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Abstract

This report presents a survey of symmetries and the various applications of their
mathematical framework, group theory, in modern particle physics. The text is a result
of literature studies and is of introductory character, chiefly aimed at undergraduate
students and graduate students with some prior knowledge of quantum mechanics, special
relativity and analytical mechanics who wish to learn elementary group theory. Hence,
both the pedagogical nature of the text and the physical and mathematical reasoning are
of importance. The survey is illustrated in the main part of this report in form of a book,
constructed in such a manner that it potentially may serve as future course literature.
In the first chapters of the book, mathematical formalism is presented which is required
to understand the physical theories. The latter chapters focus on physical applications,
especially the classification of elementary particles according to external and internal
symmetries. Finally, an overview is provided of several occurrences of these symmetries
in the realm of particle physics. Moreover, a discussion regarding the challenges and
opportunities of this field with a teaching aspect is conducted as an evalutation of the
project.





Sammanfattning

Den här rapporten är en övergripande undersökning av symmetrier och deras mate-
matiska ramverk gruppteori, med tillämpningar inom modern partikelfysik. Texten är ett
resultat av litteraturstudier och har ett introducerande upplägg. Den riktar sig främst
till tredjeårsstudenter vid Teknisk Fysik, Chalmers Tekniska Högskola, samt studenter på
motsvarande nivå som sedan tidigare är bekanta med kvantmekanik, speciell relativitets-
teori och analytisk mekanik och som önskar lära sig om gruppteori. Därmed fästs stor vikt
vid det pedagogiska inslaget utöver de fysikaliska och matematiska resonemangen. Resul-
tatet redovisas i huvuddelen av rapporten skriven i form av en bok så att den potentiellt
kan nyttjas som framtida kurslitteratur. De första kapitlen av boken behandlar den mate-
matiska formalism som fordras för att kunna förstå den fysikaliska teorin. Därefter berör
de senare kapitlen fysikaliska tillämpningar, speciellt klassificering av elementarpartiklar
enligt externa och interna symmetrier. Slutligen ges en överblick över tillfällen då dessa
symmetrier dyker upp i partikelfysik. Huvuddelen föregås av en diskussion gällande fältets
svårigheter och möjligheter ur lärandesynpunkt som en utvärdering av arbetsprocessen.
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Bakgrund

Människan har sedan tidernas begynnelse varit fascinerad av symmetrier. Ibland kan man
skönja fjälltopparnas silhuett speglad i sjöarnas blanka yta eller konstnärens strävan efter att
skapa den perfekta mosaikbilden. Även inom matematiken har symmetrier länge studerats
med intresse och beundran, som de antika grekernas speciella relation till sfären. I mod-
ern tid har begreppet symmetri fått en allt större betydelse inom fysikforskningen. Det är
i sökandet efter dessa som vi försöker förstå vad som pågår på de kortaste avstånden, och
på så sätt hur hela universum är uppbyggt. I och med kvantmekanikens intåg under 1900-
talet och konstruktionen av kraftfulla partikelacceleratorer såsom LHC i CERN, Schweiz, har
vi fått nya verktyg att utröna hur fenomen uppkommer och observera huruvida teoretiska
förutsägelser stämmer. Dessutom har Einsteins relativitetsteori visat oss vägar att beskriva
galaxers rörelser och möten mellan det stora och lilla ger oss spännande möjligheter att sätta
vår verklighetsuppfattning på prov. När man talar om symmetrier i dessa sammanhang an-
vänds ordet i en vidare mening än vardagliga speglings- och rotationssymmetrier hos olika
objekt. Symmetri avser här någon viss typ av transformation, vilken egentligen kan utgöras
av vilken matematisk operation som helst, som lämnar en generell egenskap oförändrad. Om
en ny fysikalisk teori har uppvisat symmetriegenskaper har den ofta visat sig vara den em-
piriskt korrekta, vilket gör undersökningen av sådana särdrag till en vetenskaplig prioritet.
När det gäller studier av symmetrier inom fysiken var några av de viktigaste förgrundsgestal-
terna den ungersk-amerikanske matematikern/fysikern Eugene Wigner (1902-1995) och den
tyska matematikern Emmy Noether (1882-1935), varav den sistnämnda formulerade det som
numera kallas Noethers teorem - vilket utgör en milstolpe i modern fysik.

Det matematiska ramverket för studier av symmetrier kallas för gruppteori. Fältet grundades
under 1800-talet med viktiga insatser av de norska matematikerna Niels Henrik Abel (1802-
1829) och Sophus Lie (1842-1899). Deras namn återkommer i begrepp som abelsk, liegrup-
per och liealgebra. Genom att tillgodogöra sig den utförliga formalismen är det möjligt
att beskriva vitt skilda saker som olika virusmolekylers beteende i sökande efter effektiva
läkemedel inom bioteknik eller kristallstrukturers karaktär inom det fasta tillståndets fysik.
Vad detta arbete fokuserar på är dess enorma betydelse inom just partikelfysik. Gruppteori
erbjuder nya pusselbitar till hur vi uppfattar kvantmekaniskt spinn, kvarkar och mesoner
i subatomära experiment och fundamentet i dagens partikelfysik, standardmodellen, samt
ger ledtrådar om vad som väntas bortom den. Vi avser därmed att undersöka detta spän-
nande matematiska fält och se hur spinn och elementarpartiklar kan få en plats i ett större
sammanhang.

Syfte

Syftet med detta kandidatarbete är att själva som grupp bekanta oss med gruppteori och
symmetrier såsom de förekommer i fysiken, att lära oss vetenskapliga arbetsmetoder samt att
producera en rapport i bokform som på bästa sätt kan sprida kunskapen till andra studenter
och intresserade. Dessa förutsätts ha grundläggande kännedom kring kvantmekanik, speciell
relativitetsteori och analytisk mekanik samt matematisk analys. Ett delmål under processen
har också varit att uppmärksamma vår egen inlärningsprocess för att både utveckla vårt
förhållningssätt till vetenskaplig litteratur och tidskriftsartiklar samt en pedagogisk veten-
skaplig kommunikation.
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Uppgiftsformulering

Uppgiften har bestått av att bilda oss en överblick över matematisk gruppteori och symme-
triers roll i den nuvarande fysikaliska verklighetsbeskrivningen och på ett pedagogiskt sätt
presentera kunskapen i en lärobok riktad till medstuderande. Målet för skriften har varit att
den ska innehålla tillräckligt med underlag för att en medstuderande ska kunna nå samma
nivå av kunskap inom ämnet som författarna har fått under våren. Ämnesstudierna har
bestått av tre delar.

Förstå och beskriva:

(i) Grunderna i gruppteori utifrån det kvantmekaniska begreppet spinn

(ii) Uppdelningen av externa och interna symmetrier

(iii) Klassificeringen av partiklar utifrån ovanstående begrepp.

Dessutom introduceras geometriska och topologiska samband i nära anknytning till dessa
symmetrier för att bidra till en djupare förståelse av gruppteorins samspel med verkligheten.

Metod

Arbetet har huvudsakligen bestått av litteraturstudier samt beräkning för hand och samtal
kring olika definitioner, teorem och implikationer. Till följd av det omfattande materialet
har huvudansvaret för de olika kapitlena i boken delats upp. För att fortfarande upprätthålla
en bred kunskapsnivå har gruppen utöver vanliga diskussioner hållit längre föreläsningar för
varandra. Därutöver har också redigeringen av varandras utkast gjorts korsvis.

Vidare har kontinuerliga möten och diskussioner med vår handledare spelat en stor roll. I
genomsnitt har mötena ägt rum varannan till var tredje vecka under vårterminen. Inled-
ningsvis hade dessa en mer föreläsningsbetonad karaktär med presentationer av de flesta
begreppen. Under de senare mötena diskuterades främst upplägget av rapporten och speci-
fika frågor på det material som bearbetades för tillfället. Kommunikation med handledare
och inbördes inom gruppen har skett via mail, vår handledares kandidatprojektshemsida
http://www.danper.se/Daniels_homepage/GroupTheory.html och en gemensam Dropbox-
mapp med allt material och en kommentarsfil. I gruppen har vi därutöver haft veckovisa
möten och extrainsatta tillfällen när det har varit gynnsamt under intensiva arbetsveckor.

En ytterligare värdefull del av metoden har varit möjligheten att närvara vid föreläs-
ningar i en doktorandkurs i gruppteori och symmetrier inom fysik, given av Institutionen för
Fundamental fysik under vårterminen.

Skrivarprocessen bistods av två möten med centrum för fackspråk och kommunikation,
varav det första utgjordes av responsarbete tillsammans med grupp KBTX01-12-14.

Litteraturmässigt har vi utgått från Group theory: A Physicist’s Survey av Pierre Ramond [2].
Därtill har vi framförallt hämtat information och inspiration från Lie Groups, Lie Algebras,
and Representations: An Elementary Introduction av Brian C. Hall, Semi-Simple Lie Alge-
bras And Their Representations av Robert N. Cahn [3] och Lie algebras in Particle Physics av
Howard Georgi [4]. Vidare har vi för beskrivning av spinn och rörelsemängdsmoment studerat
kapitel 3 i Modern Quantum Mechanics av J.J. Sakurai och för diskussioner kring Lorentz-
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och Poincarégruppen kapitel 2 i The Quantum Theory of Fields vol. I - Foundations av Steven
Weinberg [5]. Kunskap kring konstruktion av gaugeteorier har främst hämtats från avsnitt
15.1-15.2 ur An Introduction to Quantum Field Theory av Michael E. Peskin och Daniel V.
Schroeder [6], samt ur kapitel 7 och 8 i Weinberg [5]. Topologiska begrepp återges huvud-
sakligen från Geometry, Topology and Physics av Mieko Nakahara [7]. Därutöver redovisas
andra viktiga, kompletterande källor löpande genom rapporten och finns sammanställda i
referenslistan.

Figurer som illustrerar relationer, begrepp och förlopp har tillverkats med hjälp av Adobe
Illustrator, Mathematica, Paint och Xfig enligt programmens förutsättningar för olika
behov.

Avgränsning

Då vårt ämnesområde har sin ena fot i matematiken och den andra i den teoretiska fysiken
uppstår en del svårigheter vad gäller detaljnivå och gestaltning. Allmänt kan sägas att matem-
atiker är mer noggranna när det gäller definitioner än fysiker, som å andra sidan har fördelen
av att de lättare kan ta till sig större mängder material och se samband i helheten. Vi har
försökt att ta till oss de nya begreppen ur både matematiker- och fysikerperspektivet, men lu-
tar åt det sistnämnda då vi annars omöjligen skulle ha kunnat genomföra mer än en bråkdel
av projektet. Genomgående i arbetet används fysikerkonvention och fysikers förklaring av
olika fenomen med matematiska inslag. Detaljnivån i inlärning och framställning har förde-
lats någorlunda jämnt och har valts så att ämnesbredden kunnat sträckas ända till en inblick
av standardmodellen som en intressant anhalt för introduktionen i ämnet. Rapportens hu-
vuddel är skriven på engelska då majoriteten av all litteratur inom fältet enbart finns på det
språket samt för att kunna vända sig till en bredare, icke-svensktalande målgrupp.

Resultat

Litteraturstudierna har resulterat i en introducerande bok som ämnar att kunna leda en
tredjeårs fysik- eller matematikstudent från introduktionen av begreppen grupp och sym-
metri till en översiktlig insikt rörande deras roll inom modern fysik. Boken inleds med en
kort bakgrund varefter den matematiska formalismen gällande allmänna definitioner, ändliga
och kontinuerliga grupper introduceras. Därefter presenteras grundläggande idéer kring lieal-
gebra och representationsteori. Av pedagogiska skäl följs detta av en fysikalisk motivering till
studierna av gruppteori via en genomgång av det kvantmekaniska begreppet spinn. Exemplet
visar hur gruppteori och liealgebra uppstår naturligt ur fysikers beskrivning av verkligheten
och fungerar som en konkret illustration av många koncept ur det efterföljande kapitlet.
Detta senare kapitel fördjupar den matematiska behandlingen av liealgebror och representa-
tionsteori. Praktiskt sätt sker det genom införande av rot- och viktrum, cartanmatriser och
dynkindiagram. Förfarandet når resultat som används för den senare hälften av boken.

Den andra halvan fokuserar mer på gruppteorins användning inom fysiken och betonar
indelningen av relevanta symmetrier i externa och interna. Undersökningen av de förstnäm-
nda inleds med en presentation av symmetrigrupperna i speciell relativitetsteori, Lorentz- och
Poincaré-gruppen. Vidare fortsätter kapitlet med en explicit härledning av liealgebran för den
definerande representationen av Poincarégruppen, en diskussion kring algebrans implikationer
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och framtagning av andra grundläggande representationer. Resultatet blir en första klassifi-
cering av elementarpartiklar med kvanttalen massa och spinn. Behandlingen av externa sym-
metrier avslutas med en närmare studie av hur representationen av Poincarétransformationer
på kvantmekaniska hilbertrum inte uppfyller gruppaxiomen fullt ut i ett parti om projektiva
representationer. Avsnittet i fråga ger en något djupare inblick i de topologiska aspekterna av
gruppteori vilka har antydits tidigare i boken. Nästa kapitel berör interna symmetrier i ljuset
av s.k. gaugeteorier, hur dessa teorier kan konstrueras och listar de gaugeteorier som är rel-
evanta för det avslutande kapitlet. Avslutningen föregås dock av ett kompletterande avsnitt
om matematiken bakom gaugeteorier, vilket erbjuder en ytterligare utblick mot gruppteorins
samspel med geometri och topologi. Det sista kapitlet går översiktligt igenom klassificeringen
av elementarpartiklar, vilken vilar på en gruppteoretisk grund, med nya kvanttal som isospin
och färg. Kvarkar och leptoner beskrivs i en framställning som grovt följer den historiska
utvecklingen av området och återkoppling görs till tidigare kapitel. Som avslutning nämns
något om gaugesymmetrigruppen för standardmodellen och möjliga underlag till framtida
arbeten inom ämnet vilket förhoppningsvis inspirerar till fortsatt engagemang och nyfikenhet
hos läsaren.

Till boken följer också ett relativt omfattande appendix som täcker några av de förkun-
skaper som är önskvärda för att kunna förmedla innehållet till en bredare målgrupp samt
diverse räkningar.

Det inlärningsmässiga resultatet återspeglas huvudsakligen i den skriftliga produkten. Grupp-
medlemmarnas förkunskaper inom området var begränsade. Därför reflekterar i princip allt
innehåll i boken, bortsett från grundläggande kvantmekanik och speciell relativitetsteori, kun-
skaper som har förvärvats under arbetets gång. En ofrånkomlig följd av de enskilda avsnittens
specialisering är att varje gruppmedlem inte har uppnått samma kunskapsdjup inom varje
enskilt område. Emellertid har vi alla med detta arbete tillägnat oss en bred allmänbildning
inom fältet med individuella fördjupningar vilket ger nya, utvecklade förutsättningar att ta
till sig innehållet i framtida studier inom teoretisk fysik.

Diskussion

Arbetsprocessen i det här kandidatarbetet har inneburit stora skillnader mot tidigare studier
då raka läsanvisningar, givna räkneuppgifter och tydliga avgränsningar för vad som förväntas
kunnas har bytts mot ett öppet fält och mängder av källor, vilka ibland inte riktigt säger
samma sak. Detta har inneburit utmaningar och stundom frustration gällande vilka kun-
skapsmässiga krav som har varit rimliga och över svårigheterna att finna lämpliga källor. Ett
genomgående problem har varit att röra sig mellan matematik- och fysiklitteraturen där den
förstnämnda är mycket detaljerad medan fysikpresentationerna ofta lämnar mycket under-
förstått. Tillsammans med svårigheterna att finna källor med passande förkunskapskrav har
detta dock bidragit till viktiga lärdomar, både inför en framtid utan skräddarsydda mallar och
för den pedagogiska kvaliteten hos vår slutprodukt. Vi har därmed försökt att vara tydliga
med förkunskapskraven för vår text och motiverats till att inkludera ett utförligt appendix.
Glappet mellan de två disciplinerna har vi försökt överbygga genom att varva exempel och
teori, speciellt genom att föregå svåra definitioner med illustrerande exempel, samt fysik och
matematik. En viktig erfarenhet av arbetet är hur inlärning sker på olika nivåer av abstrak-
tionsgrad men att den inledningsvis alltid fordrar en strikt noggrannhet i framställningen.
Kravet kan lättas först efter att man har uppnått en viss nivå, men då med fördel i och med
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att det ofta är lättare att urskilja kärnan i resonemang när begreppen är välkända. Som en
följd bör många mindre stringenta fysikkonventioner introduceras med särskild pedagogisk
omtanke.

Hur stor omfattning den slutgiltiga texten skulle ha har varit en genomgående fråga under
arbetets gång. Resultatet har blivit att vissa delar har en mer övergripande karaktär än andra
för att läsare snabbt skall kunna bilda sig en uppfattning om innehållet. När det har varit
möjligt har vi å andra sidan försökt gå in mer på djupet och illustrerat viktiga koncept genom
pedagogiska räkneexempel och figurer. Uträkningar har på så vis ofta en mer instruktiv
utförlighet än vad som är norm i artiklar och flertalet böcker.

Arbetsmetodiken har generellt fungerat bra. Det stora fokuset på textens utformning kan
dock ha varit något hämmande för den egna inlärningsprocessen. Kunskapen hade möjligen
befästs bättre om en större del av tiden hade nyttjats för egna studier, framförallt fler egna
räkningar, istället för det omfattande skrivandet. Samtidigt har det funnits stora inlärn-
ingskvaliteter i att tvingas formulera kunskapen så lättbegripligt som möjligt. Likaså gäller
detta i betydande grad även våra egna föreläsningar inom gruppen. Därtill har faktumet att
andra möjligen kan få ut något av vårt arbete agerat som ytterligare motivation.

Slutsats

Gruppteori är ett mycket spännande ämne som har en avgörande roll i den moderna beskrivnin-
gen av den fysikaliska verkligheten. Litteraturstudierna har givit oss en allmänbildande ori-
entering i ämnet med individuella fördjupningar vilket ger en god grund inför fortsatta fysik-
studier. Det sammanlagda arbetet har resulterat i en enligt vår uppfattning välanpassad bok
för medstudenter och som potentiellt sett kan användas i undervisning eller för självstudier.
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Chapter 1

Introduction

Beauty is bound up with symmetry - Hermann Weyl, German mathematician. [8]

If you happen upon a butterfly you immediately notice the patterns which appear on both
wings as well as the wings’ almost identical forms. Our minds seek patterns in order to
establish recognition, seeking out each visible hint of symmetry. Since early history mankind
has shown a keen interest in the symmetries of nature. This passion has been manifested
in elaborately crafted arts and architecture, such as the magnificent Taj Mahal. Observing
a kayak on a tranquil mountain lake, in our eyes it is subjected to a parity transformation
and hence mirrored in the water upside-down. However, what would happen if we mirrored
an equation of motion, a differential equation, instead? To improve our understanding of
the laws of nature, physicists seek out the symmetry of theories and see if the theory itself
can be expressed in a new, different way and perhaps combined with something else. When
constructing a new theory, symmetry properties generally indicate that it is on the right track.
[9] [10]

The mathematical framework which depicts symmetries is known as “group theory” and was
developed by the Norwegian mathematicians Niels Henrik Abel and Sophus Lie among others
during the nineteenth century. After the advent of quantum mechanics this theory soon found
a way in the description and unification of phenomena in theoretical physics. Together with
the progress in construction of massive colliders and other experimental setup the field of
particle physics was created during the twentieth century. Today with the Large Hadron
Collider (LHC) at CERN we may be able find new phenomena, requiring new theories based
on symmetries.

From quantum mechanics, we recall the conserved quantities associated with temporal, spa-
tial and rotational invariance of a given problem through Emmy Noether’s theorem. Yet,
subatomic experiments indicate that there may be other symmetries corresponding to other
conserved quantities when particles suddenly transform into one another. The first sym-
metries mentioned in this paragraph are known as external symmetries (the symmetries of
spacetime) and the latter internal symmetries . Our work attempts to describe both of these
symmetries.

The main aim of this book is to convey a brief survey of group theory and explore and
discuss its usages in describing the behavior of elementary particles. It will be presented as
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our bachelor project in Engineering Physics at Chalmers University of Technology. The first
chapters focus on the mathematical aspects, pertinent definitions and introduce the framework
in lucid, illustrative examples whereas the latter ones put emphasis on applications in different
areas of particle physics. Complementary material on topology, tensor notation, Hilbert and
dual spaces et cetera helpful in order to understand the arguments throughout the book as
well as supplementary calculations are found in the assorted appendices. A reader’s guide is
provided below which explains the structure of the text and the connections between different
chapters and sections.

1.1 Reader’s Guide

Mathematical Foundations
Chapter 1 presents a brief introduction of the subject whereas chapter 2 introduces necessary
mathematical foundations such as the group axioms, basic notions, finite groups as well as
Lie groups and provides a brief treatment of Lie algebra, which we return to in chapter 5 in
more detail. The isomorphism between the Lie algebras su(2) and so(3) is mentioned and
their group level relations will be developed in chapter 4. Its topological implications will be
explained in the last section of chapter 6.

Next we proceed with representation theory in chapter 3 with mathematical preliminaries and
the chapter is concluded with a section about the tensor product and the direct sum which is
required in the next chapter to understand the addition of angular momenta. The definitions
and results are used frequently in the following chapters.

On one hand, the next chapter may seem a bit far off, titled “A physical approach”, but the
interested reader soon discovers that by expanding the initial rotational matrices one arrives
in the same theory as the previous chapter regarding the Lie groups SU(2) and SO(3). Their
topological relation is determined in the last section of chapter 6. Moreover, the chapter
provides discussions about spin 1/2-systems as well as spinors, which we will encounter later
in chapter 6, and finishes with the familiar ladder operators of quantum mechanics and
investigates how these can be used in order to create irreducible representations.

Afterwards we dive into chapter 5, where a more formal scrutiny of semi-simple Lie algebras
is performed. Notions such as roots and weights, the Chevalley-Serre presentation, Cartan
matrices, Dynkin diagrams and Casimir operators are introduced and most of the theory is
summarized in an example with the Lie algebra sl(3,�). This Lie algebra will return in the
description of the Eightfold Way and SU(3)-gauge group of quarks in particle physics, which
are developed in the end of chapter 8.

Physical Applications
The latter chapters 6, 7 and 8 illustrate the physical significance of the prior mathematical
treatment. Chapter 6 focus on external symmetries encoded by the Lorentz and Poincaré
groups. Firstly, basic properties of the both groups are summarized. Thereafter, we derive
the defining representation’s Lie algebra and ponder its implications. Moreover, a brief survey
of the various manifestations of the Lorentz and Poincaré groups are conducted where we once
more come across spinors. With these new tools as well as the Casimir operators of chapter
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5 we are able to classify 1-particle states. Lastly, the subject of projective representations is
elaborated both in a Lie algebra, Lie group and a topological picture.

Chapter 7 and chapter 8 chiefly examine the nature of internal symmetries. The first one,
conveniently named “Internal symmetries”, deduces the nature of these symmetries with
gauge theory. It begins in Maxwell’s classical electromagnetism and we analyze how one may
construct a gauge theory from it. Afterwards we move on to a more general case, constructing
an arbitrary gauge theory and discern how the procedure can be performed with Lagrangian
formalism. To conclude we encounter non-Abelian gauge theories and come upon the gauge
groups SU(2) and SU(3), which reappear in chapter 8. An excursion to the underlying
topological constructs known as fiber bundles is provided for the interested reader (hence the
asterisk in the table of contents).

The fascinating conclusion to this book is presented in chapter 8, where we encounter group
theory in modern particle physics with additional information on historical contributions and
experiments. At first we present the Coleman-Mandula theorem, consider its consequences
and connecting it with previous statements in chapter 6 and 7. The chapter continues with a
brief overview of the particles of the Standard Model of particle physics. Feynman diagrams
are introduced and the last sections concern how we may view isospin, quarks and mesons
on group theoretical premises. Here we once more use the addition of angular momenta of
chapter 4, the gauge symmetries of chapter 7 and the Lie algebra of sl(3, �) in the Eightfold
Way of mesons as well as the quarks. The entire book is concluded with a few remarks
on the gauge groups of the Standard Model and some interesting topics suitable for future
studies. Attached are various appendices provided with some valuable prerequisites and
more information to enhance the reader’s understanding of the work presented in the book’s
chapters.

We wish you an agreeable reading experience and hope you will enjoy our work.
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Chapter 2

Basic Group Theory

2.1 Introduction

In this section we will give the very basics of group theory on which this text will be built upon.
We will start with alot of definitions but also present some examples. A few propositions will
also be given, intended to show that this is a consistent theory.

Definition 2.1.1. A group is a set G, together with an operation �, denoted (G,�), satisfying
the group axioms:

(i) Closure – For every ordered pair (ai, aj) of elements in G, there exists an unique
element ak such that,

ai � aj = ak ∈ G (2.1.1)

(ii) Associativity – For arbitrarily chosen ai, aj , ak ∈ G

(ai � aj) � ak = ai � (aj � ak) (2.1.2)

(iii) Unit element – There is a unique element e ∈ G such that

e � ai = ai � e = ai, ∀ai ∈ G (2.1.3)

(iv) Inverse element – For every element ai ∈ G, there is an unique inverse (ai)−1 ∈ G
such that

ai � (ai)−1 = (ai)−1ai = e (2.1.4)

The number of elements in a group can be finite, countably infinite or uncountably infinite.
We say that (G,�) is a finite group if the set G is finite, a countably infinite group if G is
countably infinite and an uncountably infinite group if the set G is uncountably infinite.
Further on the set G is called the underlying set of the group (G,�). However G is commonly
used to refer to the full group (G,�), and we will from now on do so in this text.

The operation � is called the composition or the product operation but is often
referred to as multiplication and the star is often omitted, a1 � a2 = a1a2. We can also see
that the group axioms do not require the multiplication to be commutative, however, it is
such an important special case that it has been given its own name.
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Definition 2.1.2. Suppose we have a group G. If, ai � aj = aj � ai;∀ai, aj ∈ G, then G is said
to be Abelian.

To get a better picture of what a group can be we will start by studying an example of a
finite group. Finite groups in difference to infinite groups have an order.

Definition 2.1.3. Consider a finite group G = {a1, a2, . . . , an}, the number of elements, n,
is called the order of the group and is denoted |G|.
We skip the trivial group of order one and begin to study the group of order two. Worth
mentioning is that there exists only one group of order two, often called �2, which can be
described using a multiplication table.

Example 2.1.1. The first element in �2 must be the identity operation, e, and the second
element, a, must be its own inverse, to satisfy the group axioms. The resulting multiplication
table will then be as follows. It is now easy to see that all the group axioms are satisfied. We

Table 2.1: Multiplication table of �2.

� e a

e e a
a a e

have a closure since every ordered pair of {e, a} together with the multiplication yields an
element in the group. We also have associativity, the unit element, e and both a and e are
their own inverses. We can also add, from the multiplication table, that the multiplication is
commutative and thus �2 is Abelian.

To give an illustration of �2, a so called representation, one can think that a operates as
an 180◦ rotation of a picture in a plane and e, the identity operation, leaves the picture as it
is. Thus applying a two times, a � a, results in the same picture as when we started.

Before we continue with more examples and definitions we will stop and prove some important
properties of groups. The first one deal with the third property of our first definition.

Proposition 2.1.1: The unit element e, sometimes called the identity element or simply the
identity, is unique for a given group G.

Proof. Let e2 �= e be another element of G with the property (iii) defined above for e:

e2 � ai = ai � e2 = ai, ∀ai ∈ G (2.1.5)

The left-hand side of equation (2.1.3) gives that e�e2 = e2, and the right-hand side of equation
(2.1.5) gives that e � e2 = e. Consequently e2 = e, which contradicts the premise e2 �= e.
Thus, e2 must be equal to e and the unit element is therefore uniquely determined.

Note that this holds for all groups since no extra requirements was used on the group G. The
next three propositions deals with the fourth property of our first definition.
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Proposition 2.1.2: For every element ai in a given group G, the inverse (ai)−1 is uniquely
determined.

Proof. The proof is similar to the one above. Assume that (ai)−1
2 �= (ai)−1 is another element

of G with the property (iv) defined above for (ai)−1:

ai � (ai)−1
2 = (ai)−1

2 � ai = e (2.1.6)

Together, equation (2.1.4) and (2.1.6) give that (e =) ai � (ai)−1 = ai � (ai)−1
2 . Multiplying

from the left on both sides of this equation with (ai)−1 gives

(ai)−1 � (ai � (ai)−1) = (ai)−1 � (ai � (ai)−1
2 ) (2.1.2)⇐⇒ (2.1.7)

((ai)−1 � ai) � (ai)−1 = ((ai)−1 � ai) � (ai)−1
2

(2.1.4)⇐⇒ (2.1.8)
(ai)−1

2 = (ai)−1 (2.1.9)

But equation (2.1.9) contradicts the assumption that (ai)−1
2 �= (ai)−1, which proves that the

two elements are in fact one and the same. In other words, the inverse of any given element
ai ∈ G is uniquely determined.

Proposition 2.1.3: Let a and b be elements of a group G. If either a � b = e or b � a = e,
then b is the uniquely determined inverse of a in G (and vice versa).

Proof. Suppose that a � b = e. Then

b � (a � b) = b � e ⇔
(b � a) � b = b (2.1.10)

As an element of G, b must have an inverse b−1 ∈ G. Righ-multiplying both sides of equation
(2.1.10) by b−1 gives

((b � a) � b) � b−1 = b � b−1 ⇔
(b � a) � (b � b−1) = e ⇔

(b � a) � e = e ⇔
b � a = e (2.1.11)

Since a � b = e and b � a = e, proposition 2.1.2 gives that b is the unique inverse of a in G (and
vice versa). Now suppose that b � a = e. By left-multiplying both sides of this equation by
first a and then a−1, we find that a � b = e. This proves that if either a � b = e or b � a = e,
then b is the unique inverse of a in G (and vice versa).

Proposition 2.1.4: If a and b are elements of a group G, then the inverse (a � b)−1 of a � b
is equal to b−1 � a−1 (where a−1 and b−1 denote the inverse of a respectively b).
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Proof. By a straightforward calculation we find:

(a � b) � (b−1 � a−1) = ((a � b) � b−1) � a−1

= (a � (b � b−1)) � a−1

= (a � e) � a−1

= a � a−1

= e (2.1.12)

By proposition 2.1.3, b−1 � a−1 is the (unique) inverse of a � b.

We will now introduce some new notation necessary for upcoming subjects.

Definition 2.1.4. A subgroup H of a group G is a subset H ⊆ G with the properties:

(i) h1, h2 ∈ H ⇒ h1 � h2 ∈ H
(ii) The unit element is an element of H.

(iii) h ∈ H ⇒ h−1 ∈ H
Note that these properties are identical with the group axioms (i), (iii) respectively (iv) listed
above. Since every element of H is also an element of G, the associativity property (ii) follows
automatically from the fact that G is a group. This means that every subgroup of a group G
is in itself a group.

The number of subgroups varies, but every group G has at least two subgroups, namely
{e} and G itself. These are called trivial subgroups. A subgroup where H is a proper subset
of G, i.e. H ⊂ G, is called a proper subgroup.

Definition 2.1.5. Consider two groups G and S, the direct product of the groups G × S
is then defined as follows:

(i) The elements of G × S are ordered pairs (g, s), g ∈ G and s ∈ S.

(ii) The composition � on G × S is defined component wise:

(g1, s1) � (g2, s2) = (g1 � g2, s1 � s2)

We will now present the two groups of order four that can exist. Since the group of order
three is much like the one of order two in the previous example we will skip it for now.

Example 2.1.2. There are two ways to approach a group of order four. If we use the
same illustration of rotations as in the previous example, we can think of a cyclic series
of four rotations. The first element, a1, corresponds to a 90◦ rotation, the second element
corresponds to a 180◦ rotation, the third corresponds to a 270◦ rotation and finally the unit
element corresponds to no rotation at all.

We will now get, for example, by applying a1 two times, a1a1, two 90◦ rotations which
obviously is the same as a 180◦, thus a1a1 = a2 and so on. A more correct way to construct
this group however is by using a multiplication table, since we would not need the use of
an illustration. This group is commonly known as �4 however, as mentioned before, we can
construct a second group of order four different from �4. This second group is called the
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Table 2.2: Multiplication table of �4.

� e a1 a2 a3
e e a1 a2 a3
a1 a1 a2 a3 e
a2 a2 a3 e a1
a3 a3 e a1 a2

Table 2.3: Multiplication table of D2.

� e a1 a2 a3
e e a1 a2 a3
a1 a1 e a3 a2
a2 a2 a3 e a1
a3 a3 a2 a1 e

dihedral group of order 2 and has the multiplication table according to table 2.3. From the
multiplication table we can see that it is Abelian due to the fact it is symmetrical about its
diagonal.

Another feature both of these groups share is that we can construct non-trivial subgroups
of their elements. This is obviously true in the first case, since {e,a2} forms �2 (the “180◦

rotation” together with the identity), in other words �2 ⊂ �4. However, this is the case of
D2 as well. In fact, one can form three different �2 subsets from D2, both (e, a1), (e, a2) and
(e, a3). Since D2 was Abelian the elements of the first two �2 commute with one another,
and thus we can express D2 as the direct product between the first two �2, D2 = �2 × �2.

Definition 2.1.6. Consider a group G, a subgroup H ⊂ G and an element g ∈ G then,

gH = {gh : h ∈ H} and (2.1.13)
Hg = {hg : h ∈ H} (2.1.14)

is said to be a left coset of H in G respectively a right coset of H in G.

It is important to note that a coset is, in general, not a subgroup. Cosets play an important
role, mainly in the field of finite groups. To show what they can be used for we will prove
Lagrange’s theorem.

Theorem 2.1.1. (Lagrange’s Theorem) If a group G of order N has a subgroup H of order
n then the index of H in G, defined as N/n, must be an integer.

Proof. Take an element g1 ∈ G, but not in H and form the left coset g1H.

g1H = g1hi, hi ∈ H, i = 1,2,...,n.

Since g1 /∈ H, g1H and H must be disjoint. If g1H and H were not disjoint then there exists
an element h ∈ H such that g1hi = h for some i. But this imply that g1 ∈ H and we have a
contradiction.
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Now, take another g2 ∈ G that is not in H or g1H and form the left coset g2H.

g2H = g2hi, hi ∈ H, i = 1, 2, ..., n.

Since g2 is not in g1H or H, g2H are disjoint to both g1H and H. If they were not disjoint then
g2hj = g1hi for some i, j, but by taking the invers, h−1

j , on both sides we get g2 = g1hih
−1
j

and g2 would have to be in g1H since hih
−1
j ∈ H. That g2H and H are disjoint follows from

above. If we continue in this way the coset space formed by the cosets gjH, j = 1, 2, ..., k,
and H will cover G. Since all of these cosets are disjoint N must be a multiple integer k + 1
of n. G can be expressed as a sum of cosets

G = H+
k∑

i=1
giH.

An intresting consequence of this is that every group with a prime number order has no
non-trivial subgroups.

Definition 2.1.7. Consider a group G, the conjugate, g̃i, of any element gi ∈ G with respect
to another element gj ∈ G is defined as,

g̃i = gjgig
−1
j . (2.1.15)

This operation plays an important role since it can be used to organize the elements of any
finite group into a set of conjugacy classes.

Definition 2.1.8. Let gb be any element in G. The set Cb defined as following,

Ca : g̃b = gagbg
−1
a ,∀ga ∈ G (2.1.16)

is said to be a conjugacy class.

We will finally introduce three important concepts.

Definition 2.1.9. Let G and H be two groups. A map T : G → H is said to be a homo-
morphism if it satisfies gigj = gk ⇒ T (gi)T (gj) = T (gk), ∀gi, gj ∈ G. If T is also bijective
it is said to be an isomorphism between G and H, denoted G ∼= H. An isomorphism of a
group with itself is called an automorphism.

Note that the definition of isomorphism can be extended to a more general case, i.e. if a map
and its inverse between two sets which have some algebraic structures, such as addition or
multiplication, preserve these structures, then the map is isomorphic.

To resume this section we will now give one of the most common examples of a group,
namely the one of an equilateral triangle.

Example 2.1.3. Consider the equilateral triangle ABC in figure 2.1. There are six symme-
try transformations that we may perform that leaves the triangle unchanged, including the
identity transformation (leaving the triangle as it was). We can perform a flip or reflection
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Figure 2.1: An equilateral triangle with the three axes a,b and c indicated for the flip operations.

on one of the axis a, b or c. We can also rotatate it 120◦ and 240◦. The first rotation will be
called r and the second s.

If we perform the reflection a, b or c two times we will be back with the original triangle,
that is to say aa = e, bb = e, cc = e. Two of the r rotations yields the s rotation and r
together with s obviously gives rs = sr = e. Further on will an r rotation together with an
a reflection give ra = b. Since the r rotation will give the triangle CAB and the a reflection
will flip it into CBA, which the b reflection in the same way will flip ABC into CBA. However
it is worth to notice that if we change the order in which we perform the rotation and the
flip we will end up with another result. In our case if we perform a first we will end up with
the triangle ACB and the rotation r will transform it into BAC. In other words, the group is
non-Abelian.

By following this logic we will eventually reach the multiplication table in table 2.4.

Table 2.4: Multiplication table of D3.

� e r s a b c

e e r s a b c
r r s e b c a
s s e r c a b
a a c b e s r
b b a c r e s
c c b a s r e

As seen in the example above multiplication tables becomes quite a diffuse way to present
information in, for larger groups. However there exists a more effective way to give information
in, through presentations. To be able to define a presentation we need something called
generators.

A generating set of a group is a subset of the group such that every element of the group
can be expressed as a combination, under the group operation, of finitely many elements and
their inverses of the subset. More generally we define the generating set as follows.
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Definition 2.1.10. Consider a group G with a subgroup S ⊂ G. The subgroup < S >, the
subgroup generated by S, is then the subgroup of G containing all elements in G which
can be expressed by a finite product of elements in S.

If G =< S >, then S generates G and the elements of S are called the generators of G.

We can now see that, for example, the group �2 from example 2.1.1 and the group �4 from
example 2.1.2 are both generated from a single generator. Since in the first case aa = e
and in our second case a1a1 = a2 and a1a1a1 = a2a1 = a3 and therefore < a >= �2,
< a1 >= �4. This can of course be generalized to build the family of cyclic groups
Zn =< x >=

{
x0,x1,x2,..., xn

}
.

Definition 2.1.11. A presentation of a group is a set of generators S and a set R of
relations among those generators. We then say G has the presentation 〈S|R〉.

The information in table 2.4 can now be given through the shorter way of a presenta-
tion, D3 =

〈
a, b | a3 = b2 = e; bab−1 = a−1〉. The same holds for D2 from example 2.1.2,

D2 =
〈
a1, a2 | a2

1 = a2
2 = e; a2a1a−1

2 = a−1
1

〉
. This can as well be generalized into the family

of dihedral groups, Dn =
〈
r, s | rn = s2 = e, srs−1 = r−1〉.

2.1.1 Normal Subgroups

This small section will be used to introduce some concepts which are of importance for subjects
presented later on in this report.

Definition 2.1.12. Consider a group G, a subgroup N ⊆ G is then called a normal sub-
group, denoted N � G, if it is invariant under conjugation i.e.,

∀n ∈ N, ∀g ∈ G : gng−1 ∈ N. (2.1.17)

The two trivial subgroups {e} and G itself are obviously normal subgroups. The same applies
for all subgroups of Abelian groups since their multiplications are commutative and thus
gN = Ng.

One important result from the normal subgroup is the semidirect product which is a
generalization of the direct product.

Definition 2.1.13. Consider a group G with a unity element e, a normal subgroup N � G
and a subgroup H ⊆ G. If

G = NH = HN and N ∩H = e, (2.1.18)

then G is said to be the semidirect product of N and H, denoted G = N �H.

This will show to be a useful tool for constructing groups in upcoming chapters. We will see
that it is not necessary for N and H to be subgroups of any given group in order to form a
semidirect product.
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Consider a group G = N � H, where N and H not necessarily are subgroups of G, then
define a map ϕ : H → Aut(N). Here Aut(N) denotes the group of all automorphisms of N .
The purpose of this map is to tell how the group operation in G will work. By defining ϕ as,

ϕ(h) = ϕh(n) = hnh−1,∀h ∈ H,∀n ∈ N, (2.1.19)

it forms a group homomorphism and we will see that together with N and H, it will determine
G up to isomorphism. We say that G = N �ϕ H is the semidirect product of N and H
with respect to ϕ. As a set N �ϕ H will just be the cartesian product N ×H. The group
operation will, as mentioned, be determined through ϕ. The operation is defined as,

� : (N �ϕ H)× (N �ϕ H) → (N �ϕ H) (2.1.20)
(n1,h1) � (n2,h2) = (n1ϕh1(n2),h1h2) (2.1.21)

for all n in N and all h in H. To get a better picture of this we will recall example 2.1.3.

Example 2.1.4. In example 2.1.3 we saw how we could construct the symmetry group of the
equilateral triangle. Except from the identity transformation we had five other tranformations
which transformed the triangle to its original appearance, two rotations and three reflections.

With our new tool, the semidirect product, we will now be able to construct the symmetry
group from two cyclic groups since it will show that D3 ∼= �3 �ϕ �2 where ϕ is the identity
transformation for ϕ(0) (the first element in �2) and inversion for ϕ(1). As a set we will get
the product,

�3 × �2 =
{
(e′, e), (y1, e), (y2, e), (e′, x), (a1, x), (a2, x)

}
(2.1.22)

where �3 = {e′, y1, y2} and �2 = {e, x}. The rotation elements is now (y1,e) and (y2,e),
corresponding to r and s in table 2.4, and the reflection elements are (e′,x), (y1,x) and (y2,x)
corresponding to a, b and c in table 2.4. As an example we have rs = (y1, e) � (y2, e) =
(y1ϕe(y2), ee) = (y1y2, e) = (e′, e) = e as we can recall from the multiplication table 2.4. To
get an example where ϕ acts as an inversion we can multiply an rotation with a reflection.

This method can be generalized for all dihedral groups and sometimes this is gives as an
alternative definition D ∼= �n �ϕ �2.

Finally we will define something called the quotient group. It is somewhat analouge to division
of integers but instead of numbers we divide groups. The normal subgroups will serve as the
divisors here much in the same sense as for example 2 is a divisor of 6. Since groups contain
much more information than a single number we will preserve or get more structure in the
final quotient.

Definition 2.1.14. Consider a group G with a normal subgroup N � G. The set of all left
cosets of N in G, {aN : a ∈ G}, is then said to be the quotient group denoted G/N . The
group operation is defined as the product between the cosets.

The fact that the group operation works builds on the properties of the normal subgroup.
Since N is a normal subgroup of G, aN is equal to Na for all a in G. In other words, the left
and right cosets of N in G are equal. The product of two cosets is thereby,

(aN)(bN) = a(Nb)N = a(bN)N = (ab)N, ∀a, b ∈ G. (2.1.23)

Since G is a group, ab is also in G and (ab)N ∈ G/N . To illustrate this we will give an
example.
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Figure 2.2: This figure illustrates the difference between continuous and discrete symmetry groups.
We can rotate a circle with an arbitrary angle and still receive the same picture, i.e. a continuous
rotational symmetry. If we rotate a vector on the circle with an arbitrary angle, we end up on another
point on the circle since the transformation must conserve the vector’s length. However, for the ellipse
we have to rotate it 180◦ in order to obtain the same picture and hence we have a discrete rotational
symmetry.

Example 2.1.5. Consider the set {0, 1, 2, 3, 4, 5} under addition modulo 6. This forms a
group G with a subgroup N = 0, 3 which in fact shows to be normal. The quotient group is
now,

G/N = {aN : a ∈ G} = {aN : a ∈ {0, 1, 2, 3, 4, 5}}
= {{0, 3} , {1, 4} , {2, 5}}

We are now finished with the first introductory section. Although all of our examples
have been on finite groups it is worth to remember that all methods and expressions here can
be used on infinite groups as well. In the next section we will leave the finite groups to only
discuss infinite, in a special case named Lie groups.

2.2 Lie Groups

In physical applications we mostly deal with so called Lie groups which are continuous in
contrast with the finite groups described throughout the previous section. The difference is
shown in figure 2.2. These new continuous groups may also be considered as manifolds (a
definition of this concept can be found in appendix A). To get some clues what this statement
implies, let us study a few examples. Consider a vector v in �2 which we rotate with an
arbitrary angle θ around the origin in the positive mathematical direction. This can be
described by a matrix R according to

R(θ) =
(

cos θ − sin θ
sin θ cos θ

)
. (2.2.1)
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Let v′ be the rotated vector. Observing that it ought to have the same length as the original
vector v, the relation v′2 = v2 has to be satisfied. Moreover, since the norm can be written
as vT v, then v′2 = (Rv)T (Rv) = vT RT Rv = vT v, since RT R = 1, which means that R
is orthogonal in order to preserve the norm of the vector. This matrix is a representation
of SO(2), a continuous Lie group, which describes the rotations in �2. S stands for special
which means det R = 1, O is orthogonal and 2 implies 2 × 2 - matrices. By continuous we
mean that one can take θ arbitrary for an arbitrary rotation.

The same thing happens when one multiplies a complex number z ∈ � with a phase eiφ.
As we recall from elementary complex analysis, z = |z|eiθ and hence when multiplied with a
phase z → z′ = |z|ei(θ+φ). This also corresponds to a rotation about the origin with another
group U(1), which is the one-dimensional unitary group (we will soon see what this means).
We have an isomorphism between U(1) and SO(2), U(1) ∼= SO(2), consistent with definition
2.1.9.

SO(2) is an example of a so-called classical Lie group or matrix Lie group. These are
formed from the general linear group with complex entries GL(n;�) which consists of
all n × n invertible matrices with complex entries. Of course, the general linear group with
real entries GL(n;�) is a subgroup of GL(n;�). After the definition we will examine a few
examples and eventually reach the formal definition of a general Lie group.

Definition 2.2.1. Let An be a sequence of complex matrices. An converges to a matrix A
if each entry of An converges to the corresponding entry of A.

Definition 2.2.2. A matrix Lie group (classical Lie group) is any subgroup H of
GL(n;�) with the following property. If An is an arbitrary sequence of matrices in H and
An converges to some matrix A then either A ∈ H or A is not invertible.

A more informal description is that a matrix Lie group is a group whose defining representation
are matrices. This concept will be thoroughly explained in example 3.1.2 in chapter 3. The
definition above of a matrix Lie group implies that H is a closed subset of GL(n;�) and
that all matrix Lie groups are closed subgroups of GL(n;�). It is possible to locate counter-
examples, i.e. some subgroups of GL(n;�) which are not closed and thus not matrix Lie
groups, but we will not digress and take the issue further, see for instance ([11], p. 4).
Instead, let us get acquainted with a few examples.

Example 2.2.1. The special linear groups SL(n;�) and SL(n;�) are the n × n in-
vertible matrices with real or complex entries respectively having determinant one. They are
subgroups of GL(n;�) and by taking a sequence of matrices An with determinant one they
will converge to a matrix A with determinant one due to the fact that the determinant is a
continuous function. SL(n;�) will play an important role later on.

Example 2.2.2. The special orthogonal groups SO(n) and orthogonal groups O(n)
are the groups of all n× n matrices with real entries with orthonormal columns, i.e.

∑
i

AijAki = δjk, ∀j, k = 1, . . . , n. (2.2.2)

We have already seen an example of this in SO(2). An equivalent statement is that A is
orthogonal if it preserves the inner product, that is if x′ = Ax and y′ = A ythen
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x′ · y′ = 〈Ax, Ay〉 = x · y (2.2.3)

for all vectors x, y ∈ �n where 〈·, ·〉 denotes the ordinary inner product in �n. Likewise, it
can also be written as AT A = 1 where AT = A−1 where (AT )ij = Aji. Also, we observe that
det(AT A) = det AT · det A = (±1)2, because det A = det AT . The set of all n× n orthogonal
matrices with real entries is the orthogonal group O(n), a subgroup of GL(n;�). Due to
that the relation AT A = 1 is preserved under limits a sequence of such matrices On ∈ O(n)
converge to O ∈ O(n) and O(n) is thus a matrix Lie group.

Similarly, the special orthogonal group SO(n) is the set of all n× n orthogonal matrices
with real entries with determinant one. In contrast, the group elements of O(n) have a
determinant of ±1. Thus SO(n) can be thought of as “half” of O(n). Clearly, the condition
on the determinant as well as the orthogonality are preserved under limits which means that
SO(n) is a matrix Lie group.

It is possible to comprehend these groups in terms of their geometric realization. The
elements of O(n) are rotations or rotations combined with parity (because of the determinant
being ±1) while the elements of SO(n) are simply rotations. This means that the elements
of SO(n) are proper matrices (a proper matrix is an orthogonal matrix with determinant
one).

Example 2.2.3. The Lorentz group O(3, 1) is a famous example in physics and is a sub-
group of the generalized orthogonal group with real entries. The generalized orthogonal
group O(n, k) is the group of (n + k)× (n + k) real matrices, where n and k are integers, and
from which one obtains a scalar product with n negative entries and k positive or vice versa.
O(1, 3) is a subgroup of O(n, k) where n, k ∈ � which in turn is a subgroup of GL(n+k; �).
However, we mostly deal with the restricted Lorentz group SO(1, 3), i.e. all group elements
of O(1, 3) which have determinant one, since O(1, 3) does not preserve orientations of space
and time. If compared to an ordinary special orthogonal group SO(1, 3), we observe that
SO(1, 3) preserve the Minkowski inner product instead of the ordinary scalar product in
Euclidean space �n. This subject will be developed in chapter 6.

Example 2.2.4. The special unitary group SU(n) and unitary group U(n) are the
n× n matrices with complex entries with orthonormal columns. Let ∗ denote the conjugate
of a complex number. If A ∈ U(n) then

∑
i

Aij(Aki)∗ = δjk. (2.2.4)

This is equivalent to stating that A is unitary if 〈Ax|Ay〉 = x∗
i yi , ∀x, y ∈ �n where 〈 | 〉

denotes the standard scalar product in the Hilbert space �n, see appendix C. It is also the
same as that if A is unitary, then A†A = 1 where A† = (At)∗ is the adjoint or Hermitian
conjugate of A such that A† = A−1.

If we compare with the real case of the O(n) group, we find similary that for a complex
unitary matrix det A† = (det A)∗ which yields det(A†A) = |det A|2 = 1. This means that
|det A| = 1 and implies that A is invertible. Since all unitary matrices are invertible, the
group axioms are fulfilled. The same argument as before regarding the determinant and
also that the limit of unitary matrices is unitary lead us to recognize that U(n) and SU(n)
are matrix Lie groups where the latter has determinant one. They are both subgroups of
GL(n;�).
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Note that the group elements of U(n) may have any determinant eiθ, since |eiθ| = 1.
Hereby, the group elements are determined to the degree of a phase θ. Both U(n) and SU(n)
will be essential in our later work, since they encode the behavior of particles in the symmetry
group of the Standard Model of particle physics, U(1) × SU(2) × SU(3). We will discover
that there are in fact two different kinds of SU(2) which representations describe different
properties of particles in the following chapters.

2.2.1 Definition and Some Topological Notions

The examples above are of utmost importance, but they still leave us with some unresolved
issues. For instance, we have simply examined matrix Lie groups and not provided a full
definition of a Lie group. To answer this, let us return to the rotational example in �2

with the groups U(1) and SO(2) where we begun this section and study some interesting
properties.

One can think of SO(2) and U(1) as a geometric object - a circle S1 since they correspond to
rotations of a certain, arbitary angle around the origin. By drawing a continuous curve be-
tween infinitesimal angle alternations the circle is formed, see figure 2.2. Formally, the branch
of mathematics which studies mathematical structures manifested as preserved properties of
a continuously deformed object is known as topology and the constructs are called manifolds
(more on this issue soon).

Next, have a look at the group SU(2) which is the group of special, unitary 2×2 matrices.
Let a matrix U ∈ SU(2) and write U as

U =
(

a b
c d

)
(2.2.5)

with a, b, c, d ∈ �. The determinant of U is det U = ad− bc = 1, and U has the inverse

U−1 = 1
ad− bc

(
d −b
−c a

)
=
(

d −b
−c a

)
. (2.2.6)

But since U is unitary, U † = U−1 and thus(
a∗ c∗

b∗ d∗

)
=
(

d −b
−c a

)
. (2.2.7)

By equating elements we see that c = −b∗ and d = a∗. An arbitrary element of SU(2) can
therefore be written

U =
(

a b
−b∗ a∗

)
(2.2.8)

with the additional constraint that

det U = ad− bc = |a|2 + |b|2 = 1. (2.2.9)

Now, write a = x1 + ix2 and b = x3 + ix4 where i is the imaginary unit and xk ∈ �, k =
1, 2, 3, 4. Hence, the condition on the determinant becomes x2

1 + x2
2 + x2

3 + x2
4 = 1. This

equation describes the isomorphic embedding of the unit 3-sphere in �4, S3 (recall that for
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SO(2) we had x2 + y2 = 1 for the circle, i.e. a one-dimensional surface for two variables,
therefore we get a construct with one dimension less than the number of variables). Hereby,
we can conclude that the group SU(2) viewed as a manifold is isomorphic to S3 which means
that every group element can be represented as a point on the surface of the 3-sphere. If one
takes a multiple of transformations, they will lie on a continuous curve on the surface.

