.3.2 Results from simulations on Distribution 2

As figure (3.4a) shows, the serial updating scheme outperforms the flooding updating
scheme for the original BP in terms of KL divergence again, as in the trials from distri-
bution 1. Regarding the four different homotopy methods, none of the implemented ho-
motopy algorithms performs better than the original BP with serial updating in terms of
KL divergence. But, as we can see in figure (3.4c), the bit error rates improve with all the
homotopy methods compared to the standard BP algorithms, although only marginally.
When testing the URW-BP on this distribution, the results are by far the best in the
sense of KL divergence. Though, in figure (3.4d) depicting the bit error rates for the
reweighted methods, we notice that a lower average KLD does not always correspond to
a lower average bit error rate.
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Figure 3.5: Figures (a) and (c) show the average KL divergence in log10 scale and the average
bit error rate in [%] respectively, for all the homotopy methods with both the flooding and the
serial updating scheme. The performance measures are plotted with respect to the homotopic
parameter λ . Figure (b) and (d) also show the KL divergence in log10 and the bit error rate
in [%] respectively, but for the URW-BP with respect to the parameter ρ. These figures also
show results for both updating schemes. Here tmax = 100 for both the standard BP and the
URW-BP with flooding and serial updating, while K = 100 and tmax = 1 for all the homotopy
variations of BP. These are average plots over 1500 trials from distribution 3.

3.3.3 Results from simulations on Distribution 3

The results obtained from the simulations (figures (3.5a)-(3.5d)) suggest that the standard
BP with flooding updating is worse than all the homotopy methods and BP with serial
updating in KL divergence. The four homotopy methods seem to tend towards the same
error as the standard BP algorithm with serial updating, but especially the HF and the
HS methods have a distinguishable minimum somewhere in a neighbourhood of λ = 0.75
which outperforms the serial BP algorithm. From the results we observe that the URW-
BP cannot handle these kinds of Ising models, as it provides no distinguishable better
solutions in any of the performance measures. Overall, none of the methods perform
particularly well for these Ising models. In addition, the methods do not only converge to
the wrong solution, but in some cases they fail to converge all together, as we observed
several configurations which resulted in periodic beliefs with respect to the iteration index.
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Figure 3.6: Figures (a) and (c) show the average KL divergence in log10 scale and the average
bit error rate in [%] respectively, for all the homotopy methods with both the flooding and the
serial updating scheme. The performance measures are plotted with respect to the homotopic
parameter λ . Figure (b) and (d) also show the KL divergence in log10 and the bit error rate
in [%] respectively, but for the URW-BP with respect to the parameter ρ. These figures also
show results for both updating schemes. Here tmax = 100 for both the standard BP and the
URW-BP with flooding and serial updating, while K = 100 and tmax = 1 for all the homotopy
variations of BP. These are average plots over 1500 trials from distribution 4.

3.3.4 Results from simulations on Distribution 4

In figures (3.6a)-(3.6d), we can see the results for this more general set of Ising models.
The observed solutions of the homotopy methods produce a smoother error function with
respect to λ. In this set up, all the proposed homotopy variations to the standard BP
algorithm perform slightly better than the original algorithm. The URW-BP performs
better in the sense of bit error but provides no better solutions than the original algorithm
in KL divergence. Similarly to distribution 3, the URW-BP has trouble of handling these
Ising models. Worth noting is that we again observe minima for the homotopy methods
in the interval λ ∈ (0,1). Also similarly to the simulations on distribution 3, we again
observe the periodic beliefs for several cases of the values of the model parameters.
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3.4 Discussion

In many applications where the BP algorithm is used, it is important to be able to imple-
ment the algorithm in a distributed fashion. To do that, the flooding updating scheme
has to be used. This seems to restrict the performance of such a system, as we have
seen that the serial updating scheme performs better in most cases compared to a BP
algorithm with flooding updating. The fix might be to implement either homotopy or
reweighting modifications to the algorithm. They perform equally well, and sometimes
even better than the BP algorithm with serial updating, and they have the advantage
that they can be constructed as distributed algorithms. But, as we have seen it would
be preferred to use the URW-BP method, as it seems to be the best performing method
for distribution 1 and 2 among those tested in this thesis. Even though the homotopy
methods showed to slightly improve the performance for distribution 3 and 4, no method
suggested in this thesis seemed to improve the performance in a distinguishable way when
comparing to the standard BP for these distributions.