Hereby, with this geometric reasoning, we arrive at the full definition of a Lie group.

Definition 2.2.3. A Lie group is a differentiable manifold G which is also a group, where
the group product

G × G → G : (g1, g2) �→ g1 � g2

and the inverse map G → G : g �→ g−1 are also differentiable.

We have already encountered some examples of compact manifolds such as the circle S1 and
the sphere S3. Well then, how are these abstract concepts related to matrix Lie groups?
Fortunately, there is a theorem which states the following:

Theorem 2.2.1. Every matrix Lie group (or classical Lie group) is a Lie group.

For a rigorous proof, please see appendix E. This means that we can study these Lie groups
in terms of matrices, or since it is the case, their defining matrix representations. Most of the
Lie groups which we will investigate in this study are matrix Lie groups and that facilitates
the analysis considerably.

If we return to the rotational matrix from the beginning of this section, we observe that it was
characterized by the angle θ - a smooth parameter. We see that the group elements g in a Lie
group G may depend on a smooth parameter θ. By “smooth” we mean that there is a notion
of closeness between different group elements, when the difference in θ is small (p. 43, [4]). If
we explore this dependence, we will find that every Lie group can be formed by exponentiating
a so-called Lie algebra, which includes the continuous parameter. This exciting theory will
be explored in the next section, starting with studying the identity element of the Lie group
on the manifold.

2.3 Lie Algebras

To every Lie group G there is an associated vector space g known as the Lie algebra of the
group. This space can be thought of as the tangent space to G near the identity and it
consists of all infinitesimal displacements away from unity. Like a Lie group, a Lie algebra
is an abstract construction, and, just like in the Lie group case, its properties are examined
by use of a defining matrix representation. We illustrate the concept with a simple example
before presenting the formal definition.

Consider the group SO(2) that rotates a point in the plane counterclockwise an arbitrary
angle φ about the origin, represented by the matrix

R(φ) =
(

cos φ − sin φ
sin φ cos φ

)
. (2.3.1)
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If we consider only small rotations, we can expand the sine and cosine terms to first order
and obtain

R(φ) ≈
(

1 −φ
φ 1

)
= 1− iφT (2.3.2)

where T is given by

T =
(

0 −i
i 0

)
. (2.3.3)

Keep in mind that equation (2.3.2) is only valid for small values of φ, i.e. for small displace-
ments away from 1. With T , we can create a finite rotation by successively compounding
small rotations. If we want achieve a rotation by an angle φ, we can simply rotate N times
through an angle φ

N , and let N tend to infinity:

R(φ) = lim
N→∞

(
1− i

φT

N

)N

= e−iφT . (2.3.4)

By expanding the exponential in the right hand side of (2.3.4) in its Taylor series, we find
(after some calculations) that

R(φ) = e−iφT =
(

cos φ − sin φ
sin φ cos φ

)
, (2.3.5)

i.e., we get the usual rotation matrix (2.3.1) by compounding infinitesimal rotations, as ex-
pected. Now, recall what was said at the beginning: the Lie algebra consists of all infinitesimal
displacements away from unity. But this is exactly φT in equation (2.3.2). So we have reached
the following conclusion:

so(2) = {iφT, φ ∈ � and T as in (2.3.3)} (2.3.6)

is called the Lie algebra of the group of rotations defined by (2.3.1). Note that so(2) is
a linear space over the real numbers, spanned by the generator iT (familiar as the basis
element in linear algebra).

By exponentiating an element of the Lie algebra, we obtain an element of the Lie group,
and this is the way a Lie algebra is related to its Lie group. Remember that both the Lie group
and the Lie algebra are abstract spaces, and exponentiating an element of the Lie algebra
simply means exponentiating a representation of an element in the algebra (which is a well
defined operation), whereupon we obtain a representation of an element in the Lie group.

This example hopefully gives something of a intuitive feel of what a Lie algebra is, but we
will now proceed with a little more rigour. As we go, it will be helpful to look back and see
how the formalism applies to the SO(2) example. We begin with a definition:

Definition 2.3.1. A function A : �→ GL(n,�) is called a one-parameter group if

(i) A is continuous

(ii) A(0) = 1

(iii) A(s + t) = A(s)A(t) for all real t and s.
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It is not a coincidence that A is called a group: it is easily checked that A satisfies the
group axioms. Note that SO(2) is a one-parameter group. Recall from equation (2.3.5) that
the matrix representation of SO(2) could be written as R(φ) = eφX , where X is a matrix.
The following theorem, which we present without proof, states that this is not something that
is unique to SO(2), but is rather a general property of one-parameter groups.

Theorem 2.3.1. To every one-parameter group A there is a unique matrix X such that

A(t) = etX . (2.3.7)

One crucial observation is that if we have an expression for A(t), then X can be obtained
by simply computing the derivative of A at t = 0, i.e.

dA

dt
|t=0 = XetX

∣∣∣
t=0

= X. (2.3.8)

We have finally reached the point where we are ready to present the definition of the Lie
algebra of a matrix Lie group.

Definition 2.3.2. If G is a matrix Lie group, then its Lie algebra g is the set of all matrices
X such that etX ∈ G ∀t ∈ �. 1

Before we examine the meaning of this definition in more detail, we first note some very
important immediate consequences of this definition. Suppose X and Y are two elements of
the Lie algebra g of some Lie group G. That X ∈ g means that etX ∈ G for all real t, but then
sX ∈ g for all real s, i.e. a (real) multiple of an element in a Lie algebra is also an element
of the same Lie algebra. In fact, the sum X + Y also belongs to g. To see this, exponentiate
t(X + Y ):

et(X+Y ) = lim
m→∞

(
e

tX
m e

tY
m

)m
. (2.3.9)

Both of the exponentials under the limit belong to G, and thus the entire expression under
the limit belongs to G. But the limit of a sequence of matrices in a matrix Lie group G belongs
to the group (if the limit is invertible, see definition 2.2.1). Thus et(X+Y ) ∈ G for all real t,
and hence X + Y is an element of the Lie algebra of G. To summarize: A linear combination
of elements in a Lie algebra belongs to the same Lie algebra. In other words, the Lie algebra
of a matrix Lie group is closed under addition and multiplication by real scalars. One should
take care to note that there is a difference between real and complex Lie algebras; real Lie
algebras allow linear combinations over the real numbers, and complex Lie algebras allow
linear combinations over the complex numbers.

The simplest example is the Lie algebra of a one-parameter group. Recall that a one-
parameter group A is defined for all real arguments t and that A(t) = etX , thus according
to definition 2.3.2, X is an element of the Lie algebra of A, and X can be computed with
equation (2.3.8).

Let’s return for a moment to the SO(2) example. Equation (2.3.1) gives us an explicit
description of SO(2) in terms of a one-parameter group, and we can thus immediately find
its Lie algebra as

1In physics literature it is customary to let the Lie algebra of a matrix Lie group G be the set of matrices
X such that eitX belongs to G for all real t.
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X = dR

dφ

∣∣∣
φ=0

=
(

0 −1
1 0

)
. (2.3.10)

But this is a generator of the Lie algebra we found for SO(2) in equation (2.3.6). Let us now
look at the Lie algebras of a few other familiar groups.

Example 2.3.1. Another example of a one-parameter group is the unitary group of order
one, U(1). Recall from the previous section that this group consists of all complex numbers
of the form eiθ, where θ is a real number, and that this group is isomorphic to SO(2). The
group is obviously parameterized by

R(θ) = eiθ, (2.3.11)

and from this we find by using equation (2.3.8) that the generator of the Lie algebra u(1) of
U(1) is i, and thus u(1) (it is conventional to denote a Lie algebra in lowercase gothic letters)
consists of all pure imaginary numbers.

Since U(1) is isomorphic to SO(2) we might expect so see some relationship between their
Lie algebras, and we can make one interesting observation. Note that the generator of u(1)
is i, which when squared becomes i2 = −1, i.e. the negative of the identity. Similarly, we see
that the generator (2.3.10) of so(2) satisfies

X2 =
(
−1 0
0 −1

)
= −1, (2.3.12)

i.e. just like for u(1), the square of the generator of su(2) equals the negative of the identity.
As a parenthesis, we can mention that this kind of structure that squares to −1 in a vector

space is called a complex structure.

Example 2.3.2. Recall that the general linear group GL(n,�) consists of all invertible n×n
matrices with complex entries. Since the exponential of any n × n matrix is invertible, it
follows that etX is invertible for all n × n matrices X and all real numbers t. Thus the Lie
algebra of GL(n,�), denoted by gl(n,�) consists of all n× n matrices with complex entries.

Before finding the (complex) Lie algebra of SU(2), we note that if we have found a
parametrization of a matrix Lie group G in a number of parameters, i.e. R = R(t1, t2, . . . , tn),
with R(0,0, . . . ,0) = 1, then R(0, . . . , 0, tk, 0, . . . ,0) is a one parameter group Gk ⊂ G and
hence there is a matrix Xk such that etXk ∈ Gk for all real t, or, more specifically since Gk is
a subset of G, etXk ∈ G ∀t ∈ �. In other words, Xk is an element of the Lie algebra of G.

But Xk can be computed as

Xk = dR(0, . . . , 0, tk, 0, . . . , 0)
dtk

∣∣∣
tk=0

. (2.3.13)

To sum it up: if we have a parametrization of a matrix Lie group in terms of n different
parameters, we can obtain the generators of the Lie algebra of the group by simply differenti-
ation the parameterization with respect to the n different parameters at the identity element.
We illustrate the method by computing the generators of the Lie algebra of SU(2).

Example 2.3.3. Recall that SU(2) is the Lie group whose defining representation is that of
2× 2 unitary matrices with determinant equal to one. If we can find the general form of an
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element of SU(2), in terms of a number of n parameters, we can then use equation (2.3.13)
to find the generators of its Lie algebra, denoted by su(2).

As a convenient matter of fact, some of the work was already done in the section 2.2.1.
Since SU(2) is isomorphic to the sphere S3 we know a priori that the number of parameters
has to be three. By proceeding from equation (2.2.9) we note that it is just the equation of
the unit circle, and so there exists a real η such that |a| = cos η and |b| = sin η, and hence

a = eiξ cos η (2.3.14a)
b = eiζ sin η (2.3.14b)

for real but otherwise arbitrary ξ, η and ζ.
With this and equation 2.2.8 we have now found the general form of the elements of SU(2),

parameterized by the real numbers η, ζ and ξ:

U =
(

eiξ cos η eiζ sin η
−e−iζ sin η e−iξ cos η

)
. (2.3.15)

Finally, we obtain the generators of SU(2) by differentiating (2.3.15) at the identity (η = 0,
ζ = 0, ξ = 0).

So the generators of su(2) are

∂

∂η
U :

(
0 1
−1 0

)
= i

(
0 −i
i 0

)
= iσ2 (2.3.16a)

∂

∂ξ
U :

(
i 0
0 −i

)
= i

(
1 0
0 −1

)
= iσ3. (2.3.16b)

However, note that if we differentiate (2.3.15) at the unity we obtain a matrix with all ele-
ments equal to zero. To avoid this and obtain the last generator of su(2) we must parametrize
SU(2) in another way. Recall that a general element of SU(2) can be written in the form

U =
(

a b
−b∗ a∗

)
(2.3.17)

with the constraint that |a|2 + |b|2 = 1. Now, to find the last generator, we let b = iβ and
a =

√
1− β2. The generator thus becomes

∂

∂β

(√
1− β2 iβ

iβ
√

1− β2

) ∣∣∣
β=0

= i

(
0 1
1 0

)
= iσ1. (2.3.18)

The matrices denoted σ1, σ2 and σ3 are called the Pauli matrices, and with a factor i
2 in

front they occur as, for example, the generators of angular momentum in quantum mechanics.
This is to be investigated later on in section 4.3.1. su(2) has three generators and is thus
three dimensional.

The Pauli matrices obey the following relations

σ1σ1 = σ2σ2 = σ3σ3 = 1 (2.3.19)
[σa, σb] = 2iεabcσc
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where εabc is the anti-symmetric Levi-Civita tensor.
The generators T of su(2) obey the commutation relations

[Ta, Tb] = −2εabcTc. (2.3.20)

The Lie algebra is a linear space because a linear combination of two elements of the Lie
algebra corresponds to a composition of elements in the Lie group. One might ask whether
the property eX+Y = eXeY is still true for x and y in the Lie algebra. It turns out that this
is true when X and Y commute, but not in the general case.

The composition of eXeY is given by the Baker-Campbell-Hausdorff formula

eXeY = eX+Y + 1
2 [X, Y ]+... (2.3.21)

where X, Y ∈ g and ... denotes higher order terms.
From definition 2.3.2 we know that by exponentiating an element of the matrix Lie algebra,

we obtain an element of the corresponding matrix Lie group. A natural question is whether
the mapping

exp: g→ G (2.3.22)

is one-to-one and onto. In other words, by exponentiating an element of the Lie algebra g we
obtain an element of the Lie group G, but can all elements of G be reached in this way, ie.
does it exist an element X ∈ g such that eX = G for all G in G? And if so, is this X unique?

The answer to both of these questions is no, the exponential mapping (2.3.22) is neither
one-to-one nor onto. While this is not true in general, it is true that the exponential mapping
is always locally one-to-one and onto (in the special case when the exponential map is onto,
i.e. when it covers the whole group, the group is said to be an exponential group). Stated
formally:

Theorem 2.3.2. If G is a matrix Lie group with a corresponding Lie algebra g, there exists
a neighbourhood U of zero in g and a neighbourhood V of the identity in G such that the
mapping

exp: U → V (2.3.23)

is homomorphic.

While we can not obtain all elements of G by exponentiating an element of g, it turns out
that all elements of G can be created by compounding elements of G that can be written as
eX , with X in the Lie algebra. In other worlds:

Theorem 2.3.3. If G is a connected matrix Lie group, then every element A of G can be
written as

A = eX1eX2 . . . eXn (2.3.24)

where X1, X2, . . . , Xn ∈ g.

So while not all elements of G can be obtained directly from g, every element of G can be
created by compounding elements of G that can.

We will now present the formal definition of a Lie algebra:
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Definition 2.3.3. A Lie algebra g (real or complex) is a vector space over � or �, together
with a binary operation, [.,.], called the Lie bracket, satisfying

(i) Closure:
[.,.] : g× g→ g (2.3.25)

(ii) Bilinearity:

[
ax + bx′, y

]
= a [x, y] + b

[
x′, y

]
(2.3.26a)[

x, ay + by′] = a [x, y] + b
[
x, y′] (2.3.26b)

where a,b ∈�or �, x,x′,y,y′ ∈ g

(iii) Alternating:

[x, x] = 0 ∀x ∈ g (2.3.27)

(iv) Jacobi identity:

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 ∀x,y,z ∈ g (2.3.28)

But in the SO(2) example, what is the Lie bracket? Since we are working with matrices, we
can simply take the Lie bracket to be the ordinary commutator of matrices:

[x, y] = xy − yx (2.3.29)

and it can easily be shown that the commutator satisfies the four axioms in definition 2.3.3.
But once again we should remind ourselves that the elements of the Lie algebra are not

matrices; the matrices are just representations of the group elements. In fact, representations
of Lie algebras are defined in such a way that the representation of the element [x,y] of
the algebra is [ρ(x), ρ(y)] where ρ(x) and ρ(y) are the representations (matrices) of x and y
respectively, and the bracket is the usual commutator. But we will deal with representation
in more depth in the following chapter.

Another important concept for a Lie algebra is its structure constants with respect to
a given basis of the algebra. Let Ti

n
i=1 be a basis for a Lie algebra g, then the commutator

between any two T s can be expressed as a linear combination

[Ti, Tj ] =
n∑

k=1
Ck

i,jTk (2.3.30)

where the constants Ck
i,j are called the structure constants. Note that the antisymmetry of

the commutator implies that Ck
i,j = −Ck

j,i. The structure constants determine the Lie algebra.

Example 2.3.4. It turns out that the Lie algebras su(2) and so(3) have the same structure
constants and are thus isomorphic. Since rotations in three dimensions have three degrees of
freedom, so(3) will obviously be three dimensional, and to obtain the generators we need three
different one-parameter groups in SO(3), and we can simply take these to be rotations about
the x−, y− and z−axes, parameterized with the usual rotation matrices, and by computing
the derivative of these at the identity the Lie algebra is easily obtained.
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By computing the commutation relations one finds that they are exactly the same as those
for su(2), and hence the two Lie algebras are isomorphic.

One may ask if this in turn implies that the two Lie groups SO(3) and SU(2) are iso-
morphic. The answer to this is no. It does imply that they are locally isomorphic, but not
globally. SU(2) is the double cover of SO(3), which roughly means that to every element
in SO(3) there exists two corresponding elements in SU(2), i.e. we have the isomorhpism
SU(2) ∼= SO(2)/�2. This isomorphism will be explored further in section 6.7.2.

A given real Lie algebra can also be complexified. By the complexification g� of a real Lie
algebra g we simply mean the set of elements of the form X + iY where X and Y belong to
g. The Lie bracket has a unique extension from g to g�, given by

[X1 + iX2, Y1 + iY2] = ([X1, Y1]− [X2, Y2]) + i([X1, Y2] + [X2, Y1]). (2.3.31)

Note that (2.3.31) is the only possible way to define the Lie bracket on g� if it is to remain
bilinear. That the other two properties of the Lie bracket still hold is a matter of a simple
calculation and is left as an exercise to the reader.

The complexification of a real Lie algebra can simply be thought of as allowing linear
combinations over the complex numbers.

Example 2.3.5. The Lie algebra sl(2,�) is obtained as the complexification of su(2), i.e.

sl(2,�) = su(2)⊕ isu(2). (2.3.32)

This Lie algebra is three dimensional and its generators, often denoted e, f , h satisfy the
following commutation relations:

[e, f ] = h

[h, e] = 2e

[h, f ] = −2f.

(2.3.33)

Since the commutation relations (2.3.33) are real, we can define the real Lie algebra
sl(2,�) as the set of all real linear combinations of e, f and h, and sl(2,�) as the set of all
complex linear combinations of e, f and h.

We will encounter this algebra more in later chapters.

In this chapter we have laid the foundations of the theory of Lie groups and Lie alge-
bras. We looked at Lie groups, which are groups that depend on one or more continuous
parameters, and their corresponding Lie algebras, the elements corresponding to infinitesimal
displacements away from the unity of the group and saw how these are related via the expo-
nential mapping. In the next chapter we look more into the theory of representations that
we alluded to in this chapter.
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Chapter 3

Representation Theory

In group theory we chiefly deal with the group element’s representations rather than the
group elements themselves. Our endeavor in physics is to describe rotations, translations etc
and these actions are interpreted through representations of group elements. Hence, learning
about representations is a crucial ingredient to understand the patterns of the universe. One
of the chief applications of representation theory is to identify the symmetries of a given prob-
lem. If we locate a set of symmetries we know that they constitute a group and having an idea
about which representations that most likely occur in the specific space one may simplify the
problem substantially. In this chapter we will develop some fundamental formalism regarding
this theory.

A representation is a mapping of the group elements g ∈ G onto a set of linear operators
which preserves the group properties and the multiplication table. Moreover, it is necessary
that e is mapped to 1 where e is the unit element of the group G and 1 is the unit element
of the representation. In physics, the linear operator is often a matrix and operations within
the group are easily manifested as matrix multiplications. In fact the representation consists
of two parts, the realization which is/are the linear operator(s) and the module - some object
which the realization acts on. The module is often a vector space when it occurs in physics.
However, there are several different objects which may serve as that. For instance, the 180◦

rotation of a picture in a plane, introduced in section 2.1, is an object on which the �2 group
acts upon and there could also be tensors, spinors1 and even a Lie algebra itself subjected
to actions of some linear operator. Yet, since the realization and the module always appear
together, physicists ubiquitously tend to refer to both objects with “representation”.

In this chapter we will exclusively work with matrix representations, i.e. matrices acting on
vectors in vector spaces, and present several examples of representations. The aim of this
chapter is to give a mathematical foundation for representation theory which can be applied
in the following chapters. We begin with some formal definitions.

1See section 6.5.
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3.1 Basics

Definition 3.1.1. A finite dimensional complex matrix representation Π of a Lie
group G acting on a finite dimensional complex vector space V , dim V � 1, is a Lie group
homomorphism

Π : G −→ GL(n;�) (3.1.1)
or more generally Π : G −→ GL(V ). Because of the Lie group homomorphism we have that

Π(g1)Π(g2) = Π(g1g2), ∀g1, g2 ∈ G. (3.1.2)

A finite dimensional complex matrix representation π of a Lie algebra g acting on a
finite dimensional complex vector space V , dim V � 1, is a Lie algebra homomorphism

π : g −→ gl(n;�) (3.1.3)

or more generally π : g −→ gl(V ). In the same way as for the Lie group, homomorphism
implies

[π(t1), π(t2)] = π([t1, t2]), ∀t1, t2 ∈ g. (3.1.4)
If there is a bijection between the group G and the representation Π then the representation
is called faithful. Analogously, if there is a bijection between the algebra g and the represen-
tation π then the representation is called faithful. A representation is thus a mapping from
the abstract group elements or abstract Lie algebra elements2 to a linear operator which acts
on a vector space V.

Note 1. Observe that g1g2 = g1 � g2 is the group product operation, and that Π(g1)Π(g2) is
ordinary matrix multiplication or the multiplication defined for the specific linear operators.
Even more important: observe that [t1, t2] is not the commutator. It is the abstract Lie
bracket, but of course [π(t1), π(t2)] is the usual commutator of two operators.

We saw in section 2.3 how to relate a Lie group to its Lie algebra by exponentiation. A
natural question then is whether the representations of Lie group and its Lie algebra have a
similar relation. We claimed in section 2.3 that by exponentiating a representation of the Lie
algebra we obtain a representation of the Lie group. But is this really true? To answer this
question, we are in need of an important result.

Theorem 3.1.1. If G and H are two Lie groups with Lie algebras g and h, respectively, and
we have the Lie group homomorphism Φ : G −→ H, then there exists a unique real linear
map Φ′ : g −→ h such that

Φ(et) = eΦ′(x). (3.1.5)

This theorem tells us that when we have a Lie group homomorphism between two Lie groups
then there exists a Lie algebra homomorphism between the corresponding Lie algebras. With
this result we can answer the question above.

Proposition 1: A Lie group G with a representation Π and a Lie algebra g with a represen-
tation π has the following relation between their representations:

eπ(t) = Π(et), (3.1.6)

t ∈ g. Moreover, the representation π is unique.
2Depends on whether we consider a representation for the group or for the Lie algebra.
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Proof. We use the results of the last theorem. Let Π = Φ and GL(V ) = H,
i.e. Π : G −→ GL(V ). The associated Lie algebra homomorphism is then π : g −→ gl(V ), π
is a representation. From this we get

eπ(t) = Π(et). (3.1.7)

The fact that π is unique follows from theorem 3.1.1. Before we continue, we need a concept
that will be used extensively later.

Definition 3.1.2. Consider a group G and a representation Π of G acting on a vector space
V with a subspace W . The subspace W is invariant if Π(gi)w ∈ W for all gi ∈ G and
for all w ∈ W . If W �= {0} and W �= V , then it is called a non-trivial subspace. The
representation Π is then a reducible representation. A representation with no non-trivial
subspaces is called irreducible.

One can say that we have an irreducible representation when all the elements in our vector
space can be reached when we act on any of the elements in our vector space with all our group
elements. In other words, we can transform any element in our vector space to every other
element in the vector space through all the transformations from the group. It is important to
realize that a representation involves both operators and a module, e.g. matrices. Moreover,
a group can different representations with different dimension of the module.

As soon as we have an expression of how the group elements act on an object we have a
representation. In physics we like to think of representations in the following way: to every
group element we associate a linear operator, matrices, acting on a vector space V . In fact,
we have already encountered several representations such as the matrices for SU(2). Recall
that SU(2) is the group of unitary matrices with determinant equal to unity which acts on
the vector space �2. But this is exactly what a representation is and from now on we shall
think of the unitary matrices, SU(2), as a representation. In fact, this is the representation
that defines the group, see example 3.1.2. Let us look at some examples of representations.

Example 3.1.1. The trivial representation: If G is a Lie group and g is the Lie algebra,
then

Π : G −→ GL(1,�) (3.1.8)

is the trivial representation of the Lie group G by Π(gi) = 1, for all gi ∈ G acting on the
vector space � and

π : g −→ gl(1,�) (3.1.9)

is the trivial representation of the Lie algebra g by π(ti) = 0, for all ti ∈ g acting on the
vector space �.

Example 3.1.2. The defining representation: Let G be a Lie group and g be its Lie
algebra, then

Π : G −→ Π(G) = G ⊂ GL(n,�) (3.1.10)

is the defining representation of G. For example: the defining representation of SO(3) is
the representation in which SO(3) acts on �3 by the orthogonal 3× 3 matrices. The defining
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representation for SU(2) is the representation in which SU(2) acts by the unitary 2 × 2
matrices on �2. In the same way we have for the Lie algebra that the defining representation
for g is gl(n,�), i.e

π : g −→ π(g) = g ⊂ gl(n,�). (3.1.11)

Example 3.1.3. The adjoint representation: Consider a Lie group G with a Lie algebra
g. The mapping:

Ad : G −→ GL(g), (3.1.12)

is a Lie group homomorphism defined by

Ad(g)t = gtg−1, (3.1.13)

g ∈ G and t ∈ g, which constitutes the adjoint representation of G acting on the vector
space formed by the Lie algebra, i.e Ad(g) : g −→ g. Moreover, the mapping

ad : g −→ gl(g) (3.1.14)

is a Lie algebra homomorphism defined by

ad(t)h = [t, h], (3.1.15)

for all t,h ∈ g, i.e ad(t) : g −→ g. This is the adjoint representation of the Lie algebra
g. The module of the representation is the algebra itself which makes the dimension of the
representation equal to the dimension of the Lie algebra. A representation must satisfy the
same commutation relations as the group, so to show that this is a representation we have to
show that

[t, h] = z ⇒ [ad(t), ad(h)] = ad(z), (3.1.16)

for all t,h,z ∈ g, e.i that the commutation relations are preserved. [·,·] in the first expression
stands for the lie brackets and [·,·] in the second expression stands for the usual commutator.

[ad(t), ad(h)]w = (ad(t)ad(h)− ad(h)ad(t))w =
= ad(t)[h, w]− ad(h)[t, w] = [t, [h, w]]− [h, [t, w]] = [t, [h, w]] + [[t, w], h]
= /Jacobi identity/ = − [w, [t, h]] = [[t, h], w] = [z, w] = ad(z)w,

(3.1.17)

where we have used [t, h] = z and that w ∈ g.

The adjoint representation is one of the most important representation because it acts on the
module by commuting Lie algebra elements. Since the algebra is defined from its commuting
relations, we can use this to derive a Lie groups Lie algebra. In chapter 6 we will do this
explicitly.

A more precise example is the representation of the Lie algebra su(2). We have seen in section
2.3 that the generators of su(2), i.e. the Lie algebra, can be represented by the Pauli matrices,
multiplied with an i, acting on the 2 dimensional complex vector space. The Pauli matrices
multiplied with �/2 are in fact the matrix expression for the spin operators in quantum
mechanics and this is what we mean when we say that the Pauli matrices multiplies with an
i are the generators of spin. We will continue to make use of linear operators and we will
denote them by Â, i.e. by a “hat”. The spin operators Ŝx,Ŝy,Ŝz can thus be expressed as the
following example suggests.
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Example 3.1.4. The Pauli matrices: The map

π : su(2,�) −→ gl(2,�) (3.1.18)

gives the three 2× 2 self-adjoint matrices

π( ˆiSx) = i
�

2σx = i
�

2

(
0 1
1 0

)
, π( ˆiSy) = i

�

2σy = i
�

2

(
0 −i
i 0

)
, π( ˆiSz) = i

�

2σz = i
�

2

(
1 0
0 −1

)
(3.1.19)

that forms the 2-dimensional defining representation for su(2). � is Planck´s constant h
divided by 2π.

Example 3.1.5. The defining representation of SO(3) is as mentioned above the 3 × 3 or-
thogonal matrices with determinant equal to unity. For example, a rotation about the z-axis,
y-axis, x-axis by a finite angle φ is represented, respectively, as⎛

⎜⎝cos(φ) − sin(φ) 0
sin(φ) cos(φ) 0

0 0 1

⎞
⎟⎠ ,

⎛
⎜⎝cos(φ) 0 − sin(φ)

0 1 0
sin(φ) 0 cos(φ)

⎞
⎟⎠ ,

⎛
⎜⎝1 0 0

0 cos(φ) − sin(φ)
0 sin(φ) cos(φ)

⎞
⎟⎠ . (3.1.20)

Example 3.1.6. A general method of finding a matrix representation for an operator Â
acting on a finite vector space V is to study how Â acts on the elements of V . Because an
arbitrary element of V can be expressed as a linear combination of the elements of the basis,
it is sufficient that we examine Â:s action on the base elements. Let |Ψi〉 , i = 1, 2,..., n
be a basis for V and dim(V ) = n. The first column in the representation matrix A is the
coefficients for Â|Ψ1〉 in our particular basis, i.e. Ai1 = 〈Ψi|ÂΨ1〉. The i,j:th component of
A is thus 〈Ψi|ÂΨj〉 and we get⎛

⎜⎜⎜⎜⎝
〈Ψ1|ÂΨ1〉 〈Ψ1|ÂΨ2〉 . . . 〈Ψ1|ÂΨn〉
〈Ψ2|ÂΨ1〉 〈Ψ2|ÂΨ2〉 . . . 〈Ψ2|ÂΨn〉

...
... . . . ...

〈Ψn|ÂΨ1〉 〈Ψn|ÂΨ2〉 . . . 〈Ψn|ÂΨn〉

⎞
⎟⎟⎟⎟⎠ . (3.1.21)

Of course, the matrix A depends on our choice of basis for V . If we choose another basis for
V we get a different representation but with the same dimension and we can relate these two
representations through a similarity transform, A′ = SAS−1. A′ is the transformed matrix
and S is the change of coordinate matrix. That is, whose columns are the coordinate vectors
of the old base expressed in the new base. A′ and A are said to be equivalent representations.

In order to proceed with representation theory, we need to define even more concepts.

Definition 3.1.3. Consider a Lie group G, or a Lie algebra g, and a representation Π, or
π, acting on a vector space V . Let W be an invariant subspace to V and U be an invariant
subspace to W . If there exists an invariant subgroup Ū , Ū ∩U = {0}, such that W = U ⊕ Ū ,
then Π is called completely reducible.

From a physical perspective it is interesting to see how this works on a Hilbert space H of
finite dimension N .

Proposition 2: A unitary representation Π of a Lie group G acting on a finite dimensional
complex Hilbert space H is completely reducible.
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Proof. Since H is a Hilbert space we have an inner product 〈ψi|ψj〉, for all i, j. We can divide
the Hilbert space as H = H(1)

⊥ ⊕H(1), where H(1)
⊥ is the orthogonal complement to H(1) and

H(1)
⊥ is an assumed invariant subgroup. Once again, divide H(1) = (H(2)

⊥ ∩H(1))⊕H(2) where
H(2) is another assumed invariant subspace. Let |ψ3〉 ∈ H(2)

⊥ ∩ H(1) = H(3) and |ψ2〉 ∈ H(2)

and consider 〈ψ2|Π(g)|ψ3〉, g ∈ G. We now want to show that 〈ψ2|Π(g)|ψ3〉 = 0, for all g ∈ G,
since every element in H(3) is orthogonal to H(2).

〈ψ2|Π(g)|ψ3〉 = 〈Π(g)†ψ2|ψ3〉 = 〈Π(g)−1ψ2|ψ3〉 = 0, (3.1.22)

since Π(g)−1 is a representation for another group element and H(2) is invariant. Thus H(3)

is invariant under Π.

3.2 Direct Sum and Tensor Product

Even though we have used “direct sum of vector spaces” several times it is probably a good
idea to give a proper definition. In general, the direct sum of modules is the result of
combining several modules to form a larger module. If the module is a vector space, i.e. over
a field, we say that we have a direct sum of vector spaces.

Definition 3.2.1. Let V (1) and V (2) be two vector spaces over a field K. The direct sum
of the vector spaces V (1) and V (2) is such that

i) (v(1) ⊕ v(2)) + (w(1) ⊕ w(2)) = (v(1) + w(1))⊕ (v(2) + w(2))
ii) (av(1) ⊕ av(2)) = a(v(1) ⊕ v(2)),

(3.2.1)

where a ∈ K, v(1), w(1) ∈ V (1) and v(2), w(2) ∈ V (2). The resulting vector field, i.e. the
direct sum, is denoted V (1) ⊕ V (2). If our vector spaces V (1) and V (2) have an inner product,
such as Hilbert spaces, we can bring this property to the direct sum of the vector spaces as
well. Consider a finite number of Hilbert spaces H(1), H(2),..., H(n). The direct sum of these
Hilbert spaces can then form a Hilbert space if we define the inner product as

〈(x(1) ⊕ x(2) ⊕ ...⊕ x(n)),(y(1) ⊕ y(2) ⊕ ...⊕ y(n))〉 =
= 〈x(1),y(1)〉+ 〈x(2),y(2)〉+ ...〈x(n),y(n)〉.

(3.2.2)

This means that the terms in the summation are orthogonal subspaces to H(1)⊕H(2)⊕...⊕H(n).

We have seen that a group G can have different representations, Πi, acing on different vector
spaces, Vi. A nice way to construct a new representation Π from the Πi:s we have already
found is to take the direct sum of these representations and let it act on the vector space V
of higher dimension.

Definition 3.2.2. Consider a group G with representations Π1, Π2,..., Πn acting on vector
spaces V1,V2,..., Vn respectively. The direct sum of the representations Π = Π1⊕Π2⊕ ...⊕Πn

then acts on the direct sum of the vector spaces V = V1 ⊕ V2 ⊕ ...⊕ Vn, as a representation,
defined by

Π(g)(ψ1,ψ2,...,ψn) = Π1(g)⊕Π2(g)⊕ ...⊕Πn(g)(ψ1,ψ2,...,ψn) =
= (Π1(g)ψ1,Π2(g)ψ2,...,Πn(g)ψn),

(3.2.3)
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for all g ∈ G. Let g be a Lie algebra with representations π1, π2,..., πm acting on vector spaces
V1,V2,..., Vm respectively. The direct sum of the representations π = π1 ⊕ π2 ⊕ ...⊕ πm then
acts on the direct sum of the vector spaces V = V1 ⊕ V2 ⊕ ... ⊕ Vm as a representation,
defined by

π(g)(ψ1,ψ2,...,ψm) = π1(t)⊕ π2(t)⊕ ...⊕ πn(t)(ψ1,ψ2,...,ψm) =
= (π1(t)ψ1,π2(t)ψ2,...,πn(t)ψm),

(3.2.4)

for all t ∈ g and for all ψi ∈ Vi.

This means that if we choose an appropriate basis for V we can express Π(g) as a block diag-
onalized matrix where the entries in the diagonal is the matrices for the Π(g)i:s. If the Π(g)i:s
are reducible, we can continue to block diagonalize these matrices, but if they are irreducible
this is not possible. Π can be expressed as a direct sum of irreducible representations, where
the same representation may appear more than once,

Π = Π1 ⊕Π2 ⊕ ...⊕Πm (3.2.5)

with the corresponding vector spaces

V = V1 ⊕ V2 ⊕ ...⊕ Vm. (3.2.6)

Proposition 3: A finite dimensional completely reducible representation is equivalent to a
direct sum of irreducible representations.

Proof. First consider the case when the vector space V is irreducible. V is a direct sum with
one term in the summation, namely V . The other case is when V is reducible. Then there ex-
ists at least two invariant subspaces W and U such that V = W⊕U , dim(W )+dim(U) =dim(V ),
and that W ∩U = {0}. W and U must be completely reducible as well because every subspace
to W , for example, is a subspace to V . Now we have two representations, not necessarily
irreducible, for the Lie group or the Lie algebra acting on W and U . But if W and U are
completely reducible then we can express, for example, W as a direct sum of two or more
completely reducible representations and by induction W = W1⊕W2⊕ ...⊕Wn. Thus we can
express V = W1 ⊕W2 ⊕ ...⊕Wn ⊕U1 ⊕U2 ⊕ ...⊕Um with the Wi:s and Uj :s irreducible.

We have seen how the direct sum of vector spaces allows us to add representations acting on
different vector spaces and to form new representations based on them. Another way to form
new representations is to form the so called tensor product. The idea is to form a product
of elements from two vector spaces V and W as v⊗w, v ∈ V and w ∈ W . What exactly do
we mean by the “product”, ⊗, of vectors?

Definition 3.2.3. The tensor product V and W of the vector spaces, V ⊗W , is a vector
space U together with a bilinear mapping Φ : V ⊗ W −→ U . In addition we have a bilinear
mapping Ψ : V ⊗W −→ X, X is a vector space, such that there exists a unique linear mapping
Ψ′ : U −→ X.
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Observe that we have gone from a bilinear map from V ⊗W to X to a linear operator from
U to X. This is the main reason why we form the tensor product. An arbitrary vector of the
form

∑
i,j ai,jvi ⊗wj can be expressed as a linear combination of the vectors ai ⊗ bj , where

ai and bj form a basis for V and W , respectively. This can be seen from the fact that ⊗ is
bilinear, so we can express the vi :s and wj :s in their respective bases. In other words, we
can take ai ⊗ bj , for all i,j, to be a basis for U and dim(U) =dim(V )×dim(W ).

Proposition 4: Let V and W be two finite dimensional vector spaces and Â and B̂ be two
linear operators such that Â : V −→ V and B̂ : W −→ W . Then we have a unique operator
Â⊗ B̂ acting on V ⊗W , Â⊗ B̂ : V ⊗W −→ V ⊗W , as

Â⊗ B̂(v ⊗w) = (Âv)⊗ (B̂w), ∀v ∈ V,∀w ∈ W. (3.2.7)

We will see later on how this works when we add angular momentum in section 4.5. The tensor
product, as we will see, often arise in physics when we want to describe a system consisting
of several particles as a unit, i.e. we want to work with the total system. A typical example
is when we want to calculate the total energy of a system. Classically, we would add the
constituent particle’s energies but when it comes to quantum mechanics we have to find the
eigenvalues of the total Hamiltonian, i.e. an operator that acts on the tensor product space.
To get the total Hamiltonian we need the Hamiltonian of the individual particles and then
take the tensor product of these operators. We know that a representation involves both a
realization, e.g. matrices, and a vector space which our operators act on, so in order to find the
representation of our total operator we need to define the tensor product of representations.

Definition 3.2.4. Let Π1 and Π2 be two representation of G acting on V1 and V2, respectively.
The tensor product Π1 ⊗Π2 is a representation of G acting on the vector space V1 ⊗ V2 as

Π1(g)⊗Π2(g)(v1 ⊗ v2) = Π1(g)v1 ⊗Π2(g)v2, (3.2.8)

for all v1 ∈ V1, v2 ∈ V2 and for all g ∈ G. Let g be a Lie algebra with representations π1 and
π2 acting on V1 and V2, respectively. The tensor product π1 ⊗ π2 is then a representation
acting on V1 ⊗ V2 as

π1(t)⊗ π2(t)(v1 ⊗ v2) = π1(t)v1 ⊗ v2 + v1 ⊗ π2(t)v2. (3.2.9)

for all v1 ∈ V1, v2 ∈ V2 and for all t ∈ g.

As we saw in Proposition 1, there is a correspondence between the representations of a Lie
group and its Lie algebra. Worth noting is that the expression (3.2.9) is not the same as
(3.2.8). We motivate this with the following Proposition.

Proposition 5: Let Π1, Π2 be representations of the Lie group G, acting on V1,V2, and
π1, π2 be representations of the corresponding Lie algebra g, acting on V1,V2. π1(t) ⊗ π2(t)
then acts on V1 ⊗ V2 as

π1(t)⊗ π2(t) = π1(t)⊗ 1 + 1⊗ π2(t) (3.2.10)

for all t ∈ g.
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Proof. Let us first consider the representations Π1, Π2 of the group. We have

Π1(t)⊗Π2(t)(v1 ⊗ v2) = Π1(eλt)⊗Π2(eλt)(v1 ⊗ v2) = Π1(eλt)v1 ⊗Π2(eλt)v2. (3.2.11)

Consider Π1(eλt)v1 and Π2(eλt)v2 as two smooth curves in V1 and V2, respectively, and denote
them as V1(λ), V2(λ). λ is the curve parameter. The derivative of V1(λ)⊗V2(λ) then becomes

lim
Δλ→0

V1(λ + Δλ)⊗ V2(λ + Δλ)− V1(λ)⊗ V2(λ)
Δλ

=

= lim
Δλ→0

V1(λ + Δλ)⊗ V2(λ + Δλ)− V1(λ)⊗ V2(λ + Δλ)
Δλ

+

V1(λ)⊗ V2(λ + Δλ)− V1(λ)⊗ V2(λ)
Δλ

= dV1(λ)
dλ

⊗ V2(λ) + V1(λ)⊗ dV2(λ)
λ

,

(3.2.12)

i.e. the usual product rule. To see how the representation π1 ⊗ π2 becomes we have to
differentiate (3.2.11) with respect to λ at the identity, λ = 0.

d

dλ

(
Π1(eλt)v1 ⊗Π2(eλt)v2

) ∣∣∣∣
λ=0

= d

dλ
Π1(eλt)

∣∣∣∣
λ=0

v1 ⊗ v2 + v1 ⊗ d

dλ
Π2(eλt)

∣∣∣∣
λ=0

v2 =

= π1(t)v1 ⊗ v2 + v1 ⊗ π2(t)v2 = π1(t)⊗ 1 + 1⊗ π2(t)(v1 ⊗ v2).
(3.2.13)

Since v1 ⊗ v2 is arbitrary (3.2.10) is true on V1 ⊗ V2.

At the end of chapter 4 we will see a concrete example of the tensor product when we
learn how the tensor product of two irreducible representations of sl(2,�) can be decomposed
into a direct sum of irreducible representations of the same algebra, and how this is applied
in the addition of angular momenta in quantum mechanics.
Although there is much more to say and learn about representation theory, we will now
leave this chapter. The basic concepts have been presented and with these we are ready to
handle the physical interpretations of representations. There will be much more said about
represein the forthcoming chapters, see for example section 6.5 and 4.4, that will show how
to construct representations. The most important concept of this chapter is undoubtedly
irreducible representations and as we shall see, have a very important physical meaning.
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Chapter 4

A Physical Approach

In the previous chapters we studied the basic mathematical formalism of group theory and
representation theory. The purpose of the present chapter is to provide examples of how these
concepts arise naturally in the field of quantum mechanics. More specifically, we will first
derive the fundamental commutation relations of angular momentum in quantum mechanics.
These relations will reveal the connection between the Lie group SU(2) and the set of rotation
operators acting on the ket space of any given physical system. A concrete example of how
the fundamental commutation relations may be realized will then be given through the study
of spin 1/2 systems.

By the end of this chapter we will also have studied ladder operators, irreducible repre-
sentations and the addition of angular momenta. But before we can advance that far we must
take a closer look at rotations in �3.

4.1 Rotations in �3

Rotations about the same axis in �3 always commute with one another while finite rotations
about different axes generally do not. Let Rl(φ) denote a rotation by the angle φ about an axis
l passing through the origin of a Cartesian coordinate system xyz. Then an arbitrary rotation
Rl(φ1) followed by a rotation Rl(φ2) about the same axis will always give the same result
as a rotation Rl(φ2) followed by a rotation Rl(φ1), while, for instance, a rotation Rx(π/2)
followed by a rotation Rz(π/2) will obviously give a different result than that of the same
rotations performed in the reversed order.

Even though finite rotations generally fail to commute, infinitesimal rotations about any
two axes in�3 always commute in a first order approximation. However, they do not commute
in a second order approximation. This is a very important fact which will lead us almost
directly to the fundamental commutation relations of angular momentum. As a first step we
must therefore prove the statements just made.

Rotations are linear transformations and for any linear transformation T : �n → �
m, x �→

T (x) there exists a uniquely determined standard matrix A such that

T (x) = Ax, ∀x ∈ �n. (4.1.1)

It can easily be proven that A is a real m× n matrix given by

A = [T (e1) . . . T (en)], (4.1.2)
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where ej (j = 1, . . . , n) is the jth column of the identity matrix 1 in �n ([12], p. 99).
Hence, rotation matrices acting on �3 are 3 × 3 matrices with real entries. In fact, they

are orthogonal matrices with determinant one (i.e. proper orthogonal matrices). One can also
prove that the converse is true, namely that any real 3×3 orthogonal matrix with determinant
one is a rotation matrix[13]. The set of all rotation matrices acting on�3 therefore constitutes
the defining representation of the Lie group SO(3). The general non-commutative nature of
finite rotations in �3 is an expression of the fact that SO(3) is a non-Abelian group.

For simplicity’s sake we will denote the matrix for a rotation Rl(φ) in the same way as
the rotation itself.

According to equation (4.1.2) the matrix for a rotation about the z-axis by the angle φ is
given by

Rz(φ) =

⎛
⎜⎝cos φ − sin φ 0

sin φ cos φ 0
0 0 1

⎞
⎟⎠ . (4.1.3)

Note that this is the 3× 3 analogy of the 2× 2 rotation matrix in equation 2.3.1.
By replacing the trigonometric functions in equation (4.1.3) with their respective Taylor

polynomials of order two and letting φ = ε → 0 we obtain the second order approximation

Rz(ε) =

⎛
⎜⎝1− ε2/2 −ε 0

ε 1− ε2/2 0
0 0 1

⎞
⎟⎠ (4.1.4)

of the matrix for a rotation about the z-axis by the infinitesimal angle ε.
Through cyclic permutations of (x, y, z) equation (4.1.4) gives the second order approxi-

mations

Rx(ε) =

⎛
⎜⎝1 0 0

0 1− ε2/2 −ε
0 ε 1− ε2/2

⎞
⎟⎠ (4.1.5)

and

Ry(ε) =

⎛
⎜⎝1− ε2/2 0 ε

0 1 0
−ε 0 1− ε2/2

⎞
⎟⎠ (4.1.6)

of the matrices for rotations about the x- and y-axis, respectively, by the infinitesimal angle
ε.

Let us now consider an infinitesimal rotation about the x-axis by the angle ε1 followed
by another infinitesimal rotation about the y-axis by the angle ε2. With the help of equation
(4.1.5) and (4.1.6) we find that the second order approximation of the matrix for the total
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rotation is given by

Ry(ε2)Rx(ε1) =

⎛
⎜⎝1− ε2

2/2 0 ε2
0 1 0
−ε2 0 1− ε2

2/2

⎞
⎟⎠
⎛
⎜⎝1 0 0

0 1− ε2
1/2 −ε1

0 ε1 1− ε2
1/2

⎞
⎟⎠

=

⎛
⎜⎝1− ε2

2/2 ε1ε2 (1− ε2
1/2)ε2

0 1− ε2
1/2 −ε1

−ε2 (1− ε2
2/2)ε1 (1− ε2

1/2)(1− ε2
2/2)

⎞
⎟⎠

≈
⎛
⎜⎝1− ε2

2/2 ε1ε2 ε2
0 1− ε2

1/2 −ε1
−ε2 ε1 1− ε2

1/2− ε2
2/2

⎞
⎟⎠ . (4.1.7)

If we reverse the order in which the rotations are performed we instead obtain the matrix

Rx(ε1)Ry(ε2) =

⎛
⎜⎝1 0 0

0 1− ε2
1/2 −ε1

0 ε1 1− ε2
1/2

⎞
⎟⎠
⎛
⎜⎝1− ε2

2/2 0 ε2
0 1 0
−ε2 0 1− ε2

2/2

⎞
⎟⎠

=

⎛
⎜⎝ 1− ε2

2/2 0 ε2
ε1ε2 1− ε2

1/2 (1− ε2
2/2)(−ε1)

(1− ε2
1/2)(−ε2) ε1 (1− ε2

1/2)(1− ε2
2/2)

⎞
⎟⎠

≈
⎛
⎜⎝1− ε2

2/2 0 ε2
ε1ε2 1− ε2

1/2 −ε1
−ε2 ε1 1− ε2

1/2− ε2
2/2

⎞
⎟⎠ . (4.1.8)

The matrices (4.1.7) and (4.1.8) are obviously not equal to each other, but they are equal
if we set ε2

1 = ε2
2 = ε1ε2 = 0. This proves that rotations about the x- and y-axis always

commute in a first order approximation, but generally not in a second order approximation
(the exceptions being when ε1 = 0 and/or ε2 = 0). We will now show that this is true for any
two axes in �3.

From a symmetry point of view it seems clear that the result above must also apply to
rotations about the x- and z-axis or the y- and z-axis. This means that infinitesimal rotations
about any two Cartesian coordinate axes always commute in a first but not in a second order
approximation. Moreover, it can be shown that any rotation in �3 (finite or infinitesimal)
can be carried out by performing three successive rotations about two arbitrary Cartesian
coordinate axes ([14], p. 177). Such rotations are in fact a variation of the perhaps more
familiar Euler rotations. If we for instance select the y- and z-axis as our rotation axes then
for any given axis l and infinitesimal angle ε

Rl(ε) = Rz(ε1)Ry(ε2)Rz(ε3) (4.1.9)

for some values of ε1, ε2, ε3 ∈ �.
Since infinitesimal rotations about Cartesian coordinate axes commute in a first order

approximation it therefore follows that the same can be said about infinitesimal rotations
about two arbitrary axes l and l′ since for any infinitesimal angles ε, ε′ ∈ � equation (4.1.9)
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gives that

Rl(ε)Rl′(ε′) = [Rz(ε1)Ry(ε2)Rz(ε3)][Rz′(ε1′)Ry′(ε2′)Rz′(ε3′)]
= Rz(ε1)Ry(ε2)Rz(ε3)Rz′(ε1′)Ry′(ε2′)Rz′(ε3′)
= Rz(ε1)Ry(ε2)Rz′(ε1′)Rz(ε3)Ry′(ε2′)Rz′(ε3′)
· · ·
= Rz′(ε1′)Ry′(ε2′)Rz′(ε3′)Rz(ε1)Ry(ε2)Rz(ε3)
= [Rz′(ε1′)Ry′(ε2′)Rz′(ε3′)][Rz(ε1)Ry(ε2)Rz(ε3)]
= Rl′(ε′)Rl(ε) (4.1.10)

for some infinitesimal values of ε1, ε2, ε3, ε1′ , ε2′ , ε3′ ∈ �.
By closely examining equation (4.1.10) we can also see that infinitesimal rotations about

arbitrary axes do not commute in a second order approximation since in general Rz(ε3)Rz′(ε1′)
�= Rz′(ε1′)Rz(ε3), Ry(ε2)Rz′(ε1′) �= Rz′(ε1′)Ry(ε2) etc. in a second order approximation. We
have thus proven our initial assertions.

Moreover, if we let ε1 = ε2 = ε then equation (4.1.4), (4.1.7) and (4.1.8) give the commu-
tation relation

[Rx(ε), Ry(ε)] =

⎛
⎜⎝ 0 −ε2 0

ε2 0 0
0 0 0

⎞
⎟⎠ = Rz(ε2)− 1, (4.1.11)

where we have ignored terms of order three and higher in ε.
Equation (4.1.11) is the sought after relation which will help us to derive the fundamental

commutation relations of angular momentum in quantum mechanics in the next section.
Through cyclic permutations of (x, y, z) we can also obtain the similar commutation relations

[Rz(ε), Rx(ε)] = Ry(ε2)− 1 (4.1.12)
[Ry(ε), Rz(ε)] = Rx(ε2)− 1. (4.1.13)

In general, we have that
[Ri(ε), Rj(ε)] = εijk[Rk(ε2)− 1], (4.1.14)

where i, j, k ∈ {1, 2, 3}, R1 = Rx, R2 = Ry and R3 = Rz.

4.2 Rotations in Quantum Mechanics

A rotation of a given physical system generally affects the probability distributions for the
system’s observables, such as its linear momentum and spin. We therefore expect the state
ket of the system to be altered by the rotation (for a discussion about kets and ket spaces see
appendix C).

Let us find the operators for rotations acting on the system’s ket space H. For every
rotation matrix Rl(φ) acting on �3, where l is given by the unit direction vector n̂, we
associate an operator D̂(n̂, φ) (D as in Drehung, which is the German word for rotation1)
acting on H such that

|ψ〉R = D̂(n̂, φ)|ψ〉, (4.2.1)
1For historical reasons, many words in quantum mechanics are of German origin.
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where |ψ〉 is the state ket before the rotation and |ψ〉R is the state ket after the rotation.
In order to derive an explicit expression for D̂(n̂, φ) we will first find the operator D̂(n̂, dφ)

for an infinitesimal rotation by the angle dφ about the same axis. Once we have found the
latter operator we may compute D̂(n̂, φ) as limN→∞[D̂(n̂, φ/N)]N , just as we did for rotation
matrices acting on �2 in section 2.3.

To obtain an idea about what D̂(n̂, dφ) might look like we will first examine some familiar
operators for infinitesimal symmetry transformations in quantum mechanics. We know for
instance that the operator Ĵ ( dx) for an infinitesimal translation dx in �3 is given by

Ĵ ( dx) = 1̂− i
p̂ · dx

�
, (4.2.2)

where 1̂ is the identity operator and p̂ is the linear momentum operator ([14], p. 46).
We also know that the operator Û (t0 + dt, t0) for an infinitesimal time translation dt at

time t = t0 is given by

Û (t0 + dt, t0) = 1̂− i
Ĥ dt

�
, (4.2.3)

where Ĥ is the Hamiltonian operator ([14], p. 69).
In classical mechanics angular momentum is the generator2 of rotations in the same way

as linear momentum and the Hamiltonian are the generators of translations in space and
time, respectively. By analogy it is therefore reasonable to assume that

D̂(n̂, dφ) = 1̂− i
Ĵ · n̂ dφ

�
, (4.2.4)

where Ĵ is the angular momentum operator.
Unfortunately, we cannot prove that (4.2.4) is the correct expression for D̂(n̂, dφ). The

reason for this is that in classical mechanics the angular momentum J of a particle with
respect to a point P is defined as J = x×p, where x is the particle’s position vector relative
to P and p is the its linear momentum. With this definition of angular momentum one
can prove that angular momentum is the generator of rotations in classical mechanics (see
chapter 9 in [15]). However, such a proof does not hold in quantum mechanics since the
angular momentum associated with the particle’s spin has nothing to do with the particle’s
position or linear momentum.

Let us therefore define Ĵ as the operator which gives D̂(n̂, dφ) the form in equation
(4.2.4). Moreover, we postulate that the set of all rotation operators D̂(n̂, φ) acting on H,
together with the operation D̂(n̂1, φ1) � D̂(n̂2, φ2) = D̂(n̂1, φ1)D̂(n̂2, φ2), forms a group and
that the mapping Rl(φ) �→ D̂(n̂, φ) is a group homomorphism ([14], p. 162).

As we mentioned above, we can now obtain an explicit expression for D̂(n̂, φ) by perform-

2Note that in physics the word generator is quite ambiguous. In this context we are neither referring to
the generators of groups nor to the generators of Lie algebras. For an excellent disposition of generators in
classical mechanics see chapter 9 in [15].
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ing a succession of increasingly smaller rotations about the same axis:

D̂(n̂, φ) = lim
N→∞

[
1̂− i

Ĵ · n̂
�

φ

N

]N

= exp
(
−i

Ĵ · n̂
�

φ

)
(4.2.5)

= 1̂− i
Ĵ · n̂
�

φ− (Ĵ · n̂)2

2�2 φ2 + . . . (4.2.6)

Let us now at last derive the fundamental commutation relations of angular momentum. We
begin by noticing that the quantum mechanical analogy of equation (4.1.11) is

D̂(x̂, ε)D̂(ŷ, ε)− D̂(ŷ, ε)D̂(x̂, ε) = D̂(ẑ, ε2)− 1̂, (4.2.7)

where we have used the fact that Rl(φ) �→ D̂(n̂, φ) is a group homomorphism.
By replacing the operators in (4.2.7) with their second order approximations, which are

given by equation (4.2.6), we find that(
1̂− i

Ĵxε

�
− Ĵ2

xε2

2�2

)(
1̂− i

Ĵyε

�
− Ĵ2

y ε2

2�2

)

−
(

1̂− i
Ĵyε

�
− Ĵ2

y ε2

2�2

)(
1̂− i

Ĵxε

�
− Ĵ2

xε2

2�2

)

= 1̂− i
Ĵzε2

�
− 1̂

= i
Ĵzε2

�
, (4.2.8)

where Ĵx, Ĵy and Ĵz are the operators for the Cartesian components of the angular momentum
J .

If we simplify equation (4.2.8) and omit terms of order three and higher in ε then we
obtain the commutation relation

[Ĵx, Ĵy] = i�Ĵz. (4.2.9)

By permuting (x, y, z) we finally obtain the fundamental commutation relations of an-
gular momentum:

[Ĵi, Ĵj ] = i�εijkĴk, (4.2.10)

where Ĵ1 = Ĵx, Ĵ2 = Ĵx and Ĵ3 = Ĵz.
Let us now find the promised connection between the rotation operators and the group

SU(2). We proved in section 2.3 that the generators of the defining representation π(su(2))
of the Lie algebra su(2) are iσ1, iσ2 and iσ3. Since π(su(2)) is a vector space over � this
means that every element X in π(su(2)) can be expressed on the form

X = a1(iσ1) + a2(iσ2) + a3(iσ3) = ia1σ1 + ia2σ2 + ia3σ3, a1, a2, a3 ∈ �. (4.2.11)

Note that if we were to take linear combinations of iσ1, iσ2 and iσ3 with complex coefficients
then we would leave π(su(2)) and enter the the defining representation of the complexification
sl(2,�) of su(2) (see equation 2.3.32 in section 2.3).
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Moreover, we mentioned in section 2.3 that the commutation relations for the generators
of π(su(2)) are

[iσi, iσj ] = −2iεijkσk, (4.2.12)

and that by exponentiating elements of π(su(2)) we obtain elements of the defining represen-
tation Π(SU(2)) of SU(2):

exp(ia1σ1 + ia2σ2 + ia3σ3) ∈ Π(SU(2)), ∀a1, a2, a3 ∈ �. (4.2.13)

If we define the operators Ĵ ′
1, Ĵ ′

2 and Ĵ ′
3 according to

Ĵ ′
i

def= 2
�

Ĵi, i = 1, 2, 3, (4.2.14)

then we can rewrite the commutation relations (4.2.10) as

[iĴ ′
i , iĴ ′

j ] = −2iεijkĴ ′
k, (4.2.15)

which is on the same form as (4.2.12).
This proves that iĴ ′

1, iĴ ′
2 and iĴ ′

3 are the generators of a representation of su(2)3. Naturally,
the same can be said about iĴ1, iĴ2 and iĴ3 since they are real multiples of iĴ ′

1, iĴ ′
2 and iĴ ′

3,
respectively.

Finally, we see in equation (4.2.5) that the rotation operators D̂(n̂, φ) are obtained through
exponentiation of real multiples of

iĴ · n̂ = in1Ĵ1 + in2Ĵ2 + in3Ĵ3, (4.2.16)

where n̂ = (n1, n2, n3).
In other words, the rotation operators are obtained through exponentiation of real linear

combinations of the generators iĴ1, iĴ2 and iĴ3 of a representation of su(2). Moreover, SU(2)
is an exponential group, which means that the exponential map covers all of SU(2).

We have thus proven the following statement:

The rotation operators acting on the ket space of a physical system, together with
the ket space itself, form a representation of the group SU(2).

In the next section we will exemplify the results above through the study of spin 1/2 systems.

4.3 Spin 1/2 Systems

Let n be the dimension of the ket space of a physical system. The lowest value of n for which
the commutation relations (4.2.10) can be realized is n = 2 ([14], p. 163). This just happens
to be the dimension of the ket space of a spin 1/2 system with no other degrees of freedom.
For the sake of simplicity, let us therefore have a look at such a system.

Let Ŝx, Ŝy and Ŝz denote the operators for the components of the spin in the x-, y- and
z-direction, respectively. Moreover, let | ↑〉 and | ↓〉 be normalized eigenkets of Ŝz with the
corresponding eigenvalues ±�/2, where ↑ and ↓ refer to spin up and spin down.

3At least from a mathematicians point of view. As we mentioned in section 2.3 a physicist considers {Ĵ ′
i},

rather than {iĴi}, to be the generators of a representation of su(2).
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These eigenkets form a basis for the ket space H and it can be shown ([14], p. 163) that
the spin operators can be expressed as

Ŝx = �

2

(
| ↑〉〈↓ |+ | ↓〉〈↑ |

)
(4.3.1)

Ŝy = i
�

2

(
− | ↑〉〈↓ |+ | ↓〉〈↑ |

)
(4.3.2)

Ŝz = �

2

(
| ↑〉〈↑ | − | ↓〉〈↓ |

)
, (4.3.3)

where | ↑〉〈↓ | denotes the outer product of | ↑〉 and 〈↓ | (a definition of the outer product of
a ket and a bra is given in appendix C).

Since spin is an intrinsic angular momentum the spin operators satisfy the fundamental
commutation relations of angular momentum. We can prove this explicitly by inserting the
expressions (4.3.1)–(4.3.3) into equation (4.2.10). For instance:

[Ŝx, Ŝy] = ŜxŜy − ŜyŜx

=
[
�

2

(
| ↑〉〈↓ |+ | ↓〉〈↑ |

)] [
i
�

2

(
− | ↑〉〈↓ |+ | ↓〉〈↑ |

)]

−
[
i
�

2

(
− | ↑〉〈↓ |+ | ↓〉〈↑ |

)] [
�

2

(
| ↑〉〈↓ |+ | ↓〉〈↑ |

)]

= i
�

2

2

(
| ↑〉〈↑ | − | ↓〉〈↓ |

)
= i�Ŝz, (4.3.4)

where we have used the orthonormality of | ↑〉 and | ↓〉.
Moreover, the operator D̂(n̂, φ) for a finite rotation by the angle φ about the axis l through

the origin given by the unit direction vector n̂ is, according to equation (4.2.5), given by

D̂(n̂, φ) = exp
(
−i

Ŝ · n̂
�

φ

)
. (4.3.5)

It is interesting to observe the effect of D̂(n̂, φ) on an arbitrary ket in H. Any ket |ψ〉 in H
can be expressed as a linear combination of the base kets:

|ψ〉 = | ↑〉〈↑ |ψ〉+ | ↓〉〈↓ |ψ〉. (4.3.6)

If we for instance let D̂(ẑ, φ) act on |ψ〉 then the result will be

D̂(ẑ, φ)|ψ〉 = exp
(
−i

Ŝzφ

�

)
|ψ〉

= exp
(
−i

Ŝzφ

�

)(
| ↑〉〈↑ |ψ〉+ | ↓〉〈↓ |ψ〉

)

=
(

1̂− i
Ŝzφ

�
− . . .

)(
| ↑〉〈↑ |ψ〉+ | ↓〉〈↓ |ψ〉

)
· · ·
= e−iφ/2| ↑〉〈↑ |ψ〉+ eiφ/2| ↓〉〈↓ |ψ〉, (4.3.7)
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where we have used the fact that | ↑〉 and | ↓〉 are eigenkets of the operator Ŝz corresponding
to the eigenvalues ±�/2.

Note that any axis l in �3 can be chosen as the z-axis of a Cartesian coordinate system.
The physical significance of the half-angle φ/2 in equation (4.3.7) is therefore that a spin 1/2
system has to be rotated by the angle 4π, rather than 2π, about any given axis before the
state ket returns to its original value. Hence, for every rotation matrix Rl(φ) acting on �3

there are two corresponding rotation operators acting on H, namely D̂(n̂, φ) and D̂(n̂, φ+2π).
This is an expression of the fact that for every element in the underlying set of SO(3) there
are two corresponding elements in the underlying set of SU(2). We therefore say that SU(2)
is the double cover of SO(3) (this subject is discussed further in section 6.7.2.).

Let us now introduce some new terminology that will facilitate calculations involving state
kets of spin 1/2 systems.

4.3.1 Spinors

The two-component spinor associated with a given ket in the ket space H of a spin 1/2
system is the coordinate column vector of the ket with respect to the basis {| ↑〉, | ↓〉} for
H (spinors are discussed further in example 6.5.2 in section 6.5). With the help of equation
(4.3.6) we therefore find that the spinor corresponding to an arbitrary ket |ψ〉 in H is given
by

|ψ〉 = | ↑〉〈↑ |ψ〉+ | ↓〉〈↓ |ψ〉 �→
(
〈↑ |ψ〉
〈↓ |ψ〉

)
. (4.3.8)

Moreover, every bra 〈ψ| in the bra space H∗ (the star denotes the dual space to H – see
appendix C and D for an explanation) is associated with the Hermitian adjoint of the spinor
corresponding to the ket |ψ〉:

〈ψ| = 〈ψ| ↑〉〈↑ |+ 〈ψ| ↓〉〈↓ | �→
(
〈↑ |ψ〉
〈↓ |ψ〉

)†
=
(
〈ψ| ↑〉, 〈ψ| ↓〉

)
. (4.3.9)

Let us now calculate the matrix elements for the matrices of the spin operators Ŝx, Ŝy and Ŝz

with respect to the basis {| ↑〉, | ↓〉}. With the help of equation (4.3.1)–(4.3.3) we find that

〈↑ |Ŝx| ↑〉 = 0, 〈↑ |Ŝx| ↓〉 = �/2, 〈↓ |Ŝx| ↑〉 = �/2, 〈↓ |Ŝx| ↓〉 = 0 (4.3.10)
〈↑ |Ŝy| ↑〉 = 0, 〈↑ |Ŝy| ↓〉 = −i�/2, 〈↓ |Ŝy| ↑〉 = i�/2, 〈↓ |Ŝy| ↓〉 = 0 (4.3.11)
〈↑ |Ŝz| ↑〉 = �/2, 〈↑ |Ŝz| ↓〉 = 0, 〈↓ |Ŝz| ↑〉 = 0, 〈↓ |Ŝz| ↓〉 = −�/2. (4.3.12)

According to example 6.5.2 the matrices of the spin operators are therefore given by

Sx = �

2

(
0 1
1 0

)
= �

2σ1 (4.3.13)

Sy = �

2

(
0 −i
i 0

)
= �

2σ2 (4.3.14)

Sz = �

2

(
1 0
0 −1

)
= �

2σ3. (4.3.15)
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This shows in a very straightforward manner that iŜx, iŜy and iŜz are the generators of a
representation of su(2) and that the rotation operators, along with the ket space on which
they act, form a representation of SU(2). More specifically, it shows that the matrices of
iŜx, iŜy and iŜz are the generators of the defining representation of su(2). The matrices of
the rotation operators, together with the spinor space �2 on which they act, therefore form
the defining representation of SU(2).

To show this explicitly we can calculate the matrix D(n̂, φ) of an arbitrary rotation op-
erator D̂(n̂, φ) with the help of equation (4.3.5) and (4.3.13)–(4.3.15):

D(n̂, φ) = exp
(
−i

S · n̂
�

φ

)
= exp

(
−i

σ · n̂
2 φ

)
, (4.3.16)

where σ = (σ1, σ2, σ3) is the so-called Pauli vector (which is actually not a vector at all
since its elements are matrices).

By expanding the exponential function in (4.3.16) we find that

exp
(
−i

σ · n̂
2 φ

)

=
(

cos(φ/2)− inz sin(φ/2) (−inx − ny) sin(φ/2)
(−inx + ny) sin(φ/2) cos(φ/2) + inz sin(φ/2)

)
. (4.3.17)

It can readily be shown that the matrices given by (4.3.17) are unitary matrices with deter-
minant one, i.e. elements of the underlying set of the defining representation of SU(2).

4.4 Construction of Irreducible Representations

In the preceding section we defined the | ↑〉 and | ↓〉 to be eigenkets to Ŝz and used them as
a basis for the 2-dimensional ket space for spin 1/2. We are now ready to develop a general
method to find a basis for a ket space of any spin, constituted by eigenkets to one of our
angular momentum operators.

We start by, in addition to our three operators Ĵx, Ĵy and Ĵz, defining

Ĵ2 def= Ĵ2
x + Ĵ2

y + Ĵ2
z . (4.4.1)

This new operator commutes with all Ĵi’s, i.e.

[Ĵ2, Ĵi] = 0, i = x, y, z. (4.4.2)

An operator which commutes with all other operators in the algebra is called a Casimir
operator. These are of great importance and we will return to their general role in section
5.5. That our Ĵ2 really is a Casimir operator can be seen by

[Ĵ2, Ĵz] = (Ĵ2
x + Ĵ2

y + Ĵ2
z )Ĵz − Ĵz(Ĵ2

x + Ĵ2
y + Ĵ2

z )
= Ĵ2

x Ĵz + Ĵ2
z Ĵz − ĴzĴ2

x − ĴzĴ2
y

= Ĵx[Ĵx, Ĵz] + ĴxĴzĴx + [Ĵx, Ĵz]Ĵx − ĴxĴzĴx

+ Ĵy[Ĵy, Ĵz] + ĴyĴzĴy + [Ĵy, Ĵz]Ĵy − ĴyĴzĴy

= Ĵx(−i�Ĵy) + (−i�Ĵy)Ĵx + Ĵyi�Ĵx + i�ĴxĴy = 0, (4.4.3)
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which can be done analogously for Ĵx and Ĵy through permutations. Since Ĵ2 commutes
with any of the Ĵi’s we can choose a basis for the Hilbert space such that it diagonalize both
Ĵ2 and the Ĵi of choice. By convention we choose Ĵz for this and hence the basis consists
of simultaneous eigenstates to Ĵ2 and Ĵz. We label these eigenstates with the corresponding
eigenvalues to Ĵ2 and Ĵz respectively by

|a, b〉 : Ĵ2|a, b〉 = a|a, b〉, Ĵz|a, b〉 = b|a, b〉 (4.4.4)

where a, b ∈ �. Note that since all Ĵi’s are Hermitian this also applies for Ĵ2. Our goal now
is to find all states in this basis which will prove to constitute an irreducible representation
for the su(2) algebra. To our help we define two new operators

Ĵ+
def= Ĵx + iĴy, Ĵ−

def= Ĵx − iĴy. (4.4.5)

These are non-Hermitian operators satisfying the commutation relations

[Ĵz, Ĵ±] = ±�Ĵ± (4.4.6a)

[Ĵ+, Ĵ−] = 2�Ĵz (4.4.6b)

and by (4.4.2)
[Ĵ2, Ĵ±] = 0. (4.4.6c)

Also note that since Ĵx and Ĵy are Hermitian we have

Ĵ†
+ = Ĵ− ⇐⇒ Ĵ†

− = Ĵ+. (4.4.7)

The observant reader may protest that the complex linear combination of the Ĵi’s takes us
out of the su(2) since this algebra was over the field �. That is indeed true and we are now in
the sl(2,�) algebra. But let us not worry about this for the moment and trust the assertion
that the result will hold for su(2) as well.

Ĵ± are called ladder operators and the reason is their action on the eigenstates (4.4.4).
Ĵ+|a, b〉 is still an eigenstate to Ĵz since

ĴzĴ+|a, b〉 = ([Ĵz, Ĵ+] + Ĵ+Ĵz)|a, b〉 (4.4.6a)= (b + �)Ĵ+|a, b〉 (4.4.8)

and the eigenvalue is (b + �). A similar calculation gives

ĴzĴ−|a, b〉 = (b− �)Ĵ−|a, b〉, (4.4.9)

so the action of Ĵ+ (Ĵ−) is apparently to increase (decrease) the eigenvalue of Ĵz and we
thereby have the proportionality relations

Ĵ±|a, b〉 = c±|a, b± �〉. (4.4.10)

The proportionality constants c± are to be determined later on.
We can now walk up and down amongst the eigenvalues with these operators with

(Ĵ±)n|a, b〉 ∝ |a, b±n�〉 where n ∈ �0, but are there limits? We start answering this question
by proving that the dimension of the Hilbert space is finite, i.e. there is a finite set of
eigenstates, and that the eigenvalues to Ĵz is bounded. To accomplish this we study the
eigenvalue a of Ĵ2. Since Ĵ2 commutes with both Ĵ± (see equation (4.4.6c)) a has to be the
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same for all |a, b± n�〉. Now, by exploiting the commutation relations we can rewrite Ĵ2 in
several ways. In particular we have

Ĵ2 = Ĵ2
z + Ĵ−Ĵ+ + �Ĵz (4.4.11a)

Ĵ2 = Ĵ2
z + Ĵ+Ĵ− − �Ĵz (4.4.11b)

since
Ĵ±Ĵ∓ = Ĵ2

x + Ĵ2
y ± i(ĴyĴx − ĴxĴy). (4.4.12)

By the use of equations (4.4.11a) and (4.4.11b) we find that

Ĵ2 − Ĵ2
z = 1

2(Ĵ+Ĵ− + Ĵ−Ĵ+) (4.4.13)

and calculating the expectation value for Ĵ2 − Ĵ2
z gives

(a− b2) = 〈a, b|Ĵ2 − Ĵ2
z |a, b〉 = 〈a, b|12(Ĵ+Ĵ− + Ĵ−Ĵ+)|a, b〉 � 0. (4.4.14)

This is greater or equal to zero since by (4.4.7) the right hand side is just half the squared
norm of Ĵ−|a, b〉+ Ĵ+|a, b〉, which of course is positive semi-definite. This yields

a � b2 (4.4.15)

and the eigenvalues b are therefore proved to be bounded and thereby it exists a bmax and a
bmin with the properties

Ĵ+|a, bmax〉 = 0 (4.4.16a)

Ĵ−|a, bmin〉 = 0. (4.4.16b)

To find the value of these eigenvalues we make use of equations (4.4.11a) and (4.4.11b) once
more and act with Ĵ2 on the states with bmax and bmin respectively:

Ĵ2|a, bmax〉 = (Ĵ2
z + Ĵ−Ĵ+ + �Ĵz)|a, bmax〉

⇒ a = bmax(bmax + �) (i)

Ĵ2|a, bmin〉 = (Ĵ2
z + Ĵ+Ĵ− − �Ĵz)|a, bmin〉

⇒ a = bmin(bmin − �) (ii)

(i), (ii)====⇒ bmin(bmin − �) = bmax(bmax + �) (4.4.17)

which have the solutions bmin = bmax +� and bmin = −bmax. But bmin < bmax so we must have

bmin = −bmax (4.4.18)

and
a = bmax(bmax + �). (4.4.19)

Now, by climbing upwards from bmin with the repeated use of Ĵ+ we find that

bmax = bmin + n�, n ∈ �. (4.4.20)
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By convention and for convenience we define j to be j = bmax/�, so that

j = n

2 (4.4.21)

being a integer or half-integer since −j and j are separated by n. For any eigenvalue b we
must have

bmin = −j� � b = m� � j� = bmax (4.4.22)

with m restricted to the 2j + 1 values −j, − j + 1, . . . , j − 1, j.
Since a and b is completely determined by j and m (a = �

2j(j + 1), b = m�) we can
change the labels of the eigenkets |a, b〉 → |j, m〉, which are the standard labels of the angular
momentum states.

We now turn to the normalization constants in (4.4.10). Assume that |j, m〉 is normalized
and Ĵ±|j, m〉 = c±

jm|j, m± 1〉. Calculating the squared norms yields

〈j, m|Ĵ†
+Ĵ+|j, m〉

(4.4.7)
(4.4.11)= 〈j, m|Ĵ2 − Ĵ2

z − �Ĵz|j, m〉 = �
2[j(j + 1)−m(m + 1)]

=
〈j, m + 1|(c+

jm)∗c+
jm|j, m + 1〉 = |c+

jm|2

⇒ |c+
jm| = �

√
j(j + 1)−m(m + 1), (4.4.23)

i.e. c+
jm is determined up to an arbitrary phase. We choose this phase equal to 1. A similar

calculation for Ĵ− gives us

|c−
jm| = �

√
j(j + 1) + m(m− 1). (4.4.24)

We sum up what we have achieved so far. Based entirely on the commutation relations of
infinitesimal rotations we have found the simultaneous eigenstates for Ĵz and Ĵ2 for each
integer or half-integer value j. All orthogonal to each other (Ĵz and Ĵ2 being Hermitian)
these states form bases in (2j + 1)-dimensional Hilbert spaces. With the Ĵi’s corresponding
to the generators of the Lie algebra sl(2,�) these operators constitute (2j + 1)-dimensional
representations of this algebra. In fact, they are irreducible representations since there is no
subspace of the Hilbert space that maps onto itself under all the Ĵi’s.

Now that we have found the eigenstates we can return to real linear combinations of Ĵi’s,
i.e. to su(2), and still have a basis. Although derived in sl(2,�) they are still eigenkets
to Ĵz and hence form a basis for the module corresponding to the su(2) realization. This
representation is also irreducible which should be apparent by rewriting the Ĵx and Ĵy as
1
2(Ĵ+ ± Ĵ−).

This procedure to construct irreducible representations by the use of ladder operators
may be generalized and will prove itself to be very useful further on. This will be treated in
chapter 5.
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4.4.1 Matrix Representation of the Ladder Operators

By use of the formula learned in the example 12 of chapter 3 we can find the matrix repre-
sentations of the ladder operators

〈j′, m′|Ĵz|j, m〉 = �mδm′m (4.4.25)

〈j′, m′|Ĵ±|j, m〉 = �

√
j(j + 1)∓m(m± 1)δj′jδm′(m±1). (4.4.26)

As an example we explicitly calculate these matrices for the case j = 1/2:

Jz =
(

1
2� 0
0 −1

2�

)
, J+ =

(
0 �

0 0

)
, J− =

(
0 0
� 0

)
, (4.4.27)

and compare them with the matrices obtained from the Pauli matrices and definitions (4.4.5)

Jz = �

2σz =
(

1
2� 0
0 −1

2�

)
, (4.4.28)

J± = �

2 [σx ± iσy] = �

2

[(
0 1
1 0

)
± i

(
0 −i
i 0

)]
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
0 �

0 0

)
(

0 0
� 0

)
.

(4.4.29)

To our content they are the same. We now consider these matrices and note that Jz, as
expected, is diagonal and that J± are strictly upper respectively lower triangular. This is not
a coincidence but a general property of the ladder construction. This will be seen in the next
chapter where a generalization and a systematic use of the ladder operators will be developed.

As a consolidation before digging further into the theory of Lie algebras we are now ready for
an example which will illustrate many parts of what we have learned so far.

4.5 Summarizing Example: Addition of Angular Momenta

A common example to illustrate how representations work is the addition of angular momen-
tum. The example is good because it contains many of the key terms we have gone through,
such as irreducible representations, tensor products and ladder operators. What we want
to do in this section is to find the representation for the total angular momentum of two
particles. This will turn out to be a reducible representation.

Consider two particles with spin S(1) and S(2), respectively. Let |Ψ(1)
m 〉 and |Ψ(2)

n 〉 be the ket-
basis for the two particles in their respective Hilbert space H(1), H(2). These are eigenstates
to Ŝ

(1)
z and Ŝ

(2)
z , respectively. In each of the Hilbert spaces we have our spin operators,

Ŝ
2(1), Ŝ

(1)
z and Ŝ

2(2), Ŝ
(2)
z . The state kets for the total system is now in the tensor product

space H = H(1) ⊗H(2) with the basis |Ψm′〉 = |Ψ(1)
m 〉 ⊗ |Ψ(2)

n 〉, m = −S(1), − S(1) + 1,..., S(1)

and n = −S(2), − S(2) + 1,..., S(2). For example, the state |Ψ(1)
S(1)〉 ⊗ |Ψ(2)

S(2)〉 corresponds to
when the two particles z-component of the spin is S(1)

� and S(2)
�. In order to add the spin
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we need to find the corresponding operators on the ket space, Hilbert space H, for the total
system, i.e. Ŝ

2
, Ŝz.

Consider the infinitesimal rotation operators D̂1(dφ), D̂2(dφ) that acts on H(1) and H(2),
respectively, and form

D̂1(dφ)⊗ D̂2(dφ) =
(

1− iŜ
(1)
z dφ

�

)
⊗
(

1− iŜ
(2)
z dφ

�

)
=

= 1− 1⊗ iŜ
(2)
z dφ

�
− iŜ

(1)
z dφ

�
⊗ 1 = 1− i(Ŝ(1)

z ⊗ 1 + 1⊗ Ŝ
(2)
z )dφ

�

(4.5.1)

where we have omitted the quadratic term dφ2. The same thing can be done for the x-
and y-components, so, the total spin operator, i.e. the operator that acts on H, is therefore
Ŝ = Ŝ(1) ⊗ 1 + 1⊗ Ŝ(2). The ladder operators

Ŝ± = Ŝx ± iŜy = Ŝ(1)
x ⊗ 1 + 1⊗ Ŝ(2)

x ± i(Ŝ(1)
y ⊗ 1 + 1⊗ Ŝ(2)

y ) =

= Ŝ(1)
x ⊗ 1± iŜ(1)

y ⊗ 1 + 1⊗ Ŝ(2)
x ± i1⊗ Ŝ(2)

y = Ŝ
(1)
± ⊗ 1 + 1⊗ Ŝ

(2)
±

(4.5.2)

will help us to create another base element in H. In analogy to what we did in the preceding
section 4.4 we now want to find all the eigenstates and eigenvalues to Ŝ

2 and Ŝz. Let us begin
with |ΨS(1)〉 ⊗ |ΨS(2)〉 and see if this state is an eigenstate,

Ŝz|Ψ(1)
S(1)〉 ⊗ |Ψ(2)

S(2)〉 = (Ŝ(1)
z ⊗ 1 + 1⊗ Ŝ(2)

z )|Ψ(1)
S(1)〉 ⊗ |Ψ(2)

S(2)〉 =

= Ŝ(1)
z |Ψ(1)

S(1)〉 ⊗ |Ψ(2)
S(2)〉+ |Ψ(1)

S(1)〉 ⊗ Ŝ(2)
z |Ψ(2)

S(2)〉 = (S(1)
z + S(2)

z )|Ψ(1)
S(1)〉 ⊗ |Ψ(2)

S(2)〉.
(4.5.3)

Thus, the z-component for the total angular momentum is just the sum of the constituent
particles z-components. This state must correspond to spin S(1) + S(2), since S(1) and S(2)

are the highest eigenvalues of Ŝ
(1)
z and Ŝ

(2)
z respectively. We can continue by calculating

the eigenvalue for Ŝ−|Ψ(1)
S(1)〉 ⊗ |Ψ(2)

S(2)〉 with respect to Ŝz. This will give us the eigenvalue
S(1) + S(2) − 1. The eigenvalue S(1) + S(2) − 1 can be otained in two ways; the sum of
m = S(1) − 1 and n = S(2) or the sum of m = S(1) and n = S(2) − 1. A state with Ŝz-
eigenvalue S(1) + S(2) − 1 can obviously be in a spin S(1) + S(2) state but it can also be in a
spin S(1) +S(2)−1 state. Ŝ−|Ψ(1)

S(1)〉⊗|Ψ(2)
S(2)〉 will be in the spin S(1) +S(2) state and by finding

its orthogonal complement we have the state corresponding to spin S(1) + S(2) − 1 The latter
state will be the highest state of the spin S(1) + S(2) − 1 states. We can confirm that these
states have different spin if we calculate the Ŝ

2-eigenvalues. By repeating this procedure and
making use of ladder operators we get a breakdown of the Hilbert space in which each subspace
corresponds to a spin value. These values are: |S(1)−S(2)|, |S(1)−S(2)|+1,..., S(1) +S(2). The
subspace corresponding to spin S has dimension 2S + 1. The Hilbert space H = H(1) ⊗H(2)

can be expressed as a direct sum of these subspaces, since these are orthogonal,

H = H(|S(1)−S(2)|) ⊕H(|S(1)−S(2)+1|) ⊕ ...⊕H(S(1)+S(2)) (4.5.4)

and the total spin operator Ŝz = Ŝ
(1)
z ⊗ 1 + 1⊗ Ŝ

(2)
z can now be expressed as a direct sum of

operators
Ŝz = Ŝ(|S(1)−S(2)|)

z ⊕ Ŝ(|S(1)−S(2)+1|)
z ⊕ ...⊕ Ŝ(S(1)+S(2))

z , (4.5.5)
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where the operators in the product acts on its corresponding subspace. In fact, this is a part
of a reducible representation for su(2) and together with ladder operators we have a reducible
representation expressed as a sum of irreducible representations. Let us call the representation
for su(2) π,

π = πS(1) ⊗ πS(2) = π(|S(1)−S(2)|) ⊕ π(|S(1)−S(2)|+1) ⊕ ...⊕ π(S(1)+S(2)), (4.5.6)

where the π(i):s are the irreducible representations of su(2) acting on the vector spaces H(i).
We have skipped some steps in the calculations but it is not these that we are interested

in but rather the results observed in terms of representation theory. We started from two
vector spaces with a set of operators corresponding to these spaces. These operators Ŝ

(1)
z ,

Ŝ
(2)
z , Ŝ

(1)
± , Ŝ

(2)
± form irreducible representations of the Lie algebra su(2) acting on a Hilbert

space of dimension 2S(1) + 1 and 2S(2) + 1. We cannot find any invariant subspaces of H(1)

or H(2). When we act with the total spin operator Ŝz and the ladder operators Ŝ± on H it
will “split” into operators acting on their corresponding vector space. We can apply the Ŝ±
to an element in H as many times as we want but it will never leave its subspace.

One interesting thing we have learned on the way is how to form the tensor product
between two irreducible representations of sl(2,�): We have seen that irreducible representa-
tions of su(2) are characterized by a their spin j, and the dimension of the module of such a
representation is a (2j + 1)-dimensional vector space. Such a representation is often denoted
simply by either the dimension of its module in bold, or simply as [j]. So for example

[0] = 1 (4.5.7)
[1/2] = 2 (4.5.8)

[1] = 3.

Equation (4.5.4) tells us the action of the tensor product on such representations. It states
that

[j]⊗ [j′] =
j+j′⊕

i=|j−j′|
[i]. (4.5.9)

So we have, for example:

[0]⊗ [1/2] =
1/2⊕

i=1/2
[i] = [1/2] ⇐⇒ 1⊗ 2 = 2 (4.5.10)

[1/2]⊗ [1/2] =
1⊕

i=0
[i] = [0]⊕ [1] ⇐⇒ 2⊗ 2 = 1⊕ 3. (4.5.11)

But perhaps the most important example of the tensor product between two representa-
tions of sl(2,�) is [j]⊗ [1/2], since it represents the composition of a system of spin j with one
of spin 1/2, which could represent the sum of the orbital angular momentum of an electron
in an atom and the electron spin. In this case we have

[j]⊗ [1/2] =
j+1/2⊕

i=j−1/2
[i] = [j − 1/2]⊕ [j + 1/2] ⇐⇒ (2j + 1)⊗ 2 = 2j⊕ (2j + 2). (4.5.12)
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To summarize, in this chapter the study of rotations naturally gave rise to the su(2) com-
mutations relations exposing a connection between the physical world and group theory. In
analogy with the Hamiltonian and the momentum operators we defined the angular momen-
tum operators as the ones generating rotations. Not surprisingly, satisfying the su(2) their
2-dimensional representation proved to be the Pauli matrices. To find the module of any of
their representations we defined the ladder operators and by climbing up- and downwards
with these we found a basis for each (2j + 1)-dimensional module. We also calculated the
matrices of the ladder operators. As a conclusion we exemplified most of what have been
done so far in the addition of angular momenta.

In the following chapter we will turn a bit more to the mathematics and delve deeper into
Lie algebras.
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Chapter 5

Lie Algebra

We are now ready to expand our knowledge of Lie algebras and put things we have done so
far in a wider context. Basically everything we did in section 4.4 will return in this chapter
and we will see how to classify Lie algebras. Above all, we will see how we can generalize
step operators and our previously used “Ĵz” operators. Important concepts such as roots,
weights and the Cartan-matrix will be introduced and the chapter ends with an instructive
example about sl(3,�) where most of the formal theory will be demonstrated. The purpose
of this chapter is to immerse ourselves in Lie algebras and present the formal structure of a
semi-simple Lie algebra and its properties.

5.1 Structure Theory

Let us begin by defining two basic concepts.

Definition 5.1.1. A subalgebra h to a Lie algebra g is a subspace of g that is closed under
the Lie bracket.

Definition 5.1.2. An ideal is a subalgebra h of a Lie algebra g with the following property.
If t ∈ h and h ∈ g, then [t, h] ∈ h for every h and every t, i.e. it is an invariant subalgebra.
An algebra with no non-trivial ideals, i.e. the 0 element and the algebra itself, is a simple
algebra. A Lie algebra with no non-trivial Abelian ideals is a semi-simple Lie algebra.

This is the Lie algebra’s equivalent to a simple group. One characteristic feature of semi-
simple Lie algebras is that they can be expressed as a direct sum of simple ideals each of
which can be considered as a simple Lie algebra. Examples of semi-simple Lie algebras are
so(1, 3), sl(2,�), sl(3,�), so(2), so(3), su(2) and su(3).

We start with a semi-simple Lie algebra g of dimension n and we will often refer to g as a
vector space. g consists of the linearly independent elements t1, t2, ..., tn so that

g = span�{t1, t2, ..., tn} (5.1.1)

and these elements thus represent a basis for g but of course, we are free to make a change
of basis. By a suitable choice of basis we may find the following characteristics when one

51



considers the adjoint representation of g. There exists a subalgebra C = span�{h1, h2, ..., hr}
of dimension r, hi ∈ g, such that

adhi
(hk) = [hi, hk] = 0, and

adhi
(tj) = [hi, tj ] = β

(j)
i tj , ∀i, k = 1, 2, ..., r, ∀j = r + 1,..., n.

(5.1.2)

This means that every element tj , that is not in C, is an eigenvector to adhi
with eigenvalue β

(j)
i

for all i = 1, 2,..., r. For every tj we have r eigenvalues β
(j)
1 , β

(j)
2 ,..., β

(j)
r and these eigenvalues

can be thought of as components in a r-dimensional vector αj = (β(j)
1 , β

(j)
2 ,..., β

(j)
r ) called a

root. Thus, we can associate a root to each of the elements tj that is not in C. Actually, we
can allow tj to be in C but this will only mean that its root is 0 since it is a linear combination
of the elements h1, h2,..., hr. A similar way to define αj is as a linear map, αj : C −→ �, that
gives us an eigenvalue, i.e. α(j)(hi) = β

(j)
i . A linear map that takes a vector space into a real

number is a functional and these constitute the dual space C∗. So, we have divided the vector
space g into two subspaces: C and its complement,

g = C⊕
⎛
⎝ n⊕

j=r+1
�tj

⎞
⎠ . (5.1.3)

The subalgebra C is called the Cartan subalgebra and we restrict ourselves to the case
where the elements h1, h2,..., hr are Hermitian. Nothing is said about tj though. The next
step is to organize the tj ’s, i.e. the complement to C. The only thing we know about these
vectors is that they are eigenvectors to C, but otherwise unknown,

[hi, tj ] = β
(j)
i tj . (5.1.4)

Now, take the Hermitian conjugate on both sides

[hi, tj ]† = (hitj)† − (tjhi)† = t†
jhi − hit

†
j = −[hi, t†

j ] = β
(j)
i t†

j ⇒
[hi, t†

j ] = −β
(j)
i t†

j .
(5.1.5)

and we see that t†
j is an eigenvector with the negative root of tj . This means that for every

element tj there exists an element t†
j and this implies that n − r must be even. We have

(n − r)/2 tj vectors and (n − r)/2 t†
j vectors. We denote these as ej and fj respectively

and these are called root vectors1. Let us call the subspace span�{e1, e2,..., e(n−r)/2} = η+
and the subspace span�{f1, f2,..., f(n−r)/2} = η− where the choice of the indices +,− will be
justified later. To summarize, our algebra can thus be written as

g = η− ⊕ C⊕ η+

C =
r⊕

i=1
�hi, η+ =

(n−r)/2⊕
i=1

�ei, η− =
(n−r)/2⊕

i=1
�fi

[hi, hk] = 0 [hi, ej ] = β
(j)
i ej [hi, fj ] = −β

(j)
i fj .

(5.1.6)

1We have to be careful not to confuse roots with root vectors.
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This is known as the triangular decomposition. Since η−, C, and η+ are subspaces, the
direct sum in (5.1.6) shall be interpreted as a direct sum of vector spaces, not Lie algebras.
If it was a direct sum of Lie algebras, η−, C, and η+ would all commute.

Before we move on, let us say something about the Cartan subalgebra C. We said that through
a suitable choice of basis for the Lie algebra there exists a Cartan algebra consisting of com-
muting vectors hi. In practice when we want to find the Cartan algebra we find the maximal
commuting elements in the Lie algebra. This seems familiar from quantum mechanics when
we want to find eigenstates to as many operators as possible. Observable quantities in quan-
tum mechanics are Hermitian operators, just as the elements in our Cartan algebra. We can
thus think of the Cartan algebra as the set of operators, corresponding to physical quantities,
where all the operators can be diagonalized simultaneously. The physical interpretation of
an eigenvector to several Hermitian operators is that we have a state with known values of
all the corresponding physical quantities. An algebra consisting of r commuting vectors is an
algebra of rank r and we can thus label our physical states with r numbers. We can make
an observation about the basis for C: our choice of basis to C does not affect the obtained
eigenvectors ei, fi. That is, if we make a change of basis from the {h1, h2, ..., hr} basis used
above to another basis {h′

1, h′
2,..., h′

r} we obtain the same eigenvectors ei, fi, but with different
eigenvalues.

We have seen that every element in g has an associated vector in an r-dimensional vector
space. This set of vectors is denoted Σ, and the vectors are expressed with respect to the
{h1, h2,..., hr} basis, i.e. if we change basis of C the components of the roots changes. This
is called the h-basis. If we have n − r non-zero roots in a r-dimensional vector space in
general all these vectors can not be linearly independent. We can choose a basis for the root
space as follows: arrange the components of the roots for a given order of the Cartan vectors
h1, h2,..., hr. A root with the first component positive is said to be a positive root and
similarly, a root with its first non-zero component negative is said to be a negative root.
Moreover, a positive root that can not be written as a linear combination of the other positive
roots is said to be a simple root. This is not the only definition2 of a positive and negative
root and we will come back to this in section 5.3. Let r vectors of η+ be simple roots and
take these as a basis for the root space, i.e. Σ = span�(α1, α2,..., αr). This means that every
other vector in the root space can be expressed as a linear combination of these. But, it does
not mean that every linear combination of the simple roots is a root. This will soon be seen
in (5.1.10) and (5.1.11). It seems that there is a correlation between the root vectors in η+
and in η−. Let us examine this by first looking at the commutator between two vectors in
η+, say e1 and e2. Consider

[e1, e2] def= N1, 2ek (5.1.7)
where k will be specified. It is not obvious a priori that ek will be one of the generators of
η+, so for now you can regard ek simply as an arbitrary element of the Lie algebra. N1, 2 is a
constant that we will determine later. We are now interested in how ek commutes with the
rest of the algebra, especially C.

[hi, ek] = [hi, [e1, e2]] = /Jacobi identity/ = −[e1, [e2, hi]]− [e2, [hi, e1]] = [e1, β
(2)
i e2]

− [e2, β
(1)
i e1] = (β(1)

i + β
(2)
i )N1, 2ek.

(5.1.8)

2Actually, the definitions of positive and negative roots are arbitrary but this is a natural way to order the
roots since there always is a root of opposite sign.

53



This means that the commutator is an eigenvector to adhi
with an eigenvalue equal to the sum

of the eigenvalues of elements in the commutator. Since the commutator (5.1.7) is another
element in η+ we simply denote it with the index 3, that is k = 3. Note that we do not use
the word root here. The reason is that we do not know if e3 is equal to zero or not. If it is
equal to zero, its eigenvalues do not constitute a root, and if it is not equal to zero then its
eigenvalues do constitute a root. Consider a trivial case

[hi, [ej , ej ]] = 2β
(j)
i [ej , ej ] = 0, (5.1.9)

which indicates that 2β
(j)
i is not a root. This is not a proof since for example [ej−1, ej+1]

would also give us 2β
(j)
i . Nevertheless, it is true and this implies that [ej−1, ej+1] = 0 for all

j. Actually, ±1 is the only multiple of a root that gives us another root and the difference
between two simple roots is not a root. Let α1 and α2 be two simple roots and assume that
α1 −α2 is a root. Then it is either positive or negative. If it is equal to zero, then α1 and α2
can not both be simple roots. If positive, we can express α1 as

α1 = (α1 −α2) + α2 (5.1.10)

and if negative we can express α2 as

α2 = (α2 −α1) + α1. (5.1.11)

Since (α1 − α2) is positive in the first case and (α2 − α1) is positive in the second case we
get a contradiction. α1 and α2 can not be expressed as linear combinations of other positive
roots since they are assumed simple. This implies that [ei, fj ] = 0 if i �= j and i, j = 1, 2,..., r.
That is, corresponds to a simple root. So to summarize,

If [ek, el] = Nk, lek+l �= 0 and [hi, Nk, lek+l] = β
(k+l)
i Nk, lek+l = (β(k)

i + β
(l)
i )Nk, lek+l ⇒

αk+l is a root.

If [ek, el] = Nk, lek+l = 0 and [hi, Nk, lek+l] = β
(k+l)
i Nk, lek+l = (β(k)

i + β
(l)
i )Nk, lek+l ⇒

αk+l is not a root.
(5.1.12)

We can do the exact same calculations for fj . Next, let us consider the case when α = 0.
This happens when we take the commutator between two elements of the form ej and fj and
then take the multicommutator with hj .

[hi, [ej , fj ]] = (β(j)
i − β

(j)
i )[ej , fj ] = 0, (5.1.13)

i.e. [ej , fj ] commutes with hi which means that [ej , fj ] ∈ C. We can therefore express [ej , fj ]
as a linear combination of the hi’s.

[ej , fj ] = aihi, ai ∈ � (5.1.14)
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where we use the Einstein summation convention. ai is to be determined later on. What we
have found so far is thus

[hi, ej ] = β
(j)
i ej

[hi, fj ] = −β
(j)
i fj

[ek, el] = Nk, lek+l

[hi, [ek, el]] = (β(k)
i + β

(l)
i )[ek, el] if (αk + αl) ∈ Σ

[hi, [ek, el]] = 0, if (αk + αl) /∈ Σ
[ej , fj ] = aihi ai ∈ �
[ej , fk] = 0 if αj , αk are simple roots

(5.1.15)

where Σ denotes the set of roots. We can generalize (5.1.7) by considering the multicommu-
tator

[ei1 , [ei2 , [ei3 ..., [eim−1 , eim ]...]]], m = 1, 2,..., r (5.1.16)

with possible root

αi1 + αi2 + αi3 + ... + αim−1 + αim , m = 1, 2,..., r. (5.1.17)

By commuting elements in η+ corresponding to our simple roots we obtain all other generators
ei in η+. This can be seen from (5.1.17). The roots αi form a basis for Σ, thus we can express
every root corresponding to a root vector, ek ∈ η+, as a linear combination of the αi’s. This
linear combination corresponds to a multicommutator of the form (5.1.16).

Since the dimension of our algebra is finite we can not for example construct a new element
of the form

[tj , [tj , [tj ..., [tj︸ ︷︷ ︸
k times

, tl]...]]], tj , tl ∈ η+ ∪ η−, (5.1.18)

by taking an “infinite commutator”. For convenience, label the t’s with its root. There must
be two positive integers p, q for every pair of root vectors tα1 , tα2 such that

[tα1 , [tα1 , [tα1 ..., [tα1︸ ︷︷ ︸
q + 1 times

, tα2 ]...]]] = 0, α1, α2 ∈ Σ (5.1.19)

and
[t−α1 , [t−α1 , [t−α1 ..., [t−α1︸ ︷︷ ︸

p + 1 times

, tα2 ]...]]] = 0, α1, α2 ∈ Σ (5.1.20)

with the corresponding eigenvalues α2 + (q + 1)α1 and α2 − (p + 1)α1 respectively. This
means that we will get a finite number of generators in our “chain” of generators. The still
unknown constants Nα1, α2 from

[eα1 , eα2 ] = Nα1, α2eα1+α2 (5.1.21)

satisfying
Nα1, α2 = −N∗

−α2, −α1 = −N−α2, −α1 (5.1.22)

will now be determined in order to find p and q. What follows is a fairly intense calculation
that will give us an expression for p − q. Equation (5.1.22) follows from the fact that the
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structure constants are real, see ([2], p.125). First of all we need some properties of Nα1, α2 ,
that will be used, and in order to obtain these we need to consider a representation π. Multiply
the equation

[π(tα), π(t−α)] = aiπ(hi) (5.1.23)

with π(hj) on both sides. For sake of readability we drop the π(·)’s in this specific equation,
remembering that we are still dealing with a representation:

[tα, t−α]hj = tαt−αhj − t−αtαhj =
= /add and subtract t−αhjtα / =
= tαt−αhj + t−αhjtα − t−αhjtα − t−αtαhj =
= tαt−αhj − t−αhjtα + t−α[hj , tα] =
= tαt−αhj − t−αhjtα + αjt−αtα =
= aihihj . (5.1.24)

Take the trace of the second last line and use that the trace is invariant under cyclic permu-
tations, i.e.

αjTr (π(t−α)π(tα)) = aiTr (π(hi)π(hj)) . (5.1.25)

Tr(π(t−α)π(tα) can be chosen equal to one, for every t ∈ η+ ∪ η−, since we can redefine tα

with a constant. Define Tr(π(hi)π(hj)) as

Tr(π(hi)π(hj)) def= gij ⇒
αj

(5.1.25)= aigij .
(5.1.26)

This is actually a metric for the vector space spanned by the simple roots and the scalar
product thus becomes 〈αi, αj〉 = gijaiaj . A metric can be seen as a function that provides a
definition of distance in spaces and thus appears in scalar product. For a rigorous treatment
of metrics, see appendix B.5. We need an identity. Let α1, α2,α3 be three roots satisfying

α1 + α2 + α3 = 0. (5.1.27)

Apply the Jacobi identity to [π(tα1), [π(tα2), π(tα3)]] corresponding to the three roots,

(aiNα2, α3 + biNα3, α1 + ciNα1, α2)π(hi) = 0, (5.1.28)

where ai, bi, ci are the coefficients from (5.1.14). Multiply this with π(hj) and take the trace,
just as we did above,

(aiNα2, α3 + biNα3, α1 + ciNα1, α2)Tr(π(hi)π(hj)) =
(5.1.26)= (α1)iNα2, α3 + (α2)iNα3, α1 + (α3)iNα1, α2 = 0 ⇒
/use (5.1.27)/
Nα1, α2 = Nα2, −α1−α2 = N−α1−α2, α1 .

(5.1.29)

Now when we have (5.1.29) we can consider the Jacobi identity for the root vectors corre-
sponding to α1, −α1 and α2 + kα1, i.e. tα1 , t−α1 , tα2+kα1 , −p ≤ k ≤ q

[tα1 , [t−α1 , tα2+kα1 ]] + [t−α1 , [tα2+kα1 , tα1 ]] = −[tα2+kα1 , [tα1 , t−α1 ]] =
= −[tα2+kα1 , ai

α1hi] = ai
α1(α2 + kα1)itα2+kα1 ,

(5.1.30)
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where we have used (5.1.14). The subscript α1 on ai is to indicate the relation 5.1.26 between
α1 and a. Evaluation of the left hand side yields

ai
α1(α2 + kα1)i = Nα1, α2+(k−1)α1N−α1, α2+kα1 + N−α1, α2+(k+1)α1Nα2+kα1, α1 (5.1.31)

where we have dropped the factor tα2+kα1 . With the use of (5.1.22) and (5.1.29) and after
some trickery we get

ai
α1(α2 + kα1)i = Nα1, α2+kα1N−α1, −α2−kα1 −Nα1, α2+(k−1)α1N−α1, −α2−(k−1)α1 . (5.1.32)

Here it is convenient to introduce

F(k) def= Nα1, α2+kα1N−α1, −α2−kα1 (5.1.33)

which makes that (5.1.32) now becomes

ai
α1(α2 + kα1)i = F(k)−F(k − 1). (5.1.34)

To solve this recursion equation we start with the premise that F(q) = 0. This will give us

F(q − 1) = −ai
α1(α2 + qα1)i. (5.1.35)

If we continue in this way we obtain

F(k) = −ai
α1

⎛
⎝(q − k)α2 +

q−k−1∑
i=0

(q − i)α1

⎞
⎠

i

=

= −ai
α1

(
(q − k)α2 +

(
(q − k)q − (q − k)(q − k − 1)

2

)
α1

)
i

=

= ai
α1(k − q)

(
α2 +

(
q + k + 1

2

)
α1

)
i
.