Another issue that originates from applications concerns the choice of ρ for the URW-BP
method. It is not feasible to search for the optimal ρ as was done in the simulations,
since this would increase the complexity a lot and it would also require the exact solu-
tion. Instead the approximation presented in Section (2.3.3) should be used in practical
problems utilising URW-BP. According to this equation the optimal value of ρ for the
Ising model tested in this thesis would be ρopt ≈

|V |−1
|E|

= 9−1
12

≈ 0.667. From the simula-
tions on distribution 1 and 2 we can see that this value of ρ gives a very good result in all
measures, and for distribution 1 we notice from the simulations that the optimal value of
ρ in KL divergence is somewhere around 0.67. This value of ρ also gives a good result in
the bit error for distribution 1, so the test seems to confirm the theoretical derivation.

It should also be considered that the KL divergence does not always fit all applications’
need for a good performance measure. For applications using binary models like the Ising
model, it would perhaps be more interesting to look at bit error rates and word error
rates. An interesting observation that we made was that a lower KL divergence does
not always correspond to a lower bit error or word error rate. This could probably be
explained by the decisional nature of the measure when the approximations and the true
marginals lie close to a probability of 0.5 for both states. This could cause bit errors, but
the probability distance would not be large between the two. On the other hand, assume
that one of the approximated bits is very far off, say probability almost 1 for one state,
when the true bit is almost surely the other state. Then the probability distance between
the approximation and the exact solution would be quite large but result in just one bit
error anyhow. Future work in investigating belief propagation and other message pass-
ing methods on the Ising model should include tests for larger networks and also other
structures than a square, e.g. toroidal structures. Also, the periodicity of the solutions to
some models should be explored. Perhaps some kind of damping is needed in the system
to evade the instability issues in the estimation.

3.5 Conclusion

We have seen that it is possible to improve the performance of the standard BP algorithm
by means of the investigated modifications. Especially interesting is the results from
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distribution 1, where the URW-BP seems to be an appropriate choice of modification. It
is interesting because this distribution could be directly related to the tracking model,
and hence, these alternative reweighted algorithms could hopefully improve the results
of BP also in the tracking problem application. The homotopy-based message-passing
algorithms on the other hand did not perform as well as we hoped. The only case where
they performed best was distribution 4 but the difference was almost insignificant. There
is a downside however with this case, since there are cases where the solution is periodic
and little could then be said about the quality of the solution. Also, the best solution was
not obtained by letting λ increase to 1, but there were minima for other values less than
1, which also makes determining the quality of the solution more difficult. Future work
concerning the homotopy methods should include investigation on finding the optimal λ,
as in the case with the URW-BP where there is an optimal value of ρ. Success in finding
some sort of theoretical derivation of this could improve the performance of the HF and
HS methods for Ising models of distribution 3 and 4, to make them outperform standard
BP. Perhaps the homotopy algorithms could even be modified to make the decreasing
trend in the error continue until λ = 1, and not stop and turn upwards again as it does
in our case, and thus make them perform even better.
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Chapter 4

The tracking problem

4.1 Problem description

Suppose that there is a joint probability mass function p(x|z) with a possible factorisation
according to the following equation

p(x|z) ∝
∏

(n,m)∈E

p(xn|xm)
N
∏

i=1

pi(zi|xi)pi(xi) (4.1)

where x = (x1,x2, . . . ,xN), z = (z1,z2, . . . ,zN) and E is the set of pairs (n,m) with a
nonzero mutual factor p(xn|xm). This factorisiation can be interprated as a factor graph
with x representing the variable vertices, z representing the local parameters and the set
E corresponding to edges of the factor graph.