(5.1.36)

Once again with the help of (5.1.29) and the fact that N−α1, α2−pα1 = 0 we obtain

N−α1, α2−pα1Nα1, −α2+pα1 = N−α1, α2−(p+1)α1+α1Nα1, −α2+(p+1)α1−α1 =
= N−α2+pα1−α1, α1Nα2−(p+1)α1+α1, α1 = Nα1, α2−(p+1)α1N−α1, −α2+(p+1)α1 = 0 ⇒

F(−p− 1) = 0.

(5.1.37)

By inserting this into (5.1.36) we obtain

ai
α1(p + q + 1)

(
α2 + q − p

2 α1

)
i

= 0 ⇒

ai
α1

(
α2 + q − p

2 α1

)
i

= 0.

(5.1.38)

Recall, both p and q are positive integers. If we rearrange (5.1.38) we get

p− q = 2
ai

α1(α2)i

ai
α1(α1)i

, (5.1.39)
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which is the result we were looking after3. Finally, set k = 0 in (5.1.36) and use (5.1.22),

N2
α1, α2 = aiq

(
α2 +

(
q + 1

2

)
α1

)
i

= q

(
ai(α2)i +

(
q + 1

2

)
ai(α1)i

)
=

(5.1.39)= q

((
p− q

2

)
ai(α1)i +

(
q + 1

2

)
ai(α1)i

)
= q

2(p + 1)ai(α1)i.

(5.1.40)

The above calculations for p and q are valid under the assumption that α1 and α1 are two
roots. Suppose that α1 and α2 are two simple roots and recall that the difference between
two simple roots is not a root. This means that p = 0 for every commutator of the form
(5.1.20) whenever the two root vectors corresponds to simple roots. It is not true that p = 0
in general. For example; let α1 and α1 be two simple roots and take

[eα1 , eα2 ] = Nα1, α2eα1+α2 (5.1.41)

and then
[fα1 , eα1+α2 ] = N−α1, α1+α2eα2 . (5.1.42)

Thus p can not be equal to zero for the commutator between fα1 and eα1+α2 . Observe that
α1 + α2 is not a simple root.

5.1.1 Cartan-Killing form

As mentioned in the begining of the chapter the roots can be seen as elements αj in the dual
space C∗. This means that (5.1.4) becomes

[hi, tj ] = αj(hi)tj (5.1.43)

and we will use this rather than α from now on. The only difference is that we think of the
components, (αj)i = αj(hi), as the result of the mapping αj : C −→ � and we can therefore
think of α as a vector in C∗.

The bilinear symmetric Cartan-Killing form is defined as

(a, b) def= Tr (adaadb), a, b ∈ g, (5.1.44)

which is a representation independent definition. We will see in (5.1.57) how we can get an
expression for (a, b) when a, b ∈ C. In section 5.3, we will explicitly obtain the matrices for
the adjoint representation. Bilinear and symmetric implies that

(a, b) = (b, a) a, b ∈ g

(a, b + c) = (a, b) + (a, c), a, b, c ∈ g

(λa, b) = (a, λb) = λ(a, b) λ ∈ �.

(5.1.45)

It seems that the Cartan-Killing form is some sort of scalar product on the Lie algebra but
that is not correct to be precise. One may for example find an element a ∈ g such that
(a, a) < 0. But there is a scalar product on the root space Σ as in (5.1.26) denoted 〈·, ·〉.

3 This result will be presented in section 5.1.1 in a different notation, see (5.1.50).
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What we now want to do is express this scalar product between elements in Σ in terms of the
Cartan-Killing form.

There is a connection between C and C∗ for most of the semi-simple Lie algebras, e.g. the Lie
algebras we have mentioned in the beginning of the chapter, see ([3], p. 19). For any root αi

there exists a unique element hαi ∈ C such that

αi(h′) = (hαi , h′) (5.1.46)

for every element h′ ∈ C. Or, since every root vector ti in g has a root we may say that there is
an element hαi associated to ti through (5.1.46). To find hαi given αi we start with the right
hand side of (5.1.46) by expanding h′ in terms of the basis {hj} of C, i.e. h′ =

∑r
j=1 bjhj and

in the same manner, hαi =
∑r

l=1 clhl, where cl are the coefficients that we are to determine.
By replacing h′ on the left hand side of (5.1.46) we obtain

r∑
j=1

bjαi(hj) =
r∑

j=1

r∑
l=1

bjcl(hl, hj), (5.1.47)

and since (5.1.46) is valid for every h′ the coefficients with respect to bj must be equal, that
is

αi(hj) =
r∑

l=1
cl(hl, hj). (5.1.48)

This will give us r equations for every αi. We will see this explicitly in section 5.3. With this
connection between the Lie algebra and the root space we can restate the definition of the
scalar product on the root space as

〈α1, α2〉 def= (hα1 , hα2), (5.1.49)

where hα1 , hα2 are the corresponding Cartan elements according to (5.1.46).

With this definition we can express (5.1.39) as

p− q = 2〈α1, α2〉
〈α1, α1〉 . (5.1.50)

Another property of the Cartan-Killing form in addition to bilinearity and symmetry is
invariance

(a, [b, c]) = ([a, b], c), a, b, c ∈ g (5.1.51)

To see this, use the invariance of the trace under cyclic permutations and (3.1.3),

(a, [b, c]) = Tr(adaad[b, c]) = Tr(ada([adb, adc])) = Tr(adaadbadc − adaadcadb) =
= Tr([ada, adb]adc − adaadcadb + adbadaadc) = Tr([ada, adb]adc) = ([a, b], c).

(5.1.52)

We can use this to get an expression for the coefficients ai
αj

in (5.1.14). Let h ∈ C and ej ∈ η+,
fj ∈ η−. Consider

([ej , fj ], h) (5.1.51)= (ej , [fj , h]) = αj(h)(ej , fj) ⇒
( [ej , fj ]
(ej , fj) , h) = αj(h)

(5.1.53)
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and compare this to (5.1.46). This will give us

[ej , fj ]
(ej , fj) = hαj ⇒ [ej , fj ] = (ej , fj)hαj , (5.1.54)

i.e. ai
αj

hi = (ej , fj)hαj .

We also have something similar to orthogonal subspaces. If h and i are two ideals to a Lie
algebra g such that h ∩ i = {0} then,

(a, b) = 0 ∀a ∈ h,∀b ∈ i. (5.1.55)

This follows from the invariance (5.1.51). Let w be any element in g and note that [a, b] = 0.

(adaadb)w = ada[b, w] = [a, [b, w]] = [[a, b], w] = 0
/w is arbitrary/ ⇒

adaadb = 0
(5.1.56)

The matrix representation for adhi
can be obtained once we have fixed a basis in g, see

(3.1.21). Let this basis be h1, h2,..., hr, e1, e2,..., f1, f2, ..., i.e. the one we have used before.
The matrix representation for ad(hi) becomes

ad(hi) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
. . .

α1(hi)
. . .

−α1(hi)
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5.1.57)

This means that (hi, hj) can be calculated as

(hi, hj) =
∑
k∈Σ

αk(hi)αk(hj). (5.1.58)

5.1.2 Constructing New Roots

The procedure to form new roots is to take linear combinations of our simple roots. Let us
start with two simple roots α1 and α2. The first step is to form α1 + α2 and ask ourselves
if this is a root. Consider the two integers p, q from (5.1.50). We know that p = 0 since the
difference between two simple roots is not a root. So, if α1 + α2 should be a root then

− q = 2〈α1, α2〉
〈α2, α2〉 < 0 ⇒

〈α1, α2〉 < 0.

(5.1.59)
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Suppose that q = k. We continue to do add α2 to α1 and obtain after k times the root
αj = α1 + kα2. To see whether αj + α2 is a root or not we have to check if

q = p− 2 〈αj , α2〉
〈α2, α2〉 > 0. (5.1.60)

For αj , p is known since we just can go back to were we started our “chain” of roots.

Given two roots α1, α2 and a scalar product we should be able to calculate the angle between
α1, α2. Take p1, q1 and p2, q2 to be the corresponding integers to α1, α2, respectively, according
to (5.1.19) and (5.1.20), i.e.

p1 − q1 = 2〈α2, α1〉
〈α2, α2〉 = n1

p2 − q2 = 2〈α1, α2〉
〈α1, α1〉 = n2.

(5.1.61)

n1, n2 are just for convenience. Consider

n1n2 = 4〈α2, α1〉〈α1, α2〉
〈α2, α2〉〈α1, α1〉 ⇒

〈α2, α1〉2 = 1
4n1n2〈α1, α1〉〈α2, α2〉

(5.1.62)

which gives us

cos2(θ) = 1
4n1n2 (5.1.63)

where θ is the angle between the roots. The ratio

n1
n2

= 〈α2, α2〉
〈α1, α1〉 ≥ 0 (5.1.64)

tells us that n1 and n2 must have the same sign. We can use Cauchy-Schwartz inequality in
(5.1.62),

〈α1, α2〉 ≤ (〈α1, α1〉)1/2(〈α2, α2〉)1/2 (5.1.65)

to get
n1n2 ≤ 4. (5.1.66)

The equality is valid when α1 is proportional to α2, i.e. if α1 = ±α2 but this will not give us
any new roots. This means that

|n1, 2| = 0, 1, 2, 3. (5.1.67)

since n1, 2 are integers with the same sign. Note that n1 = 0 ⇔ n2 = 0. One important
conclusion of this comes from when we consider the case p = 0, q = −n for some α. This
implies that we can at most form a chain composed of four roots.
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5.1.3 Weights

Instead of looking at the adjoint representation of g, let us look at an arbitrary representation
π with module V of finite dimension n. Since a representation must preserve the commuting
rules we still have that

[π(hi), π(ej)] = β
(j)
i π(ej)

[π(hi), π(fj)] = −β
(j)
i π(fj)

[π(ek), π(el)] = Nk, lπ(ek+l)

[π(hi), [π(ek), π(el)]] = (β(k)
i + β

(l)
i )[π(ek), π(el)] if (αk + αl) ∈ Σ

[π(hi), [π(ek), π(el)]] = 0, if (αk + αl) /∈ Σ
[π(ej), π(fj)] = aiπ(hi) ai ∈ �
[π(ej), π(fk)] = 0 if αj , αk are simple roots.

(5.1.68)

Let {ψ1, ψ2, ..., ψn} be a basis for V with the property

π(hi)ψj = λ
(j)
i ψj , j = 1, 2, ..., n. (5.1.69)

That is, we choose the set of eigenvectors as basis. In analogy to what we have done for the
adjoint representation we can associate a vector, (λ(j)

1 , λ
(j)
2 ,..., λ

(j)
n ) to every eigenvector ψj .

These vectors are called weights. Thus, the roots are the weights of the adjoint representation.
In the adjoint representation our eigenvectors are the eαi ’s and fαi ’s and the eigenvalue
equation is of course [hi, eαi ] = αi(hi)eαi . The weights can also be expressed as

π(hi)ψj = Mj(hi)ψj , j = 1, 2,..., n (5.1.70)

where Mj(hi)4 belongs to the dual space C∗, just like for the adjoint representation. That is,

Mj : C −→ �. (5.1.71)

Since Mj ∈ C∗ we can use 〈·, ·〉 as scalar product.

Let us now investigate the connection between roots and weights a bit more. Consider

π(hi)ψj = Mj(hi)ψj . (5.1.72)

Now, take π(eαk
)ψj , eαk

∈ η+, and let π(hi) act on it,

π(hi)π(eαk
)ψj = ([π(hi), π(eαk

)] + π(eαk
)π(hi))ψj =

(5.1.43)= αk(hi)π(eαk
)ψj + π(eαk

)Mj(hi)ψj =
= (αk(hi) + Mj(hi))π(eαk

)ψj .

(5.1.73)

This means that π(eαj )ψj is a new eigenvector to π(hi) with eigenvalue αk(hi) + Mj(hi), i.e.
“the old eigenvalue plus the root component corresponding to eαk

”. What is interesting here
is the term [π(hi), π(eαk

)] because it gives us the root αk(hi) added to our former eigenvalue
Mj(hi). This seems very familiar from section 4.4 where our roots had only one component,

4Observe that there is no summation over j above.
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namely ±�, see (4.4.6a) and (4.4.8) What we have done so far is just a generalization of
section 4.4. We can do the exact same calculations for π(fαk

)ψj as we did for π(eαk
)ψj . The

only difference is that we get −αk(hi) + Mj(hi) for eigenvalue. Thus, the operators π(eαk
)

and π(fαk
) are the ladder operators, hence the subscripts + and − in η+, η−. In section 4.4,

where we did this explicitly for the sl(2,�) algebra, the underlying theory behind it was not
so obvious. The reason for this is that the dimension of the sl(2,�) algebra is too small for the
theory to “reveal itself”. The operator we called Ĵz span the Cartan subalgebra and our step
operators Ĵ± corresponds to e and f . That is, a three-dimensional algebra. To summarize, we
have seen that in general we can have several “step up” and “step down” operators together
with a set of “Ĵz’s” that commutes.

In analogy with (5.1.19) we can construct a so called “chain” of weights through

π(hi)π(eα)kψj = (Mj(hi) + kα(hi))π(eα)kψj (5.1.74)

and
π(hi)π(fα)kψj = (Mj(hi)− nα(hi))π(fα)kψj , (5.1.75)

where we have dropped the k in eαk
, fαk

. In the adjoint representation, the π(eα)kψj ’s
corresponded to (5.1.18) and since V is a finite dimensional vector space there must be two
positive integers m, n for every j, such that

π(eα)m+1ψj = 0
π(fα)n+1ψj = 0

(5.1.76)

We are now searching for an expression such as (5.1.50) for the two positive integers m, n.
Let us start with an eigenvector ψ0, such that

π(eα)ψ0 = 0 (5.1.77)

and let M0 be its weight. Moreover, we define

π(fα)kψ0
def= ψ−kα. (5.1.78)

α is any positive root and we label our eigenvectors with their weight as ψ−kα, i.e. ψ−kα has
weight M−kα = M0(hi)− kα(hi). We can express (5.1.46) in terms of weights

Mi(h′) = (hMi , h′), (5.1.79)

remember; roots are weights. We will use this later. If we consider π(hi)π(eα)ψ−kα we see
that

π(eα)ψ−kα ∝ ψ−(k−1)α. (5.1.80)

Two eigenvectors with the same eigenvalue differs by a constant, i.e.

π(eα)ψ−kα = rkψ−(k−1)α. (5.1.81)

This constant can be determined if we use the assumption that r0 = 0, see (5.1.77). For
π(fα), we have that r = 1 as a consequence of (5.1.78). Consider

π(eα)ψ−kα = rkψ−(k−1)α = π(eα)kπ(fα)kψ−(k−1)α =
= ([π(eα), π(fα)] + π(fα)π(eα))ψ−(k−1)α,

(5.1.82)
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normalize such that
[π(eα), π(fα)] (5.1.54)= (eα, fα)π(hα) = π(hα). (5.1.83)

Equation (5.1.82) becomes

rkψ−(k−1)α = (π(hα) + rk−1)ψ−(k−1)α = (M−(k−1)α(hα) + rk−1)ψ−(k−1)α =
= (M0(hα)− (k − 1)α(hα) + rk−1)ψ−(k−1)α

(5.1.84)

so we need to solve the recursion equation

rk = M0(hα)− (k − 1)α(hα) + rk−1, r0 = 0. (5.1.85)

The solution is

r1 = M0(hα)
r2 = 2M0(hα)− α(hα)
...

rk = kM0(hα)−
k∑

l=1
(l − 1)α(hα) = kM0(hα)− α(hα)

2 k(k − 1).

(5.1.86)

If we use M0(hα) = (h0, hα) = 〈M0, α〉 and α(hα) = (hα, hα) = 〈α, α〉 we obtain

rk = k〈M0, α〉 − 〈α, α〉k(k − 1)
2 . (5.1.87)

In (5.1.86) we used that we have an upper limit of the chain of eigenvectors but we must also
have a lower limit, i.e. π(fα)ψn = 0. To get the constraint on r, consider π(eα)π(fα)ψn = 0,
which means that rn+1 = 0. This second “boundary condition” (5.1.87) yields

(n + 1)〈M0, α〉−〈α, α〉(n + 1)n
2 = 0 ⇒

n = 2〈M0, α〉 − 〈α, α〉
2〈α, α〉 ± 〈α, α〉+ 2〈M0, α〉

2〈α, α〉 .

(5.1.88)

Since n is positive
n = 2〈M0, α〉

〈α, α〉 . (5.1.89)

The weight M0 is called the highest weight which we actually have seen in section 4.4 as the
spin j. Note however that n in general will not be equal to the dimension of the irreducible
representations since there might be several step operators.

To summarize: we started with the eigenvector ψ0, called the highest weight state, sat-
isfying (5.1.77), i.e. it is annihilated by any element from η+. In analogy for the adjoint
representation we wanted to construct chains of eigenvectors so that we can form the module
of the representation. Since the module is of finite dimension we concluded that these chains
can not be infinite and we obtained an expression for the length of the chains. Suppose that
we had started with ψj instead of ψ0, i.e. a state in the “middle of the chain”. For this state
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m �= 0 unlike for ψ0. But, the total length of the chain is the same whether we start from ψj

or ψ0 , so we can express (5.1.88) as

n + m = 2〈M0, α〉
〈α, α〉 = 2〈Mj + mα, α〉

〈α, α〉 = 2〈Mj , α〉
〈α, α〉 + 2m ⇒

n−m = 2〈Mj , α〉
〈α, α〉 .

(5.1.90)

Not very unexpectedly, this is exactly the same as (5.1.50). Note that the n in (5.1.90) is not
the same n as in (5.1.88).

This is a good place for an example. Let us find the dimension of an irreducible representation
of sl(2,�). This is exactly what we did in section 4.4, but now we will derive it in a different
way. Just to be clear, we want to find the n in (5.1.88). From section 4.4 we have the
commuting relations

[Ĵz, Ĵ±] = ±�Ĵ±
[Ĵ+, Ĵ−] = 2Ĵz,

(5.1.91)

i.e. sl(2,�) is three dimensional. The two roots α(Ĵz) = ±� has only one component each
due to the fact that Ĵz spans the one-dimensional Cartan subalgebra. As highest weight we
take M0 = Mj = j� , see (4.4.22), with the corresponding highest state ψj . To calculate

n = 2〈Mj(Ĵz), α(Ĵz)〉
〈α(Ĵz), α(Ĵz)〉 = 2 (hj , hα)

(hα, hα) , (5.1.92)

where hj , hα are the elements associated to Mj(Ĵz), α(Ĵz) according to (5.1.79), we need to
determine (hj , hα) and (hα, hα). From (5.1.48), the equations to determine hj , hα, we obtain
for hα

� = c(Ĵz, Ĵz) ⇒
hα = �

(Ĵz, Ĵz)
Ĵz

(5.1.93)

and for hj we obtain
j� = c(Ĵz, Ĵz) ⇒
hj = j�

(Ĵz, Ĵz)
Ĵz.

(5.1.94)

We can use (5.1.57) to determine (Ĵz, Ĵz), but it is not necessary for determining n.

(Ĵz, Ĵz) =
2∑

k=1
(αk(Ĵz))2 = 2�2. (5.1.95)

Finally, (5.1.92) becomes

n = 2
( j�

(2�2) Ĵz, �

(2�2) Ĵz)
�2

(2�2)2 (Ĵz, Ĵz)
= 2j. (5.1.96)
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which is in line with the result from section 4.4. Since Ĵk−ψj is an eigenvector to Ĵz for every
0 ≤ k ≤ n this set can be chosen as a basis for the representation with dimension 2j + 1.

For sl(2,�) we only have one chain of eigenvectors constituting the module since we only
have two ladder operators. In general, however, the module consist of several chains. The
principle is that you start with a highest weight state and then step downward with the step
operators in η− to form an irreducible representation. The procedure is very similar to what
we did with the roots. For every weight Mj we check whether Mj − αi and Mj + αi are new
roots or not and proceed in this way. The integers nj , i.e.

nj = 2〈M0, αj〉
〈αj , αj〉 , (5.1.97)

can be used to label our irreducible representations. For a rank r algebra, j = 1, 2,..., r
corresponding to the r simple roots. Since the roots to the sl(2,�) algebra are ±�, we will
step down from the highest weight state, ψj , and subtract � to the weights in every step.
This procedure can be illustrated in a weight-diagram such as figure 5.1

�− �− �−

�j− �1)−j(− �2)−j( �1)−j( �j0

Figure 5.1: Weight diagram for a sl(2,�) representation.

5.2 Chevally-Serre Presentation

To get a better grip of how to construct Lie algebras one can make use of a known algebra.
The basic idea is to “make copies” of sl(2,�) and use these as a basis for the new algebra.
In this section the Cartan matrix will be introduced but otherwise nothing new. Rather a
different way to look at the structure of a Lie algebra. First recall the sl(2,�) algebra:

[e, f ] = h

[h, e] = 2e

[h, f ] = −2f,

(5.2.1)

i.e. sl(2,�) = �f ⊕ �h ⊕ �e. Obviously h ∈ C, e ∈ η+ and f ∈ η−. We also have the
fundamental representation

π(h) =
(

1 0
0 −1

)
, π(e) =

(
0 1
0 0

)
, π(f) =

(
0 0
−1 0

)
. (5.2.2)

We proceed as follows. Take a set of r sl(2,�) algebras and denote the elements as

{fi, hi, ei}, i = 1, 2, 3,..., r (5.2.3)
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With this set of r sl(2,�)’s we can form a direct sum of vector spaces, not Lie algebras, as
r⊕

i=1
sl(2,�)i (5.2.4)

which means that our new algebra has dimension 3r so far. Now we have to intertwine the
sl(2,�)’s with each other through commutations. The sl(2,�)’s can not all commute since
then we would just get a trivial algebra of dimension 3r. New elements in an algebra can
only be obtained through commutations. Let

[hi, hj ] = 0
[hi, ej ] = Ajiej

[hi, fj ] = −Ajifj

[ei, fj ] = δijhij .

(5.2.5)

Here we do not apply the summation convention. Clearly, hi forms the Cartan algebra for our
new algebra, ej ∈ η+, fj ∈ η− and new elements can be constructed through commutations.
Observe that the representation given in (5.2.2) do not apply to all of the sl(2,�) when they
are added. The matrix Aji is called the Cartan matrix. This is an r×r matrix that contains
all the information about the Lie algebra and we have actually been in contact with it in the
previous section because

Aji
def= 2 〈αi, αj〉

〈αj , αj〉 . (5.2.6)

At first glance, the connection between (5.2.6) and (5.2.5) is not obvious except for the case
Aii = 2. If we take a simple case when r = 2 we have two sl(2,�)’s. Consider

[hi, ej ] = αj(hi)ej = (hαj , hi)ej = 〈αj , αi〉ej . (5.2.7)

Our rank two algebra consist so far of two Cartan elements and four ladder operators. A
fifth ladder operator can be constructed [e1, e2] = e3 and suppose that [e1, e3] = 0. Let us
calculate 〈αi, αi〉, i = 1, 2. To do this we need to find A12, A21. Jacobi gives

[f1, [e1, e3]] + [e1, [e3, f1]] + [e3, [f1, e1]] = [e1, [e3, f1]] + [e3, h1] =
= [e1, [[e1, e2], f1]] + [e3, h1] = [e1, [e2, [f1, e1]]] + [e3, h1] =

= [e1, [e2, h1]] + [e3, h1] = −A21e3 − (A21 + A11)e3 =
= −(2A21 + A11)e3 = 0

e3 �= 0 ⇒ A21 = −1.

(5.2.8)

Similar calculations gives A12 = −1 as well. Let α1, α2 be the roots to e1 and e2,

〈α1, α1〉 = (α1)i(α1)j(g−1)ij = (α1)i(α1)jgij

gij
(5.1.26)=

(
2 −1
−1 2

)
⇒ gij = 1

3

(
2 1
1 2

)

⇒
〈α1, α1〉 = 〈α2, α2〉 = 42

3 − 21
3 − 21

3 + 2
3 = 2.

(5.2.9)
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Equation (5.2.7) can be expressed as

[hi, ej ] = 〈αj , αi〉ej = 2
〈αj , αj〉〈αj , αi〉ej = Ajiej . (5.2.10)

So, for this example the Cartan matrix A becomes

A =
(

2 −1
−1 2

)
, (5.2.11)

which in fact is the Cartan matrix for sl(3,�). This result can be generalized. A Cartan
matrix A satisfies

i) Aii = 2 ∀i

ii) Aij ∈ �− ∀i �= 0
iii) Aij = 0 ⇔ Aji = 0

(5.2.12)

If αj are the roots to the ej ’s, j = 1, 2, 3,..., r we can choose these as the simple roots to
our algebra. As stated above (and in the previous sections), we can obtain more elements
other than those of the sl(2,�)’s through commutations. Otherwise we would have to confine
ourselves to a 3r-dimensional algebra. Of course we have a constraint very similar to (5.1.50).
Since αj , αi are simple roots p = 0. This means that if we would like to construct new
elements by commuting ej and ei we have that, see (5.1.19),

[ei, [ei, [..., [ei︸ ︷︷ ︸
q+1 times

, ej ]...]]] = 0. (5.2.13)

With
p− q = −q = Aji (5.2.14)

(compare to (5.1.50)) this can be expressed as

(adei)1+q(ej) = (adei)1−Aji(ej) = 0
(adfi

)1+q(fj) = (adfi
)1−Aji(fj) = 0.

(5.2.15)

These are known as the Serre relations. For the trivial case when we only have one sl(2,�)
Aji = 2. That is, 1 − Aji < 0 which means that we do not get any new elements through
commutation. Of course this is trivial since [e, e] = 0. The basis that we have worked with
in this section is called the Chevally basis. With this basis, all the structure constants are
integers. Suppose that we have a basis that is not the Chevally basis (the prime one) and we
normalize our elements as

e′
αi

=
√

2
(eαi , fαi)〈αi, αi〉eαi

f ′
αi

=
√

2
(eαi , fαi)〈αi, αi〉fαi

(5.2.16)

we see that
[e′

αi
, f ′

αi
] = 2

〈αi, αi〉hαi (5.2.17)

if we use (5.1.54). This makes it appropriate to define

h′
i = 2

〈αi, αi〉hαi (5.2.18)
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such that
[e′

αi
, f ′

αi
] = h′

i (5.2.19)
and

[h′
i, e′

αj
] = 2

〈αi, αi〉

√
2

(eαj , fαj )〈αj , αj〉 [hαi , eαj ] =

= 2
〈αi, αi〉

√
2

(eαj , fαj )〈αj , αj〉αj(hαi)eαj =

= 2
〈αi, αi〉(hαj , hαi)e′

αj
= 2〈αj , αi〉

〈αi, αi〉 e′
αj

= Ajie
′
αj

.

(5.2.20)

Thus, we have the Chevally basis.

5.3 sl(3,�)
We will in this section investigate the sl(3,�) algebra by finding its structure such as the
Cartan subalgebra and the ladder operators. sl(3,�) is an 8-dimensional algebra of rank 2
which means that we have a 2-dimensional Cartan subalgebra. One particular representation
for this algebra is

π(t1) =

⎛
⎜⎝0 1 0

1 0 0
0 0 0

⎞
⎟⎠ π(t2) =

⎛
⎜⎝0 −i 0

i 0 0
0 0 0

⎞
⎟⎠ π(t3) =

⎛
⎜⎝1 0 0

0 −1 0
0 0 0

⎞
⎟⎠

π(t4) =

⎛
⎜⎝0 0 1

0 0 0
1 0 0

⎞
⎟⎠ π(t5) =

⎛
⎜⎝0 0 −i

0 0 0
i 0 0

⎞
⎟⎠ π(t6) =

⎛
⎜⎝0 0 0

0 0 1
0 1 0

⎞
⎟⎠

π(t7) =

⎛
⎜⎝0 0 0

0 0 −i
0 i 0

⎞
⎟⎠ π(t8) = 1√

3

⎛
⎜⎝1 0 0

0 1 0
0 0 −2

⎞
⎟⎠ ,

(5.3.1)

where ti ∈ sl(3,�). These are the Gell-Mann matrices which can be thought of as a
generalization of the Pauli matrices. The main task is to find a suitable basis for t ∈ sl(3,�)
that allows us to find our Cartan subalgebra and ladder operators. If we take the commutator
between π(t1) and π(t2) we get

[π(t1), π(t2)] = 2iπ(t3) (5.3.2)

which seems familiar from the su(2) algebra. Inspired by this we define

x1 = 1
2 t1 x2 = 1

2 t2 x3 = 1
2 t3

y4 = 1
2 t4 y5 = 1

2 t5

z6 = 1
2 t6 z7 = 1

2 t7 z8 = 1√
3

t8,

(5.3.3)

and make the change of basis

e1 = x1 + ix2 e2 = y4 + iy5 e3 = z6 + iz7

f1 = x1 − ix2 f2 = y4 − iy5 f3 = z6 − iz7.
(5.3.4)
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Expressed as matrices this becomes

π(e1) =

⎛
⎜⎝0 1 0

0 0 0
0 0 0

⎞
⎟⎠ π(e2) =

⎛
⎜⎝0 0 1

0 0 0
0 0 0

⎞
⎟⎠ π(e3) =

⎛
⎜⎝0 0 0

0 0 1
0 0 0

⎞
⎟⎠

π(f1) =

⎛
⎜⎝0 0 0

1 0 0
0 0 0

⎞
⎟⎠ π(f2) =

⎛
⎜⎝0 0 0

0 0 0
1 0 0

⎞
⎟⎠ π(f3) =

⎛
⎜⎝0 0 0

0 0 0
0 1 0

⎞
⎟⎠

π(x3) = 1
2

⎛
⎜⎝1 0 0

0 −1 0
0 0 0

⎞
⎟⎠ π(z8) = 1

3

⎛
⎜⎝1 0 0

0 1 0
0 0 −2

⎞
⎟⎠ .

(5.3.5)

If we take all the commutators we find that

[x3, e1] = e1 [x3, e2] = 1
2e2 [x3, e3] = −1

2e3

[x3, f1] = −f1 [x3, f2] = −1
2f2 [x3, f3] = 1

2f3

[z8, e1] = 0 [z8, e2] = e2 [z8, e3] = e3

[z8, f1] = 0 [z8, f2] = −f2 [z8, f3] = −f3

[e1, e3] = e2 [f1, f3] = f2 [x3, z8] = 0.

(5.3.6)

So, we have that C = span�{x3, z8}, η+ = span�{e1, e2, e3} and η− = span�{f1, f2, f3}.
Let us denote x3, z8 as h1, h2 respectively. Here we have another definition of a positive
root. Instead of positive h1 component, we define a positive root as a root with positive h2
component. In the h1, h2 basis for the Cartan subalgebra we have the positive roots

α1 = (1, 0) α2 = (1/2, 1) α3 = (−1/2, 1) (5.3.7)

where we choose α1 and α3 to be the simple roots. This means that

α2 = α1 + α3. (5.3.8)

Clearly, this is not expressed in the Chevally basis. From (5.3.6) we can obtain the matrix
representation for adh1

adh1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0

1
1
2

−1
2

−1
−1

2 1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.3.9)
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and for adh2

adh2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0

0
1

1
1

−1
−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.3.10)

We can obtain the same algebra with the use of sl(2,�) as we did in section 5.2 for sl(3,�).
Consider two sl(2,�)’s

{f ′
1, h′

1, e′
1}

{f ′
2, h′

2, e′
2},

(5.3.11)

where the primes are to distinguish this basis from the previously obtained from the Gell-
Mann matrices. So far we have a 6-dimensional algebra, but sl(3,�) is 8-dimensional, i.e.
we have to construct more elements to our algebra. Suppose that we know that the rank
of sl(3,�) is 2 but not that it is 8-dimensional and we wonder how many new elements we
can form. It is here that (5.2.15) comes in handy. We know from (5.2.11) that the sl(3,�)′s
Cartan matrix is

A =
(

2 −1
−1 2

)
. (5.3.12)

So, the question is how many times we can commute the simple roots e1, e2 as

[e′
1, [e′

1[..., [e′
1, e′

2]...]]]. (5.3.13)

Equations (5.2.15) and (5.3.12) tells us that

(ade′
1
)1−A12(e′

2) = (ade′
1
)2(e′

2) = [e′
1, [e′

1, e′
2]] = 0. (5.3.14)

Thus, [e′
1, e′

2] is a new element but [e′
1, [e′

1, e′
2]] = is not. The calculation for f ′

1 and f ′
2 is

completely analogous. The basis for sl(3,�) is given by

{f ′
1, f ′

2, f ′
3, h′

1, h′
2, e′

1, e′
2, e′

3}. (5.3.15)

Since we know the Cartan matrix, the roots are

α′
1 = (2, − 1) α′

2 = (−1, 2) α′
3 = (1, 1), (5.3.16)

where α′
1, α′

2 are the simple roots. These roots are clearly different from (5.3.7) due to the
different basis for C. We saw in (5.2.16) one way to go from a particular basis in g to a basis
where all the structure constants are integers, i.e. the Chevally basis. Let us see how we can
go from the basis given by (5.3.6) to the Chevally basis. We can find this change of basis in
two ways, by direct computation or finding hαi . If we make an “ordinary” change of basis in
C we should be able to obtain the same roots as in (5.3.16) for the step operators defined in
(5.3.4). Let the new basis of C, i.e. the Chevally basis denoted h′

1, h′
2, satisfy

[h′
1, e1] = 2e1 [h′

1, e2] = −e2

[h′
2, e1] = −e1 [h′

2, e2] = 2e2.
(5.3.17)
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To find this basis we express h′
1, h′

2 in h1, h2 as

h′
1 = c1h1 + c2h2

h′
2 = d1h1 + d2h2

(5.3.18)

and solve this using (5.3.17) and (5.3.7). This will give us

h′
1 = 2h1

h′
2 = −h1 + 3

2h2.
(5.3.19)

so that our new basis for g becomes {f1, f2, f3, h′
1, h′

2, e1, e2, e3}. The matrix representation
for h′

1, h′
2 becomes

h′
1 = 2 · 1

2

⎛
⎜⎝1 0 0

0 −1 0
0 0 0

⎞
⎟⎠ =

⎛
⎜⎝1 0 0

0 −1 0
0 0 0

⎞
⎟⎠

h′
2 = −1

2

⎛
⎜⎝1 0 0

0 −1 0
0 0 0

⎞
⎟⎠+ 3

2 ·
1
3

⎛
⎜⎝1 0 0

0 1 0
0 0 −2

⎞
⎟⎠ =

⎛
⎜⎝0 0 0

0 1 0
0 0 −1

⎞
⎟⎠ .

(5.3.20)

The same result is obtained if we find hα1, 2 from (5.1.48).

h′
1 = 2

〈α1, α1〉hα1

h′
2 = 2

〈α2, α2〉hα2

(5.3.21)

Equation (5.1.48) gives for hα1 {
1 = 3c1

0 = 4c2 ⇒ hα1 = 1
3h1 (5.3.22)

and for hα2 {
−1/2 = 3c1

1 = 4c2 ⇒ hα2 = −1
6h1 + 1

4h2. (5.3.23)

Here we have used that (h1, h1) = 3, (h2, h1) = (h1, h2) = 0 and (h2, h2) = 4 which can be
obtained from (5.1.58) or from (5.3.9), (5.3.10). Thus

h′
1 = 2

〈α1, α1〉
1
3h1

h′
2 = 2

〈α2, α2〉
(
−1

6h1 + 1
4h2

)
.

(5.3.24)

With
〈α1, α1〉 = (hα1 , hα1) = 1

9(h1, h1) = 1
3

〈α2, α2〉 = (hα2 , hα2) =
(
−1

6h1 + 1
4h2, − 1

6h1 + 1
4h2

)
= 1

3

(5.3.25)
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equation (5.3.24) becomes
h′

1 = 2h1

h′
2 = −h1 + 3

2h2.
(5.3.26)

There is an illustrative way to present the roots for an algebra through a root diagram, just
as we did for the weights. For a rank 2 algebra, the roots can be thought of as 2-dimensional
vectors in the plane. If we choose the x- and y-axis to correspond to the h1 and h2 component
of the roots we obtain for sl(3,�) the root diagram in figure 5.2. For convenience, we make

0),(0 0),(10),1−(

1),2/(11),2/1−(

1)−,2/1−( 1)−,2/(1

1α

1α

1α−

1α−

2α−2α−

2α−

3α− 3α−

3α− 2α 3α

x

y

Figure 5.2: Root diagram for sl(3,�). The two roots in the origin corresponds to the Cartan elements
h1, h2.

the change α3 ↔ α2. The eight points correspond to the roots of which the two points in the
origin are the roots to the Cartan elements. As highest weight for the adjoint representation
we have α3, i.e. its e3 is annihilated when commuted with e1 or e2. The figure gives a good
overview of all the roots and how they are related.

Since the roots are the weights of the adjoint representation, this is a good example of
what we talked about in the end of section 5.1.3. We can start with the highest weight (root)
state e2 and step down with our step operators π(f1), π(f2) and π(f3)5 subtracting α1 and
α2, respectively, from the highest weight. From the highest weight there are three ways to
go, act with the π(f1) operator on e3 to get e2, corresponding to the weight α2 = (−1/2, 1),
act with π(f2) to get e1, corresponding to the weight α1 = (1, 0) or act with π(f3) to get a

5This step operator is actually unnecessary since its action is equivalent to a linear combination of
π(f1), π(f2).
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Cartan element. Next, we repeat the procedure from the new states, i.e. e1, e2 and some
linear Cartan element. Since π(f2)e1 = [f2, e1] = 0, there are only two possible ways to
step away from e1, to f2 or to a Cartan element. If we continue in this way, we obtain the
adjoint irreducible representation of sl(3,�). This procedure might seem like the one we did
when we first obtained all the step operators to sl(3,�) but in “reverse”. In that case we
stared with our simple roots and stepped up instead of down, so we might wounder what
the meaning of this example is. The answer is that this is the general procedure when we
construct irreducible representations by the highest weight state and that is why we did this
example.

Let us now leave the adjoint representation and begin to consider other representations for
sl(3,�). In order to do this we introduce the weight lattice defined by

Λiαj = δi
j , (5.3.27)

where Λi is a weight and δi
j is the Kronecker delta. The weight lattice ΓΛ consist of all the

linear combination of weights, i.e. ΓΛ =
∑

i�Λi, and can be considered as the dual space to
the root space. If we add our weights in the root diagram in figure 5.2 we obtain figure 5.3.
The weights Λ1, Λ2 can be obtained by the conditions

x

y

1Λ

2Λ

1α

2α

Figure 5.3: Root and weight diagram for sl(3,�). The two weights Λ1 and Λ2 are orthogonal to the
roots α2 and α1, respectively.
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{
〈Λ1, 2, α2, 1〉 = Λ1, 2g−1α2, 1 = 0
〈Λ1, 2, α1, 2〉 = Λ1, 2g−1α1, 2 = 1 (5.3.28)

where the metric inverse g−1 is

g−1 =
(

2 0
0 3/2

)
. (5.3.29)

If we solve (5.3.28) we get Λ1 = (1/2, 1/3) and Λ2 = (0, 2/3). Let us now start with Λ2 as
highest weight. To construct an irreducible representation, corresponding to this weight, we
apply the step operators. There are two possible ways to step down: with α1 or α2. α3 is not
necessary since it is a linear combination of α1 and α1. To see whether Λ2 − α1 and Λ2 − α2
are weights or not we use (5.1.88) (the length of the weight chain),

n = 2〈Λ2, α1〉
〈α1, α1〉 = 0

n = 2〈Λ2, α2〉
〈α2, α2〉 = 1

(5.3.30)

by the definition of Λ2. Thus, Λ2−α1 is not a weight but Λ2−α2 is. This is not so unexpected
considering how we chose our weights. From the weight Λ2 − α2 = (1/2, − 1/3) we can not
go any further with α2, but

n = 2〈Λ2 − α2, α1〉
〈α1, α1〉 = 2〈Λ2, α1〉

〈α1, α1〉 −
2〈α2, α1〉
〈α1, α1〉 = 1, (5.3.31)

i.e. Λ2 − α2 − α1 = (−1/2, − 1/3) is a weight. In the above calculations we used that
〈α1, α1〉 = 〈α2, α2〉 = 2. These three weights form a triangle in the weight lattice as illustrated
in figure 5.4. An equivalent representation is obtained if we start from Λ2 and step down with
α3 and then up with α1. This 3-dimensional representation, denoted 3̄, is the anti-fundamental

representation of sl(3,�). The irreducible representation with highest weight Λ1 is derived in
exactly the same way as for Λ2. This representation is called the fundamental representation6

and is denoted as 3. The result is presented in figure 5.5. These representations together
with the adjoint representation have a very nice physical significance that will bee discussed
in chapter 8.

5.4 Dynkin Diagrams

The Cartan matrix encodes all information about the commutation relations, and thus the
entire structure, of a semi-simple Lie algebra. If we know the Cartan matrix of a Lie algebra,
we know all there is to know about the algebra, and a graphical way of presenting this
information is in the form of a Dynkin diagram.

For a semi-simple Lie algebra of rank r with Cartan matrix A, the Dynkin diagram is
drawn in the following way:

• Draw a node for every i = 1,..., r.
6Another common notation for the fundamental and anti-fundamental representation is (1, 0) and (0, 1),

respectively. These are the integers nj talked about in (5.1.97).
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x

y

1α−
3α− 2α−

2Λ

Figure 5.4: Weights for the 3-dimensional complex conjugate representation 3̄ for sl(3,�)

• Draw a number of lines equal to max(|Aij |, |Aji|) between nodes i and j.

• Draw an arrow from j to i if |Aij | > |Aji|.
We will now look at a few examples that demonstrates how Dynkin diagrams are drawn.

At the same time we introduce the mathematical names of the algebras which refer to their
structure more than their representations. The algebras sl(n,�) are in the mathematical
literature called An−1 and are thus indexed by their rank n − 1. Other names will follow
below.
Example 5.4.1. Dynkin diagram of sl(2,�). From the commutation relations

[e,f ] = h

[h,e] = 2e

[h,f ] = −2e,

(5.4.1)

of sl(2,�) (also called A1), we see that its Cartan matrix is simply A = 2 (its rank is r = 1).
Its Dynkin diagram is thus nothing more than an isolated node.
Example 5.4.2. Dynkin diagram of sl(3,�). Recall that sl(3,�) (also called A2) has
rank r = 2, with Cartan matrix

A =
(

2 −1
−1 2

)
. (5.4.2)
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x

y

1α−

3α−2α−

1Λ

Figure 5.5: Weights for the 3-dimensional fundamental representation 3 for sl(3,�)

The number of nodes in the Dynkin diagram is equal to the rank of the Lie algebra, which
means that the Dynkin diagram of sl(3,�) will have 2 nodes, and the number of lines between
these is equal to max(|A12|, |A21|) = max(| − 1|, | − 1|) = 1. The diagram is shown in figure
5.6.

Example 5.4.3. sl(2,�) and sl(3,�) are special cases of the more general group sl(r + 1,�)
(also called simply Ar) of rank r, with the Cartan matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0
−1 2 −1 ...
0 −1

0 −1 0
... −1 2 −1

0 −1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (5.4.3)

Note that for every i, only the elements Aij with j = i or j = i ± 1 will be non-zero. This
means that if we arrange the nodes in the corresponding Dynkin diagram in a line, every node
will be connected only to the two adjacent nodes, as illustrated in figure 5.6.
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Figure 5.6: The Dynkin diagrams of A1, A2, Ar and G2.

Figure 5.7: The Dynkin diagrams of the infinite families Ar, Br, Cr and Dr.

Example 5.4.4. The Lie algebra G2 has the Cartan matrix

A =
(

2 −3
−1 2

)
(5.4.4)

Since the Lie algebra has rank 2, the Dynkin diagram will consist of 2 nodes. Call them node
1 and node 2. |A12| > |A21|, and thus we should draw three lines ( max(|A12|, |A21|) = 3 ),
with arrows pointing from 2 to 1. See figure 5.6.

The Dynkin diagram of a simple algebra will always be connected, and since semi-simple
Lie algebras can be written as the direct sum of simple Lie algebras, these will in general
consist of several disconnected components, where each component is just the Dynkin diagram
of the corresponding simple algebra. One of the most prominent results in mathematics during
the 20th century was the complete classification of simple Lie algebras over algebraically
closed fields. It turns out that the finite simple Lie algebras over the complex numbers can
be classified into 4 infinite families, Ar, Br, Cr and Dr, with 5 exceptional cases, G2, F4, E6,
E7 and E8. This classification is neatly summarized in the Dynkin diagrams of which the
diagrams of the infinite families are shown in figure 5.7, and the diagrams of the exceptional
cases are shown in figure 5.8.
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Figure 5.8: The Dynkin diagrams of the exceptional cases G2, F4, E6, E7 and E8.

5.5 Casimir Operators

We end this chapter with a brief discussion about Casimir operators in Lie algebra repre-
sentations. As mentioned in section 4.4, a Casimir operator Ĉ is a Lie algebra element that
commutes with every other elements in the Lie algebra g, i.e.

[Ĉ, ti] = 0, ∀ti ∈ g. (5.5.1)

This means that the Casimir operator is proportional to the unit matrix. Moreover, for a
semi-simple Lie algebra the number of independent Casimir operators is equal to the rank of
the algebra, ([16], p. 109). An example of a Casimir operator was given in section 4.4, i.e.

Ĉ = Ĵ
2 = Ĵ2

x + Ĵ2
y + Ĵ2

z , (5.5.2)

which is the Casimir operator for su(2), called a quadratic Casimir operator, in a partic-
ular representation. The set of Casimir operators for a given Lie algebra is not unique. For
example: if Ĉ1 and Ĉ2 are two Casimir operators then

Ĉ ′ = aĈ1 + bĈ2 (5.5.3)

is also a Casimir operator for every a, b ∈ �. So far we have only talked about Casimir
operators to the Lie algebra, but let us find an Hermitian invariant operator for an unitary
group with Hermitian generators. Let Ĉ be an invariant operator (commutes with every Û),
i.e.

ĈÛ = Û Ĉ, (5.5.4)

where Û is an unitary operator in the group realisation. Take the Hermitian conjugate on
both sides

Û †Ĉ† = Ĉ†Û † (5.5.5)
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and use that Û † = Û−1. Since the inverse of every group element Û covers the whole group,
5.5.5 is equivalent to

Û Ĉ† = Ĉ†Û . (5.5.6)

Thus, Ĉ† is also an invariant operator. If we apply (5.5.3) to Ĉ and Ĉ† we get

Ĉ ′ = Ĉ + Ĉ† (5.5.7)

which obviously is Hermitian. Since the operator Ĉ ′ is an invariant operator to the group it
follows that Ĉ ′ is a Casimir operator to the Lie algebra. Consider for example the infinitesimal
group transformation U = 1 + λata where λa are the group parameters and ta the generators
for the group. If we act with Ĉ ′ and use that it is an invariant operator we get

Ĉ ′(1 + λata) = (1 + λata)Ĉ ′ ⇔ Ĉ ′ta = taĈ ′ (5.5.8)

for every Lie algebra element ta. We can now see why the action of a rotation on a spin state
does not change the eigenvalue of Ĵ

2, i.e. the Casimir operator. Recall the rotation operators
D̂ in section 4.3.16, i.e. a group representation of SU(2). A state |ψ〉 with spin j will change
its spin under the action of D̂ according to

Ĵ
2
D̂|ψ〉 = D̂Ĵ

2|ψ〉 = �j(j + 1)D̂|ψ〉. (5.5.9)

Thus, the spin is invariant under D̂.
There is no general method to construct a Casimir operator, so you have to consider the

particular algebra in each case that you are interested of. For the SU(n) groups, however,
there exists a way, ([16], p.115), that is based on the fact that the Casimir operators must be
polynomial of the Lie elements, i.e.

Ĉi =
∑

ai,jk...π(tj)π(tk)... , (5.5.10)

where ai,jk... are constants and t the Lie algebra elements. Every semi-simple Lie algebra has
a quadratic Casimir, [2], which is constructed as

Ĉ2 = π(ti)π(tj)gij , (5.5.11)

where the subscript 2 indicates that it is a quadratic Casimir operator. ti is an element of
the dual basis for g and gij = (ti, tj), i.e. the Cartan-Killing form. For SU(2)

gij =

⎛
⎜⎝−2 0 0

0 −2 0
0 0 −2

⎞
⎟⎠⇒ gij =

⎛
⎜⎝−1/2 0 0

0 −1/2 0
0 0 −1/2

⎞
⎟⎠ . (5.5.12)

Thus, the Casimir operator for SU(2) is

Ĉ = −1
2(t2

x + t2
y + t2

z) (5.5.13)

which of course is equivalent to 5.5.2 up to a constant faktor. For a rank 2 algebra such as
su(3) there are two Casimir operators given by

Ĉ1 =
8∑

i=1
π(ti), Ĉ2 =

∑
ijk

ai,jkπ(ti)π(tj)π(tk) (5.5.14)
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where the π(ti) :s are given by (5.3.1).

In (5.1.97) we mentioned a way to label our irreducible representations through the integers n.
Another very common way to label irreducible representations is with the eigenvalues of the
Casimir operators, since these are invariants. Thus, for a rank r Lie algebra the irreducible
representations can be labeled with r numbers. For SU(2), the irreducible representations
are labeled with the spin j.

This chapter has given us a deeper insight about the structure of Lie algebras and many
important results such as the commuting relations of the Lie algebra elements, 5.1.15, the
Cartan-Killing form, weights and the Cartan matrix. The concepts of highest weight state
and how to create irreducible representations has been presented and applied to sl(3,�). The
chapter is characterized by its quite mathematical presentation, even though the connection
to physics has been made occasionally, which is intended to give a good foundation for ap-
plications in physics. We will come back to this chapter in section 8.7 where we will see how
particles and irreducible representations are related.
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Chapter 6

The Lorentz and Poincaré Groups

After the mathematical treatment of Lie algebras in the previous chapter, we will now begin
a description of physical applications of this framework, starting with the symmetries of
spacetime. In the beginning of the twentieth century Albert Einstein unified space and time
in his theory of special relativity. This theory can be conveniently expressed in Minkowski
spacetime. The symmetry operations we can perform on a physical object are quite a few.
For instance, it can be rotated and translated in space as well as time. Such symmetries of
spacetime where we have conserved quantities associated with temporal invariance, spatial
invariance and rotational invariance are known as external symmetries.

To comprehend these notions through the usage of Lie algebra and representation theory,
we will return to the Lorentz group which encodes special relativity. It was mentioned briefly
in section 2.2. Moreover, we will discover its relation with the more general Poincaré group
which also includes translation. By the derivation of the Poincaré algebra through actions of
infinitesimal adjoint representations several physical applications will be validated. We will
obtain new tools for characterizing elementary particles with quantum numbers and explore
the properties of so-called projective representations with the formalism described in chapter
5. Proceeding, we will also investigate different manifestations of the Lorentz and Poincaré
group as well as their topological structure. In addition we will see the first hints on how
one can unify quantum mechanics with special relativity, finding our accustomed quantum
mechanical operators in a wider context of Minkowski spacetime, through quantum field
theory (QFT). Numerous books explore this theory thoroughly, see for instance [5], [17] and
[6]. Especially chapter 2 of The Quantum Theory of Fields: Vol I - Foundations [5] has
provided inspiration. This chapter with its introduction of external symmetries serves as a
basis for the next two chapters which will mainly deal with internal symmetries.

Having said that, let us explore this topic and return to the realm of Lorentz transforma-
tions and their attributes.

6.1 Properties of the Lorentz Group

From special relativity we recall that a world without gravity can be thought of as four-
dimensional Minkowski spacetime which we denote as �1, 3, where 3 represents the three
spatial dimensions and 1 the temporal one. We have that �3

x, y, z × �t = �
1, 3. Let us set

the speed of light c = 1. Note that we use Einstein’s summation convention; that is repeated
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indices are summed over with one subscript and the other one superscript or vice versa.
Vectors in this space are called 4-vectors A = (t, x, y, z) with coordinates Aμ, μ = 0, 1, 2, 3
where t = A0, x = A1, y = A2 and z = A3. A 4-vector A transforms as A → A′ = ΛA
under a general Lorentz transformation Λ when the coordinate system is transformed by
x → x′ = Λx ([18], p. 35). These transformations are defined as:

Definition 6.1.1. A Lorentz transformation Λ is a matrix representation of an element
in the group SO(1, 3), i.e. a transformation such that it preserves the Minkowski norm through

ημνΛμ
ρΛν

σ = ηρσ (6.1.1)

where ημν is the Minkowski metric tensor commonly known as the Minkowski metric:

ημν
def=

⎛
⎜⎜⎜⎝
−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎠ . (6.1.2)

Occasionally, one defines the component which will act on the time component of a 4-vector as
+1 instead and changes the sign of the other space-related components in (6.1.2). In general
physicists use ημν to describe the entire Minkowski metric tensor as well as its components,
while mathematicians use a different notation, careful to distinguish between the tensor and its
components. The Minkowski inner product between two 4-vectors A and B with components
Aμ and Bμ is given by

A ·B = AμBμ = ημνAμBν (6.1.3)

and

A2 = A ·A = AμAμ = ημνAμAν . (6.1.4)

With the definition as in (6.1.2), the time direction will be negative when we lower the index
of an arbitrary 4-vector.

It is possible to show the implications of equation (6.1.1) more clearly with a few calcu-
lations. Suppose Λ ∈ SO(1, 3) and let A′ = ΛA. Then according to the definition

A′2 = A′ ·A′ = (ΛA)2 = A2. (6.1.5)

In tensor language we can rewrite this to see the relations more evidently. Recall that A′ =
ΛA in component form becomes A′μ = Λμ

νAν . Hence, in component form, equation (6.1.5)
reads:

A′2 = ημνA′μA′ν = ημν

(
Λμ

ρAρ
)

(Λν
σAσ)

= ημνΛμ
ρΛν

σAρAσ = ηρσAρAσ.
(6.1.6)

Hereby, we see that the transformation Λ preserves the Minkowski norm.

We will now discuss the group properties of the set of all Lorentz transformations. A product
of several Lorentz transformations is clearly another Lorentz transformation and the product
is associative. The identity transformation is given by Λμ

ν = δμ
ν (i.e. the identity matrix)
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and for every Λ ∈ SO(3,1) there exists an inverse. If we for instance want to locate the inverse
to Λμ

ν ,
(
Λ−1)μ

ν , we notice that we can restate the LHS of (6.1.1) as ΛνρΛν
σ since the metric

lowers one of the indices and only has non-zero elements on the diagonal where μ = ν. Still,
if we choose to raise the ρ index on the left hand side as well as the right hand side, we obtain
Λ ρ

ν Λν
σ = δρ

σ since

ητρηρμ = δτ
μ . (6.1.7)

Yet, by multiplying the inverse of a group element with the group element in question yields
the identity, i.e.

(
Λ−1)μ

ν Λν
σ = δμ

σ . Hence, the inverse is given by
(
Λ−1

)μ

ν
= Λ μ

ν . (6.1.8)

Let us investigate different subgroups of the Lorentz group. Equation (6.1.1) implies that
(det Λ)2 = 1 and thus det Λ = ±1. Transformations with det Λ = 1 are referred to as proper
and those with det Λ = −1 as improper. A proper transformation preserves the orientation
of an arbitrary 4-vector. Moreover, by evaluating the 0:th components of (6.1.1) through
ordinary matrix multiplication, the following equation is obtained:

−
(
Λ0

0
)2

+ Λi
0Λi

0 = −1

⇔
(
Λ0

0
)2

= Λi
0Λi

0 + 1
(6.1.9)

where i = 1, 2, 3. This can easily be discerned by writing (6.1.1) in matrix form:

ΛT ηΛ = η. (6.1.10)

Since Λi
0Λi

0 represents the norm of an ordinary 3-vector, it must be positive. Hence, we
deduce an essential relation for Λ0

0; it must satisfy either

Λ0
0 � −1 or Λ0

0 � 1. (6.1.11)

When a Lorentz transformation Λ satisfies Λ0
0 � 1 it is called orthochronous and it pre-

serves the sign of the time-component of the 4-vector it acts on, and hence the direction of
time. In physical applications we deal with proper, orthochronous Lorentz transformations
which are representations of the group SO(1, 3) or more accurately SO+(1, 3) where the +
says that the representation matrices are orthochronous. However it is customary to omit the
plus sign.

Now, let us regard the Lorentz transform in a different light. We have previously dis-
cussed a definition which actually is just applicable for the so-called homogeneous Lorentz
group. Instead, let us consider a Poincaré transformation or inhomogeneous Lorentz
transformation. These transformations take a set of coordinates x to x′ through

xμ → x′μ = Λμ
νxν + aμ (6.1.12)

where a is an arbitrary translation expressed as a 4-vector with components aμ and Λ obeys
(6.1.1). Infinitesimally we still have

ημν dx′μ dx′ν = ημν dxμ dxν (6.1.13)
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which relates the coordinates in different inertial frames since a is constant.
Secondly, let us perform an additional transformation taking x′ to x′′. This yields the

following result:

x′ρ → x′′ρ = Λ̃ρ
σx′σ + ãρ =

= Λ̃ρ
σ (Λσ

νxν + aσ) + ãρ =
= Λ̃ρ

σΛσ
νxν + Λ̃ρ

σaσ + ãρ.

(6.1.14)

The same result may thus be obtained directly from a transformation x′′ = Λ̃Λx + Λ̃a + ã.
Abbreviated the transformation induced by a matrix Λ and a translational 4-vector a can
be written as T (Λ, a). From the reasoning above we deduce that different transformations
T (Λ̃, ã) and T (Λ, a) adhere to the composition rule

T (Λ̃, ã)T (Λ, a) = T (Λ̃Λ, Λ̃a + ã). (6.1.15)

The set of all transformations T (Λ, a) is known as the Poincaré group or the inhomoge-
neous Lorentz group. The Poincaré group is often denoted ISO(1, 3) and is composed of
the proper orthochronous Lorentz group SO(1, 3) and the translations a in �4 encoded by
the Abelian group�4. In section 6.3 the nature of its composition and relations to the Lorentz
group is developed further. With all translational vectors a, ã set to 0 the homogeneous
Lorentz group is formed and the composition rule is modified accordingly

T (Λ̃, 0)T (Λ, 0) = T (Λ̃Λ, 0). (6.1.16)

For further remarks about tensors and some special relativity, please have a look at appendix
B. The properties described above will guide us in our attempts to comprehend how special
relativity can be connected to quantum mechanics. Now, let us take the first tentative steps
towards unification.

6.2 From Minkowski Space to Hilbert Space

In order to construct any descriptions of particles’ behavior, we must replace our coordinate
transformations with transformations acting on fields, quantum mechanical states represented
as rays in a Hilbert space. Recall from quantum mechanics that a ray is a one-dimensional
Hilbert space. For additional information regarding Hilbert spaces, please look at appendix
C.

If we observe a quantum mechanical system in a state represented by one particular ray
and another observer looks at the same system but finds it in a different state then the
probability for an event to occur must be the same for both observers. For instance, if
a particle is moving in one inertial frame and is at rest in another, the probability for it to
decay to another particle must be the same in both frames. Considering the coupling between
these two observers Wigner stated in the 1930’s that it is possible to go from the first ray R1
to the second ray R2 through

|Ψ2〉 = Û |Ψ1〉 (6.2.1)

where |Ψ1〉 and |Ψ2〉 describes a state in R1 and R2, respectively, and Û is a linear, unitary
operator. Still, the theorem also states that this could be achieved by an antiunitary, antilinear
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operator but those are quite uncommon in the description of physical symmetries. Clearly
there is a trivial operator Û = 1̂ mapping a vector |Ψ1〉 to |Ψ1〉. Moreover, continuity demands
that any symmetry transformation, such as a Lorentz transformation or the rotations from
sections 4.2 and 4.3, which may be obtained through a continuous change of some parameters,
such as velocities or angles, is represented by a linear, unitary operator. In addition, a
symmetry transformation which is almost but not quite trivial can be represented by an
operator infinitesimally close to the identity.

We have already explored some of the group properties of the set of induced transforma-
tions T (Λ, a) which could be extended to any symmetry transformation T acting on rays.
Closure is achieved since symmetry transformations taking a ray onto another and onto yet
another one will always end up in a ray. Likewise, associativity is evident. If a symmetry
transformation T1 carries a ray R1 to R2 then there is an inverse transformation (T1)−1 which
turn it back and an identity transformation T = 1. However, when we are dealing with the
operators Û we are acting on vectors |Ψ〉 rather than rays and as we recall from quantum
mechanics two normed vectors can be in the same ray but may diverge up to a phase. This
means that if we have a symmetry transformation T1 which maps a ray Ri to Rj , then the
corresponding operator Û(T1) maps a vector |Ψi〉 in Ri to a vector Û(T1)|Ψi〉 in ray Rj and
if T2 then takes Rj to Rk, so does the corresponding operator Û(T2) then take Û(T1)|Ψi〉
to Û(T2)Û(T1)|Ψi〉 in ray Rk. Still, there is also the opportunity to map a vector |Ψi〉 to
Û(T2T1)|Ψi〉 which is also in ray Rk and it is identical to Û(T2)Û(T1)|Ψi〉 up to a phase
φ(T1, T2).

Û(T1)Û(T2)|Ψi〉 = eiφ(T1, T2)Û(T1T2)|Ψi〉 (6.2.2)

It can be shown that the relationship in (6.2.2) is independent of |Ψi〉 if |Ψi〉 is not a su-
perposition of two states with different spin. If that is not so, we really have the operator
relationship [5]

Û(T1)Û(T2) = eiφ(T1, T2)Û(T1T2). (6.2.3)

When the phase φ(T1, T2) = 0, we can say that the operators Û form a representation of the
group of symmetry transformations. Otherwise, we refer to the Û :s as projective representa-
tions of the group of symmetry transformations. This topic will be explored in section 6.7.
It is also possible to eliminate the phase factor through an appropriate enlargement of the
Lorentz/Poincaré group.

As we associate a linear, unitary operator Û to each combination T (Λ, a), we are able to
make induced transformations on the vectors in quantum mechanical Hilbert space. Abbre-
viated, one usually skips the T and simply write Û (Λ, a).

Û (T (Λ, a)) = Û (Λ, a) (6.2.4)

With this in mind, we shall now derive the Lie algebra of the Poincaré group.

6.3 The Poincaré Algebra

Please note that this section requires some familiarity with tensor algebra and hence a look at
appendix B might prove very helpful. As in previous sections, we can locate the Lie algebra
if we make a Taylor expansion of the group elements near the identity. Correspondingly, let
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us consider an infinitesimal Lorentz transformation away from the unit element in component
form,

Λμ
ν = δμ

ν + ωμ
ν (6.3.1)

where δμ
ν is an infinitesimal displacement expressed as a matrix in component form and δμ

ν

is the Kronecker delta. The Lorentz condition of equation (6.1.1) implies that

ηρσ = ημν

(
δμ

ρ + ωμ
ρ

)
(δν

σ + ων
σ) =

= ημν

(
δμ

ρδν
σ + δμ

ρων
σ + δν

σωμ
ρ +O(ω2)

)
=

= ηρσ + ηρνων
σ + ημσωμ

ρ +O(ω2).

(6.3.2)

By using the metric ηρν to lower the first index of the ω and comparing sides of equation
(6.3.2), we obtain the following property for the infinitesimal displacement

ωρσ = −ωσρ. (6.3.3)

Therefore, ωρσ is antisymmetric. Finally, we can investigate what happens to the operator
Û(Λ, a) which corresponds to an induced Poincaré transformation when Λ is an infinitesimal
Lorentz transformation and a = ε where the norm of ε is infinitesimal. For convenience,
let us denote δμ

ν as 1 to avoid superfluous use of indices. Since the operator Û(1, 0) maps
a ray onto itself it is proportional to the unit operator and might be set equal to it with a
suitable phase choice. Hence, for infinitesimal Lorentz transformations, the operator Û can
be expressed as the one-dimensional unit operator 1̂ plus additional terms linear in ω and ε.
By expanding Û we obtain

Û(1 + ω, ε) = 1̂ + i

2ωρσĴρσ − iερP̂ ρ + . . . (6.3.4)

where the . . . indicate terms of higher order in ω and ε. Here the ω- and ε-independent
operators Ĵ and P̂ are the generators of the Poincaré group. In order for Û(1 + ω, ε) to
be unitary, the operators Ĵ and P̂ must be Hermitian. As we will discover soon they cor-
respond to familiar observables. To obtain Hermitian generators the convention is to omit
the imaginary unit when defining the generators and leaving it as a constant to multiply
with. The 1/2 in equation (6.3.4) is another product of convention in order to simplify the
commutation relations between Ĵ and P̂ . Likewise the 1̂ is in reality the unit operator (i.e.
“1”). Additionally, since we have already confirmed that ωμν is antisymmetric in indices, this
must also be the case for Ĵμν . Otherwise, any symmetric part of Ĵμν would be subject to

ωρσĴρσ = ωρσĴσρ = −ωσρĴσρ = −ωρσĴρσ = 0 (6.3.5)

and thus projected out when in contact with ωμν . Hence any presumed symmetric part of
Ĵμν can be omitted and therefore we state that Ĵμν is antisymmetric.

Ĵρσ = −Ĵσρ (6.3.6)

In fact the components 1,2,3 of P̂ correspond to momentum operators which generate trans-
lation in the x, y and z-directions whereas P̂ 0 generates a translation in time and is the
Hamilton operator. Moreover, some of the components of Ĵ are the operators of angular
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momentum in the three spatial directions. By finding the commutation relations between the
generators we will be able to comprehend these statements in more detail.

As we recall from chapter 3 as well as the previous chapter, we can distinguish the com-
mutation relations of the Lie algebra if we take the adjoint action of group elements on each
other and the Lie algebra on itself. Remember that the adjoint action of the group on its
Lie algebra preserves the commutation relations. Let us examine the adjoint action of the
arbitrary operator Û(Λ, a) on the operator Û(1 + ω, ε) which is infinitesimally close to the
unit operator.

Û(1 + ω, a) → Û(Λ, a)Û(1 + ω, ε)
(
Û(Λ, a)

)−1
(6.3.7)

To find the inverse of Û(Λ, a) we use the composition rule according to equation (6.1.15)
replacing T with Û and using the fact

(
Û(Λ, a)

)−1
Û(Λ, a) = Û(1, 0) (6.3.8)

due to the group axioms. This yields

Û(Λ−1, −Λ−1a)Û(Λ, a) = Û(1, 0)

⇒
(
Û(Λ, a)

)−1
= Û(Λ−1, −Λ−1a).

(6.3.9)

Now using the composition rule (6.1.15) twice and (6.3.9) in equation (6.3.7), this gives us
that

Û(1 + ω, ε) → Û(Λ, a)Û(1 + ω, ε)Û(Λ−1, −Λ−1a) =
= Û(1 + ΛωΛ−1, −a− ΛωΛ−1a + Λε + a) =
= Û(1 + ΛωΛ−1, −ΛωΛ−1a + Λε).

(6.3.10)

To find the relations between the operators Ĵ and P̂ we expand both sides of equation (6.3.10)
in the same manner as we did when we first established these operators in equation (6.3.4)
(by expanding the operator Û(1 + ω, ε) in terms of ω and ε). For the left-hand side, LHS,
we get

LHS = Û(Λ, a)
(

i

2ωρσĴρσ − iερP̂ ρ
)

Û
(
Λ−1, −Λ−1a

)
(6.3.11)

where higher order terms in ω and ε are absent. Equally the RHS of equation (6.3.10) can
be expanded as

RHS = i

2

(
ΛωΛ−1

)
ρσ

Ĵρσ − i
(
Λε− ΛωΛ−1a

)
ρ

P̂ ρ. (6.3.12)

Note that the “1” has been removed from both (6.3.11) and (6.3.12) since it appears on
both sides unaltered. Well, since LHS = RHS in equation (6.3.10), this signifies that the
coefficients in front of ε and ω must be equal in both of equations (6.3.11) and (6.3.12).
However, caution must be taken due to the fact that we are dealing with operators and
symmetry vs. antisymmetry in indices matter so we cannot simply remove the ε and ω and
obtain the coefficients. Still there are neat ways around this problem. Let us start with the
tricky one first, ω, and set the coefficients of equations (6.3.11) and (6.3.12) equal. Everything
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which is not an operator can be shuffled around for convenience. Using equation (6.1.8) to
account for the inverse Λ on the RHS we find in calculating coefficients that

ωμν

(
i

2 Û(Λ, a)ĴρσÛ
(
Λ−1, −Λ−1a

))
=

= ωμνiΛ μ
ρ Λ ν

σ

(1
2 Ĵρσ − 1

2

(
aρP̂ σ + aσP̂ ρ

))
.

(6.3.13)

Here we encounter some difficulties. We have already affirmed the antisymmetric nature of Ĵ
but nothing has been suggested about the properties of P̂ and a contracted with Λ and ω.
Fortunately there is a way to decompose a tensor into a completely symmetric and completely
antisymmetric part which we have used for P̂ contracted with Λ and ω above in equation
(6.3.13). For a complete proof, please refer to appendix B. In two dimensions (where we
will arrive after contracting Λ with P̂ and a) we have for a tensor/matrix A that it can be
decomposed according to

Aμν
def= A(μν) + A[μν] (6.3.14)

where A(μν) is the completely symmetric part and A[μν] is the completely antisymmetric part.
When performing operations on A these two parts never mix, and they are given by

A(μν)
def= 1

2 (Aμν + Aνμ) , A[μν]
def= 1

2 (Aμν −Aνμ) . (6.3.15)

Therefore, since ω is antisymmetric in indices and with the help of the reasoning from equation
(6.3.5), we may establish that the symmetric part of the last a, P̂ -expression of equation
(6.3.12) is projected away when contracted with ω. Any symmetric part of Λ will also be
eliminated when contracted with ω. Hence, only the antisymmetric part appears on the RHS
of equation (6.3.13). Abbreviated it could be written as

1
2

(
aσP̂ ρ − aρP̂ σ

)
= a[ρP̂ σ]. (6.3.16)

As a consequence we arrive at equation (6.3.13), which can be restated as

Û(Λ, a)ĴμνÛ
(
Λ−1, −Λ−1a

)
=

= Λ μ
ρ Λ ν

σ

(
Ĵρσ − aρP̂ σ + aσP̂ ρ

)
.

(6.3.17)

Thereafter, we follow the same procedure for the ε-coefficients of equations (6.3.11) and
(6.3.12) in

− iερ

(
Û(Λ, a)P̂ ρÛ

(
Λ−1, −Λ−1a

))
= −iερ

(
Λ ρ

σ P̂ ρ
)

⇔ Û(Λ, a)P̂ ρÛ
(
Λ−1, −Λ−1a

)
= Λ ρ

σ P̂ σ.
(6.3.18)

By performing these calculations, we have found the effect of the adjoint action of the linear
unitary operator Û(Λ, a) on the generators Ĵ and P̂ of the Poincaré group. If we linearize
the operator Û(Λ, a) so that it corresponds to an infinitesimal transformation away from the
identity and take the adjoint action on our generators we are able to take the adjoint action
on our Lie algebra with itself.
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Once more let us set Λ = 1+ω and a = ε in the surrounding Û(Λ, a) of equations (6.3.18)
and (6.3.18). Note that these new ω and ε are completely unrelated to the previous ones.
The next issue to deal with is to locate the inverse of Û since it appears in both (6.3.17) and
(6.3.18) on the LHS with aid from equation (6.3.9). Replacing a with ε is straightforward, and
for Λ−1 we may find guidance offered by elementary calculus. Recall that in one-dimension

1
1 + ω

= 1− ω + . . . (6.3.19)

when |ω| < 1 and where . . . indicate terms of higher order. Correspondingly, we can deduce
when dealing with an infinitesimal Lorentz transformation, that

Λ = 1 + ω ⇒ Λ−1 ≈ 1− ω. (6.3.20)

With this in mind, equation (6.3.9) turns into

Û
(
Λ−1, −Λ−1a

)
= Û(1− ω, −ε) (6.3.21)

where we have used the fact that

− Λ−1a ≈ −(1− ω)ε ≈ −ε (6.3.22)

since both ω and ε are infinitesimal. Next, let us express Û(1 + ω, ε) and its inverse Û(1 −
ω, −ε) in terms of ω and ε in the same fashion as we did in equation (6.3.4).

Û(1 + ω, ε) = 1̂ + i

2ωρσĴρσ − iερP̂ ρ

Û(1− ω, −ε) = 1̂− i

2ωρσĴρσ + iερP̂ ρ
(6.3.23)

Notice that the expressions in (6.3.23) for Û and its inverse only differ in signs for the co-
efficients of ω and ε. With the goal in sight let us expand the LHS of (6.3.17) by replacing
Û(Λ, a) with Û(1+ω, ε). Caution must be taken when dealing with operators and we cannot
move them around arbitrary.

Û(1 + ω, ε)ĴμνÛ (1− ω, −ε) =

=
(

1̂ + i

2ωρσĴρσ − iελP̂ λ
)

Ĵμν
(

1̂− i

2ωρσĴρσ + iελP̂ λ
)

=

=
(

Ĵμν + i

2ωρσĴρσĴμν − iελP̂ λĴμν
)(

1̂− i

2ωρσĴρσ + iελP̂ λ
)

=

= /Skipping all terms of higher order in ω and ε./ =

= Ĵμν + i

2ωρσĴρσĴμν − iελP̂ λĴμν − i

2ωρσĴμν Ĵρσ + iελĴμνP̂ λ =

= /Simplify the expression by introducing the commutator./ =

= Ĵμν + i

[1
2ωρσĴρσ − ελP̂ λ, Ĵμν

]
.

(6.3.24)

Let us proceed to the right-hand side of (6.3.17), omitting terms of higher order.
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Λ μ
ρ Λ ν

σ

(
Ĵρσ − aρP̂ σ + aσP̂ ρ

)
=

=
(
δ μ

ρ + ω μ
ρ

)
(δ ν

σ + ω ν
σ )
(
Ĵρσ − ερP̂ σ + εσP̂ ρ

)
=

=
(
δ μ

ρ δ ν
σ + δ μ

ρ ω ν
σ + δ ν

σ ω μ
ρ

) (
Ĵρσ − ερP̂ σ + εσP̂ ρ

)
.

(6.3.25)

This expression can easily be simplified since the result obtained by combining the two Kro-
necker deltas with the operator Ĵ can be abbreviated through

δ μ
ρ δ ν

σ Ĵρσ = Ĵμν (6.3.26)

since the components of the identity matrix are only separated from zero on the diagonal. By
making similar observations for the other components of equation (6.3.25), this yields that

(6.3.25) = Ĵμν − εμP̂ ν + ενP̂ μ + ω μ
ρ Ĵρν + ω ν

σ Ĵμσ. (6.3.27)

Finally setting the expanded LHS as of equation (6.3.24) and RHS as of equation (6.3.27)
equal to one another, and realizing that Ĵμν appear on both sides, gives

i

[1
2ωρσĴρσ − ελP̂ λ, Ĵμν

]
= −εμP̂ ν + ενP̂ μ + ω μ

ρ Ĵρν + ω ν
σ Ĵμσ. (6.3.28)

Equivalently, if we examine and expand the last line of equation (6.3.18) in order to find the
P̂ -relations

Û(1 + ω, ε)P̂ ρÛ (1− ω, −ε) = Λ ρ
σ P̂ σ (6.3.29)

and perform similar manipulations, we arrive at

i

[1
2ωρσĴρσ − ελP̂ λ, P̂ μ

]
= ω μ

ν P̂ ν . (6.3.30)

At last there remains only to equate the coefficients in front of the components of ωρσ and ερ

in equations (6.3.28) and (6.3.30). Let us look at the coefficients in front of the components
of ωρσ from the first equation, (6.3.28).

i

2ωρσ

(
ĴρσĴμν − Ĵμν Ĵρσ

)
= ω μ

ρ Ĵρν + ω ν
σ Ĵμσ. (6.3.31)

This can be restated by introducing a commutator and a Minkowski metric tensor as

i

2ωρσ

[
Ĵρσ, Ĵμν

]
= ωρσησμĴρν + ωσρηνρĴμσ =

= ωρσ

(
ησμĴρν − ηνρĴμσ

)
=

= /ωρσ is antisymmetric in indices./ =

= 1
2ωρσ

(
ησμĴρν − ηρμĴσν − ηνρĴμσ + ηνσĴμρ

)
.

(6.3.32)

By equating the coefficients in front of ερ, we finally arrive at the commutation relations
between the generators of the Lie algebra for the defining representation of the Poincaré
group.
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i
[
Ĵρσ, Ĵμν

]
= ησμĴρν − ηρμĴσν − ηνρĴμσ + ηνσĴμρ

i
[
P̂ ρ, Ĵμν

]
= ηρμP̂ ν − ηρνP̂ μ[

P̂ ρ, P̂ μ
]

= 0

(6.3.33)

These equations encode the Lie algebra for the defining representation of the Poincaré
group, iso(1, 3). Notice that we obtained the generator Ĵ as a coefficient for a rotational
matrix and that it will thus yield rotations. Moreover, P̂ was acquired from the infinitesimal
translation ε and is accordingly the generator for translations. With the Lorentz group we
just describe rotations in spacetime and its Lie algebra is the first line of equation (6.3.33).
The last line of (6.3.33) tells us that translations in time and space (time being the 0:th
component of a 4-vector, the spatial directions the three others) commutes. Interestingly, on
the second line of (6.3.33), we find through scrutiny that a translation followed by a rotation
simply yields another translation.

From these commutation relations we can conclude some facts about the composition
of the Poincaré group. Clearly the Lorentz group SO(1, 3) can be considered as a subgroup
where we only account for the rotations. In addition, the Poincaré group describes translations
in a 4-dimensional space. Since these translations are not affected by the Minkowski metric,
the translational group in 4 dimensions �4 can be used. If the Poincaré group, ISO(1, 3),
were a direct product of the Lorentz group and�4 there should not be any interaction between
the generators for translations and the generators for rotations. Instead the Poincaré group
is a semidirect product of the two.

ISO(1, 3) = SO(1, 3) ��4. (6.3.34)
Another, slightly more evident way to see this on the group level is to recognize that in

order to have a direct product both subgroups must be normal. By taking the adjoint action
of the full Poincaré group on the translational group �4 we find upon using the composition
rule for the symmetry transformations of the Poincaré group and the inverse of a unitary
transformation and dropping the T :s and Û :s, respectively, for convenience that

(Λ, a)(0, a)(Λ, a)−1 (6.3.9)= (Λ, a)(0, a)(Λ−1, −Λ−1a) (6.1.15)= (0, Λa + a) (6.3.35)

which is another pure translation in�4. But, for the homogeneous Lorentz subgroup SO(1, 3)
the same reasoning with an element (Λ̃, 0) ∈ SO(1, 3) results in

(Λ, a)(Λ, 0)(Λ, a)−1 = (Λ, a)(1, −a) = (Λ, −Λa + a) (6.3.36)
and the result is a mixture of a rotation and a translation, which takes us out of the homo-
geneous Lorentz group. Hence, the Lorentz group is not a normal subgroup of the Poincaré
group and we have a semidirect product, which is used when one or several subgroups to a
group is not normal. Refer to the definition in chapter 2.

6.4 Implications of the Poincaré Algebra

From Noether’s theorem, we know that for every continuous symmetry there is a conserved
quantity and vice versa. The “quantum version” of this theorem states that:
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Theorem 6.4.1. A continuous symmetry transformation with parameter α acts on vectors in
Hilbert space through a unitary operator Û = exp(iαÂ) where Â is the self-adjoint/Hermitian
operator for the corresponding conserved quantity A ([19], p. 70).

If we look at the Lie algebra for the Poincaré group (6.3.33), we have already established that
the Hermitian operator P̂ 0 (the 0:th component of P̂ ) encodes translations in time, induced
on vectors in Hilbert space through a unitary operator Û . For time invariance, the conserved
quantity is energy. Hence, we deduce that P̂ 0 is in fact the Hamilton operator Ĥ:

P̂ 0 def= Ĥ. (6.4.1)

The corresponding unitary operator for finite time translations is then

Û (1, (t, 0, 0, 0)) = exp
(
− i

�
P̂ 0t

)
= exp

(
− i

�
Ĥt

)
(6.4.2)

where t is the time-parameter (c the speed of light set to 1) and 1 indicates that we are
not rotating the vectors. The � is introduced as a constant to make the theory agree with
experimental results. When performing these calculations, one usually sets � = 1 and the
inconvenience is avoided. The minus sign comes from our definition of the Minkowski metric
tensor and hence the operator represents translations forward in time. Consequently we arrive
at the same expression as in section 4.2.

We distinguish conserved quantities in quantum mechanics from the fact that their corre-
sponding operators commute with the Hamilton operator. If we investigate the commutation
relations between the generators of the Poincaré algebra in expression (6.3.33), we discover
that all components P̂ μ commute with P̂ 0 (from the last line). Since P̂ i where i = 1, 2, 3
will generate spatial translations, they are the momentum operators of the x, y and z-
directions respectively. From them we can write down a 3-momentum operator p̂ according
to equation (6.4.3).

p̂ =
(
P̂ 1, P̂ 2, P̂ 3

)
= (p̂x, p̂y, p̂z) (6.4.3)

Likewise, from the middle line of (6.3.33), we see that the components Ĵ23, Ĵ31, Ĵ12 of the Ĵ
4×4 matrix, where the elements on the diagonal are denoted Ĵ00, . . . , Ĵ33, commute with the
Hamilton operator. These operators generate rotations and, since angular momentum is the
conserved quantity for a system with rotational symmetry, they are the angular momentum
operators for rotations with the axis pointing in the x, y and z-directions. They can be
thought of as an operator for angular momentum Ĵ as of equation (6.4.4), which we have
encountered numerous times. Although it only has three components, it is written with a
capital Ĵ due to historical convention.

Ĵ =
(
Ĵ23, Ĵ31, Ĵ12

)
=
(
Ĵx, Ĵy, Ĵz

)
(6.4.4)

Since the generator Ĵ (the matrix, not the vector) is antisymmetric in indices, the same goes
for the components with switched indices. The remaining components of Ĵ ,

(
Ĵ10, Ĵ20, Ĵ30

)
which do not commute with the Hamilton operator are referred to as boosts as they corre-
spond to accelerations. They can be placed together in an operator K̂, see equation (6.4.5),
for later use.
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K̂ =
(
Ĵ10, Ĵ20, Ĵ30

)
(6.4.5)

Now let us find the commutation relations between the operators in equations (6.4.3), (6.4.4)
and (6.4.5). Here, the target is to examine 3-vectors so subscript indices i = 1, 2, 3 are used.
Firstly, we have established that

[
p̂i, Ĥ

]
=
[
Ĵi, Ĥ

]
=
[
Ĥ, Ĥ

]
= 0 (6.4.6)

whereas for the other components
[
Ĵi, Ĵj

]
= iεijkĴk

[
Ĵi, p̂j

]
= iεijkp̂k[

Ĵi, K̂j

]
= iεijkK̂k

[
K̂i, p̂j

]
= iĤδij[

K̂i, K̂j

]
= −iεijkĴk

[
K̂i, Ĥ

]
= ip̂i.

(6.4.7)

Astoundingly, we once more encounter the fundamental relations for angular momentum on
the first line of equation (6.4.7), the same as equation (4.2.10) from section 4.2 albeit with
� = 1. With their aid we can construct the Lie algebra su(2) for the groups SU(2) and
SO(3). By counting the generators we can also discern the dimension of the algebra of
the defining representation. The generators of the Lorentz group are the three generators of
angular momentum as well as the boosts in the x, y and z-directions, all together 6 generators
creating a 6-dimensional algebra. For the Poincaré group, four additional generators, the P̂ μ,
are required to account for the translations in spacetime and hence we arrive at totally 10
generators and a 10-dimensional algebra.

Moreover, we are finally able to determine a few other familiar operators. First, there is a
generalization of the operator in equation (6.4.2), the linear, unitary spacetime translation
operator which represents finite translations on physical Hilbert space.

Û(1, a) = exp
(
− i

�
P̂ μaμ

)
(6.4.8)

where

P̂ =
(
Ĥ, p̂

)
and a = (t, x, y, z) . (6.4.9)

In the same manner, we have for an arbitrary rotational matrix, as discussed in section 4.1,
R(θ) which describes a rotation θ = |θ| around the direction of θ that the rotation on physical
Hilbert space is represented by the rotational operator in equation (6.4.10).

Û (R(θ), 0) = exp
(

i

�
Ĵiθ

i
)

(6.4.10)

With these tools let us proceed to investigate how one may classify elementary particles
according to their behavior when in contact with a representation of the Lorentz or the
Poincaré group. In addition we will reveal several notions about the different representations
of the Lorentz and Poincaré group, especially the crucial role for the little group and the
pairing of the Lie algebra of two su(2):s with so(1, 3).
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6.5 Representations of the Lorentz and Poincaré Groups

In this section we will find some of the most basic finite and infinite representations for the
Lorentz and Poincaré groups. As a start, let us make a change of basis for the Lorentz algebra.
We define

Ĵ+
i

def= 1
2(Ĵi + iK̂i)

Ĵ−
i

def= 1
2(Ĵi − iK̂i).

(6.5.1)

and investigate how these generators commute. Consider

[Ĵ+
i , Ĵ+

j ] = [12(Ĵi + iK̂i),
1
2(Ĵj + iK̂j)] = 1

4([Ĵi, Ĵi] + i[Ĵi, K̂j ] + i[K̂i, Ĵj ]− [K̂i, K̂j ]) (6.4.7)=

= 1
4(iεijkĴk − εijkK̂k + εjikK̂k + iεijkĴk) = 1

2 iεijk(Ĵk + iK̂k) = 1
2 iεijkĴ+

k .

(6.5.2)
The calculation for [Ĵ−

i , Ĵ−
j ] is completely analogous. Next, consider [Ĵ+

i , Ĵ−
j ]

[Ĵ+
i , Ĵ−

j ] = 1
4[Ĵi + iK̂i, Ĵj − iK̂j ] = 1

4([Ĵi, Ĵj ]− i[Ĵi, K̂j ] + i[K̂i, Ĵj ] + [K̂i, K̂j ]) =

= 1
4(iεijkĴk + εijkK̂k − εijkK̂k − iεijkĴk) = 0.

(6.5.3)

So, what we have found is that
[Ĵ+

i , Ĵ+
j ] = 1

2 iεijkĴ+
k

[Ĵ−
i , Ĵ−

j ] = 1
2 iεijkĴ−

k ,

[Ĵ+
i , Ĵ−

j ] = 0

(6.5.4)

i.e. the Lorentz algebra can be seen as two su(2) algebras,

so(1, 3) = su(2)⊕ su(2)∗ (6.5.5)

Representations for SU(2) are usually labeled with the spin quantum number J as (J), or
(2J +1), since the module consists of all the states with a particular spin. Due to the fact that
Ĵi = Ĵ+

i + Ĵ−
i , we denote a Lorentz representation with two integers (J1, J2) corresponding to

spin J . In analogy with addition of angular momenta, J takes the values |J1−J2|, ..., J1 + J2.
To see how this works, we take a look at some examples of finite dimensional representations
of the Lorentz group inspired by [20].

Example 6.5.1. The trivial representation. In this 1-dimensional representation, every
element Ĵμν in the Lie algebra is represented with 0 and every group element Λ with 1. The
module which these operators act on is a 1-dimensional vector space spanned by 1-component
objects φ called Lorentz scalars. These transform under SO(1, 3) as

Λφ = 1 · φ, (6.5.6)

where Λ = exp(−iωμν Ĵμν/2) and Ĵμν = 0. This representation is denoted (0, 0).
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Example 6.5.2. The spinorial representation. The double cover of SO(n, m) is Spin(n, m),
so for SO(1, 3), the double cover is Spin(1, 3). Moreover, Spin(1, 3) ∼= SL(2,�). These re-
lations will be developped in section 6.7.2. Thus, representations for SL(2,�) serve as rep-
resentations for SO(1, 3) as well. In particular, the fundamental representation for SL(2,�)
gives us the spinorial representation for SO(1, 3). This representation is 2-dimensional with a
2-dimensional vector space, the module, spanned by 2-component objects called left handed
spinors ψα, denoted (1/2, 0). If we take the complex conjugate representation of SL(2,�),
i.e. we take the complex conjugate of our representation matrices M, we obtain the so called
anti-fundamental representation for SL(2,�) with a module spanned by the right handed
spinors χ̄α̇, denoted (0, 1/2). We can think of (0, 1/2) as the “complex conjugated repre-
sentation” of (1/2, 0). These representations are not equivalent, i.e. M∗ �= SMS−1 by any
matrix S. The left handed spinor ψα, α = 1, 2, transforms as

ψα −→M β
α ψβ, M∈ SL(2,�) (6.5.7)

under the Lorentz group where M = exp(−iωμνSμν/2)) and Sμν is a 2× 2 matrix represen-
tation for SL(2,�). In terms of the Pauli matrices, Sij = i

2εijkσk and S0i = − i
2σi. The

complex conjugate representation is defined as

ψ̄α̇ −→ (M∗) β
α ψ̄β̇ , M∗ ∈ SL(2,�)∗. (6.5.8)

To see how ψ̄α̇ is related to ψα we take the complex conjugate of (6.5.7), i.e. ψ∗
α −→

(M∗) β
α ψ∗

β , and compare this with (6.5.8) which gives ψ∗
α = ψα̇. Next, we want to see

what ψα̇ has to do with the right handed spinor χ̄α. To do this we have to introduce the
SL(2,�) invariant tensor ε defined1 as

εαβ = εα̇β̇ =
(

0 −1
1 0

)
, εαβ = εα̇β̇ =

(
0 1
−1 0

)
. (6.5.9)

Since detM = 1 it follows that

ε′αβ = ερσM α
ρ M β

σ = εαβdetM = εαβ , (6.5.10)

i.e. invariant under SL(2,�). With these tensors we can contract indices as ψα = εαβψβ,
ψα = εαβψβ and ψ̄α̇ = εα̇β̇ψ̄β̇, ψ̄α̇ = εα̇β̇ψ̄β̇ . To see how ψα transform, consider

εασψ′σ = M β
α εβγψγ ⇒ ψ′σ = εσαM β

α εβγψγ . (6.5.11)

Rearrange (6.5.10) as
εσαM β

α M γ
σ = εβγ ⇔

εσαM β
α (MT )γ

σ = εβγ ⇔
εσαM β

α εβγ =
(
(MT )−1)σ

γ
.

(6.5.12)

Note that we have changed the indices. These two expressions together yield

ψ′σ =
(
(MT )−1)σ

γ
ψγ =

(M−1) σ

γ
ψγ (6.5.13)

1Of course, εαβ is a component of ε and not the entire matrix, but we present it like this to distinguish
between the upper and lower indices.
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and similarly, ψ̄α̇ transforms as ψ̄α̇ = (M∗−1) α̇
β̇

ψ̄β̇ which is the right handed spinor2, i.e.

ψ̄α̇ def= χ̄α̇. Finally, the right handed spinor χ̄α̇, α = 1, 2, transforms as

χ̄α̇ −→ (M∗−1) α̇
β̇

χ̄β̇ M∗ ∈ SL(2,�)∗, (6.5.14)

where M∗ = exp(−iωμνSμν/2)) and Sμν is a 2 × 2 matrix representation for SL(2,�). Sμν

is the same as for the left handed spionor except that S0i = i
2σi. Spinors were encountered

in section 4.3.1 as 1/2-spin states. These spinors are the module for SU(2) ∼= Spin(3), i.e.
the double cover of SO(3) which is a subgroup of spatial rotations to SO(1, 3). We can for
example take the electron as our 1/2-spin particle where the spinors(

1
0

)
,

(
0
1

)
, (6.5.15)

corresponding to a spin up and spin down state of the electron, constitute a basis for the
module.

Example 6.5.3. The vector representation. In the vector representation each element
Ĵμν is represented by a 4 × 4 matrix J μν acting on the 4-dimensional vector space spanned
by 4-vectors x called Lorentz 4-vectors. These 4-vectors transform as

xρ −→ (exp(−iωμνJ μν/2))ρ
σxσ (6.5.16)

under the Lorentz group. The vector representation is the fundamental representation for
the Lorentz group since SO(1, 3) is defined as the group of 4 × 4 matrices acting on a 4-
dimensional spacetime. Thus have that Λρ

σ = (exp(−iωμνJ μν/2))ρ
σ with Ĵμν represented as

a 4× 4 matrix J μν . This representation is denoted (1/2, 1/2) and constitutes an irreducible
representation since time and space mix in a general transformation. An example of an object
transforming under the vector representation is the electromagnetic vector potential.

Example 6.5.4. The tensor representation. The tensor representation acts on a vector
space spanned by tensors of a particular rank. For every index there must be a transformation
matrix Λ. A rank 2 tensor T ρσ transforms as

T ρσ −→ Λρ
ρ′Λσ

σ′T ρ′σ′
, (6.5.17)

where Λρ
ρ′Λσ

σ′ are vector representations, i.e. the fundamental representation. Thus, the
tensor representation is the direct product of vector representations. If we define

Λρ
ρ′Λσ

σ′
def= Λρσ

ρ′σ′ , (6.5.18)

(6.5.17) becomes
T ρσ −→ Λρσ

ρ′σ′T
ρ′σ′

, (6.5.19)

where Λρσ
ρ′σ′ can be imagined as a 16×16 matrix representation that acts on rank 2 tensors.

It is not really a matrix since it is a rank 4 tensor, but for a given pair ρσ there is matrix
with components ρ′σ′. Λρσ

ρ′σ′ together with the set of rank 2 tensors constitute a tensor
representation.

2It is customary to denote the right handed spinor as χ̄α̇.

97



Lorentz scalars, spinors, vectors and tensors are examples of finite dimensional represen-
tations for the Lorentz group. Since they do not depend on spacetime they are considered as
constants.

Now, let us take a look at infinite representations. Consider a field Φ(x) that depends on
the spacetime coordinates. Its components transform under the Lorentz group as

Φa −→ M b
a Φb, (6.5.20)

but the Lorentz group also acts on the coordinates in the usual way; Λμ′
μxμ. There are two

different types of symmetries in nature with significant differences; a symmetry related to
coordinate transformations is said to be an external symmetry and a symmetry related to
a transformation of the fields and not the coordinates is said to be an internal symmetry.
We will talk more about internal symmetries in chapter 7. Lorentz invariance is an external
symmetry, and because of the coordinate transformation we may say that we get an induced
transformation of the field as well. With this taken into account, the transformation of the
field Φ(x) becomes

Φa(x) −→ M b
a Φb(Λ−1x), (6.5.21)

where M is one of the finite representations from above, i.e. M = exp(−iωμνSμν/2)). When
we make a coordinate transformation, we can think about it in two equivalent ways; either
we rotate our coordinate system with Λ or we “rotate the physics” with Λ−1. If we choose the
latter we obtain (6.5.21). This is why x appears on the right hand side as well and not x′, as
it would if we saw this as a rotation of our coordinate system and the physics held still. Thus,
x on the right hand side of (6.5.21) are the coordinates in the new system obtained from one
of the two approaches. Let us take a closer look at the transformation Φ(x) −→ Φ(Λ−1x).
Since this is a Lorentz transformation on the coordinates there should be an operator Lμν

satisfying the Lie algebra such that

exp(−iωμνLμν/2)Φ(x) = Φ(Λ−1x). (6.5.22)

To find Lμν we consider the infinitesimal transformation

(1− i

2ωμνLμν)Φ(x) = Φ((1− ω)x) ⇒

LμνΦ(x) =
−2i

(
Φ(x)− Φ

(
(1− w)x)

)
ωμν

.
(6.5.23)

The only place where L appears in (6.5.22) is in the summation with the antisymmetric ωμν .
Thus, we only need the antisymmetric part of L

L[μν] = 1
2(Lμν − Lνμ). (6.5.24)

This antisymmetric part is commonly denoted L. If we use (6.5.23) in (6.5.24) we obtain

LμνΦ(x) = 1
2

(
−2i(Φ(x)− Φ((1− ω)x))

ωμν
+ 2i(Φ(x)− Φ((1− ω)x)

ωνμ

)
=

= −i(Φ(x)− Φ((1− ω)x))
ωμνxν

xν + i(Φ(x)− Φ((1− ω)x)
ωνμxμ

xμ =

= i(xμ∂ν − xν∂μ)Φ(x),

(6.5.25)
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where ∂μ = ∂
∂xμ . With this result, (6.5.21) can be expressed as

Φ(x) −→ exp(−iωμνSμν/2) exp(−iωμνLμν/2)Φb(x). (6.5.26)

One can show that S and L commute, using the fact that S is a finite constant matrix, which
allows us to define3

J def= S + L (6.5.27)
such that

Φ(x) −→ exp(−iωμνJ μν/2)Φb(x). (6.5.28)
J is an infinite dimensional representation called the field representation of the Lorentz
algebra. For the Poincaré algebra, we have to add the momentum generators P̂ μ = i∂μ.

6.6 Classification of Elementary Particles

From the discussion in 6.2 it followed that if we are to consider quantum mechanical theories
we can construct unitary representations acting on Hilbert spaces. Since SO(1, 3) is non-
compact, which we will discover in section 6.7 as we ponder the topological structure of the
Lorentz and Poincaré groups, any unitary representation has to be of infinite dimension but we
will see how finite representations can arise and be used. The space of all possible states of a
particular particle must be an irreducible representation since a reducible representation would
imply states that can not be transformed into other states with any Lorentz transformation.
So, we are searching after irreducible representations that correspond to one-particle states.
A one-particle state does not necessarily mean an elementary particle but in the following
pages we will consider one-particle states since the difference is irrelevant.

As we saw in section 6.3, [P̂ μ, P̂ ρ] commutes for every μ, ρ. This makes it possible to
label our one-particle states with the 4-momentum pμ as |ψp, σ〉, where pμ is the eigenvalue
to the component P̂ μ, i.e.

P̂ μ|ψp,σ〉 = pμ|ψp, σ〉 (6.6.1)
where σ represents still unknown degrees of freedom/quantum numbers for the particle. If
we make a transformation Û(Λ, 0) on |ψp, σ〉 we obtain a transformation of the 4-momentum
according to

P̂ μÛ(Λ, 0)|ψp,σ〉 = Û(Λ, 0)
(
Û(Λ, 0)

)−1
P̂ μÛ(Λ, 0)|ψp, σ〉. (6.6.2)

where we inserted a Û Û−1 = 1̂. Next, we use the result of equation (6.3.18) and distinguish
that

Û(Λ, 0)P̂ ρ
(
Û(Λ, 0)

)−1
= Λ ρ

μ P̂ μ ⇔

P̂ ρ = Λ ρ
μ

(
Û(Λ, 0)

)−1
P̂ μÛ(Λ, 0) = (ΛT )ρ

μ

(
Û(Λ, 0)

)−1
P̂ μÛ(Λ, 0) ⇔(

(ΛT )μ
ρ

)−1
P̂ ρ =

(
Û(Λ, 0)

)−1
P̂ μÛ(Λ, 0) ⇔

Λμ
ρP̂ ρ =

(
Û(Λ, 0)

)−1
P̂ μÛ(Λ, 0).

(6.6.3)

3Not the same J as before.
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If we substitute this into (6.6.2) we get

P̂ μÛ(Λ, 0)|ψp, σ〉 = Û(Λ, 0)Λμ
ρP̂ ρ|ψp, σ〉 = Λμ

ρpρÛ(Λ, 0)|ψp,σ〉. (6.6.4)

This means that when we transform a state |ψp, σ〉 with momentum pμ we obtain a new
state Û(Λ, 0)|ψp, σ〉 with momentum/eigenvalue Λμ

ρpρ that is a new eigenstate to P̂ μ. Now,
let us introduce a reference momentum kμ. Since p2 is an invariant under any Lorentz
transformation we can associate a reference momentum kμ to every value of p2. All other
momenta that square to p2 can be obtained through a standard Lorentz transformation (a
boost) L defined as

Lμ
ν(p)kν def= pμ. (6.6.5)

Moreover, we define our still unknown label σ so that it does not change under L(p), that is

N(p)Û(L(p))|ψk, σ〉 = |ψp, σ〉, (6.6.6)

where N(p) is a normalization factor. Now it is time to shift our focus to the σ-label and
figure out what it represents. The physical property connected to σ is defined in the reference
frame, i.e. the one where the momentum is k, but for an arbitrary momenta the physical
meaning of σ may not be obvious. If we act with an arbitrary Lorentz transformation Û(Λ, 0)
on |ψp, σ〉 we get

Û(Λ)|ψp, σ〉 = N(p)Û(Λ)Û(L(p))|ψk, σ〉 = N(p) Û (L(Λp))︸ ︷︷ ︸
k→Λp

Û
(
L−1(ΛP )ΛL(p)

)
︸ ︷︷ ︸

leaves k invariant

|ψk, σ〉.

(6.6.7)
Observe that we simply write Û(Λ, 0) = Û(Λ) for convenience. From the definition of L we
see that Û

(
L−1(Λp)ΛL(p)

)
acts on the momentum as k → p → Λp → k, i.e. k is invariant.

The operators L−1(Λp)ΛL(p) constitute a subgroup GL ⊂ SO(1, 3) called the little group
which is defined to leave k invariant. A more formal mathematical definition can be found in
appendix A. If we denote the elements in GL as W we have that

Û(W )|ψk, σ〉 =
∑
σ′

Dσσ′ |ψk, σ′〉. (6.6.8)

Thus, states with fixed momentum k furnish a representation for the little group GL. Dσσ′

is the matrix representation for the little group. If we use (6.6.6) and (6.6.8) in (6.6.7) we
obtain

Û(Λ)|ψp, σ〉 = N(p)Û(L(Λp))Û
(
L−1(ΛP )ΛL(p)

)
|ψk, σ〉 =

= N(p)Û(L(Λp))
∑
σ′

Dσσ′ |ψk, σ′〉 = N(p)
N(Λp)

∑
σ′

Dσσ′ |ψΛp, σ′〉. (6.6.9)

This tells us that if we can find representations for the little group GL, i.e. the matrix D, we
can use these as representations for the Lorentz group. Note that we only make the summation
over σ′ and not the momentum, i.e. the momentum Λp is invariant under the action of D.
We may say that the boosted little group leaves the boosted momentum invariant. In fact,
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if we consider another little group which leaves a momentum p invariant, then these little
groups are equivalent. Before we can determine what σ stands for we have to determine GL.
There are two different values of p2 of interest, p2 < 0 and p2 = 0, i.e. massive and massless
particles,

(i) p2 < 0: This represents the momentum for a massive particle in the rest frame of the
particle. We choose the reference momentum to be k = (mc, 0, 0, 0) which squares
to −m2c2. If a massive particle is at rest, its momentum is invariant under spatial
rotations. The little group is then SO(3). However, to be able to deal with spinorial
representations of the Lorentz group, we lift SO(3) to its double cover SU(2) (more on
this in the next section).

(ii) p2 = 0: A massless particle can not be brought to rest by any Poincaré transformation,
but with a suitable choice of inertial frame we can take k = (p, 0, 0, p) as a reference
momentum which squares to 0. The little group for massless particles is ISO(2), the
group of rotations and translations in two dimensions.

So, for a fixed k, |ψk, σ〉 are states in a representation of spin j for SO(3). This means that σ
denotes the spin projection jz in the particle’s rest frame and we may write |ψk, σ〉 = |ψk, jz〉.
For each j we have an irreducible representation of dimension 2j +1 and the eigenstates under
the operator Ĵz are

|ψk, −j〉, |ψk, −j+1〉, . . . , |ψk, j〉. (6.6.10)

Dσσ′ is thus a (2j+1)×(2j+1) matrix. Since [Ĵz, P̂j ] �= 0 we can not label our eigenstates with
both the momentum and the Ĵz eigenvalue, but we can take P̂ 2 and Ĵz since these commute.
So, we should think of the label k as the mass of the particle. Both the mass m and the
spin quantum number j are invariants. Thus, a massive particle is completely specified with
two labels, mass m and spin j, i.e. the irreducible representations for the Poincaré group are
specified according to the mass m and spin j. These are in fact quadratic Casimir invariants,
see 5.5, and hence Lorentz invariants. The corresponding Casimir operators to m and j are
given by (6.6.11),

Ĉ1 = P̂ μP̂μ, Ĉ2 = W μWμ, (6.6.11)

where W μ, the components of W , are given by

W μ = −1
2εμνρσĴνρP̂σ. (6.6.12)

where εμνρσ is the Levi-Civita tensor with four indices. W is called the Pauli-Lubanski
pseudo-vector. The eigenvalue to Ĉ1 is m2c2 and the eigenvalue to Ĉ2 is −m2c2j(j + 1).

The problem of finding unitary irreducible representations for the non-compact Poincaré
group has been reduced to a problem of finding unitary irreducible representations for the
compact SO(3)-group or the compact SU(2)-group, respectively, which are finite and well
known.

The massless particles momenta are invariant under spatial rotation in the xy-plane, i.e.
SO(2). The group SO(2) has representations labeled with helicity h = 0, ± 1/2, ± 1,....
Helicity is defined as the projection of the spin onto the direction of the momentum
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h
def= S · p̂ (6.6.13)

where |p̂| = 1. A massless particle with spin j have 2j + 1 possible values of helicity and
thus 2j + 1 degrees of freedom. Since the photon’s spin projection can be either +1 or −1 its
helicity is h = ±1. This corresponds to the two polarization states, right- or left circularly
polarized. The reference momenta k is not only invariant under rotations, but under a
certain combination of rotations, boosts and translations as well. This is why ISO(2) is the
little group. An example of this is the following. Consider a boost along the x-axis,

k → Λ(x)k = (γp, γβp, 0, p) = k′, (6.6.14)

with β = v/c, followed with a rotation around the y-axis, see example (3.1.5),

k′ → R(y)k′ = (γp, 0, 0, γp) = k′′ (6.6.15)

where sin(θ) = β, cos(θ) = 1/γ, and finally followed by a boost in the −z-direction

k′′ → Λ(−z)k′′ = (p, 0, 0, p) = k (6.6.16)

where γ′ = 1
βγ+γ .