Let now each sensor in a network be represented by a vertex m in the factor graph
and let the Gaussian measurement of a target position from said sensor be represented
by the corresponding zm. Also consider the communication routes over the network as
the edges E. We define the domain Ω as the area covered by the sensor network and let
the position of the target be a specific point in Ω. By letting the sensors take noisy dis-
tance measurements to the target and apply message-passing between each other, beliefs
for each sensor of where the target is can be computed by belief propagation. We define
pm(zm|xm) as the unnormalised likelihood function of the measurement zm from sensor
m which yields that

pm(zm|xm) = exp(−
1

2σ2
(‖xm − sm‖ − zm)

2)

Here sm is the known position of sensor m and σ2 is the variance of the noise in the
sensor measurements. pm(xm) is the prior distribution of xm, i.e. it is the prior knowl-
edge of where the target is located according to sensor m. We also let p(xn|xm) be an
unnormalised Gaussian distribution of the variable xn given xm such that

p(xn|xm) = exp
(

−α‖xn − xm‖
2
)

This corresponds to a Gaussian distribution N (xn; Σ,µ) with covariance matrix Σ =
[

1/2α 0
0 1/2α

]

and mean µ = xm, up to some normalisation constant.
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Now let us introduce a grid on Ω. We then define xn = (xn,1,xn,2) to take values on
the grid points so that the belief bn (xn = (y1,y2)) is the approximated probability ac-
cording to sensor n that the target is located on the grid point (y1,y2). This means that
for R number of grid points the variables can assume R number of coordinate pairs. The
message updating and the construction of the beliefs can then according to (2.6) and
(2.7) be done as follows

µ(t+1)
m→n(xn) ∝

∑

xm



exp
(

−α‖xn − xm‖
2
)

pm(zm|xm)pm(xm)
∏

l∈Nm\{n}

µ
(t)
l→m(xm)



 (4.2)

bn(xn) ∝
∏

l∈Nn

µ
(tmax)
l→n (xn)pn(zn|xn)pn(xn) (4.3)

In this model α can be interpreted as a constant that weights the interacting informa-
tion. The message µm→n(xn) can be regarded as a probability distribution over xn and
the value of xn that maximises this distribution is the most likely position of the target
according to the information sent from node m to n. As the term exp (−α‖xn − xm‖

2) is
maximised when the variables xn and xm are the same, the variables are forced to be the
same if α is positive, while a negative value will force them to be different and maximise
the euclidean distance between them. A high positive value of α would force the nodes
to agree more than a low value. If it is of high priority to have a strong agreement among
the nodes α should be chosen to be equal to a large value. Similarly, the value of the noise
or variance σ2 weights the local information. As the term exp(− 1

2σ2 (‖xm − sm‖ − zm)
2)

is maximised when xm takes values of the coordinates that lies on a circle with centre at
position sm and radius zm, a positive value of σ2 wants to push the variable xm close to
the measured radius around the sensor while a negative value will push the variable xm
away from the measured radius. A low positive value of σ2 would force the variables to be
close to the measured radius more than a high value. An interpretation of this is that a
low positive value of σ2 would make the algorithm depend more on the local information
than a high value which will dampen this affect. Comparing with reality this says that
the information from the measurement should be taken into account dependent on the
noise and hence the reliability of the measurement.

A negative variance would not make a normalisation possible for the function pm(zm|xm)
such that it sums up to one over all xm if xm ∈ R

2 since pm(zm|xm) would not be bounded.
pm(zm|xm) could then not be constructed to satisfy the definition of a probability dis-
tribution function. However, when a grid is considered, the finite number of grid points
makes this possible and the implementation could theoretically be made. The same ar-
gument follows for p(xn|xm) when considering a negative α. Negative values of α and
σ2 would only be of interest in a pedagogical point of view, but not in the sense of the
tracking problem since the variance is defined to be positive and the idea is to force the
nodes to agree and push the variables close to the measurements in an optimal balanced
way.

Notable is that α can be related directly to the constant θnm in the Ising model while
the term 1/σ2 relates to the constant θn. The relation between α and σ controls the pro-
portions between the weighting of the local and interacting information in the tracking
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model comparable to the relation between θn and θnm in the Ising model. Consider also
the reweighted algorithm for the tracking problem

µ(t+1)
m→n(xn) ∝

∑

xm






exp

(

−
α

ρ
‖xn − xm‖

2

)

pm(zm|xm)
∏

l∈Nm\{n}

(

µ
(t)
l→m(xm)

)ρ

(

µ
(t)
n→m(xm)

)1−ρ






(4.4)

bn(xn) ∝
∏

l∈Nn

(

µ
(tmax)
l→n (xn)

)ρ

pn(zn|xn) (4.5)

The tracking model, similarly to the Ising models, gives opportunities to test different
approaches on the implementation of the belief propagation algorithm. Also different
updating schemes and graph structures can be tested. Parameters to explore is ρ,α, σ and
tmax. As this method is implemented only in a theoretical environment there is an optimal
solution to compare with. By multiplication of all the measurement likelihoods and all
the priors from the nodes the optimal solution can be obtained. More mathematically
this can be shown by first using Bayes’ rule

p(x|z1,z2, . . . ,zN) =
p(z1,z2, . . . ,zN |x)p(x)

p(z1,z2, . . . ,zN)
∝ p(z1,z2, . . . ,zN |x)p(x) (4.6)

where p(x|z1,z2, . . . ,zN) is the optimal belief which is the probability of the target position
x given all the measurements zi for i = 1, . . . ,N . Similarly p(z1,z2, . . . ,zN |x) is the
likelihood of all measurements given the target position x and p(x) is the prior distribution
of x. Then by using the fact that the measurement likelihoods are independent, this can
be rewritten as

p(x|z1,z2, . . . ,zN) ∝ p(x)
N
∏

i=1

p(zi|x) (4.7)

Since the total prior p(x) is the product of all priors pi(x) for the nodes i = 1, . . . ,N , i.e.
p(x) =

∏N

i=1 pi(x), this expression can be further rewritten to finally obtain the desired
result

p(x|z1,z2, . . . ,zN) ∝
N
∏

i=1

p(zi|x)pi(x) (4.8)

In practice when considering large networks with constrained communication and uncer-
tain position knowledge among nodes it would not be possible to estimate the position
in this way since “someone” has to know all the positions and the measurements of the
nodes to perform the operation in equation (4.8). However, since the tests in this thesis
are done only theoretically all the node positions and measurements are known. Thus the
optimal belief p(x|z1,z2, . . . ,zN) serves as the exact solution when evaluating the message
passing methods.

4.2 Prediction

If no prior information is available then pm(xm) will be a uniform distribution over all
grid points represented by a constant that will fall out of the equations. Another possible
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way of using the prior tested in this thesis is to assume a known model of the target’s
movement. Let us introduce the notation xτn for the variable xn at time stamp τ . Then
the belief from the previous time stamp τ − 1 can be used to predict the prior for the
current time stamp τ according to the Markov property

pn(x
τ
n) =

∑

xn
τ−1

p(xτn|x
τ−1
n )pn(x

τ−1
n )

Then as pn(x
τ−1
n ) we will use bn(x

τ−1
n ) and p(xτn|x

τ−1
n ) will be the assumed model of

the movement. Thus we will obtain one prior pn(xn) for each node n. This means that
we will use the belief from each node to predict its individual prior in the next time stamp.