A more elaborate discussion about ISO(2) may be found in ([5], pp. 69-74). Another massless
particle whose existence has yet to be confirmed is the graviton the supposed transmitter for
the gravitational force with helicity h = ±2.
Returning to the j-quantum number, we see that we can classify states according to integer
or half-integer values. In the next section we will discover that the composition rule for the
unitary operators inducing Poincaré transformations can be written according to

Û(Λ, a)Û(Λ̃, ã) = e2πijÛ(ΛΛ̃, Λã + a) (6.6.17)

where j integer gives a plus-sign and j half-integer a minus-sign. When j is a half integer we
obtain projective representations.

6.7 Projective Representations

In section 6.2, we discerned that our operators Û fell short of a phase to being a group
representation. Instead the following operator relation appeared:

Û(T1)Û(T2) = eiφ(T1, T2)Û(T1T2). (6.7.1)

The algebraic nature of this phase as well as its topological interpretation will be presented
throughout the following pages. To begin with, in order to achieve associativity between
operators according to

Û(T3)
(
Û(T1)Û(T2)

)
=
(
Û(T3)Û(T1)

)
Û(T2) (6.7.2)

we deduce a condition (6.7.3) on φ by using (6.7.1) two times on each side of equation (6.7.2).

φ(T1, T2) + φ(T3, T1T2) = φ(T3, T1) + φ(T3T1, T2) (6.7.3)
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Here we encounter a tricky situation. On one hand, phases such as

φ(T1, T2) = ϕ(T1T2)− ϕ(T1)− ϕ(T2) (6.7.4)

evidently satisfies (6.7.3). Yet they can easily be taken care of we redefine our operator Û as
Ŷ such that

Ŷ (T ) def= Û(T )eiϕ(T ) (6.7.5)

which removes the phase from (6.7.1).

Ŷ (T1)Ŷ (T2) = Ŷ (T1T2) (6.7.6)

On the other hand, there might be representations where the phase cannot be eliminated in
this manner, representations on the quantum mechanical Hilbert space which are intrinsically
projective.4 Which option is valid when it comes to describing the Poincaré and Lorentz
group?

Initially we will examine how the phase appears when describing the representation of the
Poincaré algebra.

6.7.1 Central Charges in the Lie Algebra

In order to determine the properties of the additional phase in the Lie algebra picture, we
study the group near its identity. If either T1 or T2 in equation (6.7.1) is a unit transformation
than the phase should obviously disappear. Hence we have

φ(1, T2) = φ(T1, 1) = 0. (6.7.7)

When both T1 and T2 are close to the unit element, the phase generated by their difference
will be small. Moreover, they can be parametrized by coordinates θa and θ̃a respectively.
Let T (0) = 1, T1 = T (θ) and T2 = T (θ̃). According to equation (6.7.7), the expansion of
φ(T (θ), T (θ̃)) when φ is small can be written as

φ(T (θ), T (θ̃)) = fabθ
aθ̃b + . . . (6.7.8)

where fab are some real constants. Moreover we can perform an expansion of the operators
Û in equation (6.7.1) in a similar manner to what we did in the derivation of the Poincaré
algebra in equation (6.3.4), such that

Û(T (θ)) = 1̂ + iθat̂a + i

2θbθcŝbc + . . . (6.7.9)

with t̂ and ŝ are Hermitian operators and ŝbc is symmetric in indices (since switching b for c
will not alter the θ:s). The composed Û(T (θ)T (θ̃)) can be restated using a function Θ(θ, θ̃)
which adheres to the group multiplication between two symmetry operators

4A set of functions φ(T1, T2) which satisfies equation (6.7.3) and where the difference between the different
functions can be expressed as functions of the type in equation (6.7.4), is called a 2-cocycle. These are objects
of study in the mathematical field known as cohomology, see for instance chapter 6 in [7] and [21]. If the set
includes any function φ = 0, the 2-cocycle is said to be trivial and we can redefine our operators and remove
the phase. Yet, some symmetry groups allow non-trivial 2-cocycles and this indicates intrinsically projective
representations ([5], p. 82).
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Û(T (θ)T (θ̃)) = Û
(
T
(
Θ(θ, θ̃)

))
(6.7.10)

where the function Θ(θ, θ̃) will obey

Θa(θ, 0) = Θa(0, θ̃) = θa (6.7.11)

with θa = 0 for the identity transformation. Expanding Θa in terms of θa and θ̃a to the
second order will yield

Θa(θ, θ̃) = θa + θ̃a + fa
bc θb.θ̃c (6.7.12)

Inserting the result of equation (6.7.12) into the operator Û in (6.7.10) we have now found
all terms of the expression in (6.7.1), now modified according to our parametrization of the
symmetry operators

Û(T (θ))Û(T (θ̃)) = exp
(
iφ(T (θ), T (θ̃))

)
Û
(
T
(
Θ(θ, θ̃)

))
. (6.7.13)

By omitting terms of higher order than two, it is possible to place the expanded expression
for Û and φ into equation (6.7.13). The left-hand side will then be

Û(T (θ))Û(T (θ̃)) ≈
(

1̂ + iθat̂a + i

2θbθcŝbc

)(
1̂ + iθ̃dt̂d + i

2 θ̃eθ̃f ŝef

)
≈

1̂ + i
(
θa + θ̃a

)
t̂a + i

2

(
θbθc + θ̃bθ̃c

)
ŝbc − θaθ̃dt̂at̂d

(6.7.14)

where the recurring indices are renamed so that coefficients can be matched. Moving on to
the right-hand side, it can be expanded as

exp
(
iφ(T (θ), T (θ̃))

)
Û
(
T
(
Θ(θ, θ̃)

))
≈
(
1̂ + ifabθ

aθ̃b
)
·

·
(

1̂ + i
(
θa + θ̃a + fa

bc θbθ̃c
)

t̂a + i

2

(
θb + θ̃b

) (
θc + θ̃c

)
ŝbc

)
≈

≈ 1̂ + i
(
θa + θ̃a + fa

bc θbθ̃c
)

t̂a + i

2

(
θb + θ̃b

) (
θc + θ̃c

)
ŝbc+

+ ifabθ
aθ̃b1̂.

(6.7.15)

Setting both sides equal to one another, omitting terms of higher order and those which
appear on both sides such as the unit generator we arrive at

− θaθ̃dt̂at̂d = ifa
bc θbθ̃ct̂a + i

2

(
θbθ̃c + θ̃bθc

)
ŝbc + ifabθ

aθ̃b1̂. (6.7.16)

Next we use that the order of the multiplied parametrizations is irrelevant, θbθ̃c = θ̃bθc, and
switch indices a and d on the left-hand side to b and c. Hence, the expression changes to

− θbθ̃ct̂bt̂c = ifa
bc θbθ̃ct̂a + iθbθ̃cŝbc + ifabθ

aθ̃b1̂. (6.7.17)

By removing all terms associated with the parametrization and rearranging, we find that
the generator ŝ must follow the condition on the first line of (6.7.18) and presents to us the
commutation relations between different components of t̂.
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iŝbc = −t̂bt̂c − ifa
bc t̂a − ifbc1̂ = iŝcb = −t̂ct̂b − ifa

cb t̂a − ifcb1̂
⇒ t̂bt̂c − t̂ct̂b = −ifa

bc t̂a + ifa
cb t̂a − fbc1̂ + ifcb1̂

⇔
[
t̂b, t̂c

]
= −i (fa

bc − fa
cb ) t̂a − i (fbc − fcb) 1̂

(6.7.18)

Renaming the structure constants as of

Cbc
def= fbc − fcb and Ca

bc
def= fa

bc − fa
cb (6.7.19)

the commutation relations become[
t̂b, t̂c

]
= iCa

bc t̂a + iCbc1̂. (6.7.20)

The coefficients in front of the generator of the unit element are the central charges of
the Lie algebra. These charges correspond to the phases we encounter when dealing with
projective representations of Lie groups. In a moment we shall discover a way to eliminate
these charges and also briefly discuss when they constitute an important ingredient for new
theories. When the central charges remain in the algebra, they alter the representation theory.

Our C coefficients must adhere to the Jacobi identity in order for us to obtain a Lie algebra
according to the definition 2.3.3 in section 2.3. This means that[

[t̂b, t̂c], t̂d

]
+
[
[t̂c, t̂d], t̂b

]
+
[
[t̂d, t̂b], t̂c

]
= 0

⇒ Ca
bcCe

ad + Ca
cdCe

ab + Ca
dbCe

ac = 0
and Ca

bcCad + Ca
cdCab + Ca

dbCac = 0.

(6.7.21)

The latter constraint for the central charges can be followed if

Cab = Ce
abϑe (6.7.22)

where ϑ is an arbitrary set of real constants. With this elaboration, we are able to redefine
our generator so that the central charges can be eliminated from the algebra according to
equation (6.7.23)

t̂a → t̂′
a

def= t̂a + ϑa (6.7.23)

and the new generators will obey commutation relations without central charges[
t̂′
b, t̂′

c

]
= iCa

bc t̂′
a. (6.7.24)

However, several pertinent issues remain, such as whether this procedure always is a valid
option. There is a theorem ([22], pp. 44-45) which states that

Theorem 6.7.1. The generators of semisimple Lie algebras can always be redefined so that
all central charges are removed.

As stated in chapter 5, the Lorentz group has a semisimple Lie algebra, which means that
its generators can be modified to eliminate central charges. Yet, for the Poincaré group the
generators P̂ μ associated with translations form an invariant Abelian subalgebra and iso(1, 3)
is not semisimple. Still, it is possible to perform similar calculations like those above and shift
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the generators Ĵ and P̂ by constant terms in order to obtain the commutation relations of
expression (6.3.33) for the defining representation of the Poincaré group. Please refer to
appendix F for guidance.

An important case where the central charges cannot easily be disposed of is when dealing
with the so-called super-Poincaré-algebra, which is an extended form of the Poincaré algebra
and is used in supersymmetry - a theory which attempts to describe physics beyond the
Standard Model. [23] We will not develop its origin and implications here, but the interested
reader should be aware of this connection.

Having explored how phases appear in the Lie algebra of a group, it is time to establish
some rules regarding when they can be omitted. Fortunately there is a theorem ([5], pp.
83-84) which gives that

Theorem 6.7.2. The phase eiφ of any representation Û(T ) of a given group can be chosen
so that φ = 0 if

(i) The generators of the group can be redefined according to equation (6.7.23) in order to
eliminate all central charges from the Lie algebra.

(ii) The group is simply connected, i.e. any loop that starts and ends at the same group
element on the group manifold may be shrunken continuously to a point.

Since we have investigated how generators can be redefined properly, it is time to move on to
topological arguments.

6.7.2 Phases on the Group Manifold

In order to examine the properties of phases in the entire group picture instead of the Lie
algebra, we backtrack a few chapters to section 2.3 and start with the relations between
SU(2) and SO(3). Their Lie algebra is isomorphic, su(2) ∼= so(3), yet they yield different
groups upon exponentiation. When a Lie algebra gives rise to groups with different manifolds
with different topologies, the group with a simply connected manifold is called the universal
covering group. This definition can be restated with slightly more mathematical rigour as:

Definition 6.7.1. Let G and G̃ be connected matrix Lie groups and thus also topological
spaces. Moreover, let G̃ also be simply connected. G̃ is together with a Lie group homomor-
phism p : G̃ �→ G, called the projection map, the universal covering group of G with the
following properties

(i) p is surjective, i.e. it maps G̃ onto G.

(ii) There is neighborhood U ⊂ G̃ to the identity element e ∈ G̃ which p maps onto a
neighborhood V ⊂ G of the identity element e ∈ G.

Definition 6.7.2. A double cover is a universal covering group where the projective map
p is two-to-one.
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The isomorphism of different Lie algebras is naturally occurring together with a group and
its universal covering group, which we have already come across when we first encountered
Lie algebras. Their relation is stated below, for the main ideas of the proof please see ([11],
p. 99).

Proposition 6.7.1: Suppose G is a connected matrix Lie group with Lie algebra g. Let
(G̃, p) be its universal covering group where G̃ has a Lie algebra g̃. Then the corresponding
projective map φ between the Lie algebras g̃ and g is given by

φ : g̃ �→ g (6.7.25)
where φ is an isomorphism.

We have already established that SU(2) is isomorphic to the embedding of the 3-sphere in
�

4 which is the same as the unit ball in �3. Now, looking at SO(3) we can take all possible
rotations angles and map them upon this ball with radius π. The center corresponds to the
unit transformation and the Cartesian axes correspond to each spatial rotation axis. Points
lying on the surface of the ball correspond to rotations of π- or −π-radians in some direction.
For SO(3), taking a rotational matrix and rotating a vector π radians will be equivalent to
rotating it −π radians. If we consider SO(3) as a manifold, this means that antipodal points
on the 3-sphere S3 are identified with one another. An antipodal point is on the other side
of a sphere/circle for a given point, the diameter of the sphere/circle is the distance between
them. This means that a path through the center of the ball connecting two antipodal points
is a closed loop. However, this loop cannot be shrunk to a point since the points on the surface
must remain antipodal during any deformation. Otherwise the loop would cease to be. In
matrix terms the loop in question represents a continuous sequence of rotations about the
axis corresponding to the straight line through the center of the sphere starting and ending
at the identity matrix, producing a 0- or 2π-rotation.

Still, going through the loop twice will yield a continuously deformable loop. This is a
direct consequence of the fact that if we write out the loop between the antipodal points
twice, it can be deformed and placed at the surface of the ball. At that position we mirror
the second half and place it on the other side of the ball. Then, we have effectively created
a circle out of the loop and it can be continuously deformed to a point. This procedure is
illustrated in figure 6.1.

Hence we have the following relation between the SO(3) and SU(2)-manifolds:

SO(3) ∼= SU(2)/�2 (6.7.26)
where �2 is the finite cyclic group of order two which we encountered in chapter 2. It has
two elements {1, −1} corresponding to the fact that any loop between two antipodal points
has to be gone through twice in order for us to obtain the identity element. Thus for every
element in SO(3) there exists two corresponding elements in SU(2). One can think of SO(3)
as half of SU(2) and topologically this is equivalent to SO(3) being the northern or southern
hemisphere of S3 which is the same topological space as the so-called �P 3, the real projective
space of all lines passing through 0 in �4. With even more advanced mathematics one can
state that �2 is the first homotopy group, the fundamental group, of S3/�2. However, we
will not develop that subject any further, see [7] for details. Basically, homotopy groups are a
construct to enable classification of and comparison between different continuous deformations
of maps onto one another. To conclude, SU(2) is the double cover of SO(3).
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Figure 6.1: The turquoise dots indicate two antipodal points on S3 and the line between them the
loop gone through once. If the loop is gone through twice, we can create a circle on the surface of the
ball, the outer loop, which can be continuously deformed to a point.

Moving on to the Lorentz group and the Poincaré group we will find upon scrutiny that
they are also doubly connected. This can be achieved if we assign 4-vectors to complex 2× 2
Hermitian matrices and note certain important implications.

An arbitrary 4-vector A can be used to construct a 2× 2 Hermitian matrix M according
to

M
def= Aμσμ =

(
A0 + A3 A1 − iA2

A1 + iA2 A0 −A3

)
(6.7.27)

where σi are the Pauli matrices and

σμ = (σ0, σi) with σ0 =
(

1 0
0 1

)
. (6.7.28)

The matrices σμ form a complete set since any 2 × 2 matrix can be written as a linear
combination of them. Hence we obtain a map from the Minkowski space 1,3 to the Hilbert
space H of all complex 2 × 2 matrices. Upon investigation of (6.7.27), we discern that the
acquired matrix has a determinant

det M =
(
A0
)2 −

(
A1
)2 −

(
A2
)2 −

(
A3
)2

= −AμAμ (6.7.29)

which is Lorentz-invariant. Moreover, it is possible to preserve the Hermiticity of M through
the following transformation

M → CMC† (6.7.30)

where C is an arbitrary complex 2 × 2 matrix. If C:s determinant |det C| = 1, then the
determinant of M is preserved during the transformation (6.7.30) in view of

det(CMC†) = (det C) (det M)
(
det C†) = (det C)2 (det M) . (6.7.31)

In this manner, we reach the conclusion that each complex 2 × 2 matrix C with |det C| =
1 defines a real linear transformation of any 4-vector A that leaves (6.7.29) invariant - a
homogeneous Lorentz transformation, Λ(C) such that
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CAμσμC† = (Λμ
ν(C)Aν) σμ. (6.7.32)

However, there is a slight complication due to the fact that it is possible to take two different
C-matrices which differ only by a phase and obtain the same result of the transformation in
(6.7.30) (since † alter a phase eiφ to e−iφ ). This can be remedied if we restrict the condition
on the determinant with

det C = 1. (6.7.33)

This implies that C ∈ SL(2, �). With this restriction on the determinant, the group depends
on 4-1=3 complex parameters and thus 6 real ones if we decompose each complex number
into its real and imaginary parts. Hence, we arrive at the same number of parameters as the
Lorentz group has. Moreover if we take two matrices C and C̃, both in SL(2, �) and use
(6.7.32), then the subsequent relation appears

(
CC̃
)

Aμσμ

(
CC̃
)†

= C
(
C̃AμσμC̃†)C† =

= CΛμ
ν(C̃)AνσμC† = Λμ

κ(C)Λκ
ν(C̃)Aνσμ

⇔ Λ(CC̃) = Λ(C)Λ(C̃)

(6.7.34)

and we distinguish a Lie group homomorphism between SL(2, �) and SO(1, 3). To sum
up we have that for any matrix C ∈ SL(2, �) there exists an associated Lorentz matrix Λ
and there is a composition rule according to the last line of (6.7.34), which is reminiscent of
definition 2.1.9 in chapter 2. In principle, it should be possible to go the other way and find
a matrix C ∈ SL(2, �) for every Λ ∈ SO(1, 3) but we do not have an isomorphism. Instead,
there is a two-to-one correspondence between elements in SL(2, �) and SO(1, 3). This can
easily be distinguished if we consider the matrix ζ ∈ SL(2, �) defined as

ζ(θ) =
(

e
iθ
2 0

0 e− iθ
2

)
(6.7.35)

which yields a Lorentz transformation producing a rotation around the z-axis with an angle
θ. With θ = 2π this gives the identity in the Lorentz group but we obtain the element
ζ(2π) = −1 ∈ SL(2, �), which is a non-trivial element. Still, taking θ = 4π will result in the
identity of both the Lorentz group and SL(2, �). We arrive at the conclusion that we have
once more discovered a double cover, i.e SL(2, �) is the double cover of the Lorentz group
SO(1, 3) with SL(2, �)/�2 the group of 2 × 2 complex matrices with determinant one and
antipodal points identified with one another

SO(1, 3) ∼= SL(2, �)/�2. (6.7.36)

What is interesting is that, generally, ([7], pp. 117-118), there is a universal covering group
Spin(n) for every SO(n), where we for n = 3 and n = 4 have the relation

Spin(3) = SU(2) and Spin(4) = SU(2)× SU(2) (6.7.37)

On the Lie algebra level, the group homomorphism between SO(4) and its double cover
Spin(4) changes to an isomorphism and we have
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so(4) ∼= su(2)⊕ su(2). (6.7.38)

Yet, we must take a measure of caution when encountering Spin(4) since we are not in the
Euclidean space �4 but in Minkowski space �1,3 when dealing with the Lorentz and Poincaré
groups. This difference was already subtly illuminated in the commutation relations between
the generators of angular momentum and the boosts, summarized in (6.4.7). Had we been in
�

4 the commutation relations between the boosts should have featured a plus sign instead of
minus and been written like [

K̂i, K̂j

]
= iεijkĴk. (6.7.39)

This has some consequences which we come across while studying representations of the
Lorentz and the Poincaré groups. As we discovered when we dealt with important concepts
associated with different representations of the Lorentz and Poincaré groups in the previous
section, by combining and complexifying the generators of the boosts and angular momen-
tum one can ascertain that the Lorentz algebra is equivalent to two su(2). Since we are
in Minkowski space, complex conjugation interchanges the two su(2):s. The spin group in
Minkowski space is Spin(1, 3) and it is the double cover of SO(1, 3). Its Lie algebra spin(1, 3)
is isomorphic to the Lorentz group’s so(1, 3) according to:

spin(1, 3) ∼= so(1, 3) ∼= su(2)⊕ su(2)∗ (6.7.40)

where complex conjugation has interchanged the su(2):s. Also, since we have already estab-
lished that SL(2, �) is the double cover of SO(1, 3), we deduce the isomorphism

Spin(1, 3) ∼= SL(2, �). (6.7.41)

Now, we have come a long way in studying different phases in a topological picture. A few
tools are still required to describe the Lorentz and Poincaré groups topologically but then
we will finally establish the nature of our phase eiφ(T1, T2) from the beginning of this chapter.
Foremost there is an important theorem in linear algebra and complex analysis called the
polar decomposition theorem ([24], p. 1126). It states that any non-singular matrix M may
be written as

M = UeH (6.7.42)

with U is a unitary matrix and H an Hermitian matrix. For det U we discerned in section
2.2 that its determinant is nothing but a phase factor since |det U | = 1. Regarding the deter-
minant of the exponential, it must be that det (expH) = exp (Tr H) with some elaborations
in elementary linear algebra and exp (Tr H) is real and positive due to the Hermiticity of H.
Our condition for the determinant for a matrix C ∈ SL(2, �) demands that

det U = 1 and Tr H = 0 (6.7.43)

where U encodes the rotations and H the translations. Moreover, this decomposition is unique
which implies that SL(2, �) topologically is the direct product of the space of all matrices
H and all U . For the translational matrices H we have that any Hermitian traceless 2 × 2
matrix can be written as
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(
x3 x1 − ix2

x1 + ix2 −x3

)
. (6.7.44)

The parameters xi are real but are not constrained with any additional condition. Thus they
will result in a non-compact manifold with three variables, i.e. the ordinary three-dimensional
space �3. Provided with clues such as unitary, 2 × 2 and a determinant which is equal to
one, we easily conclude that the U :s are a representation of our familiar friend SU(2). Its
corresponding manifold is of course the surface of the unit ball in �4. Still, we had that the
elements C ∈ SL(2, �) were subjected to two-to-one homomorphism when mapped onto the
Lorentz group. Let the elements C and −C be elements in SL(2, �) mapped onto the same
element in the Lorentz group. If they are decomposed according to (6.7.42), we see that since
eH is always positive U and −U are mapped onto the same element. In this manner we once
more arrive at the topological structure S3/�.

The topological structure of the Lorentz group is thus given by

�
3 × S3/�2 (6.7.45)

where �3 which is non-compact represents the boosts and our familiar double-connected
structure S3/�2 the rotations. For the Poincaré group an additional non-compact factor �4

is introduced in order to account for the translations in �4. Hence, its topological structure
is given by

�
4 ×�3 × S3/�2 (6.7.46)

since its decomposition is unique. Nevertheless, on the group level we obtain a semi-direct
product of the Lorentz group and �4 for the Poincaré group due to the reasons described at
the end of the vast calculation of section 6.3. In addition, it is easy to deduce their dimension
by examining the topological structure. For the Lorentz group S3/�2 is 3-dimensional and
with �3 another three dimensions are added, which gives totally six dimensions. For the
Poincaré group the four dimensions of �4 are included and this yields ten dimensions.

We have found that the Lorentz and Poincaré groups are not simply connected and then
by theorem 6.7.2 they have associated intrinsic projective representations. Yet, since they
have a compact, double-connected part, any loop can be contracted to a point if it is circled
twice. This fact bestow upon us the following condition for the phase seen in beginning of
this curious section.

(
Û(T1)Û(T2)

)2
=
(
eiφ(T1, T2)Û(T1T2)

)2 ⇔
(
Û(T1)Û(T2)Û(T1T2)−1

)2
= 1 (6.7.47)

and the phase eiφ(T1, T2) is simply a sign ±. Hence the operator composition relation reduces
to

Û(Λ, a)Û(Λ̃, ã) = ±Û(ΛΛ̃, Λã + a). (6.7.48)

This sign ± corresponds to the different states we can have as irreducible representations
of the Lorentz and Poincaré groups, those with integer spin, the bosons, and those with
half-integer spin, the fermions. We use spinorial representations when dealing with fermions
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and if we act on a state with spin 1/2 an angle of 4π we will return to the identity. We
will see in the derivation of the little group that the constraint of finite mass provides only
these two possible options for massive particles. However, topologically we can also impose
a constraint on the helicity of the photon. If we rotate a photon’s momentum with an angle
4π the rotation can be continuously deformed and shrunken to a point, i.e. equivalent to no
rotation at all. Moreover, the phase exp(i4πj) must be unity and then the only valid choices
for j is integer or half-integer.

In order to eliminate topologically intrinsic projective representations we usually lift all cal-
culations to the universal covering group of the group we would like to study. The universal
covering group has no projective representations, simply ordinary ones. This is what we do
when we favor SU(2) over SO(3) when describing intrinsic angular momentum as well as
SL(2, �) for the Lorentz group. [21]

In the next two chapters we will go beyond the irreducible representations of the Poincaré
group, characterized by mass or the lack of it and spin, outlining the external or spacetime-
dependent symmetries and instead look at internal symmetries such as color and flavor. To
be able to describe these quantities we require a new set of rules, the remarkable formalism
known as gauge theory.
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Chapter 7

Internal Symmetries

So far we have mainly been concerned about symmetries under different coordinate trans-
formations of spacetime. As we saw in chapter 6 such symmetries are often called external.
In this chapter and for the rest of the survey we will instead be looking at symmetries un-
der transformations which do not act directly on spacetime itself but on the fields defined
on spacetime. Hence they are called internal symmetries. These are often studied through
theories of gauge which will be the approach of this chapter.

As physicists during the 20th century became increasingly aware of the importance of
symmetries the studies were extended to include symmetries in the Hilbert spaces and thus to
internal properties of the theories. The first great success was the reformulation of Maxwell’s
electrodynamics as a theory emerging from a U(1) symmetry of spinor fields. It was done
by Weyl, Fock and London putting the long-known degree of freedom in the potentials in a
fundamental context and thus firmly established the theory of gauge. In 1954 Chan Ning Yang
and Robert Mills widened the study of internal symmetries to non-Abelian groups through
the extension to SU(2) as an attempt to explain the presumed symmetry of protons and
neutrons. Although not very successful in the beginning the studies of SU(n) as symmetry
groups, known as Yang-Mills theories, later have resulted in many major breakthroughs in
theoretical physics and are the true cornerstones of the Standard Model. They are responsible
for the unification of three of the four fundamental forces and are the foundation of the
classification of elementary particles through the symmetry group of the Standard Model,
U(1)× SU(2)× SU(3).

In our exposure we will start with the historically first encounter with these symmetries
in electromagnetism before going on to the more general studies. These in turn will be
generalized to an insight of the gauge theories behind the Standard Model and the last chapter
about particle physics. The chapter ends with an additional section about fiber bundles to
give the keen reader a more geometric picture of the mathematics behind the theories. It is
however complementary and is in no way necessary in order to read any other part of this
survey.

7.1 Gauge Theory

A gauge theory is a theory which is invariant under a local transformation acting on the
fields of the theory but not on the coordinates of spacetime. Thus the theory is said to have
an internal symmetry referring to that property. The word local is essential in these theories
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and amounts to the fact that the transformations depend on the spacetime coordinates so
that they may be different in each point. The meaning of this will be more obvious when
formulated mathematically in succeeding examples.

The first and simplest example of gauge invariance discovered in physics was in electro-
dynamics. Actually, the adding of a constant to the electric potential V is in fact a gauge
transformation but the standard example is what follows.

Example 7.1.1. The Maxwell equations for the electric field E and the magnetic field B are

∇ ·E = ρ

ε0
(7.1.1a)

∇×E + ∂B

∂t
= 0 (7.1.1b)

∇ ·B = 0 (7.1.1c)

∇×B − 1
c2

∂E

∂t
= μ0j. (7.1.1d)

The homogeneous equations (7.1.1b) and (7.1.1c) allow us to express E and B in terms of
potentials

E = −∇V − ∂A

∂t
, B = ∇×A. (7.1.2)

In the study of these equations the two physical fields E and B were found to be invariant
under the simultaneous transformations

V → V − ∂f

∂t
(7.1.3a)

A → A +∇f (7.1.3b)

since all the added terms cancel in the Maxwell equations, f being any differentiable func-
tion. These transformations are local since the arbitrary function f may depend on the
coordinates. So the physics is invariant under a local transformation acting on the fields and
hence electromagnetism is found to be a gauge theory.

This internal freedom of the theory can be utilized and to specify a particular function f
is called to choose or to fix a gauge. This choice may have great importance for the simplicity
in calculations. As a specific example of such a gauge we may take the Lorenz1 gauge. It is
Lorentz invariant and simplifies the wave equations for the potentials. To write these down
we use equations (7.1.2), (7.1.1a) and (7.1.1d). By direct substitution we find

∇ ·
(
−∇V − ∂A

∂t

)
= ρ

ε0
(7.1.4)

∇× (∇×A)− 1
c2

∂

∂t

(
−∇V − ∂A

∂t

)
= μ0j (7.1.5)

and by using the relation ∇× (∇×X) = −∇(∇ ·X)−ΔX in equation (7.1.5) we get

−ΔA +∇(∇ ·A) + 1
c2

∂∇V

∂t
+ 1

c2
∂2A

∂t2 =

= −�A +∇
(
∇ ·A + 1

c2
∂V

∂t

)
= μ0j

1It is named after the Danish physicist Ludvig Lorenz.
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where � = Δ − 1
c2

∂2

∂t2 is the D’Alembert operator or the wave operator. Now, we can make
use of the gauge invariance and choose an f to make

∇ ·A + 1
c2

∂V
∂t = 0. (7.1.6)

This gives us a neat equation and as a welcomed consequence this choice also affects equation
(7.1.4) since we can substitute the ∇ · ∂A

∂t and arrive at

�V = − ρ

ε0
(7.1.7)

�A = −μ0j. (7.1.8)

Electromagnetism turned out to be a gauge theory already from the beginning. However,
since the study of external symmetries proved to be extraordinary successful it gave rise to
the question if we would be equally rewarded by studying the internal counterparts. Thus
when physicist started to explore this field they took on the task to construct new gauge
theories from other possible symmetries, and we follow in their footsteps.

7.1.1 Constructing a Gauge Theory

After this appetizer we take on a more general approach to gauge theories and how to construct
them. As mentioned in the beginning of this chapter the starting point is a theory invariant
under some sort of global transformation of the fields and the construction procedure is to
make these transformations local, still keeping the invariance of the theory. The group of
transformations is called the gauge group and its properties will have a major impact on
the theory. We will now study the construction procedure by doing it explicitly for the
simplest case.

Suppose we have a theory invariant under global transformations eiα ∈ U(1) on the fields
of the theory

ψ(x) → ψ′(x) = eiαψ(x), α ∈ �, (7.1.9)

where x is a coordinate in spacetime and α is constant. The invariance means that all
equations governing the physics remain unchanged after such a transformation. To upgrade
it into a local transform we let α = α(x) depend on the coordinates, making U(1) to our
gauge group of interest. The fields still transform as

ψ(x) → ψ′(x) = eiα(x)ψ(x) (7.1.10)

but any expression involving a derivative will no longer transform accordingly since

∂μψ(x) → ∂μψ′(x) = ∂μeiα(x)ψ(x) = eiα(x)∂μψ(x) + ψ(x)eiα(x)∂μiα(x) (7.1.11)

which introduce a non-vanishing additional term. Equations involving derivatives are thus no
longer invariant and the invariance of our theory is broken. Both the reason and remedy to
this issue lie in the definition of the derivative

nμ∂μψ(x) def= lim
ε→ 0

1
ε

[ψ(x + εn)− ψ(x)], (7.1.12)

where n is any unit vector. Looking at the right hand side it is now obvious why the derivative
does not transform as wished since the two fields have slightly different coordinates and thus
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transform under different transformations. Clearly, if we are serious in constructing a gauge
theory we need to design a new derivative that transform as the fields, and which measures
the change of only the fields and not the change of the transformation group. To fabricate
such a derivative we define a way to relate two fields depending on points apart from each
other, ψ(y) and ψ(x), through a comparator U(y, x) depending on the coordinates y and x.
In addition, we also demand it to transform as

U(y, x) → U ′(y, x) = eiα(y)U(y, x)e−iα(x). (7.1.13)

This rule ensures that ψ(y) and U(y, x)ψ(x) transform in the same way since

ψ(y) → ψ′(y) = eiα(y)ψ(y), (7.1.14)
U(y, x)ψ(x) → U ′(y, x)ψ′(x) = eiα(y)U(y, x)e−iα(x)eiα(x)ψ(x) = eiα(y)U(y, x)ψ(x). (7.1.15)

For U(y, x) to make sense we set U(x, x) = 1 and we make the assumption that it is a smooth
function of the coordinates. As U(y, x) relates two transformations it takes one group element
to another and hence it has to be an element of the gauge group. Thus U(x, x) is the identity.
We can now use U(y, x) to compare the two fields in the derivative. We define this new
derivation operator as

nμDμψ(x) def= lim
ε→ 0

1
ε

[ψ(x + εn)− U(x + εn, x)ψ(x)] (7.1.16)

and notice that it satisfies the desired transformation law

Dμψ(x) → (Dμψ(x))′ = eiα(x)Dμψ(x). (7.1.17)

Since Dμψ(x) transforms covariantly we call this new operator covariant derivative. How-
ever, we still do not have a explicit expression for U(y, x). Using the fact that U(x + εn, x)
is infinitesimally close to 1 and smooth we may expand it with respect to the first argument
(i.e. the derivative only acts on the first argument)

nμDμψ(x) = lim
ε→ 0

1
ε

[
ψ(x + εn)−

(
U(x, x) + εnμ∂μU(y, x)

∣∣∣
y=x

+O(ε2)
)
ψ(x)

]

= lim
ε→ 0

1
ε

[
ψ(x + εn)− ψ(x)− εnμ∂μU(y, x)

∣∣∣
y=x

ψ(x)
]

= nμ
[
∂μ − ∂μU(y, x)

∣∣∣
y=x

]
ψ(x) (7.1.18)

and with the definition
− ∂μU(y, x)

∣∣∣
y=x

def= iλAμ(x), (7.1.19)

where Aμ is a new introduced field and λ is a coupling constant for later convenience, the
covariant derivative becomes

Dμ = ∂μ + iλAμ. (7.1.20)

Aμ is a field depending on the spacetime coordinates and is called a gauge field or sometimes
interaction field. It is the derivative of a transformation in the identity and relates two
transformations infinitesimally apart. Thus it takes values in the Lie algebra to the gauge
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group and because of its relating role Aμ is also called a connection. This term will be given
a more geometrical interpretation in the additional section 7.2 about fiber bundles.

Aμ originates from U(x + εn, x) and hence its transformation law may be deduced from
equation (7.1.13)

U(x+εn, x) → U ′(x+εn, x) = eiα(x+εn)U(x+εn, x)e−iα(x) = (1−εnμiλA′
μ+O(ε2)). (7.1.21)

We have

eiα(x+εn)U(x + εn, x) e−iα(x) =

=
(

eiα(x) + εnμ∂μeiα(x̃)
∣∣∣
x̃=x

+O(ε2)
)(

1− εnμiλAμ +O(ε2)
)
e−iα(x)

= 1− eiα(x)εnμiλAμe−iα(x) + εnμ∂μ(eiα(x̃))
∣∣∣
x̃=x

e−iα(x) +O(ε2) (7.1.22)

so by equation (7.1.21) discarding terms of order 2 or higher

εnμiλA′
μ = eiα(x)εnμiλAμe−iα(x) − εnμ∂μ(eiα(x̃))

∣∣∣
x̃=x

e−iα(x). (7.1.23)

Since all eiα(x) are just numbers everything commutes which eventually gives us the following
transformation rule for the gauge field

Aμ → A′
μ = Aμ − 1

λ
∂μα(x). (7.1.24)

Introducing a gauge field Aμ changes in general what physics the theory describes. This
new field interacts with other parts of the theory and may e.g. carry energy within itself.
However, since we are demanding the physics to be invariant under the local transformations
only those quantities in the theory that ensures this property can be physical. Hence we must
find all such quantities that can be constructed from the gauge field. It turns out that there
is only one originating from Aμ and it can be found through the following construction[6].

Let us make a loop of comparators comparing in a chain fields of four infinitesimal close
points starting and ending at the same point x. Let the points be x, x + ε1̂, x + ε1̂ + ε2̂ and
x + ε2̂, where 1̂ and 2̂ are two different vectors. Thus the loop is

U(x) = U(x, x + ε2̂) U(x + ε2̂, x + ε1̂ + ε2̂) U(x + ε1̂ + ε2̂, x + ε1̂) U(x + ε1̂, x) (7.1.25)

which is illustrated in figure 7.1. This loop transforms covariantly since by (7.1.13)

U(x)ψ(x) → U′(x)ψ′(x) = eiα(x)U(x)ψ(x) (7.1.26)

and may hence contain a physical quantity. To find this we will expand U(y, x) in two steps
and make two assumptions. First we require U(y, x) = (U(x, y))† which is sensible if we
have unitary representations of the comparator since for two equal fields, apart from the
transformations, we would have

U(y, x)ψ(x) = ψ(y) ⇔
(
U(y, x)

)†
U(y, x)ψ(x) =

(
U(y, x)

)†
ψ(y)

⇔ ψ(x) = U(x, y)ψ(y). (7.1.27)
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•

•

�

U(x, x + ε2̂)

�

U(x + ε1̂, x)
•

�

U(x + ε2̂, x + ε1̂ + ε2̂)
•�

U(x + ε1̂ + ε2̂, x + ε1̂)

Figure 7.1: A loop of comparators. See text for details.

Second we assume that U(y, x) is a pure phase. By some technical trickery based on these
assumptions, which can be found in appendix G, we may expand the comparator between
two infinitesimally close points as

U(x + εn, x) = exp
[
−iλεAμ(x + ε

2n) +O(ε3)
]

. (7.1.28)

Moreover, by our assumptions we have that

U(y, x) = exp[iφ(y, x)] = exp[−iφ(x, y)] = (U(x, y))† , (7.1.29)

where φ is a real valued scalar function. This requires

φ(y, x) = −φ(x, y) + 2πim, m ∈ � (7.1.30)

implying
∂μφ(y, x) = −∂μφ(x, y). (7.1.31)

Expanding U(x) in (7.1.25) in the way of equation (7.1.28) yields

U(x) = exp
[
− iλε

[−A2(x + ε
2 2̂)−A1(x + ε

2 1̂ + ε2̂)

+A2(x + ε1̂ + ε
2 2̂) + A1(x + ε

2 1̂)
]

+O(ε3)
]

(7.1.32)

where equation (7.1.31) has been used for the first two terms. The indices 1 and 2 denote
the componentes in direction 1̂ and 2̂. Note that we silently have used the Baker-Campbell-
Hausdorff formula in equation (2.3.21) for the commuting A’s. Now we can expand and get
rid of the half-ε terms in the argument through

U(x) = exp
[
− iλε

[−A2(x)− ε
2∂2A2(x) + A2(x + ε1̂) + ε

2∂2

A2(x)+ε∂1A2(x)+...︷ ︸︸ ︷
A2(x + ε1̂)

−A1(x + ε2̂)− ε
2∂1 A1(x + ε2̂)︸ ︷︷ ︸

A1(x)+ε∂2A1(x)+...

+A1(x) + ε
2∂1A1(x)

]
+O(ε3)

]
=

= exp
[
− iλε

[−A2(x) + A2(x + ε1̂)−A1(x + ε2̂) + A1(x)
]

+O(ε3)
]

(7.1.33)
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and then in turn expanding the exponential in ε we find

U(x) = 1− iλε2 [∂1A2(x)− ∂2A1(x)] +O(ε3). (7.1.34)

This expression reveals the invariant quantity: the field strength

Fμν
def= ∂μAν − ∂νAμ, (7.1.35)

also called the curvature for reasons explained in the fiber bundle section 7.2.
There is yet another way to find this tensor where the gauge invariance is as apparent

as above. The covariant derivative of anything that transform covariantly also transform
covariantly. Hence the second covariant derivative also follows the same transformation law
(7.1.17) and we can form the commutator transforming as

[Dμ, Dν ]ψ(x) → eiα(x)[Dμ, Dν ]ψ(x). (7.1.36)

However, writing out the commutator we find that it is in fact no derivative at all since

[Dμ, Dν ]ψ = [∂μ, ∂ν ]ψ + iλ ([∂μ, Aν ]− [∂ν , Aμ]) ψ − λ2[Aμ, Aν ]ψ
= iλ (∂μAν − ∂νAμ) ψ. (7.1.37)

The left hand side transforms according to equation (7.1.36) and transforming the right hand
side using the transformation law for Aμ in (7.1.24) everything cancel but the transforma-
tion of ψ. Hence the commutator of the covariant derivative is invariant under the local
transformations and we may equally well define the field strength as

iλFμν = [Dμ, Dν ]. (7.1.38)

From this follow that any function of Fμν and its derivatives is gauge invariant. These two
ways of deriving Fμν is in fact equivalent since the commutator can be viewed geometrically
as the comparator loop.

So far in our theory we have defined a new derivative operator which introduced a gauge
field, which in turn brought new physics into the theory. But still, we have not yet found
any equation to govern the dynamics of the theory. This will be the topic of the subsequent
section.

7.1.2 Construction Through the Lagrangian Formalism

A fruitful manner to construct gauge theories is through the principle of least action2. We
denote the action as

I =
∫
L(x) d4x (7.1.39)

where L(x) is the Lagrangian, or rather the Lagrangian density which is also integrated
over space. We work here with natural units in which c = � = 1 making the Lagrangian a
dimensionless quantity.

In classical mechanics the Lagrangian is the difference between kinetic and potential en-
ergy, but to construct new theories we need new Lagrangians. Being a scalar the Lagrangian

2The reader is assumed to be familiar with the action principle and the calculus of variation, otherwise see
appendix H for a brief introduction.
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is manifestly Lorentz invariant and by only including terms which keep the action gauge
invariant all equation derived from it will be invariant as well. The big issue here is thus
to find these terms. The criteria for the terms are that they have to be scalars and keep
the action gauge invariant. Moreover, for the theory to be renormalizable3 only terms with
dimension down to length−4 is allowed since otherwise the associated coupling constants need
to have dimension of a positive power of length in order to preserve the dimensionlessness of
the Lagrangian. This is because an additional length4 comes from the measure in the inte-
gral and thus the 4 is due to the dimension of spacetime, other numbers are relevant when
working with other spaces. A positive power of length of the coupling constant leads to a
dependence on the cut-off and thus to a non-renormalizable expression. Further restrictions
on the terms follow if one requires the theory to be invariant under parity and time reversal
transformations.

When faced with the task of finding the Lagrangian one usually have some experience of
the formalism from other theories and one also knows that the equations it produces must
be consistent with already verified theories. This is great guidance in a quest like ours and
even if the reader might be unfamiliar with other results, such as the Klein-Gordon equation
for scalar fields, we will still let ourself be inspired by them, after a short introduction. The
Klein-Gordon equation is the first relativistic version of the Schrödinger equation for spinless
particles and reads in natural units

∂μ∂μφ = m2φ (7.1.40)

following from the Lagrangian

LK-G(x) = ∂μφ∗∂μφ−m2φ∗φ. (7.1.41)

The particles are here described by complex scalar fields φ. The Klein-Gordon equation ex-
hibit a global U(1) symmetry but to remain invariant under local transformations all deriva-
tives has as learnt to be replaced by covariant derivatives. The first term in the Klein-Gordon
Lagrangian is called the kinetic term and involves, as is very reasonable for a kinetic energy
term, first order derivatives. We also know that we need such a term with first derivatives to
yield a second order differential equation for the dynamics, so we ought to look for something
mimicing this one. The second term is the mass term in analogy to the classical potential en-
ergy and one can naively think of it as the total mass energy times the probability distribution
of the particle’s position.

Now, our Lagrangian is to consist of the fields, Aμ and their derivatives. Trying to find
the terms involving Aμ a good starting point is to find something similar to the kinetic term
in the Klein-Gordon Lagrangian. We thus need a scalar valued, gauge invariant combination
of first order derivatives of Aμ. We know of such a quantity and the first natural try would
be something proportional to FμνF μν . This satisfies all our requirements so far and as the
dimension is of length−4 it is renormalizable with a dimensionless coupling constant. Hence
we have

Lkinetic = kFμνF μν , k ∈ �. (7.1.42)

3In perturbation calculations in these theories integrals commonly diverge. Renormalization is a way
around this through introducing a cut-off in the integrals, continue the calculations and let the cut-off tend to
infinity once the final result is obtained. If such a result is independent of the cut-off the theory is said to be
renormalizable.
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Next we search for an analogue of the mass term with the obvious first choice m2A∗
μAμ.

However, this term violates the gauge invariance which easily can be seen through the trans-
formation law for Aμ ((7.1.24)). In fact, the requirement of a gauge invariant Lagrangian rule
out all combinations of Aμ in our U(1)-example but Fμν . This forces us the conclusion that
our gauge field is a massless quantity. Even though less relevant for the rest of this section
the most general gauge invariant and renormalizable Lagrangian for fermions under the gauge
group U(1) is [6]

L = m2ψ∗ψ + ψ∗iγμDμψ − 1
4 (Fμν)2 − cεαβμνFαβF μν (7.1.43)

where γμ is the Dirac matrices 4, ψ are Dirac spinors and εαβμν is the totally antisymmetric
tensor equal to −1 for all odd permutations of the indices. However, as mentioned it is not
crucial that the Lagrangian is gauge invariant as long as it holds for the action. We are now
about to pursue such an additional term which in itself is not gauge invariant but keeps that
property of the action.

Recalling Noether’s theorem from chapter 6 we ought to have a conserved quantity follow-
ing from this continuous symmetry we are fabricating. This is indeed true and we may find
it by studying how the action transforms. As we already have presumed we have a theory
invariant under a global transformation of the fields which infinitesimally can be written

ψl → ψ′
l = ψl + iεTl(x) (7.1.44)

where we have gathered all the details of the transformation in the function Tl(x) depending
on both the coordinates, the transformation and the transformed field. The dependence on
the coordinates follows from that the same transformation results in different added terms
at different points as the field varies over spacetime. The transformation is thus still global.
The index l runs over the relevant fields of the theory. The variation of the action I under
this transformation is then5

δI =
∫

d4x

(
δL
δψl

iεTl(x) + δL
δ∂μψl

iε∂μTl(x)
)

= 0. (7.1.45)

The equality to zero is due to the requirement that the action is invariant under the spe-
cific global transformation and holds even if the fields would not satisfy the Euler-Lagrange
equations. Now, making the transformation local we let ε = ε(x) depend on the coordinates
and once again vary the action. In addition to the terms in the equation (7.1.45), which still
vanish through the same requirement, we also get

δI

δψl
=
∫

d4x
δL

δ∂μψl
Tl(x)∂μiε(x). (7.1.46)

Integrating by parts and letting ε(x) vanish at infinity yields

δI

δψl
= −i

∫
d4x∂μ

(
δL

δ∂μψl
Tl(x)

)
ε(x) (7.1.47)

4This should not bother the unacquainted reader.
5Here δ denotes functional derivative but readers unfamiliar with functionals can just think of it as a partial

derivative.
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and if we now demand the fields to satisfy Euler-Lagrange equations the action has to be
invariant under any infinitesimal transformation, including local ones. Hence we have found
a conserved quantity, that is

∂μJμ def= ∂μ

(
δL

δ∂μψl
Tl(x)

)
= 0. (7.1.48)

This quantity, often referred to as the conserved current, will come in handy in our search
for the Lagrangian term. Suppose this term L0 depends on the gauge field Aμ but not on any
of its derivatives. The variation of the action under the transformation in equation (7.1.24)
then becomes

δI =
∫

d4x

(
δL0
δAμ

(− 1
λ

∂μα(x)
)

+ δL0
δ∂νAμ

(− 1
λ

∂ν∂μα(x)
))

= − 1
λ

∫
d4x

δL0
δAμ

∂μα(x)

(7.1.49)
and through a partial integration we get

δI = 1
λ

∫
d4x∂μ

(
δL0
δAμ

)
α(x). (7.1.50)

For this to be zero, i.e. the action to be invariant, we must have

∂μ

(
δL0
δAμ

)
= 0. (7.1.51)

We know already of such a quantity and setting δL0/δAμ proportional to Jμ the action will
be invariant. Since the dimension of the term is length−4 the proportionality constant can be
absorbed in λ and we simply set

δL0
δAμ

= Jμ (7.1.52)

which gives us the term L0 = JμAμ.
We have now found two terms satisfying the requirements and by reasons which will

become apparent we choose the constant in the kinetic term to k = 1
4 . We have the simple

Lagrangian
L = −1

4F μνFμν + JμAμ. (7.1.53)

We will now illustrate the Lagrangian way of constructing gauge theories by continuing the
U(1)-example above and find the governing equations. We will use our Lagrangian from
equation (7.1.53) where the first term is gauge invariant while the second, being the L0 from
above, is not. To once more verify that the action is invariant we have from the transformation
law (7.1.24) that the non-trivial part of the action transforms as

S =
∫

d4xJμAμ →
∫

d4x
(
JμAμ − Jμ 1

λ
∂μα(x)

)
= /p.i/ =

∫
d4xJμAμ −

∫
d4x∂μ

(
Jμ 1

λ
α(x)

)
+
∫

d4x
1
λ

α(x)∂μJμ. (7.1.54)
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If Jμ is required to vanish at infinity the middle term is zero on the boundaries, the third
term is zero by equation (7.1.48) and then we are left with only the first term. Hence the
action is invariant under the gauge transformation. Proceeding in the spirit of the principle
of least action we calculate the variation

δS =
∫

d4x

[
δL
δAν

δAν + δL
δ(∂μAν)δ(∂μAν)

]
= 0 (7.1.55)

and as usual we integrate partially

δS =
∫

d4x∂μ

[
δL

δ(∂μAν)δAν

]
+
∫

d4xδAν

[
δL
δAν

− ∂μ
δL

δ(∂μAν)

]
= 0. (7.1.56)

Demanding δAν to be zero at infinity leaves us with the second term and for this to be zero
we must have

δL
δAν

= ∂μ
δL

δ(∂μAν) . (7.1.57)

Looking at each side at a time we find from equation (7.1.53) that

δL
δAν

= Jν ,
δL

δ(∂μAν) = −1
4

δ
(
FαβηαρηβσFρσ

)
δ∂μAν

= (7.1.57a, b)

= −1
4ηαρηβσ

[
Fρσ

(
δα

μδβ
ν − δβ

μδα
ν

)
+ Fαβ

(
δρ

μδσ
ν − δσ

μδρ
ν

)]
=

= −1
4 [F μν − F νμ + F μν − F νμ] = /antisymmetry/ =

= −F μν

which plugged into (7.1.57) finally yields

∂μF μν = −Jν ⇐⇒ ∂μF νμ = Jν . (7.1.58)

As told in the introduction and as the notation already may have hinted U(1) is precisely
the gauge group in electromagnetic theory. The gauge field A = (V, A) is the 4-potential
with the electric potential V and the magnetic vector potential A as components. The field
strength Fμν is the electromagnetic field tensor

Fμν =

⎛
⎜⎜⎜⎝

0 −E1 −E2 −E3
E1 0 B3 −B2
E2 −B3 0 B1
E3 B2 −B1 0

⎞
⎟⎟⎟⎠ (7.1.59)

which can easily be verified through equations (7.1.2) and (7.1.35). Note that in electromag-
netism as a gauge theory the potentials are more fundamental quantities than the electric
and magnetic fields. Initially this arose objections but a clever experiment proposed in 1959
by Aharanov and Bohm proved the effect of the potential on electrons even in the complete
absence of electric and magnetic fields. The experiment involved a long, impenetrable coil
containing an isolated magnetic field onto which electron where scattered. The electrons did
not experience any magnetic field at all but still the vector potential surrounding the coil
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resulted in a shift of the scattering pattern. Thus the gauge field has been proven to be the
truly fundamental field.

The coupling constant λ is in this case of electromagnetism the elementary charge e and
the continuous gauge symmetry is through Noether’s theorem the reason to the conservation
of electric charge. Because electromagnetism was the first gauge theory the coupling constant
in general sometimes is called charge. Jμ is the 4-current jμ = (ρc, j) where ρ is the charge
density and j the current density. The name interaction field now gets its explanation since
Aμ describes the massless photon, the electromagnetic interaction particle.

In this light, we see that the transformation law (7.1.24) for Aμ is in fact precisely the
gauge freedom (7.1.3) in our introductory example, just shifting Aμ with the derivative of a
scalar function A′

μ = Aμ + ∂μα(x), and choosing a specific transformation eiα(x) is the same
as fixing the gauge.

Our derived equations (7.1.58) are the inhomogeneous Maxwell equations in tensor nota-
tion while the homogeneous ones follow directly from the definition Fμν = ∂μAν−∂νAμ. Hence
the construction of a gauge invariant action through the Lagrangian density has given us the
complete gauge theory electromagnetism. Since electromagnetism was gauge invariant from
the very beginning we have just derived it from another principle but still this demonstrates
how powerful the formalism may be for constructing new theories.

7.1.3 Non-Abelian Gauge Groups

So far everything has been explained in the light of the Abelian U(1) as gauge group but the
generalization to groups of higher rank involves few surprises. In our exposure we follow the
outline of the previous sections pointing out the differences. Accordingly, we start with some
Lie group G as gauge group and let the fields transform as

ψ → ψ′ = gψ, g ∈ G (7.1.60)

and require our theory of interest to be invariant under these global transformations. Note
that the fields may be vectors and that group elements act on them through representations of
the same dimension, making it possible for non-commuting transformations. As in the section
above we promote this to a local transformation by letting g = g(x) depend on the coordinates.
We can express this in terms of the generators ta of the Lie algebra g, a = 1, 2, . . . , dim g, to
get the local transformation law

ψ → ψ′ = eiαa(x)taψ (7.1.61)

where αa(x) are real valued functions of the coordinates and the summation over a is under-
stood. Once more we need a covariant derivative and define a comparator as U(y, x) with the
transformation law

U(y, x) → U ′(y, x) = g(y)U(y, x)g−1(x). (7.1.62)

We set U(x, x) = 1̂ and may expand every small displacements in the first argument in terms
of the generators

U(x + εn, x) = 1̂ + iλεnμAa
μ(x)ta +O(ε2) (7.1.63)

which now introduce a new gauge field Aa
μ for every generator in the Lie algebra. Note that

the gauge fields are as in the case of U(1) scalars and it is the linear combination of Aa
μta
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which is Lie algebra valued (recall that the generator of U(1) is i). With this expansion in a
definition of the covariant derivative adopted from (7.1.16) we get the covariant derivative

Dμ = ∂μ − iλAa
μta (7.1.64)

in analogy to (7.1.18). To find the transformation law for the gauge fields we make use of the
work done in equations (7.1.22) and (7.1.23) and note that the commuting property of U(1)
actually was not used until later. Hence we can simply restate the result in equation (7.1.22)
as

Aa
μta → A′a

μ ta = g(x)Aa
μtag−1(x)− i

λ
∂μ
(
g(x̃)

)∣∣∣
x̃=x

g−1(x). (7.1.65)

and through ∂μ(g)g−1 = ∂μ(gg−1)− g∂μg−1 = −g∂μg−1 we get the more appealing look

Aa
μta → A′a

μ ta = g(x)
(

Aa
μta + i

λ
∂μ

)
g−1(x). (7.1.66)

If the transformations are infinitesimal we can expand them to the first order of αa which
yields the infinitesimal version

Aa
μta → A′a

μ ta = (1 + iαata)Aa
μta(1− iαata) + (1 + iαata) i

λ
∂μ(1− iαata) =

= Aa
μta +

[
iαata, Ab

μtb

]
+ 1

λ
∂μαata =

= Aa
μta − αaAb

μf c
ab tc + 1

λ
∂μαata (7.1.67)

where f c
ab are the structure constants of the algebra. Note that this in the case of an Abelian

gauge group yields our former rule in equation (7.1.24) (the sign is changed because of the
different definitions of the gauge fields).

This transformation rule ensures that the covariant derivative of a field transforms under
infinitesimal transformations as

Dμψ → (Dμψ)′ = (1 + iαata)Dμψ (7.1.68)

which can be verified through direct computation.
Next step is to derive the field strength tensor, or curvature. We now adopt the sec-

ond approach from the Abelian procedure and construct the commutator for the covariant
derivative. Still it transforms covariantly as in

[Dμ, Dν ]ψ(x) → [D′
μ, D′

ν ]ψ′(x) = g(x)[Dμ, Dν ]ψ(x) (7.1.69)

and we define the field strength tensor as

− iλF a
μνta

def= [Dμ, Dν ] (7.1.70)

in analogy to (7.1.35). Here as well we find that it is no derivative but a constant, in this
case a matrix:

F a
μνta = ∂μAa

νta − ∂νAa
μta − iλ[Aa

μta, Ab
νtb]

= ∂μAa
νta − ∂νAa

μta + λAa
μAb

νf c
ab tc (7.1.71)
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that is
F c

μν = ∂μAc
ν − ∂νAc

μ + λAa
μAb

νf c
ab . (7.1.72)

This expression differs from the Abelian case in equation (7.1.35) through the commutator
and recalling that we used the Baker-Campbell-Hausdorff in the comparator loop we should
not be that surprised. The transformation law follows from (7.1.69) and reads

F a
μνta → F ′a

μνta = g(x)F a
μνtag−1(x) (7.1.73)

or infinitesimally
F a

μν → F ′a
μν = F a

μν − αbF c
μνf a

bc , (7.1.74)
which means that the invariance in the Abelian case no longer holds. There are however still
ways to construct invariant terms in the Lagrangian from F . The kinetic term for Aa

μ is ([6]
p. 489)

Lkinetic = −1
4F a

μνF μν
a = −1

4Tr(F 2). (7.1.75)

This term gives rise to the equation of motion

∂μF a
μν + λfa

bc Ab
μF c

μν = DμF a
μν = 0 (7.1.76)

which differ from the Maxwell equations in (7.1.58) (jμ = 0) by terms cubic and quartic in
the gauge field which involve the gauge groups structure constants. These terms describe how
the gauge fields interact with themselves, a new feature distinguishing the new fields from the
non-interacting photons. In this way the symmetry group determines the physics to a large
extent and the time development of a system depend directly on its structure. However, there
is still no allowed mass term for the gauge fields so the interaction particles of our theory is
massless. This was a major drawback of the early gauge theories and because of this Wolfgang
Pauli who inspired Yang and Mills even refrained to publish any of his results on the subject.
But the solutions to the mass problem came some decade later through symmetry breaking.
This however falls out of our scope here.

When the possibility of massive gauge fields were discovered the interest of Yang-Mills
theories was substantially renewed. During the 60’s and 70’s they became the base of the
standard model and of the classification of elementary particles. These classifications will be
the topic of the following chapter 8 about particle physics and as a conclusion of this one we
list the three relevant gauge theories for the standard model.

Example 7.1.2. Electrodynamics, G = U(1): The gauge group of electromagnetism with
one gauge field Aμ describing the massless photon. The gauge field has no self-interaction and
the field strength tensor is simply Fμν = ∂μAν−∂νAμ since the group is Abelian, i.e. fabc = 0.
Fields of the theory transform as ψ → eiα(x)ψ and the gauge field as Aμ → Aμ − 1

e ∂μα(x).

Example 7.1.3. Isotopic gauge invariance, G = SU(2): This theory contains three
gauge fields as there are three generators for SU(2). The fields describe the three bosons
of weak interactions and the generators are the Pauli matrices giving the transformations
ψ → exp[iαj(x)σj/2]ψ and Aj

μ → Aj
μ + 1

λ∂μαj + εjklAk
μαl.

Example 7.1.4. Quantum chromodynamics, G = SU(3): The eight generators give
rise to eight gauge fields Aa

μ describing the gluons, bosons of the strong interaction. The
generators are the Gell-Mann matrices λa and the transformations are ψ → exp[iαa(x)λa/2]ψ
and Aa

μ → Aa
μ + 1

λ∂μαa + fa
bc Ab

μαc. 6

6λ without any index is still the coupling constant.
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7.2 *Fiber Bundles

This section is a non-rigorous introduction to fiber bundles and the material presented here
is not necessary for understanding the following chapter. The idea is just to offer a more
geometrical picture of what we have done in this chapter and the reader may jump with no
loss of the track to the next chapter. This section will however also function as an example
on how groups and group theory are natural parts of other mathematical branches, as the
projective representations illumined some of their topological aspects. In the presentation
several technicalities are omitted and the aim is merely to present the ideas enough to get
a grasp of how to formulate the mathematical structure behind gauge theory. However, to
really get the geometrical pictures a number of apperently unrelated definitions and purely
mathematical examples are required before the connection to previous sections can be made.
A reader already familiar with the concepts and notions in fiber bundles may thus jump to
section 7.2.2 for the actual discussion of gauge theories.

Before we state the definition of a fiber bundle we prepare for the concept with an example
and some notation. A fiber bundle consists mainly of three manifolds7 and mappings between
them so let us create a construction of such things which will lead us to the definition.

Example 7.2.1. Consider a manifold M , e.g. a sphere. To each point x ∈ M there is a
tangent space which we denote TxM , i.e. the space of all tangent vectors to paths passing
through x. The union of all these tangent spaces we denote TM . The manifold M over
which TM is defined is called a base space. We require M to have a set of open coverings,
{Ui}, which means that to every x ∈ M there exists an open set Ui which includes x. One
can think of it as a patchwork covering the whole manifold M . To each Ui there is a subset
TUiM ⊂ TM and we require that the relation between TUiM and Ui could be expressed as
the Cartesian product Ui × TUiM . This means that

TUiM
def=

⋃
x∈Ui

TxM (7.2.1)

and that every element p of TUiM can be described by the ordered pair (x, v) where v is a
vector in TxM . Thus every p ∈ TUiM is associated with a point x ∈ M and we can define
a projection π : TUiM → M such that π(p) = x, projecting (x, v) to the first factor (thus
loosing all information but x). The inverse projection naturally associates x with the tangent
space TxM , i.e. π−1(x) = TxM . This is an example of what will be called a fiber over x. The
geometrical situation is illustrated in figure 7.2.

We can now handle the relations between our elements within a set Ui but for our construction
to be a fiber bundle we need ways to move between the different patches. These will be
provided by something called transition maps defined in the definition of a fiber bundle,
which we now are ready for.

Definition 7.2.1. A (differentiable) fiber bundle (E, π, M, F,G) consist of the following ele-
ments

(i) A differentiable manifold E, called the fiber bundle (or total space).
7Manifolds are discussed in appendix A.
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Figure 7.2: A sphere and its tangent space TxM at x which locally can be viewed as a Cartesian
product Ui × TxM between some neighbourhood Ui to x and the tangent space.

(ii) A differentiable manifold M , called the base space.

(iii) A differentiable manifold F , called the fiber.

(iv) A surjection (onto map) π : E → M , called the projection, with the inverse
π−1(x ∈ M) def= Fx

∼= F . Fx is called the fiber at x.

(v) A group8 G acting on F from the left. G is called the structure group.

(vi) A set of open coverings {Ui} and a smooth map (diffeomorphism) φi : Ui×F → π−1(Ui)
such that π ◦ φi(x, f) = x, with x ∈ Ui, f ∈ F .

(vii) Denote the restriction of φi to the point x ∈ Ui by φi,x. Then φi,x : F → Fx ⊂ E. Now,
to every pair of neighborhoods Ui∩Uj �= ∅ there is a map tij = φ−1

i,xφj,x : F → F required
to be an element of G. Such a map is called a transition map or transition function.
With x ∈ Ui ∩ Uj and f ∈ F this can also be expressed as φ−1

i, xφj, x(f) = tij(x)f . The
transitions map satisfies

a) tii(x) = 1
b) tij(x) = t−1

ji (x)
c) tik(x) = tij(x)tjk(x) for Ui ∩ Uj ∩ Uk �= ∅.

The fiber bundle or the total space is thus a manifold which to every point x in the base
space (through the inverse projection π−1) assigns a fiber Fx. Each such fiber is a manifold
isomorphic to F . To get a geometrical picture one often visualizes the fiber bundle to reside
above the base space and in this schematic picture one can see the fiber manifolds as one-
dimensional fibers rising up from each point in the base space. This intuitive picture is
illustrated in figure 7.3. It is often a helpful image even though the fiber manifolds in general
have higher dimensions. There will follow similar illustrations through out this section but
as for this one, they all should be considered as mere pictures of the concepts.

The smooth map φi is called to be a local trivialization since it allows us to look at the
subspace π−1(Ui) ⊂ E as a simple Cartesian direct product Ui × F . This map is such that

8We are almost exclusively dealing with Lie groups.
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Figure 7.3: A schematic picture of a fiber bundle. See text for details.

the projection π corresponds to the projection on the first factor in the Cartesian product
proj1(Ui×F ) = Ui on the other side of φ. That is π(p ∈ π−1(Ui)) = proj1(φ−1(p)) which can
be illustrated as

F×iU
i

φ

1proj

π

E∈)iU(1−π

iU

where the scheme commutes. The φi could equally well be defined to map in the opposite
direction and it might help in this first acquaintance to point out that φ−1 is as important.

If the relation between the fiber bundle and the base space is such that it can be expressed
as a Cartesian product globally, E = M×F , then the fiber bundle is called a trivial bundle.
In a non-trivial case one can look at the fiber bundle E as a patchwork of local trivial spaces
Ui × F glued together in a certain way. This way is precisely what the transition maps
describes.

Let x be a point in Ui ∩ Uj ⊂ M and a point p = π−1(x) ∈ E be associated by the local
trivialization φi with the ordered pair (x, fi) and at the same time by φ−1

j to (x, fj), with
fi, fj ∈ F . Then fi and fj are related to one other by the transition map as

fi = tij(p)fj , (7.2.2)

which can easily be seen from the definition tij = φ−1
i, xφj, x. Thus the transition maps describes

how one moves from one local trivial space to another. These relations are illustrated in figure
7.4.

As a first example on a non-trivial bundle we may take the Möbius strip above the base
space S1, in contrast to the trivial cylinder.
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Figure 7.4: An illustration of how the transition map tij relates the two local trivializations over Ui

and Uj . See text for details.
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(a) The Möbius strip as a non-trivial fiber
bundle over S1.
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3q12U

1q12U

1S

(b) The trivial fiber bundle over S1 is a
cylinder.

Figure 7.5: A simple example of the difference between trivial and non-trivial fiber bundles. See text
for details.

Example 7.2.2. Take the manifold S1 as a base space and the Möbius strip as a fiber
bundle with fibers consisting of the interval [−1, 1]. Then each open set π−1(Ui) (the inverse
projection of an arc of the circle) maps by φi to the Cartesian product Ui × [−1, 1]. The
construction is illustrated in the figure 7.5a. If we instead of the Möbius strip would have a
cylinder as the fiber bundle this would be a global relation and the cylinder is thereby the
trivial bundle over S1, as in figure 7.5b.

What makes the Möbius strip globally different than the cylinder is the twist and this
non-triviality appears in the transition maps. Let us as an example of this define two open
overlapping sets on S1 as U1 = (0, 3

2π) and U2 = (−π, 1
2π). This gives the two intersections

U12q1 = (0, 1
2π) and U12q3 = (π, 3

2π) in which the transition maps t12q1 and t12q3 can be
defined as

t12q1 : [−1, 1] → [−1, 1], t12q3 : [−1, 1] → [−1, 1] (7.2.3)
t �→ t t �→ −t. (7.2.4)
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Here t ∈ [−1, 1] is used to parameterize the fibers. It is the minus sign in t12q3 which makes
the non-trivial twist in the Möbius strip. Replacing it with a plus, i.e. making t12q3 to the
identity map, would yield the trivial cylinder bundle. The structure group of our example
is the mirror group 2 and clearly t12q1 and t12q3 are the two elements of this group with
t2
12q3 = t12q1 = e.

We can now look back at our introductory example 7.2.1 and identify TM as the total space
E, M as the mentioned base space and TxM as the fiber Fx at x. The identification between
TUiM and Ui × TxM is handled by φi. This bundle is called the tangent bundle and since
the fibers in this case are vector spaces it is a vector bundle.

We move on with another important definition.

Definition 7.2.2. A section is a smooth map σ : M → E such that π ◦ σ(x) = x.

Intuitively the section assigns to every x ∈ M a point f ∈ Fx in the fiber over x. A path
γ(t) ⊂ M thus maps by σ to a specific path γ̃(t) ⊂ E, illustrated in figure 7.6. In this way a
section is quite analogous to the graph of a function. Take the ordered pair σ(x) = (x, f(x)) ∈
E for some f(x) ∈ F , then the projection onto the first factor π(σ(x)) = x is like it is for a
standard function graph (x, g(x)) ∈ X × Y . In the case of our tangent bundle a section of E
assigns to every point x ∈ M a specific tangent vector in TxM . This is just what we recognize
as a vector field and thus a vector field can be described as a section in a tangent bundle.{

M

xU

xF

E

yF

yU

))t(γ(˜π) =t(γ

)y(σ(1) =γ̃

)x(σ(0) =γ̃

y(1) =γ

x(0) =γ

σ

Figure 7.6: A section σ of a fiber bundle is an assignment of a point p ∈ E to every x ∈ M .

As two points on a fiber always is related by an element of the structure group this expands
to an entire section. This means that given a section σ1 any new section σ2 can be defined
through the first by

σ2 = g(x)σ1 g(x) ∈ G (7.2.5)

where the group element g depend on coordinates of the base space.
In general it is not necessarily possible to define a section globally on a base space and

thus it is useful to define local sections on open sets Ui ⊂ M .
In the context of gauge theory spacetime (or what ever space the theory describes) is

the base space and the coordinate dependent transformations are elements of the fibers. The
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fibers are in fact themselves copies of the gauge group and hence there are a copy of the group
assigned to every point in spacetime. To choose a section of the bundle is the same thing as
fixing the gauge.

In physics, and gauge theory in particular, one is often concerned with this special case
of fiber bundles, called principal bundles.

7.2.1 Principal Bundles

Definition 7.2.3. A principal bundle P is a fiber bundle in which the structure group G
is a topological group to which the fibers are identical. In the smooth category G is required to
be a Lie group. In addition there is a continuous right action denoted

Φ : G × P → P,

Φ(g, p) = Φg(p) = pg, g ∈ G, p ∈ P

which preserves the fibers of P and acts freely and transitively9 on them. The right action is
defined through the local trivialization as

pg = Φg(p) = φi(x, fig)

where φi(x, fi) = p ∈ P .

Once again we may make use of the simplifying visualization in figure 7.3 and think of Φ
as pushing a point p ∈ P along the fiber thus preserving the projection π(Φg(p)) = π(p).
Although the right action is defined in terms of the local trivializations it is in fact independent
of the actual map since

pg = φi(x, fig) = φi(x, tijfjg) = φj(x, fjg) = pg. (7.2.6)

For a principal bundle it is often convenient to identify the fibers F directly with the
group G.

We now arrive at the point where the name of the gauge field as a “connection” will get
its explanation. We first define the term in the context of fiber bundles and then relate it
to the known gauge field. There are in fact two ways of defining the connection and we will
present them both. The first is from a geometrical point of view and the latter is through
differential forms where we will try to keep the formalism to a minimum.

Geometrical Approach
We precede the definition with some notation. We denote the tangent space to a point p in
the principal bundle as TpP . The subspace of TpP which is projected onto x = π(p) we call
the vertical space, VpP . This is parallel to the fiber Fx and can be written as VpP = ker(π).
Thus a vector in VpP is a tangent vector to the fiber, i.e. the structure group G as P is a
principal bundle, and we have isomorphism between VpP and the Lie algebra g of G. It is
important not to confuse TpP with the tangent space to M .

9An action is free if for any f ∈ F fg = fh implies g = h, with g, h ∈ G. It is transistive if for any f1, f2 ∈ F
there exists a g ∈ G such that f1g = f2.
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Definition 7.2.4. A connection on a principal bundle P is a smoothly-varying assignment
to each point p ∈ P of a subspace HpP of the tangent space TpP at p such that

(i) TpP = HpP ⊕ VpP ∀p ∈ P

(ii) Φg∗(HpP ) = HpgP ∀p ∈ P, ∀g ∈ G.

In words (i) says that HpP is the orthogonal complement to VpP = ker(π), i.e. transverse to
the fiber. (ii) says that pushing the subspace HpP along the fiber with Φg∗10 yields the same
space as to first push the point p to Φg(p) and there assign a subspace HΦg(p)P .

(i) can also be reformulated as

(i)′ π∗(HpP ) = Tπ(p)M ∀p ∈ P.

(7.2.7)

The effect of the connection on the tangent space TpP is schematically depicted in figure 7.7.
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Figure 7.7: A connection decomposes the tangent space TpP at p ∈ P into a vertical space VpP and
horizontal space HpP and commutes with the right action Φ.

Differential Approach
The differential approach to connections requires some knowledge of differential geometry.
We will define the connection as a differential one-form without going into any details
about forms. If the term is unfamiliar the reader can think of it as a linear functional from
a vector space to its field of scalars, or equivalently as an element of the dual vector space

10Whenever a function acts on an entire set we add a ∗ as a subscript.
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(see appendix D). The one-form of the connection is however combined with the Lie algebra
through a tensor product which makes it Lie algebra valued. It will function as a projection
from the tangent space TpP onto the vertical space VpP and to be able to specify this we
introduce a vector field11 X over P . It is at every point p a tangent to the fiber and is defined
by the right action as

Xf(p) = d
dt

f(p exp[tξ])
∣∣∣
t=0

, ξ ∈ g (7.2.8)

where f : P → � is an arbitrary function and t is a parameter. This field allows for the
definition of the differential connection.

Definition 7.2.5. A connection 1-form ωp ∈ g⊗T ∗
p P on P is a Lie algebra-valued 1-form

wp : TpP → g, satisfying for each p ∈ P

(i) ωp(X(p)) = ξ ∀ξ ∈ g

(ii) ωpg(Φg∗v) = Adg(ωp(v)) ∀g ∈ G, ∀v ∈ TpP.

As mentioned the connection is a projection onto VpP through the isomorphism between the
vertical space and the Lie algebra. This is the first requirement. The second requirement (ii)
says that doing a projection of the pushed vector Φg∗v yields the same Lie algebra element
as if going back with g−1 apply ωp to v and then move forward along the fiber with g. Thus
(ii) can be rewritten

(ii) ωpg(Φg∗v) = g−1(ωp(v))g ∀g ∈ G, ∀v ∈ TpP.

If we now define the horizontal space as

HpP
def= ker ωp (7.2.9)

the connection one-form divides the tangent space into a vertical space and a horizontal
space with the same properties as in definition 7.2.4. Thus the two view points give the same
result. The connection one-form is illustrated in figure 7.8 which displays the kinship of the
two approaches.

Still we have not yet explained the relation to the gauge field. This is defined on spacetime
which plays the role of the base space while the connection ω projects in the bundle. The
missing step before we can see the gauge field as a connection is to define a Lie algebra-valued
one-form Ai on a tangent space to a subset Ui of the base space, i.e.

Ai : TUi → g. (7.2.10)

This can be made through our connection ω in the bundle and the concept of pullback,
which first is to be explained. Let σi be a local section on Ui. We then denote the pullback
on any function f by this section as σ∗

i f which means informally that f takes its arguments
from the range of σi and that the pullback of f has the same domain as σi. As an example
the pullback of a local trivialization takes points in the base space to an ordered pair with a
point in the fiber according to σ∗

i φi : Ui → σi∗(Ui) → Ui×F . The simplest case of a pullback
11This field is called the fundamental vector field in the literature.
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Figure 7.8: A connection one-form ωp projects the tangent space TpP onto the vertical space VpP .
The horizontal space HpP is defined as its kernel which yields the same result as in figure 7.7.

is the composition of two functions f(g(x)) in elementary calculus. Now, we can define Ai

through a pullback of the connection by σi as

Ai
def= σ∗

i ω ∈ g⊗ T ∗Ui. (7.2.11)

Conversely we can define a connection given a Lie algebra-valued one-form Ai and a local
section over Ui. That this is true and that we indeed can define a global connection based
on local Ai’s can be shown quite straight forward ([7] pp. 333-335). However, for ω to be
unique this implies Ai to undergo a specific transformation law when moving between different
sections. In terms of the transition functions this law reads

Aj = t−1
ij Aitij + tij dP t−1

ij (7.2.12)

involving the exterior derivative12 dP on P . This seems familiar and if we let two sections
σi and σj be related as σj(x) = σi(x)g(x), recalling equation (7.2.5), then the transformation
law in components becomes

Ajμ = g−1(x)Aiμg(x) + g−1(x)∂μg(x). (7.2.13)

This is precisely the transformation law for the gauge field we saw in equation (7.1.66) and
in fact Ai is the gauge field through the relation

Ai(x) = iλAa
μ(x)ta dxμ. (7.2.14)

12We will make no further use of the exterior derivative why we omit any discussion of it. We leave it
with the remark that it turns a scalar function into a one-form as the gradient of the function, giving the
unacquainted reader a slight hunch.
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We have noted that changing section is the same thing as choose a new gauge, and accordingly
the transformation laws are the same.

We have in the previous section seen how the covariant derivative algebraically removed
the change of the transformations and thus only measured the rate of change of the fields.
We can now see this geometrically. The connection divides TpP into HpP and VpP and thus
every tangent vector v into horizontal and vertical components vH +vV . If v is the directional
derivative of the transformed field then the vertical component describes the change of the
transformation. Removing the projection onto the vertical component thus only measure the
change of the fields and this is the geometrical picture behind the equation Dμ = ∂μ− iλAa

μta.
This relates very much to the notions horizontal lift and parallel translation which are the
last introduced notions in this section.

7.2.2 Horizontal Lifts and Parallel Translation

We move right onto the definitions.
A lift of a path γ(t) ⊂ M in the base space is a path γ̃(t) ⊂ P in the bundle such that

π(γ̃(t)) = γ(t), i.e. a path which is projected down on γ(t).

Definition 7.2.6. A horizontal lift γ̄(t) : [0, 1] → P with respect to a connection ω is a lift
such that its tangent vector at p always lies in HpP for all p ∈ P and t ∈ [0, 1]. Equivalently,
it is a lift such that

ω

( d
dt

γ̄(t)
)

= 0 ∀t ∈ [0, 1]. (7.2.15)

An image of a horizontal lift is found in figure 7.9. The definition allows us to construct a
horizontal lift γ̄(t) of a path in M in infinitesimal steps, respecting the equation (7.2.15) at
each step. In accordance with the relations between two different sections in equation (7.2.5)
we can express the horizontal path as

γ̄(t) = σ∗(γ(t))g(t) (7.2.16)

for a section σ and some varying g(t) = g(γ(t)) ∈ G. We can choose these such that γ̄(0) =
σ∗(γ(0)), that is g(γ(0)) = e. Since the γ̄(t) corresponds to another section than σ a similar
relation holds between tangent vectors to γ̄(t) and σ∗(γ(t)) as between Aj and Ai in equation
(7.2.12). We will not state that relation here but by derivating it with respect to t (denoted
with a dot) and applying ω on both sides yields the differential equation

dg(t)
dt

= −ω (σ∗(γ̇(t)) = −A (γ̇(t)) . (7.2.17)

The details on this are given in [7] (pp. 336-337). This equation is solvable and together with
the condition g(0) = e we get

g(t) = P exp
[
−
∫ t

0
Aμ

dxμ

dt
dt

]
= P exp

[
−
∫ γ(t)

γ(x)
Aμ(γ(t)) dxμ

]
. (7.2.18)

The P means that the exponential is path ordered, i.e. its expansion is done in a way which
respects the path13. This is important since Lie algebra elements in A may not commute.

13An expression for path ordered expansion is given in appendix G, in fact of this specific integral.
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The horizontal lift is now given by the expression

γ̄(t) = σ∗(γ(t))P exp
[
−
∫ γ(t)

γ(x)
Aμ(γ(t)) dxμ

]
. (7.2.19)

The path ordered exponential can be viewed as a measurement of how much σ∗γ(t) deviates
from being horizontal. In the same way, when integrating from a point x to another point
y in the base space, the exponential provides a measure of how far we have traveled in the
fiber when we arrive at y. Such a shift is seen in figure 7.9. Thus it relates the different
transformations associated to the two points and that sounds very much like a comparator.
This is more than a resemblance as equation (7.2.14) yields

Uγ(y, x) = P exp
[
−
∫ y

x
Aμ(γ(t)) dxμ

]
= P exp

[
−iλ

∫ y

x
Aμ(x′) dx′μ

]
, (7.2.20)

integrating along some path γ. One can easily verify that this expression indeed satisfies
what we imposed in previous sections, and it is the same as what appeared in the expansion
of U in equation (7.1.28) (see appendix G). The right hand side of equation (7.2.20) is called
a Wilson line and as mentioned it depends on the path. This has the important implication
that it is non-trivial for closed loops. If we close the path γ(0) = γ(1) and thus create a
loop in M the integral, now a Wilson loop, will not vanish. Geometrical this corresponds to
that the horizontal lift of γ does not close but starts and ends at different points but on the
same fiber. The net transformation along the fiber is called the holonomy of the connection
around γ and is illustrated in figure 7.10.
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Figure 7.9: A horizontal lift γ̄(t) is defined such that its tangent vector ˙̄γ(tp) at p always lies in HpP ,
for all p ∈ γ̄(t). Note how the non-horizontal path γ̃(t) differs from γ̄(t) which can be expressed as in
(7.2.16).

Evaluating some quantity along a horizontal path is called a parallel transport or parallel
translation. This is affected by the holonomy and an accessible geometric picture of this is

137



)t(γ̄

(1)γ̄

(0)γ̄

)t(γ

holonomy

Figure 7.10: A horizontal lift of a closed path does not necessarily start and end at the same point
on the fiber. The net transformation is called holonomy.

(a) If a vector is parallel trans-
ported along different paths on
a sphere its direction at the end
point depends on the path taken.

(b) A vector is parallel trans-
ported along a closed path on a
sphere and returns to the start
point in an angle to the original
position. This angle is related to
the enclosed area shaded in the
figure.

Figure 7.11: The effect of curvature on parallel translation. See text for details.

given by the example of a tangent bundle to a sphere. Opposed to a flat surface there is no
direct way of translating a vector on a sphere. However, a parallel transport along a path is a
translation under which the covariant derivative of the vector is zero, which corresponds to a
horizontal lift. This means that the vector does not change when one moves from one tangent
space to another infinitesimally apart. However, parallel transports along different paths do
not necessarily end in the same vector. In the figure 7.11a translations of a vector along two
different paths from the equator to the north pole is illustrated. One is going straight north
while the other moves along the equator for some distance before turning north. Arriving at
the pole the vectors are pointed in different directions, although both are parallel transported.
This is a very physical manifestation of the path dependence of the Wilson line. Connecting
the paths yields a loop and the holonomy of the connection around this is depicted in figure
7.11b. The effect of holonomy is due to the curvature of the sphere and the magnitude of it
is related to the area enclosed by the loop.

We will end this introduction to fiber bundles by illustrating this area dependence in an
example of a Wilson loop, referring back to the preceding sections. This will shed some light
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on the last unmentioned quantity from the review of gauge theories. Let Aμ be the gauge
field emerging from the local symmetry of U(1), as in electromagnetism. If we calculate the
Wilson loop for a closed path γ in spacetime we may apply the Stoke’s theorem,

P exp
[
−iλ

∮ y

x
Aμ(x′) dx′μ

]
= P exp

[
−i

λ

2

∫
S
Fμν dsμν

]
, (7.2.21)

where S is the area enclosed by γ, dsμν an infinitesimal area element and Fμν the field
strength. This directly exposes the relation between the holonomy and the enclosed area and
introduces the field strength in the context of fiber bundles. For an infinitesimal loop this is
precisely what we did in section 7.1.1 when we constructed the loop of comparators, which
should be apparent from (7.2.20). The field strength Fμν(x) is thus shown to be a measure of
the curvature locally around x and hence the name given in section 7.1.1 has found its reason.

We have now given a geometrical interpretation of all the quantities in the preceding sections of
this chapter. For a much more thorough treatment of fiber bundles and differential geometry
in physics [7] is recommended and on which much of this exposure is based.

Leaving the underlaying mathematical structure behind gauge theories we now turn to-
wards some of its very important applications. The following chapter will discuss the results
of the application of gauge theory in particle physics.
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Chapter 8

Particle Physics

We have now arrived at the last chapter of this survey. During our journey we have learned
the fundamentals of group theory and representation theory, explored both external and
internal symmetries and seen numerous examples of the natural merging of the aforementioned
mathematical disciplines with physical theories such as quantum physics and special relativity.

It is a continuous endeavor of science to connect seemingly random pieces of knowledge
into a single clear image of reality. The most complete picture of nature that we have today
is called the standard model of particle physics and it incorporates everything that we have
discussed so far. Since no introductory text on group theory and symmetries in nature would
be complete without it, let us therefore explore this theory.

We will not attempt to fully explain the standard model, but rather try to describe how
such a theory can be constructed and outline its connection to what we have learned so far.
In order to do so, we will introduce a concept called isospin which allows us to perceive
particles belonging to a set of particles called a charge multiplet as different states of a single
particle corresponding to distinct values of the isospin projection number. In essence, this
means that a particle can be “rotated” into another particle through the action of elements
of the underlying set of a representation of the group SU(2), in much the same way as an
ordinary spin vector is rotated!

Moreover, by exploring the internal structures of certain composite particles, such as
neutrons and protons, and by introducing additional quantum numbers, we will be able to
group these particles into supermultiplets. We will then find the connection between these
supermultiplets and the weight and root diagrams of chapter 5. However, we must first
acquaint ourselves with elementary particles and the standard model!

8.1 Elementary Particles

An elementary particle is by definition a point-like object without any internal structure
or excited states. Such a particle is characterized by, among other things, its spin, rest
mass and electric charge. Since it has the same nature in every inertial frame one may also
define an elementary particle as an object which is invariant under Poincaré transformations.
The latter observation led Wigner to the conclusion that the quantum mechanical states for
a given elementary particle must be elements of a Hilbert space which is the module of a
representation of the Poincaré group (this was discussed in section 6.2).

Previously we have dealt with external symmetries and internal symmetries separately but
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to completely describe elementary particles both of them are required. In 1967 the physicists
Sidney Coleman and Jeffrey Mandula proved a theorem on the impossibility of combing the
Poincaré symmetry group, describing external symmetries, and any symmetry group encoding
internal symmetries described with gauge theory in any but a trivial way. This implies that
there is no group which have representations that describe both of these phenomena. Hence,
it follows that all elementary particles are irreducible representations of the symmetry group

ISO(1, 3)× Gint.sym (8.1.1)

where Gint.sym is some internal symmetry group in direct product with the Poincaré group1.[25]
Since we have a direct product, this means that there is no mixing between the generators
of the different groups. This theorem is known as the Coleman-Mandula theorem and it
is of vital importance in contemporary research in supersymmetry. The interested reader is
referred to [26] for a deeper discussion.

One may wonder what the internal symmetry group in equation (8.1.1) is? According to
the standard model the answer is:

Gint.sym = U(1)× SU(2)× SU(3). (8.1.2)

Let us now take a closer look at this theory!

8.2 The Standard Model

Since ancient times mankind has wondered what the world is composed of and what holds it
together. The modern answer to these fundamental questions has been named the standard
model of particle physics. It is a theory which tries to explain all known phenomena in particle
physics, except for those caused by gravity, in terms of the properties and interactions of
elementary particles. Gravity is not included in the standard model because general relativity
has yet to be successfully quantized.

Particles with half-integer spin are called fermions while particles with integer spin are
called bosons. The standard model divides all known elementary particles into two distinct
families of spin-1/2 fermions called quarks and leptons and one spin-1 family of bosons
(i.e. vector bosons) known as gauge bosons or “force carriers”. In addition to these particles
at least one spin-0 elementary particle called the Higgs boson is postulated to exist. This
particle is necessary in the standard model in order to explain the origin of other particle’s
rest masses and it is widely believed that the discovery of the Higgs boson will be announced
by CERN in the near future!

Quarks and leptons may also be divided into three generations of particles (se figure 8.1)
and the atoms of the universe are composed entirely by particles from the first generation of
the standard model. It is a mystery why nature is equipped with three families when only
one seems to be needed.

The electron is a lepton and because of its electric charge it is a subject to the electro-
magnetic interaction which is one of the four known forces of nature. Neutrinos are also
leptons and they are for instance produced in β decays. Such decays are caused by a second
fundamental force known as the weak interaction.

1Their paper investigates the nature of the S-matrix, which is an array of transition amplitudes between dif-
ferent states corresponding to different particles (it expresses scattering processes). By studying its symmetries
it is possible to draw conclusions regarding the explicit behavior of spacetime and internal symmetries.
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Figure 8.1: The three generations of particles in the standard model of particle physics. The table
also shows the interactions which the particles participate in (including gravity) and the corresponding
force carriers.

Quarks are always found in bound states called hadrons. The proton and the neutron
are both hadrons and there are literally hundreds of more (excluding atomic nuclei) and most
of them are unstable. Hadrons are held together by a third force known as the strong
interaction. The fourth and final force is the gravitational interaction. A complete
description of nature would have to include this force as well, but it is so weak compared to
the others that it may, for all practical purposes, be omitted in particle physics. In this field
one therefore usually speaks of the three, rather than four, forces of nature. We will follow
this convention throughout this chapter.

In the standard model forces between elementary particles are caused by the exchange of
force carriers. The electromagnetic interaction is due to the exchange of virtual photons. We
refer to them as virtual particles since they are only involved in the interactions and do not
appear as products in the final state. The same can be said about other force carriers. The
weak force is mediated by the exchange of W +, W − and Z0 bosons (where the superscripts
denote the particle’s electric charges) while the force carriers for the strong force are called
gluons. There are eight different gluons, all of which have zero rest mass and no electric
charge. It has been suggested that gravity might be due to an exchange of gravitons, but
the existence of such particles has yet to be experimentally verified.2

Every quark can have one out of three different colors and to every elementary particle
in the standard model there is an associated antiparticle with the same rest mass but

2However, the existence of gravitational waves has been indirectly confirmed experimentally. In 1974 Hulse
and Taylor discovered the first binary pulsar. It is a double star system consisting of two neutron stars of
equal mass, which are rotating about the system’s center of mass. Measurements show that the orbital period
of these stars is decreasing by about 75 μs per year, which suggests that the system is loosing energy through
emission of gravitational waves. The data deviates less than 0.5% from the predictions of general relativity[27].
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opposite electric charge. A given particle and its antiparticle also differ in terms of other
quantum numbers. An antiquark for instance has the anti-color of its corresponding quark.
The antiparticle of an arbitrary quark q is denoted by q̄ and the antiparticle of a hadron is
obtained by replacing each quark in the hadron with its corresponding antiquark. In general,
the antiparticle of a given particle P is denoted by P̄ , but for some common elementary
particles the bar is omitted. The antiparticle of the electron is for instance called the positron
and is denoted by e+.

The reason why force carriers are called gauge bosons is because the three forces in particle
physics possess gauge invariance.

8.3 Feynman Diagrams

Feynman diagrams are powerful tools in particle physics which allow one to calculate the
quantum mechanical probabilities for events to occur. We will use them in a more modest
fashion, mainly to depict the exchange of force carriers between two elementary particles.

The Feynman diagrams below illustrate the exchange of a single virtual photon γ between
two electrons e− and two positrons e+, respectively.

γ γ

−e

−e

−e

−e +e

+e

+e

+e

Figure 8.2: Electromagnetic interaction via photon exchange for two electrons and two positrons,
respectively.

Note that time increases from the left to right and that the relative distance between the
interacting particles is shown on the vertical axis in these diagrams (some authors let the
horizontal axis be the spatial axis and the vertical axis be the temporal axis). Photons and
W +, W − and Z0 bosons are drawn as wiggly lines while leptons and quarks are drawn as
straight lines and gluons as coiled lines. In order to distinguish a particle from its antiparticle
one adds to the particle’s line an arrowhead pointing to the right and to the antiparticle’s
line an arrowhead pointing to the left. It is important to remember that these arrowhead do
not indicate the direction of the particle’s motion.

The weak interaction and the strong interaction are illustrated in the two diagrams below,
where νe, q and g denote an electron neutrino, a quark and a gluon, respectively.

Feynman diagrams can also be used to depict processes involving hadrons. The left
diagram below shows the decay of a neutron n into a proton p and a W − hadron, followed
by the decay of the W − particle into an electron e− and an antielectron neutrino ν̄e. The
right diagram illustrates the exchange of a pion π− between a proton and a neutron, where
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Figure 8.3: Weak interaction between an electron and an electron neutrino and strong interaction
between two quarks.

the pion is drawn as a dashed line.

n

p
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n

n
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−π

Figure 8.4: The decay of a neutron via a W − particle and a pion exchange between a neutron and
a proton.

We will study the latter process in great detail in the following sections since it is a major
contribution to the strong nuclear force which holds atomic nuclei together. Note that
this force is not the same as the fundamental strong interaction between quarks, but rather
a consequence of it.

Moreover, we should mention in this context that the most basic hadrons are called
baryons and mesons. While baryons are composed of three quarks mesons are composed
of one quark and its corresponding antiquark. Pions (pion is an abbreviation of pi meson)
are mesons and the most common unstable hadrons. They can have tree different electric
charges and are consequently denoted by π+, π0 and π−.

Finally, note that there are other conventions for drawing Feynman diagrams than the ones
which we have described here. For instance, many authors draw exchange particles as vertical
(or horizontal) lines, even though this erroneously implies that the particles are moving with
infinite speed. It is also common to denote both attractive and repulsive interactions in the
same way, even though the former type of interactions tends to decrease the distance between
the interacting particles while the latter type tends to increases it.
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Table 8.1: Properties of leptons. All leptons have spin 1/2. The antiparticles have the same rest
masses m0 as their corresponding leptons but the opposite electric charges Q and lepton quantum
numbers Ll, where l = e, μ, τ . The data in this table comes from p. 72 in [28].

Leptons

Name Symbol Q [e] Le Lμ Lτ m0 [MeV/c2]
Electron e− −1 1 0 0 0.511
Electron neutrino νe 0 1 0 0 < 2(10−6)
Muon (mu) μ− −1 0 1 0 105.7
Muon neutrino νμ 0 0 1 0 < 0.19
Tauon (tau) τ− −1 0 0 1 1770.0
Tauon neutrino ντ 0 0 0 1 < 18.2

Table 8.2: Properties of gauge bosons. All gauge bosons have spin 1 and their corresponding an-
tiparticles have the same rest masses m0 but the opposite electric charges Q. The data in this table
comes from [29].

Gauge bosons

Force Name Symbol Q [e] m0 [GeV/c2]
Electromagnetism Photon γ 0 0
Strong Gluon g 0 0 (theretical)
Weak – W +, W −, Z0 +, − , 0 80.4, 91.2

8.4 Electrons and Photons

Let us now begin to explore the properties of the elementary particles in the standard model
in more detail, starting with the electron and the photon.

The electron is denoted by e− and carries an electric charge of −e, where e is the elemen-
tary (or unit) charge. It has a rest mass of about 0.511 MeV/c2 and spin 1/2. The properties
of the electron as well as other leptons are displayed in table 8.1.

As we mentioned above the photon is the mediator of the electromagnetic interaction,
which only affects charged particles. It is denoted by γ, has no electric charge, zero rest mass
and spin 1. The properties of the photon as well as other gauge bosons are shown in table 8.2.
Also note that the photon moves with the speed of light through free space in every inertial
frame.

8.5 Isospin

Atomic nuclei are composed of neutrons and protons. Since protons repel one another through
electromagnetic interaction there must be an even stronger force holding a nucleus with more
than one proton together. This strong nuclear force must affect neutrons as well as protons
since the former particles are also bound to the nucleus. Moreover, it is a well known fact
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that protons are repelled by a nucleus at distances greater than a few fm, which means that
the strong nuclear force must decrease with distance much faster that the Coulomb force.

After the discovery of the neutron in 1932 physicists were struggling to understand how
the neutron and the proton can have such similar rest masses but opposite electric charges.
Heisenberg suggested that the two particles might in fact be two different states of a single
particle, which is now called a nucleon. The quantum number which distinguishes the
neutron from the proton was eventually named the isospin3 projection number (in analogy
with the ordinary spin projection number). Emperical data revealed that the strong nuclear
force affects neutrons and protons equally much, which suggests that this force is independent
of the isospin projection number. Moreover, in a paper published in 1936 by Cassen and
Condon the authors suggest that the Hilbert space of a nucleon is acted on by the elements of
the underlying set of a representation of the group SU(2) in such a way that the probability
of detecting a nucleon as for instance a neutron is altered.

We now know that isospin is not an exact symmetry of nature, but the unification of the
neutron and the proton into a single nucleon was a predecessor of the modern theories of
unification. Let us therefore explain how these particles were united.

The quantum mechanical state vectors of a physical system are elements of a complex
Hilbert space H with either a finite or infinite number of dimensions (see appendix C for
more details).

The Hilbert space H of a system composed of n distinct particles with the respective
Hilbert spaces H1,H2, . . . ,Hn is isomorphic to the tensor product of these spaces:

H ∼= H1 ⊗H2 ⊗ · · · ⊗ Hn. (8.5.1)

If the system consists of a single particle with states in several distinct Hilbert spaces H1,H2,
. . . ,Hn (for instance a particle which is confined to several distinct intervals on the x-axis)
then the total Hilbert space H of the particle is isomorphic to the direct sum of these spaces:

H ∼= H1 ⊕H2 ⊕ · · · ⊕ Hn. (8.5.2)

(See section 3.2 for the definitions of the tensor product and direct sum of vector spaces.)
This is how we construct Hilbert spaces in general for any system consisting of several

parts and/or with states in distinct Hilbert spaces.
Since a given nucleon can be detected as either a neutron or a proton its state vectors

must lie in both the Hilbert space Hn of a neutron and the Hilbert space Hp of a proton. In
other words: the Hilbert space H of a nucleon satisfies

H ∼= Hn ⊕Hp. (8.5.3)

If the neutron and the proton have no degrees of freedom then their respective Hilbert spaces
contain only a single ray, which means that Hn = � = Hp and H = �2 ∼= � ⊕ �. As
normalized base vectors for H we may therefore select ψn = (1, 0) and ψp = (0, 1), which we
define as state vectors for the “neutron state” and the “proton state”, respectively.

The normalized state vectors of the nucleon compose the “unit circle” C = {cψn +
dψp; |c|2 + |d|2 = 1, c, d ∈ �} in �2. If the state vector cψn + dψp of the nucleon is

3The original name was isotopic spin, but isotopes differ in the number of nucleons while a change of a
nucleus’ total isospin has no effect on the number of nucleons. It was therefore suggested that the name should
be changed to isobaric spin, but the modern term is the abbreviation isospin.
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normalized then the probability of detecting it as a neutron or as a proton is given by |c|2
and |d|2, respectively.

In order to change the probability of detecting the nucleon as for instance a neutron one
needs a unitary operator Û : C → C. In other words, the Hilbert space �2 of the nucleon
is the module of a representation of the group SU(2). Note the analogy with the rotation
operators acting on the Hilbert space of a spin 1/2 system (see section 4.3.1). In spinor
notation these operators together with the Hilbert space �2 also form a representation (the
defining representation) of SU(2). Moreover, the quantum projection number ms for such a
system can only take on two values, namely −1/2 and 1/2. Since a nucleon can have precisely
two different charges (±1) it is therefore natural to define the neutron as the isospin down
state and the proton as the isospin up state.

In general, a set of N hadrons with similar masses but different electric charges is assigned
an isospin vector I. Just as angular momentum is a vector in �3, the isospin vector I may be
thought of as a vector in an abstract real 3-dimensional vector space V . The projection of I on
an imaginary “third” axis in V is given by the isospin projection number I3 = −I,−I+1, . . . , I
and the value of I is determined by

N = 2I + 1 ⇔ I = N − 1
2 . (8.5.4)

Moreover, the values of I3 for the N states of the particle are assigned so that the electric
charge becomes a strictly increasing function of I3. Also note that the isospins I1 and I2
of two different “unified” particles may be added, I = I1 + I2, and that the total isospin
quantum number I satisfies |I1 − I2| ≤ I ≤ I1 + I2.

For a nucleon we have that N = 2 and I = 1/2. Since the neutron has a lower charge than
the proton it therefore corresponds to I3 = −1/2 (isospin down), while the proton corresponds
to I3 = +1/2 (isospin up).

The strong nuclear force depends on the value of I but not on the value of I3 (i.e. not on
the orientation of I). This means that the strong nuclear force is invariant under the action of
SU(2) since the elements of a representation of this group simply rotates the isospin vector I.
To be a bit more precise, let Π(SU(2)) be a representation of SU(2) with �2 as the module.
Moreover, let F̂ be an operator of the strong nuclear force acting on Hf ⊗ �2, where Hf is
the Hilbert space of the exchange particle (force carrier) for the strong nuclear force. Then
the invariance of the strong nuclear force under the action of Π(SU(2)) means that

F̂ ρ(g)ψ = ρ(g)F̂ψ, ∀ψ ∈ Hf ⊗�2 and ∀ρ(g) ∈ Π(SU(2)), (8.5.5)

where g is any element in SU(2).
In other words, the operator F̂ commutes with every element ρ(g) ∈ Π(SU(2)). Generally,

if G is the underlying set of a group (G, �) and the elements of G act as unitary operators on
two finite dimensional Hilbert spaces V and W then a linear operator F̂ : V → W is called
an intertwining operator if

F̂ gψ = gF̂ψ, ∀g ∈ G and ∀ψ ∈ V. (8.5.6)

Moreover, let −iτ be the operator for the total isospin of the nucleon and the exchange
particle. It can be shown that τ is an element of the underlying set of a representation of
su(2) ([30], p. 9), which means that exp(τ) ∈ Π(SU(2)). Equation (8.5.5) therefore gives
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that for any ψ ∈ Hf ⊗�2

F̂ exp(τ)ψ = exp(τ)F̂ψ ⇔
F̂ψ + F̂ τψ + . . . = F̂ψ + τF̂ψ + . . . , (8.5.7)

where we have used the linearity of F̂ .
Equation (8.5.7) gives that F̂ (−iτ)ψ = (−iτ)F̂ψ for all ψ ∈ Hf ⊗ �2. Specifically, this

means that if ψ is an eigenvector of −iτ corresponding to the eigenvalue I3 then the same is
true for F̂ψ since

− iτ F̂ψ = F̂ (−iτ)ψ = I3F̂ψ. (8.5.8)

In other words, the operators for the strong nuclear force preserve the total isospin of any
physical system.

One may wonder what kind of physical process corresponds to the action of Π(SU(2)) on
the Hilbert space of a nucleon? The answer was given by Yukawa in 1934 when he suggested
that the strong nuclear force is due to an exchange of particles of a previously unknown type
(later named mesons). Yukawa predicted that these new particles should have spin 0, a rest
mass of about 200 times that of the electron’s and electric charges of ±e[31]. In his own
words:

“In order to obtain exchange forces, we must assume that these mesons have
the electric charge +e or −e, and that a positive (negative) meson is emitted
(absorbed) when the nucleon jumps from the proton state to the neutron state,
whereas a negative (positive) meson is emitted when the nucleon jumps from
the neutron to the proton. Thus a neutron and a proton can interact with each
other by exchanging mesons just as two charged particles interact by exchanging
photons.” (From Yukawa’s Nobel lecture given in 1949.)

There were no particle accelerators in 1934 capable of generating the required energy, but
physicist believed that mesons could be observed in cosmic rays. In the early 1930s Anderson
and Neddermeyer observed tracks in their cloud chamber which they initially believed to be
the tracks of ultra high energy electrons subjected to new laws of nature. By 1936 they had
proven that the tracks had in fact been made by a previously unknown particle with a rest
mass somewhere between that of the electron’s and the proton’s. They therefore named it the
mesotron (“middle particle”) and for several years the mesotron was mistaken for Yukawa’s
meson ([32], p. 71). Their new particle eventually turned out to be a lepton which is now
called a muon or mu (when it had been confirmed that the muon was indeed a new particle
Rabi supposedly cried out “Who ordered that?”).

Yukawa’s pions π+ and π− were discovered at last in 1947 by Cecil Powell and Guiseppe
Occhialini. Their masses turned out to be approximately 139.6 MeV/c2. In addition to these
two pions a neutral pion π0 with a mass of about 135.0 MeV was discovered in 1950 by
Bjorklund et el. in the gamma emissions following the bombardment of various targets with
high energy protons ([33], pp. 370, 371). The transformations of a nucleon in connection with
pion absorption/emission are illustrated in figure 8.5.

Since the total isospin of the systems are conserved quantities we can deduce from these
interactions that the isospin projection number I3 of the pions π−, π0 and π+ are −1, 0 and
+1, respectively, which is in full agreement with equation (8.5.4) ((N = 3) ⇒ (I = 1) ⇒ (I3 =
−1, 0, 1)). Note that the value of I3 is the same for a pion as its electric charge Q expressed
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Figure 8.5: Nucleon absorption of pions.

in e, while for a neutron and a proton I3 = Q− 1/2. In general, the relation between I3 and
Q is given by the Gell-Mann–Nishijima formula

Q = I3 + Y/2, (8.5.9)

where Q is the hypercharge of a unified particle. The hypercharge Y depends on the repre-
sentation of SU(2). For a pion Y = 0 and for a nucleon Y = 1.