Let us introduce the index notation (i,j) for a pair of coordinates on the grid on Ω
and assume R number of grid points. A simple random walk method is to only let
the target move one grid point in vertical or horizontal direction with equal probability.
Then the probability that the target moves from the coordinate (i,j) to either (i,j ± 1)
or (i ± 1,j), if (i,j) is not on the boundary of Ω, is P (Xt+1 = (i,j ± 1)) = 1/4 or
P (Xt+1 = (i± 1,j)) = 1/4 respectively. Then it must also follow that P (Xt+1 /∈ NS) = 0,
when NS = {(i,j±1), (j,i±1)}. With the same argument we can derive the probabilities
for the case when (i,j) is on the boundary of Ω. A prior prediction distribution p(xτ |xτ−1)
satisfying these properties is tested and evaluated in this thesis. p(xτ |xτ−1) is used to
generate target positions in a series of movements and the priors pn(x

τ
n) are used in the

implementation to predict the movement.

4.3 Method

Investigations on the flooding and the serial updating schemes were made and the stan-
dard BP and the URW-PB were tested on a tree graph and and a loopy graph. The
relation between the parameters σ and α was analysed and related to the parameters θnm
and θn in the Ising model. The performance of the methods was evaluated for both updat-
ing schemes and both graph structures as a function of tmax, α and ρ, to test convergence
rates and model parameter dependences. To get an even more expositive analysis of the
model, the methods were tested and evaluated both with a known movement model of the
target and with no prior information of the location. By performing these tests, the hope
was to find the set of parameters and method that optimised the performance and anal-
yse the convergence of the standard BP and the URW-BP. Similarly to the simulations
on the Ising model, the simulations for the tracking model were done by generating 10
measurements of the same target location and the performance measures were averaged
over these trials. To assess the methods, three measures of performance were determined.

4.4 Measure of performance

• Distance to optimal performance

By this we mean, for one node, the probability distance from its belief b(x) to
the optimal belief popt(x). This measure was computed by the KL divergence as
DKL(b||popt). In the results we present the average over all nodes, the KL divergence
from each belief to the optimal belief. The optimal belief was computed according
to equation (4.8).
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• Disagreement of the nodes

This was evaluated by the average of the KL divergence between all nodes pairwise.
The KL divergence between two nodes n and m was defined as DKL(bn||bm) +
DKL(bm||bn)

• Accuracy of the nodes

This was computed, for one node, by the euclidean distance between the expected
value of the coordinate x according to its beliefs b(x) and the expected value of x
according to the optimal belief popt(x), i.e ‖Epopt [X] − Ebn [X]‖, where Epopt [x] =
∑

x popt(x)x and Ebn [x] =
∑

x bn(x)x. In the results we present the average over all
nodes, the euclidean distance from each belief to the optimal belief. Also here, the
optimal belief was computed according to equation (4.8)

4.5 Implementation

In the simulations, a square area of 10 by 10 meter is used as domain Ω, and as sensor
network, one sensor is placed in each corner of the square. This yields a network of 4
sensors that can communicate through message passing. Ω is discretised into 400 equally
spaced grid points which the variables can assume. The measurements zm is generated
as zm = ‖sm − pexact‖+N (0,σ2), where pexact is the exact position of the target assumed
unknown to the model. pexact is placed on one of the grid points.

Consider the network represented by a graph G = (V ,E), where V is the set of nodes
and E is the set of edges. The edges E correspond to the possible communication links
pairwise between the nodes V . As mentioned above the set V contains 4 nodes. Let E
be a set of edges that form a loop around Ω. Then the methods are tested for the graphs
G1 = (V ,E) and G2 = (V ,T ), where T is a subset of E such that one edge is removed
and hence G2 corresponds to a tree. We will refer to G1 as the loopy graph and G2 as
the tree graph.

The implementation of the tracking model was done in MATLAB and all the plots de-
picting the results were produced by the plot functions semilogy() and contourf().
When generating target measurements with normal distributed noise, MATLAB’s ran-
dom number generator randn() combined with a seed function was used to generate the
same normal distributed measurement noise for each set of model parameters. The com-
putations were done in log-domain to make the implementation possible due to numerical
issues. Vectors of the the model parameters α, ρ, σ and tmax were created to search for
optimal performance and make it possible to evaluate and analyse the methods. The mes-
sages, the beliefs and the functions in the message updating and in the belief construction
equations were implemented as matrices, where each element represented a position in the
grid and hence a variable state. When multiplying these, pointwise matrix multiplication
was used.

4.6 Results

From the simulations done on the tracking model, we conclude that both the standard
BP and the URW-BP modification give the exact same results for the flooding updating
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Figure 4.1: These figures show the distance to the optimal performance and the disagreement
of the nodes as a function of α and 1/σ2. Here, tmax = 60. These are average plots of 10 target
measurements.
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Figure 4.2: The above plots are all three performance measures as a function of ρ for the
URW-BP algorithm. The standard BP, which is equal to to URW-BP for ρ = 1, can also be
seen from these figures. tmax = 60, α = 20 and σ = 0.5. These are average plots of 10 target
measurements.

scheme as well as the serial updating scheme. Therefore, no distinction will be made
between the two, and there is no reason to present results from both nor to know which
updating scheme the plots were generated from.

In figure (4.1a) and figures (3.1a)-(3.1b) we can clearly see how the parameter α and
the term 1/σ2 in the tracking model relate to θnm and θn in the Ising model, due to the
similarities in the figures. Figure (4.1a) would correspond to the upper right quadrant
where θnm ≥ 0 and θn > 0 in figures (3.1a) and (3.1b). The disagreement of the nodes
can also be seen in figure (4.1b). Since it is desirable to make the nodes agree well and we
would like a guarantee of convergence, the results presented here are done with α = 20
and tmax = 60 when these parameters are fixed. These settings have shown to meet this
demand in the simulations.

Figures (4.2a)-(4.2c) show that the URW-BP on a loopy graph provides approximately
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Figure 4.3: The above plots are all three performance measures as a function of tmax for the
URW-BP algorithm and the standard BP on a loopy graph. α = 20 and σ = 0.5. These are
average plots of 10 target measurements.
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Figure 4.4: The above plots are all three performance measures as a function of tmax for the
URW-BP algorithm and the standard BP on a tree graph. α = 20 and σ = 0.5. These are
average plots of 10 target measurements.
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Figure 4.5: The above plots are all three performance measures as a function of α for the URW-
BP algorithm and the standard BP on a loopy graph. tmax = 60 and σ = 0.5. These are average
plots of 10 target measurements.

the same minimum distance to the optimal performance as the standard BP on a tree
graph. Important for the reader to know here is that the standard BP is the same as
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Figure 4.6: The above plots are all three performance measures as a function of α for the URW-
BP algorithm and the standard BP on a tree graph. tmax = 60 and σ = 0.5. These are average
plots of 10 target measurements.
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Figure 4.7: These figures shows all the performance measures for the standard and URW-BP
algorithm, with and without prediction, for both tree and loopy graph. tmax = 60, α = 20 and
σ = 0.5.

the URW-BP for ρ = 1. However, this minimum is sharp around ρ = 0.75 and hence
this performance measure is sensitive with respect to the parameter ρ. This indicates the
importance of a correctly chosen ρ in the sense of minimising the distance to the optimal
performance. In the accuracy of the nodes there is an interval of 0.7 . ρ . 0.85 that
gives better performance for the URW-BP on a loopy graph than the standard BP on a
tree graph. This minimum, also centered around ρ = 0.75, is less sharp and the curve
is more flat which means that the accuracy of the nodes is less sensitive with respect
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to the parameter ρ when comparing to the distance to optimal performance. Though
in the sense of the disagreement when comparing the URW-BP on a loopy graph and
the standard BP on a tree graph, the only requirement to obtain a value better in the
reweighted case would be to chose ρ & 0.05. The value that optimises the performance in
the distance to the optimal performance and the accuracy of the nodes, when the URW-
BP on a loopy graph is considered, is ρ = 0.75. This value does not give the best possible
result in the disagreement, nonetheless the results are still satisfying when comparing
to the disagreement of the standard BP on a tree graph. Notable is that the URW-BP
performs worse than the standard BP for almost all ρ with respect to the distance to
the optimal performance and the accuracy of the nodes when a tree graph is considered
for both, and better for almost all ρ when a loopy graph is considered for both. This
makes sense as the URW-BP is constructed to improve performance on loopy graphs [17].
The disagreement, though, is better in the URW-BP for almost all ρ for both graph types.

Figures (4.3a)-(4.3c) and (4.4a)-(4.4c) support the statement that the URW-BP con-
verges to equally or slightly better values on a loopy graph than the standard BP on a
tree graph for ρ = 0.75. From these figures we can do a convergence study and conclude
that the standard BP provides an extremely fast convergence rate in all measures when
the tree graph is considered. For the loopy graph the URW-BP with ρ = 0.75 has a slightly
slower convergence rate in the distance to optimal performance and in the accuracy of
the nodes compared to the other reweighted methods which have approximately the same
convergence rate. In the disagreement we notice higher convergence rate for higher val-
ues of ρ when the loopy graph is considered and the standard BP is obviously the slowest.

In figures (4.5a)-(4.5c) and (4.6a)-(4.6c) we can study the dependence of the performance
with respect to α and notice similar results. The figures show how the URW-BP meth-
ods on a loopy graph improve the distance to the optimal performance and the accuracy
of the nodes for higher values of α, and that the URW-BP always gives best result in
the disagreement measure. Figures (4.7a)-(4.7c) also show that the URW-BP on a loopy
graph and the standard BP on a tree graph give the best results when the prediction
model outlined in the prediction section (4.2) is used.

4.7 Discussion

When standard BP is applied to both the tracking model and the Ising model, it performs
best when applied to a tree graph. On a loopy graph the URW-BP is shown to improve
the performance in most cases tested for the Ising model and in all cases tested for the
tracking model. Ising models from distribution 1, which is the closest related Ising model
to the tracking model, show the same improvements under the effect of reweighting as
the tracking model. These similarities can also be seen in Ising models from distribution
2. The results also confirm a relation between the both model parameters that supports
the theory outlined in the problem description section (4.1).

In the tracking model, a desirable property of the URW-BP on a loopy graph is that
it allows for a high value of α without lack of performance in the distance to optimal
performance and the accuracy of the nodes, in contrast to the standard BP. This enables
strong agreement among nodes and in this thesis the URW-BP is shown to always give
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the best agreement on both graph types. The simulations also show that the URW-BP
on a loopy graph performs at least as good as the standard BP on a tree graph, when the
small network tested in this thesis is considered and if ρ is set correctly. The theoretical
value of ρ that minimises the error, ρopt ≈

|V |−1
|E|

= 4−1
4

= 0.75, as described in section

(2.3.3) agrees very well with the observed optimal value which is also ρ ≈ 0.75.

An important property of the tracking model is that the flooding and the serial up-
dating schemes gave the same results, which means the tracking model in contrast to the
Ising model needs no investigations in certain updating schemes. Since the message pass-
ing methods in practice often are implemented in a distributed computational manner,
this is a valued result.

If this application of message passing were to be implemented in practice on a large
network with access to a known tree graph and a known loopy graph that both connects
all the nodes, the most convenient way would be to choose the tree graph and use the
standard BP since it has an extremely fast convergence rate, the benefit that no estima-
tions of the parameter ρ have to be made and the fact that both methods are shown to
perform equally well (when ρ is set correctly). However, if no known tree graph exists,
the task of finding a tree that connects all the nodes can be computationally complex
and demanding for a large network and thus this becomes a problem. If the same results
as for the tree graph can be obtained without any restrictions on the graph the commu-
nication can just be done by letting the nodes communicate unconstrained. This would
facilitate the implementation substantially and it can be achieved by the URW-BP. The
only problem would then be how to choose ρ properly. On the small network tested in
this thesis we saw a quite sharp minimum in the distance to optimal performance with
respect to ρ. The same behavior was also noticed for the accuracy of the nodes but to a
smaller extent, while the dependency of ρ in the disagreement was almost negligible. The
distance to optimal performance can be of importance in many cases, so if an accurate
result in this measure is required, the biggest problem would probably be to determine ρ
in the implementation. However, in the network in this thesis, the theoretical derivation
and the simulations gave the same result so finding the optimal ρ in this case is not a
problem. One should though not completely rely on this because the method needs to be
tested on a much bigger network to really establish the sensitivity and the dependence
with respect to ρ. Perhaps one would notice a more flat curve in all measures such that
ρ belonging to a large continuous interval would satisfy the required results. Another
problem in a practical implementation can be how to actually estimate ρ. If the number
of edges (possible paired communication links) or the number of vertices is not known by
any unit in the network the derivation done according to the equation mentioned earlier
in this section could not be done exactly.

When considering all message passing algorithms and the implementations tested in this
thesis, the biggest problem is that the complexity of the grid scales as R2 for R num-
ber of grid points (see statement in section (2.3)). Hence this approach would be very
impractical when accurate estimates on large areas are demanded. This is easily fixed
by a parametric representation of the messages. Assuming that the messages can be
represented by Gaussian distributions characterised by a mean vector of size 2 × 1 and
a covariance matrix of size 2× 2, the implementation would be easier and the algorithm
would be a lot faster. Another benefit of this is that instead of sending messages with
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R real numbers between the sensors the parametric representation would only require 6
real numbers (2 for the mean vector and 4 for covariance matrix). Important future work
will be to implement the parametric representation of the messages and beliefs and test
the algorithms on larger networks.

4.8 Conclusion

Since the URW-BP seemed to be the most promising modification to the standard BP
after simulations on the Ising model, we chose to use this method in the tracking problem.
The method was shown to improve the performance on a loopy factor graph of 4 nodes
and provide slightly better result than the standard BP applied to a tree graph. Since it
in most practical cases is favorable to use a loopy graph, the URW-BP may posses great
potential in real world applications. The standard BP and the URW-BP were also shown
to give the same results with both updating schemes in the simulations. To establish the
URW-BP in an industrial application like the tracking problem, further research needs to
be done. This includes testing the algorithm on larger networks and develop a method
such that the implementation can be done without a grid to make it feasible for use in
performance restricted systems. Similarities between the Ising model and the tracking
model was discovered in the sense that some results where directly transferable from one
model to another. This indicates that the Ising model is a great tool to easy test new
variations of BP before applying them to problems of a more complex nature.
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Chapter 5

Conclusions

After testing and evaluating the variations of BP on the square Ising model, we conclude
that the homotopy methods do not over all give better results than the standard BP.
However, there are classified cases where the URW-BP provides better solutions. In
these classes of Ising models, the optimal weighting constant from the simulations agrees
well with the derivation outlined in [15]. Since these classes are the ones most related to
the tracking problem described in this thesis, the URW-BP was chosen as a variation of
BP in this application. The URW-BP was, in the simulations on distributions 1 and 2 of
the Ising models, shown to perform better than the standard BP on a loopy graph. In
the tracking problem, the reweighed method successively allowed for stronger agreement
among the nodes without lack of performance in the estimation of the target position,
in contrast to the standard BP. It was also shown in the tracking problem, that when
using the derivation of the optimal weighting constant proposed in [15], the URW-BP on
a loopy graph performed slightly better than the standard BP on a tree graph. These
results were established on a square factor graph of 4 nodes. The serial and the flooding
message updating were tested for both the Ising model and the tracking model. In the
Ising model the serial updating was shown to give a more accurate result and have a
faster convergence rate than the flooding updating. The variations of BP though seemed
to perform similarly with both updating schemes and the homotopy variations gave in
total better performance than the standard BP with the flooding updating scheme on
the Ising model. Though, in the tracking problem both updating schemes were shown to
give the same result in all tests.
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