Let us now see how the physical action of a pion on a nucleon corresponds to the action
of Π(SU(2)) on the Hilbert space H = �2 of the nucleon. We know that �2 is a complex
2-dimensional irreducible representation of SU(2) (where we have chosen to identify the rep-
resentation with its module). In the same way, the Hilbert space of the pions is a complex
3-dimensional irreducible representation of SU(2).

With respect to isomorphism there is only one complex (n + 1)-dimensional irreducible
representation of SU(2), which is Symn�2 (symmetric tensors of rank n defined on (�2)⊗n).
Physicists call it the spin(n/2) representation of SU(2), but in the present context we may
call it the isospin(n/2) representation. Note that this is not the group Spin(m, n) which is
the double cover of SO(m, n) (see section 6.5).

So, the Hilbert space of a nucleon and a pion are realizations of the isospin(1/2) and
isospin(1) representation of SU(2), respectively. Moreover, Sym2

�2 is the complexification
of su(2), i.e.

Sym2
�

2 ∼= su(2)⊗� ∼= sl(2,�). (8.5.10)

The pions thus span the realization of a representation of sl(2,�). Since the pions are the force
carriers for the strong nuclear force, we can conclude that the Hilbert space Hf mentioned
above is in fact a realization of sl(2,�).
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Table 8.3: Properties of quarks. All quarks have spin 1/2 and their corresponding antiparticles have
the same rest masses m0 but the opposite electric charges Q. The data in this table comes from p. 90
in [28].

Quarks

Name Symbol Q [e] m0 [GeV/c2]
down d −1/3 ≈ 0.3
up u 2/3 ≈ 0.3
strange s −1/3 ≈ 0.5
charmed c 2/3 ≈ 1.5
bottom b −1/3 ≈ 4.5
top t 2/3 ≈ 171

8.6 Quarks

We have seen how a neutron and a proton can be unified into a single nucleon and how
the strong force between two nucleons is mediated by an exchange of pions. This is a good
approximation, but it is not entirely true since it is based on the idea that neutrons and
protons are fundamental particles.

We know today that they are in fact composed of quarks. There are six distinct types, or
flavors, of quarks (see table 8.3) and an equal number of antiquarks. The neutron is made
of one up quark and two down quarks, which we write as n = udd. Similarly, the proton is
made of two up quarks and one down quark, i.e. p = uud. Moreover, the pions have the
compositions π+ = ud̄, π0 = uū, dd̄, π− = dū (π0 is a linear combination of uū and dd̄, i.e.
its state vector is a linear combination of the uū and dd̄ states).

The strong and electromagnetic interactions preserve the six quark numbers Nf given
by

Nf
def= N(f)−N(f̄), f = d, u, s, c, b, t, (8.6.1)

where N(f) is the number of quarks of flavor f and N(f̄) the number of antiquarks of flavor
f̄ within an isolated system.

However, the weak interaction only preserves the total quark number Nq defined by

Nq
def= N(q)−N(q̄), (8.6.2)

where N(q) and N(q̄) are the total number of quarks and antiquarks, respectively, of arbitrary
flavors.

It is therefore convenient to define a baryon number B as

B
def= Nq/3 = [N(q)−N(q̄)]/3 (8.6.3)

which is preserved by all of forces in the standard model.
There are also quantum numbers called strangeness (S), charm (C), bottom (B̃) and

top (T ), which are defined as

S
def= −Ns, C

def= −Nc, B̃
def= −Ns, T

def= −Nt. (8.6.4)
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Quarks participate in the strong interaction which is flavor independent. This means
that at a given distance between two quarks the strong force between them does not depend
on their flavors. The flavor independence of the strong force is the reason why the strong
nuclear force affects neutrons and protons equally much. It is also the reason why we can
group hadrons into sets of particles with approximately the same masses and consider the
particles within each set as different states of a single particle corresponding to different
isospin projection numbers. Such sets are called charge multiplets. The particles within a
charge multiplet have the same baryon number, strangeness, charm and bottom but different
electric charges. Examples of charge multiplets are of course (p, n) and (π+, π0, π−).

Moreover, the hypercharge Y of a hadron is defined by

Y
def= B + S + C + B̄ + T. (8.6.5)

A set of hadrons with the same spin, parity and baryon number is called a supermultiplet.
Meson supermultiplets have nine constituent particles and are therefore called nonets, while
baryon supermultiplets have one, eight or ten constituent particles and are called singlets,
octets and decuplets. If one considers mason states with spin-parity 0− (quarks and anti-
quarks have opposite parities) composed of u, d and s quarks then one finds the multiplets
(K0, K+), (K̄0, K−) and (π+, π0, π−) and two neutral particles which are denoted by η and
η′. Together these particles form a nonet which can be shown on a plot of Y as a function of
I3 (see figure 8.6). A baryon octet is shown in figure 8.7.
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Figure 8.6: A meson supermultiplet.

The quark model has been very successful, but at first glance it does raise some interesting
questions. For instance, why are all the observed basic hadrons either baryons (qqq, q̄q̄q̄) or
mesons (qq̄)? Also, the quarks in for instance the baryon Ω− = sss are in the same spatial
and spin state, which seems to violate the Pauli principle. So how is this possible?

In order to answer these questions one has to assume that quarks have another degree of
freedom called color. Any quark can be in one out of three different color states called red
(r), green (g) and blue (b), and an antiquark can be in one out of the three anti-color states
r̄, ḡ and b̄. These states are characterized by two quantum numbers called color charges,
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Figure 8.7: A baryon supermultiplet.

Table 8.4: Color charges for different color states for quarks and antiquarks.

Quarks IC
3 Y C Antiquarks IC

3 Y C

r 1/2 1/3 r̄ −1/2 −1/3
g −1/2 1/3 ḡ 1/2 −1/3
b 0 −2/3 b̄ 0 2/3

namely color isospin IC
3 and color hypercharge Y C. These quantum numbers depend

only on the color states (r, g, b) and not on the flavors (d, u, s etc.). Also note that IC
3 and Y C

are both preserved under the strong interaction. The values of the color charges for different
color states are shown in table 8.4. These values are the result of a symmetry for the strong
force called SU(3) color symmetry.

For multiparticle states the total color charges are the sums of the color charges of the
individual states. The color confinement hypothesis states that sets of quarks can only be
observed as free particles if their total color charges are zero. The corresponding multiparticle
states are called color singlets (we will see in the next section that this is not the actual defi-
nition of a color singlet). Color confinement implies that baryons have the color combination
rgb and that mesons have the color combinations rr̄, gḡ and bb̄. Since a combination of red,
green and blue gives the color white one say that hadrons have to be “white” or “colorless”
(one can imagine that an anti-color cancels out a color).

8.7 The Eightfold Way

With our new knowledge of particle physics we are ready to take the next step by approaching
it from a group theoretical point of view. The aim is to find a physical interpretation of the
root and weight diagrams from chapter 5 which we already have established correspond to
irreducible representations. These irreducible representation can in turn be used to classify
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particles depending on how they transform. For external symmetries we saw that particles
fall into massive or massless irreducible representation of the Poincaré group. Figure 8.7 has
already hinted what the root diagram from chapter 5 can be interpreted as.

The Eightfold Way is a theory to organize our mesons and baryons into irreducible repre-
sentations of the symmetry group of which our mesons and baryons transform under. Since
mesons and baryons are bound states of quarks, we begin by finding the irreducible represen-
tations for the three lightest quarks u, d and s. Gell-Mann postulated that the three quarks
form a basis for �3 where each quark is given by

u =

⎛
⎜⎝1

0
0

⎞
⎟⎠ , d =

⎛
⎜⎝0

1
0

⎞
⎟⎠ , s =

⎛
⎜⎝0

0
1

⎞
⎟⎠ . (8.7.1)

The antiquarks form a basis for the dual space (�3)∗ where each antiquark is given by

ū =
(
1,0,0

)
, d̄ =

(
0,1,0

)
, s̄ =

(
0,0,1

)
. (8.7.2)

It turns out that (8.7.1) are the basis for the module of the fundamental representation for
sl(3,�). This can be verified if we consider the action of the Cartan elements π(x3) = π(h1)
and π(z8) = π(h2), given by (5.3.5), on the three quark states u, d and s. For example,

π(h1)u = 1
2

⎛
⎜⎝1 0 0

0 −1 0
0 0 0

⎞
⎟⎠
⎛
⎜⎝1

0
0

⎞
⎟⎠ = 1

2

⎛
⎜⎝1

0
0

⎞
⎟⎠ ,

π(h2)u = 1
3

⎛
⎜⎝1 0 0

0 1 0
0 0 −2

⎞
⎟⎠
⎛
⎜⎝1

0
0

⎞
⎟⎠ = 1

3

⎛
⎜⎝1

0
0

⎞
⎟⎠

π(h1)d = 1
2

⎛
⎜⎝1 0 0

0 −1 0
0 0 0

⎞
⎟⎠
⎛
⎜⎝0

1
0

⎞
⎟⎠ = −1

2

⎛
⎜⎝0

1
0

⎞
⎟⎠ ,

π(h2)d = 1
3

⎛
⎜⎝1 0 0

0 1 0
0 0 −2

⎞
⎟⎠
⎛
⎜⎝0

1
0

⎞
⎟⎠ = 1

3

⎛
⎜⎝0

1
0

⎞
⎟⎠ .

(8.7.3)

That is, u and d are two eigenstates to the Cartan elements π(h1) and π(h2) with eigenvalues
(1/2, 1/3) and (−1/2, 1/3), respectively. In a similar way we will find that s is the third eigen-
state with eignevalues (0, − 2/3). But this is just the fundamental representation for sl(3,�)
presented in section 5.3 by the weight diagram 5.5. We now have the physical interpretation
of the irreducible representation denoted 3 talked about in section 5.3. Thus, the three quark
states u, d and s form the fundamental representation for sl(3,�). u is the highest weight
state corresponding to Λ1. With this in mind it is not an entirely unfounded guess that the
antiquarks constitute the antifundamental representation 3̄.
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The antifundamental representation is the complex conjugate of the fundamental repre-
sentation. If we take the complex conjugate of the commutation relations for sl(3,�) we
obtain

[π(ti)∗, π(tj)∗] = −ifijkπ(tk)∗ ⇒ [−π(ti)∗, − π(tj)∗] = ifijk(−π(tk)∗) (8.7.4)

where the π(ti,j,k) is a representation of the Lie algebra elements and fijk are the real structure
constants. From (8.7.4) we see that −π(h1)∗ and −π(h2)∗ are elements from the antifunda-
mental representation. It is now easy to see that the three antiquarks ū, d̄ and s̄ are eigenstates
to −π(h1)∗ and −π(h2)∗. For example

−π(h1)∗s̄ = 1
2

(
0, 0, 1

)⎛⎜⎝−1 0 0
0 1 0
0 0 0

⎞
⎟⎠ = 0

−π(h2)∗s̄ = 1
3

(
0, 0, 1

)⎛⎜⎝−1 0 0
0 −1 0
0 0 2

⎞
⎟⎠ = 2

3

(
0, 0, 1

)
,

(8.7.5)

i.e. s̄ is an eigenstate with eigenvalues (0, − 2/3) known as the highest weight state for the
antifundamental representation corresponding to Λ2. The other antiquarks states d̄ and ū
have eigenvalues (1/2, − 1/3) and (−1/2, − 1/3), respectively. Thus, the three aniquark
states ū, d̄ and s̄ form the antifundamental representation for sl(3,�).
What we have found so far is that the quarks and antiquarks constitute the 3-dimensional
irreducible representations obtained in section 5.3. These quarks are simultaneous eigenstates
to the two Cartan operators π(h1) and π(h2) which corresponds to the two physical observ-
ables; isospin projection and hypercharge mentioned in the previous section. Our quark states
can thus be labeled with isospin projection I3 and hypercharge Y . This means that the so
far unknown labels x and y in figure 5.4 and 5.5 can be changed to I3 and Y , respectively.
This is illustrated in figure 8.8 and 8.9. Let us now consider the mesons. They consist of
one quark and one antiquark. This compound system is thus a tensor product of a quark and
an antiquark state,

V = �3 ⊗ (�3)∗, (8.7.6)

thus giving us a 9-dimensional representation with module V . This representation is reducible
into two irreducible representations; one 1-dimensional and one 8-dimensional. The meson
states can be obtained since we have the quark and antiquark states. For example, the π+

meson consist of one u quark and one d̄ antiquark,

u⊗ d̄ =

⎛
⎜⎝1

0
0

⎞
⎟⎠⊗ (0,1,0

)
=

⎛
⎜⎝0 1 0

0 0 0
0 0 0

⎞
⎟⎠ . (8.7.7)

This is the π(e1) element from the adjoint representation. The π− is the antiparticle to π+,
i.e. consists of one d quark and one ū antiquark

d⊗ ū =

⎛
⎜⎝0

1
0

⎞
⎟⎠⊗ (1,0,0

)
=

⎛
⎜⎝0 0 0

1 0 0
0 0 0

⎞
⎟⎠ (8.7.8)
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ud
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Figure 8.8: The three lightest quarks u, d and s in the fundamental representation for sl(3,�).

Y

0),(0

s̄

ū d̄

3)/2,(0

3)/1−,2/(13)/1−,2/1−(

3I

Figure 8.9: The three lightest antiquarks ū, d̄ and s̄ in the antifundamental representation for
sl(3,�).

which is the π(f1) element of the adjoint representation. The operation that has been made
is called outer product, see appendix B.3. If we do the same thing for the kaon particles
K0, K+, K̄0 and K̄+ we will discover that these are the other six step operators in the
adjoint representation. The η, η′ and the π0 mesons are the remaining elements in the 9-
dimensional representation whereof η and the π0 are the two Cartan elements in the adjoint
representation. η′ is thus in the 1-dimensional trivial representation. This 9-dimensional
representation is recognized as the nonet mentioned previously, see figure 8.10.
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Figure 8.10: The 9-dimensional reducible representation for sl(3,�).

In summary, the eight mesons π+, π0, π−, K0, K+, K̄0, K̄+ and η consitute the adjoint
representation for sl(3,�), the Eightfold Way. The Eightfold Way is illustrated in figure 8.11.
This figure shows the direct sum of the Eightfold Way and the trivial representation, the
nonet.

To every root α in 5.2 we associate a meson. Since the mesons sit in the adjoint represen-
tation, the weights are the roots. The roots are the eigenvalues to the two observables isospin
projection and hypercharge, e.g. π+ has isospin projection 1/2 and hypercharge 0. The eight
mesons that we have talked about so far are spin 0-particles but the Eightfold Way is equally
applicable to the spin 1 mesons.

Y

0),(0 0),(10),1−(

1),2/1−( 1),2/(1

1)−,2/(11)−,2/1−(

0K +K

−K

+π−π
0π

′η

0K̄

3I

Y

0),(0

η

3I

⊕

Figure 8.11: The direct sum of the 8-dimensional adjoint representation and the 1-dimensional
trivial representation for sl(3,�). The result of this sum is the nonet seen in figure 8.10.

Baryons consist of three quarks. This means that the representation of which these parti-
cles fall into is 27-dimensional, which is reducible into irreducible representations. Figure 8.6
shows one of the irreducible representations; the 8-dimensional.

In section 4.4 we used the complexified Lie algebra sl(2,�) to obtain representations
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for su(2). The same thing can be done for SU(3), i.e. we use SL(3,�) representations as
representations for SU(3). The SU(3) symmetry that we have talked about so far is called
the flavor SU(3) symmetry which means that the physics is invariant under the change of
two quarks4. This symmetry is not fully met due to the small differences in mass and charge
between the quarks which makes flavor SU(3) an approximate symmetry.
We mentioned color SU(3) symmetry in the previous section as the symmetry connected
to the color and the strong force. That is, the strong force is invariant under the change of
color. This is an exact symmetry in contrast to the flavor symmetry. We must be careful to
distinguish between flavor SU(3) and color SU(3). It is the same group but corresponds to
different symmetries. From tabel 8.4 and the discussion at the end of the previous section
we know that quarks can have 3 different colors. Gluons, on the other hand, can have eight
different colors. The three colors r, g and b form the fundamental representation and the
anticolors r̄, ḡ and b̄ form the antifundamental representation in complete analogy with the
quarks, i.e.

r =

⎛
⎜⎝1

0
0

⎞
⎟⎠ , g =

⎛
⎜⎝0

1
0

⎞
⎟⎠ , b =

⎛
⎜⎝0

0
1

⎞
⎟⎠ . (8.7.9)

We can reuse figure 8.8 and 8.9 by just replacing the quarks to colors according to (8.7.9) and
change the axis to IC

3 and Y C . Both mesons and gluons must carry a color and an anticolor
charge thus taking the tensor product again will give us the color states for mesons and
gluons. Just like before, this 9-dimensional representation is reducible into a 1-dimension and
an 8-dimensional representation. In the 8-dimensional representation, there are six different
color states, corresponding to the ladder operators, with non-zero color charges. These have
to be the gluons’ color states since mesons have to be color singlets. The other two are
colorless states corresponding to the Cartan elements, but still in the 8-dimensional adjoint
representation. So, it is not really sufficient to say that a color singlet is a state with zero
color charges. It has to transform trivially, i.e invariant under SU(3). Thus, the color state
of meson fall into the 1-dimensional representation and the color states for gluons into the 8-
dimensional adjoint representation. Since the color part Ψcolor of the wavefuncion is invariant,
its matrix representation must be proportional to the unit matrix,

Ψcolor = 1√
6

(rr̄ + gḡ + bb̄). (8.7.10)

This is the color-wave function that all the mesons are in. The other color-wave functions are
given by rb̄, rḡ, gr̄, gb̄, br̄, bḡ, 1√

2(rr̄ − gḡ) and 1√
3(rr̄ + gḡ − 2bb̄). We obtain the last two

by considering a particular linear combination of rr̄, gḡ and bb̄ that will give us the Cartan
elements.

8.8 Concluding Remarks and Future Prospects

As we have discovered in this chapter it is possible to classify particles according to flavor
and color invariance with the aid of gauge symmetries. We have also examined approximate
symmetries such as isospin for the neutron and proton as well as the Eightfold Way of mesons.

4The flavor independence of the strong force that we talked about in the previous section is an example of
this.
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Hence we may now take the leap and appreciate the implications of the full gauge symmetry
group

GSM = U(1)× SU(2)× SU(3) (8.8.1)

of the Standard Model of particle physics, where we encounter the gauge group SU(3) as-
sociated with color and U(1) × SU(2) which describes the electroweak interaction which we
encountered in chapter 7. Combined with the previous remarks about the irreducible repre-
sentations of the Poincaré group and the Coleman-Mandula theorem we are able to classify
elementary particles. They are irreducible representations of the Poincaré group of spacetime
symmetries and the gauge group of internal symmetries of the Standard Model. However,
the story does not end here... There may be several other particles and symmetry groups
out there. The interested reader is referred to discussions about grand unified theories [30]
and supersymmetry [23]. A few other topics of interest for future surveys are presented below.

In 1979 the Nobel prize of physics was awarded to Sheldon Glashow, Abdus Salam and
Steven Weinberg for their unification of electromagnetism and the weak interaction through
the gauge group U(1) × SU(2). However, at our ordinary energy scales we do not perceive
these phenomena in the same way. Beta decay in heavy atomic nuclei (associated with the
weak interaction) and the magnetic force of a horseshoe magnet (electromagnetism) show few
similarities at a first glance. Yet, if the energy is increased these forces are of the same kind.
Moreover, electromagnetism is mediated via massless photons and the weak force by massive
W ±- and Z0-bosons. The weak force also has a very short range (since its gauge bosons are
massive) while the electromagnetic force has infinite range. How can these two forces be the
same thing? This “broken symmetry” of U(1)×SU(2) at lower energy scales can be explained
with the Higgs mechanism, see chapter 20 in [6] and chapter 18 in [4]. Roughly one assumes
that there is a non-zero scalar field of the vacuum similar to our first scalar field introduced
in chapter 7, the Higgs field, which gives mass to the W ±- and Z0-bosons and this causes
a spontaneous breakdown of U(1)× SU(2) to the U(1) gauge group of electromagnetism on
small energy scales. On larger energy scales this mass difference is irrelevant and the forces
unite. The Higgs field also gives mass to electrons and quarks mediated via the Higgs boson,
which may be found experimentally at CERN in the near future. This is an excellent subject
for future students in this field and might result in a few other books.

The latest Nobel prize awarded for works on symmetry in particle physics was announced
in 2008 and given to Yoichiro Nambu, Makoto Kobayashi and Toshihide Maskawa as a token
of recognition for their work on spontaneously broken symmetry in particle physics. Nambu
proposed the color charge of QCD while Kobayashi’s and Maskawa’s accomplishment lies in
the description of CP-violation which is a violation of the symmetries of charge (C) and parity
(P). Naively, if you perform an experiment with antiparticles with the opposite charge of the
ordinary particles and interchanges right and left you should obtain the same result. Yet,
experiments during the 1960-1970’s showed otherwise. Together with the physicist Nicola
Cabibbo they constructed the unitary Cabibbo-Kobayashi-Maskawa matrix (CKM-matrix)
which provides information on the strength of flavor-altering weak decays, see chapter 20 of
[6]. With its aid Kobayashi and Maskawa predicted in 1973 that there should be at least
three families of quarks in nature. Their foresight was experimentally verified in 1977 with
the discovery of the bottom quark and the finding of the top quark in 1995. This is yet
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another important example of how group theory interacts with particle physics which may
serve as inspiration for future study and shows the vitality of the field today.

With these concluding remarks, our survey reaches its end. We hope that the reader has
gained a valuable insight in the mathematical description of the symmetries of the funda-
mental laws of nature and wishes to proceed in this field of theoretical physics with scientific
endeavor and an open mind.

The End
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Appendix A

Some Topological Notions

For the readers who are quite unfamiliar with words such as “manifold” and “topology”, here
is a brief review. Initially, we will define what a topological space is as well as a manifold.
Moreover we will discern the differences between compact and open manifolds. However, be
aware that some of the definitions are not complete, some things are intentionally omitted in
order to create a manageable text. If one is interested in a more complete picture, Geometry,
topology and physics by M. Nakahara is an excellent source. [7]

Definition A.0.1. A topological space is a set X together with a collection of open subsets
T which adhere to the following axioms:

(i) The empty set ∅ is in T .

(ii) X is in T .

(iii) The intersection of a finite number of sets in T is also in T .

(iv) The union of an arbitrary number of sets in T is also in T .

It is also possible to define it with a collection of closed subsets T by replacing intersection
with union in the axiom list above.

Now, let us have a look at manifolds.

Definition A.0.2. A manifold is a topological space of dimension n where every point has
a neighborhood which is topologically the same as the open unit ball in �n. Globally it might
have a different structure.

Definition A.0.3. A differentiable manifold is a manifold which has a globally differ-
entiable structure, i.e. such a structure that it is possible to do differential calculus on the
manifold. One can describe a manifold locally in terms of charts whose coordinates are con-
verted to one another through transition maps. To ensure a global differentiable structure,
the coordinates of each chart in the domains where charts overlap must be differentiable with
respect to the coordinates defined by each chart in the atlas. The atlas describes the manifold
globally and is patched with charts.
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Moreover, we need to have some idea what a closed manifold, compact manifold and an open
manifold are.

Definition A.0.4. A closed manifold is a manifold with a compact topological structure
without boundary. A compact manifold on the other hand is defined likewise although it has
a boundary, which may be empty. An open manifold is a manifold with neither boundary
nor any compact component.

Likewise, it is advised to have encountered the concept of connectedness.

Definition A.0.5. A matrix Lie group G is connected if there for any two matrices A1, A2 ∈
G exists a continuous path A(t) in G where a ≤ t ≤ b such that A(a) = A1 and A(b) = A2. In
topology, this is almost but not quite the same as path-connected. Moreover, a connected
matrix Lie group G is simply connected if every loop in G can be contracted continuously
to a point in G. That is, G is simply connected if given any continuous path in G, A(t) where
a ≤ t ≤ b and A(a) = A(b), there exists a continuous function A(s,t) with a ≤ s, t ≤ b which
takes values in G such that

(i) A(s,a) = A(s,b) ∀s

(ii) A(a,t) = A(t)

(iii) A(b,t) = A(b,a) ∀t

SU(2) is simply connected with regard to the definition above, since we have seen that is
isomorphic to the 3-sphere S3, which can be shrunk to a smaller sphere and ultimately to a
point without any discontinuity troubles.

Moreover, a Lie group although itself is a manifold can act on another manifold. For instance,
we have observed that representations of SO(3) acts on �3. The definition of action follows
below.

Definition A.0.6. Let G be a Lie group and M a manifold. Then the action of G on M is
a differential map σ : G ×M→M which satisfies

(i) σ(e, p) = p for any p ∈M where e is the identity element of G
(ii) σ(g1, σ(g2, p)) = σ(g1g2, p) for any p ∈M and for any g1, g2 ∈ G.

With this definition, we can now establish the origin of the term little group, which we
encounter when examining the Lorentz group.

Definition A.0.7. Suppose G is a Lie group and M is a manifold. The little group (or
isotropy/stabilizer group) of p ∈M is a subgroup H(p) of G defined according to

H(p) = {g ∈ G|σ(g, p) = p} . (A.0.1)

It is possible to show that H(p) is a Lie subgroup ([7], p. 181).
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Appendix B

Tensors

In this survey we have performed numerous tensor calculations. For the readers who are
unfamiliar with such concepts this appendix gives a short introduction to tensors and tensor
calculus.

B.1 Definitions and Properties

A tensor is a mathematical object which is associated with a specific vector space and defined
by the way it transforms under a change of coordinate system for that vector space. We will
soon give the formal definition of a tensor, but let us first explore some of the properties of
tensors.

Tensors are denoted by “kernel” symbols such as A, b, ε etc. Specific components of a
tensor are denoted by the tensor’s kernel symbol adorned with numerical indices (subscripts
and/or superscripts), A 2

1 , b3, ε123 etc., while a general component is denoted by algebraic
indices, A j

i , bi, εijk etc. Note though that in most literature a general component of a tensor
is identified with the tensor itself, i.e. one speak of the tensor A j

i , the tensor bi etc.
The number of indices is called the rank of the tensor and one usually let the indices range

over the values 1, 2, . . . , N , where N is the dimension of the associated space. However, in
special relativity it is customary to let the indices range from 0 to 3 rather than from 1 to
4. In special relativity one also let lower case Latin letters (i, j, k etc.) range from 1 to 3 and
lower case Greek letter (μ, ν, σ etc.) range from 0 to 3. The total number of components of a
rank n tensor is Nn.

Tensors of rank zero are called scalars while tensors of rank one and two are called vectors
and matrices, respectively (note that these are not the definitions of scalars, vectors and
matrices).

While the horizontal positions of the indices are important for specifying the components
of a tensor, the vertical positions are not. For instance, the element A12 of a tensor A is
the same element as A12, A 2

1 and A1
2. However, the vertical positions of the indices are

important in the sense that they decide how the components of a tensor transform under a
change of coordinate system (see definition B.1.1). They are also important in connection
with Einstein’s summation convention which states that if an index appears twice in a
single term, once as a subscript and once as a superscript, then a summation over the range
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of the index is implied. For example, if i = 1, 2, . . . , N then

AiB
i def=

N∑
i=1

AiB
i. (B.1.1)

Such double indices are called dummy indices while single indices are called free indices.
If a free index is in a tensor equation then it must appear precisely once in every term of the
equation. Such an index may be replaced by another index if it is replaced in every term. A
dummy index pair can be replaced by another dummy index pair in one or several terms of
an equation, but no index of any kind may appear more than twice in a single term. Note
that one may never replace any kind of index by a pre-existing index!

Also note that a tensor equation written in general component form, for instance A j
i =

B j
i , must hold for all admissible values of the free indices. Moreover, the free indices on

the left hand side of the equation must match the free indices on the right hand side of
the equation in terms of the number of free indices, their designations and vertical (but not
horizontal) positions. The factors of any given term in such an equation can be written in an
arbitrary order if the components of the tensors involved are merely numbers. For instance,
if A and B are ordinary matrices then A j

i Bjk = BjkA j
i . This rule follows directly from

the commutativity of real and complex numbers. However, if the factors are operators then
naturally their order may only be reversed if the operators commute with each other.

Two tensors are said to be of the same type if they have the same number of free indices
(both subscripts as well as superscripts). If two tensors of the same type have the same
components in all relevant coordinate systems then they are by definition equal.

An antisymmetric tensor (or alternating tensor) is defined as a tensor for which
every component changes sign whenever two indices trade places. For instance, a matrix A
is antisymmetric iff for all admissible values of the indices i and j

Aij = −Aji. (B.1.2)

Note that if i = j then condition (B.1.2) implies that Aii = 0 for all i. In general, an
antisymmetric tensor of any rank (≥ 2) must have 0-components whenever two indices have
the same value. Also note that since a tensor can be antisymmetric in for instance two
indices but not all indices, a tensor which satisfies the requirement above is sometimes called
a completely antisymmetric tensor.

Moreover, a (completely) symmetric tensor is analogously defined as a tensor for which
every component retains the same value whenever two indices trade places.

Any given tensor A of rank 2 can be uniquely decomposed into a sum of a symmetric
tensor B and an antisymmetric tensor C of the same type. For instance: Aij = Bij + Cij .
The condition that B should be symmetric and C antisymmetric gives the following system
of coupled linear equations:{

Aij = Bij + Cij

Aji = Bji + Cji

⇔
{

Aij = Bij + Cij

Aji = Bij − Cij

⇔
{

Bij = (Aij + Aji)/2
Cij = (Aij −Aji)/2

(B.1.3)

The indices of the symmetric tensor B’s components are usually written within ordinary
parentheses while the indices of the antisymmetric tensor C’s components are written within
square brackets. So for the example above we would write: Aij = A(ij) + A[ij], where A(ij) =
Bij and A[ij] = Cij .
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Note that we cannot in general write a tensor A of rank 3 or higher as a sum of a symmetric
tensor B and an antisymmetric tensor C. The reason for this is that there are n(n − 1)/2
different ways to select two free indices to switch out of n free indices. The symmetric nature
of B and antisymmetric nature of C would therefore lead to a system of n(n−1)/2+1 coupled
linear equations with only two variables, which cannot in general be solved. For instance,
for a rank 3 tensor A with a general component Aijk we would end up with a system of four
linear equations ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Aijk = Bijk + Cijk

Aikj = Bijk − Cijk

Ajik = Bijk − Cijk

Akji = Bijk − Cijk

(B.1.4)

which is only solvable if Aikj = Ajik = Akji.
However, one can always decompose any given tensor into a sum of a tensor which is

symmetric in two arbitrary indices and a tensor which is antisymmetric in the same indices.
For instance:

A def
abc = A def

(ab)c + A def
[ab]c , (B.1.5)

where

A def
(ab)c = 1

2

(
A def

abc + A def
bac

)
(B.1.6)

A def
[ab]c = 1

2

(
A def

abc −A def
bac

)
. (B.1.7)

Moreover, primed indices are used to distinguish between the same components in different
coordinate systems: b1, . . . , bN ; b1′

, . . . , bN ′ ; b1′′
, . . . , bN ′′ etc. Sometimes the kernel is primed

instead of the indices. For example: A
′
ijk.

In section B.4 we will see that in special relativity partial derivatives of tensors are them-
selves tensors. For instance, if x = (x0, x1, x2, x3) is a four-tensor (the definition of four-
tensors will soon be given) then

∂x

∂xμ
=
(

∂x0

∂xμ
,

∂x1

∂xμ
,

∂x2

∂xμ
,

∂x3

∂xμ

)
(B.1.8)

∂x

∂xμ′ =
(

∂x0

∂xμ′ ,
∂x1

∂xμ′ ,
∂x2

∂xμ′ ,
∂x3

∂xμ′

)
(B.1.9)

∂x′

∂xμ
=
(

∂x0′

∂xμ
,
∂x1′

∂xμ
,
∂x2′

∂xμ
,
∂x3′

∂xμ

)
etc. (B.1.10)

are also tensors, where x′ is x in another inertial frame.
In special relativity we may therefore multiply two partial derivatives componentwise, for

instance
∂xμ

∂xσ

∂xσ

∂x′μ , (B.1.11)

and then use Einstein’s summation convention on the product.
However, we will also see in chapter B.4 that in general relativity, as well as in many

other areas of application of tensor calculus, derivatives of tensors are not tensors themselves.
Nevertheless, in order to simplify our formulas we will always sum over repeated indices in
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partial derivatives (even when the latter are not tensors). For the same reason, we will also
write partial derivatives in coordinate transformations as

pi′
i

def= ∂xi′

∂xi
, pi

i′
def= ∂xi

∂xi′ , (B.1.12)

where p stands for partial. Note that the superscripts of p:s have been placed directly over
the subscripts as a reminder of the fact that these objects might not be tensors.

Moreover, when we make a change of coordinates we will implicitly assume that the
transformation is non-singular and that the functions involved are differentiable.

Let us now define a tensor. Remember that a tensor is defined by the way it transforms
under a change of coordinate system!

Definition B.1.1. Since an object may behave as a tensor under a certain set of coordinate
transformations, but not in general, we restrict our attention to specific transformations.
There are three cases:

(i) An object A with the components Aij...n in the {xi} coordinate system and the com-
ponents Ai′j′...n′ in the {xi′} coordinate system is said to behave as a contravariant
tensor under the transformation {xi} → {xi′} iff

Ai′j′...n′ = Aij...npi′
i pj′

j . . . pn′
n . (B.1.13)

(ii) Similarly, an object A with the components Aij...n in the {xi} coordinate system and
the components Ai′j′...n′ in the {xi′} coordinate system is said to behave as a covariant
tensor under the transformation {xi} → {xi′} iff

Ai′j′...n′ = Aij...npi
i′p

j
j′ . . . pn

n′ . (B.1.14)

(iii) Finally, an object A with the components Aij...m
no...q in the {xi} coordinate system and the

components Ai′j′...m′
n′o′...q′ in the {xi′} coordinate system (where the horizontal positions of

the subscripts relative to the horizontal positions of the superscripts may be selected
freely) is said to behave as a mixed tensor under the transformation {xi} → {xi′} iff

Ai′j′...m′
n′o′...q′ = Aij...m

no...q pi′
i pj′

j . . . pm′
m pn

n′po
o′ . . . pq

q′ . (B.1.15)

If an object is referred to as simply a tensor then it is understood that the object
behaves as a tensor under every non-singular differentiable coordinate transformation
for the associated vector space.

Note that (i) and (ii) are both special cases of (iii) and that there are multiple summations
in equation (B.1.13)–(B.1.15).

Objects which only behave as tensors under a subset of the set of all non-singular differen-
tiable coordinate transformations for the associated vector space are called qualified tensors.
Such tensors should be referred to by a name which indicates the subset in question. For in-
stance, four-tensors (or Lorentz-tensors) by definition behave tensorially under Poincaré
transformations ([34], p. 138).

The main theorem of tensor calculus states that if two tensors of the same type have
the same components in one coordinate system then they also have the same components
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in every other coordinate system. The proof follows directly from equation (B.1.15), which
shows that tensors of the same type transform in precisely the same way.

A direct consequence of the main theorem is that if a tensor equation is satisfied in one
coordinate system then it is also satisfied in every other admissible coordinate system. In
special relativity this means that if a physical law can be expressed as a relationship between
four-tensors then such a law will automatically be equally valid in every inertial frame.

B.2 Basic Tensors

A tensor B without any indices (a scalar) obeys the transformation rule B′ = B. Hence,
the value of such a tensor depends only on the position in space and not on the choice of
coordinate system.

We see in definition B.1.1 that if a tensor of a given type has all components equal to
zero in one coordinate system then the same is true in every other coordinate system. Such
a tensor is called the zero tensor (of its type) and its components are denoted by 0 without
any indices.

The most simple nontrivial contravariant tensor is the coordinate differential dx. This is
a contravariant tensor since

dxi′ = dxi dxi′

dxi
= dxipi′

i . (B.2.1)

Moreover, the most basic nontrivial covariant tensor is the gradient ∇φ. If we denote the
components of the gradient by φ,i then we have that

φ,i′
def= ∂φ

∂xi′ = ∂φ

∂xi

∂xi

xi′ = ∂φ

∂xi
pi

i′ = φ,ip
i
i′ , (B.2.2)

which proves that ∇φ is a covariant tensor.
The Kronecker delta δ is perhaps the most simple nontrivial example of a mixed tensor.

We can prove that it is a mixed tensor by first noticing its index substitution property

δ x
a Aabc...

def... =
N∑

a=1
δ x

a Aabc...
def... = Axbc...

def... , (B.2.3)

where A is an arbitrary tensor and where we have used the fact that δ x
a = 0 if a �= x and 1

if a = x.
With the help of this property we can write

δ j
i pi

i′p
j′
j = pj

i′p
j′
j = ∂xj

∂xi′
∂xj′

∂xj
= ∂xj′

∂xi′ = δ j′
i′ , (B.2.4)

where we have used the fact that xi′ and xj′ are independent coordinates when i′ �= j′.
Equation (B.2.4) proves that δ is a mixed tensor. Also note that δ is obviously a symmetric

tensor since it is the identity matrix.
An important example of an antisymmetric tensor is the Levi-Civita tensor (or permu-

tation symbol) ε, where

εijk =

⎧⎪⎪⎨
⎪⎪⎩

0, (i = j) ∨ (j = k) ∨ (i = k)
+1, (i, j, k) ∈ {(1, 2, 3), (3, 1, 2), (2, 3, 1)}
−1, (i, j, k) ∈ {(1, 3, 2), (2, 1, 3), (3, 2, 1)}

(B.2.5)
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B.3 Tensor Algebra

There are four basic arithmetical operations with tensors. They are called summation, outer
product, contraction and index permutation. All of these operations produce tensors from
other tensors.

The sum of two tensors A and B of the same but otherwise arbitrary type is defined as
the object C with the components

Cabc...
efg...

def= Aabc...
efg... + Babc...

efg... . (B.3.1)

We can prove that C is a tensor by writing

Ca′b′c′...
e′f ′g′... = Aa′b′c′...

e′f ′g′... + Ba′b′c′...
e′f ′g′...

= Aabc...
efg...p

a′
a pe

e′pb′
b pf

f ′ · · ·+ Babc...
efg...p

a′
a pe

e′pb′
b pf

f ′ · · ·
= (Aabc...

efg... + Babc...
efg...)pa′

a pe
e′pb′

b pf
f ′ · · ·

= Cabc...
efg...p

a′
a pe

e′pb′
b pf

f ′ · · · . (B.3.2)

Note that we assumed in the final step that the expression pa′
a pe

e′pb′
b pf

f ′ · · · has the same value
for A′ and B′. This is always true if we add tensors at the same point in space. However, it
is not true in general if we add tensors at different points. A sum of such tensors is therefore
usually not a tensor.

Next, let A and B be two tensors of arbitrary types. We define the outer product C of
A and B by simply merging the indices of A and B. For instance:

Cabc ghi
def jkl

def= Aabc
def Bghi

jkl . (B.3.3)

One can easily prove that this procedure gives a new tensor. The same is true for the
operations below.

Note that forming the outer product of two tensors of rank n and rank k, respectively, is
a simple way of creating a tensor of rank n + k.

To contract a tensor means to form the components of a new tensor by replacing two
different free indices, one subscript and one superscript, with a dummy index pair. For
instance, if Aab

cde is an arbitrary component of a tensor A then we can define a new tensor
B with the components

Ba
bc

def= Aax
cdx =

N∑
x=1

Aax
cdx. (B.3.4)

The term contraction is also used to describe the process of first forming the outer product
of two tensors and then summing over the dummy indices. For example:

AabB
b
c = C b

ab c =
N∑

b=1
C b

ab c
def= Cac . (B.3.5)

This composition of operations is also referred to as the inner product of two tensors. Note
that the inner product is not an elementary tensor operation.

Finally, index permutation simply means to define the components of a new tensor by
rearranging the indices of the components of a given tensor. For example:

Bab
def= Aba. (B.3.6)
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Note that the fact that index permutation gives a new tensor means that if a tensor is sym-
metric/antisymmetric in a given coordinate system then it is also symmetric/antisymmetric
in every other coordinate system, since tensor equations such as

A b
a = A a

b , A b
a = −A a

b etc. (B.3.7)

are equally valid in every coordinate system.

B.4 Derivatives of Tensors

Let us for the sake of simplicity use the symbol

Aij...m
no...q, r

def= ∂

∂xr
(Aij...m

no...q ) (B.4.1)

to denote the partial derivative of a component of an arbitrary tensor A with respect to xr.
Moreover, let us define the partial derivative ∂A/∂xi of a tensor A with respect to xi

as a componentwise operation.
If we calculate the partial derivatives of both sides of equation (B.1.15) with respect to

xr′ then we obtain the transformation rule

Ai′j′...m′
n′o′...q′, r′ = Aij...m

no...q, rpi′
i pj′

j . . . pm′
m pn

n′po
o′ . . . pq

q′p
r
r′ + P1 + P2 + . . . , (B.4.2)

where P1, P2 etc. are terms with partial derivatives of the p:s.
For linear transformations the p:s are constants, which implies that the P :s vanish in

equation (B.4.2). In this particular case equation (B.4.2) defines a tensor transformation, but
the same cannot be said about general coordinate transformations.

By the same argument, higher order partial derivatives such as

Aij...m
no...q, rs

def= ∂2

∂xr∂xs
(Aij...m

no...q ) (B.4.3)

also behave as tensors under linear transformations but not under general transformations.
A similar argument also applies to the derivative dA/ dc of a tensor A with respect to a

scalar c.
As a practical example of tensor derivation let us consider partial derivatives of four-

tensors. The relevant coordinate transformation is the Poincaré transformation

x′ = Λx + a, (B.4.4)

where Λ is a constant matrix and a is a constant vector.
We can rewrite equation (B.4.4) on component form as

xμ′ = Λμ′
μxμ + aμ′

. (B.4.5)

In particular, four-tensors behave as tensors under homogenous Poincaré transformations,
which means that

xμ′ = Λμ′
μxμ and (B.4.6)

xμ′ = pμ′
μ xμ. (B.4.7)
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By comparing the right hand sides of these equations we notice that Λμ′
μ = pμ′

μ . We can
therefore write equation (B.4.5) on the form

xμ′ = pμ′
μ xμ + aμ′

. (B.4.8)

Taking the partial derivative of both sides of this equation with respect to (for instance) xν′

gives the equation

pμ′
ν′ = ∂xμ′

∂xν′ = pμ′
μ

∂xμ

∂xν′ = pμ′
μ

∂xμ

∂xν

∂xν

∂xν′ = ∂xμ

∂xν
pμ′

μ pν
ν′ = pμ

ν pμ′
μ pν

ν′ , (B.4.9)

which proves that the object ∂x/∂xν transforms as a tensor under Poincaré transformations.
However, note that in general relativity the transformation matrix is not constant and

partial derivatives are therefore not tensors.

B.5 Metric Spaces

A metric space is a set S together with a real valued global “distance” function g (called
the metric) which for all x, y, z ∈ S must satisfy the conditions

(i) g(x, y) = 0 ⇔ x = y

(ii) g(x, y) = g(y, x)

(iii) g(x, y) + g(y, z) ≥ g(x, z) (the triangle inequality).

Note that these conditions together imply that g(x, y) ≥ 0 for all x, y ∈ S, since

g(x, y) = [g(x, y) + g(x, y)]/2 (2)= [g(x, y) + g(y, x)]/2
(3)
≥ [g(x, x)]/2 (1)= 0. (B.5.1)

More specifically, a set S together with a real invariant quadratic form

ds2 def= gij dxi dxj , (B.5.2)

where g is an invertible matrix and generally a function of position x, is called a properly
Riemannian metric space if ds2 ≥ 0. Note that ds2 is the metric in such a space (dxi =
(y − x)i) and that it fulfills condition (i), (ii) and (iii) above.

If ds2 is not positive definite then the space is called pseudo Riemannian. Moreover,
it can be proven that the requirement that ds2 must be invariant implies that the matrix g
in equation (B.5.2) is a tensor, and it is therefore naturally referred to as a metric tensor.

Note that we can put components such as g12 and g21 in the sum on the right hand side of
equation (B.5.2) together in terms on the form (g12 + g21)x1x2. Since only the sum g12 + g21
and not the values of the individual terms g12 and g21 has any influence at all on the value of
the metric ds2, we may add the condition that g should be a symmetric tensor without any
loss of generality. For future reference, we will therefore always assume that metric tensors
are symmetric.

The inner product of any two vectors A and B in a properly or pseudo Riemannian
space is defined as

A ·B def= gijAiBj . (B.5.3)
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With the inner product (B.5.3) one can also define the square A2 and norm A of a vector
A in a Riemannian space as

A2 def= A ·A (B.5.4)

A
def= |A2|1/2. (B.5.5)

Note that in pseudo Riemannian spaces the inner product (B.5.3) is only a pseudo inner
product since it is not positive definite.

In Riemannian spaces there is also a fifth basic tensor operation in addition to the four
which were defined in section B.3. It is called raising and lowering of indices and it is
defined by the following equations:

gij def= (g−1)ij , (B.5.6)

A m o...
abc... x

def= gnxA mno...
abc... (B.5.7)

A x mno...
a c...

def= gbxA mno...
abc... , (B.5.8)

where A is a tensor of arbitrary type and the indices b and n were chosen at random.
Note that gnx = gxn, gbx = gxb and gij = gji since g is a symmetric tensor. Moreover,

the convention of writing subscripts and superscripts in a staggered form is only meaningful
in connection with the operation raising and lowering of indices. If one has no intention of
raising and lowering indices then an element A k

ij might as well be written as Ak
ij . The latter

notation is often used in introductory texts on tensor calculus.
The metric of spacetime is the Minkowski metric

ds2 def= −x2
0 + x2

1 + x2
2 + x2

3 = −c2t2 + x2 + y2 + z2 (B.5.9)

and the corresponding Minkowski metric tensor is denoted as η, where

η
def= diag(−1, 1, 1, 1) =

⎛
⎜⎜⎜⎝
−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎠ . (B.5.10)

Note that the definition of η follows directly from the definition of the Minkowski metric
and equation (B.5.2). Also note that due to different sign conventions for the metric η is
sometimes defined as diag(1,− 1,− 1,− 1).

The raising and lowering of indices is a particularly easy procedure in spacetime since for
an arbitrary four-tensor A

A0 = η0μAμ = −A0 (B.5.11)
Ai = ηiμAμ = Ai (i = 1, 2, 3). (B.5.12)

Let us now prove that preserving the Minkowski metric ds2 is equivalent with preserving
either the squared displacement Δs2 or the inner product x·y on spacetime. We mentioned
in chapter 6 that the transformation matrix Λ of an arbitrary Lorentz transformation satisfies
the equation

ημν Λμ
ρΛν

σ = ηρσ . (B.5.13)
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We therefore have the identities

ηρσ dxρ dyσ ≡ ημν Λμ
ρ dxρΛν

σ dyσ ⇔ dx2 ≡ dx′2 (B.5.14)
ηρσ(x− y)ρ(x− y)σ ≡ ημν Λμ

ρ(x− y)ρΛν
σ(x− y)σ ⇔ Δs2 ≡ (Δs′)2 (B.5.15)

ηρσxρyσ ≡ ημν Λμ
ρxρΛν

σyσ ⇔ x · y ≡ x′ · y′, (B.5.16)

where x and y are two arbitrary elements of �1, 3.
Moreover, if either one of the identities (B.5.14)–(B.5.16) is satisfied for all vectors x, y ∈

�
1, 3 then equation (B.5.13) must also be satisfied. We therefore conclude that these four

statements are in fact equivalent. This is the reason why Lorentz transformations are some-
times said to satisfy equation (B.5.13) and other times to preserve the Minkowski metric, the
squared displacement or the inner product on spacetime.

B.6 Formulas and Examples

The best way to learn tensor calculus is to actually perform calculations with tensors. Let us
therefore have a look at some simple formulas and examples. We will restrict our attention
to four-tensors since most of the calculation in this report involves that type of tensors.

The inner product, square and norm of two arbitrary vectors A, B ∈ �1, 3 are given by

A ·B = ημνAμBν = −A0B0 + A1B1 + A2B2 + A3B3 (B.6.1)
A2 = A ·A = −(A0)2 + (A1)2 + (A2)2 + (A3)2 (B.6.2)
A = |A2| = | − (A0)2 + (A1)2 + (A2)2 + (A3)2|1/2. (B.6.3)

Moreover, multiplication between a 4 × 4 matrix A and a vector b can be written in four
different ways as

(Ab)μ = Aμνbν or (Ab)μ = A ν
μ bν (B.6.4)

(Ab)μ = Aμ
νbν or (Ab)μ = Aμνbν . (B.6.5)

Similarly, multiplication between a matrix A and matrix B can be written on eight different
forms as

(AB)μν = AμρBρ
ν or (AB)μν = A ρ

μ Bρν (B.6.6)
(AB) ν

μ = AμρBρν or (AB) ν
μ = A ρ

μ B ν
ρ (B.6.7)

(AB)μ
ν = Aμ

ρBρ
ν or (AB)μ

ν = AμρBρν (B.6.8)
(AB)μν = Aμ

ρBρν or (AB)μν = AμρB ν
ρ . (B.6.9)

One of the most important aspects of solving a tensor equation is usually the rewriting of
expressions on a desirable form (which is known as “index gymnastics”). Let us therefore try
to rewrite a product of two matrices A and B and a vector b on component form with the
help of only equation (B.6.4):

(ABb)μ = A ν
μ (Bb)ν = A ν

μ B ρ
ν bρ. (B.6.10)

Notice that we only introduced new indices in the form of dummy index pairs.
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Finally, as we mentioned in section 6.3 contracting an antisymmetric tensor A of rank 2
with a symmetric tensor B of the same rank always gives a zero result. This is easy to show;
consider for instance

AμνBμν = Aνμ(−Bνμ) = {μ → ν, ν → μ} = −AμνBμν , (B.6.11)

which implies that AμνBμν = 0.
Specifically this means that contracting an antisymmetric tensor A of rank 2 with an

arbitrary rank 2 tensor C removes the symmetric part of C:

AμνCμν = Aμν(C(μν) + C [μν]) = AμνC [μν]. (B.6.12)
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Appendix C

Kets and Ket Spaces

In this appendix we will give a brief introduction to Hilbert spaces and Dirac notation.

C.1 Hilbert Spaces

Let us begin with the definition of a Hilbert space.

Definition C.1.1. A Hilbert space H is a finite or infinite dimensional vector space to-
gether with an inner product 〈·,·〉 such that the norm in H, defined by

|f | =
√
〈f, f〉, ∀f ∈ H, (C.1.1)

makes H a complete metric space.

If the metric given by the inner product is not complete then H is simply an ordinary inner
product space rather than a Hilbert space. Also note that due to the square root in equation
(C.1.1) the inner product has to be positive definite and may therefore not be a pseudo inner
product.

Every inner product space V is also a metric space, where the metric g is given by

g(u, v) = 〈u− v, u− v〉, u, v ∈ V. (C.1.2)

We will now define the specific choice of an inner product used in quantum mechanics before
we give the definition of a complete metric space.

Definition C.1.2. An Hermitian inner product 〈·,·〉 on a complex vector space V is a
complex valued function which for all u, v, w ∈ V and c ∈ � satisfies the conditions

(i) 〈u, v〉 = 〈v, u〉∗

(ii) 〈u + v, w〉 = 〈u, w〉+ 〈v, w〉
(iii) 〈cu, v〉 = c〈u, v〉
(iv) 〈u, u〉 ≥ 0, 〈u, u〉 = 0 ⇔ u = 0,

where 〈v, u〉∗ denotes the complex conjugate of 〈v, u〉.
A complex vector space with an Hermitian inner product is called an Hermitian inner

product space.
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Note that condition (i) and (iii) give that 〈u, cv〉 = c∗〈u, v〉. One say that the Hermitian
inner product is linear in its first argument and antilinear (or sesquilinear) in its second
argument.

Definition C.1.3. A complete metric space is a metric space in which every Cauchy
sequence converges. Moreover, a Cauchy sequence is a sequence {an}∞

n=1 such that the
metric g satisfies the condition

lim
min(m, n)→∞

g(am, an) = 0. (C.1.3)

C.2 State Vectors

In quantum mechanics the possible states of a physical system are represented by vectors in a
complex Hilbert space H. Such vectors are naturally called state vectors. State vectors on
the form cψ, where c �= 0 is an arbitrary complex number and 0 �= ψ ∈ H is a fixed state vector,
represent the same physical state and are said to belong to the same ray R = {cψ, c ∈ �} in
H. Since the constant c is of no physical significance one often normalize state vectors, which
also gives simpler formulas.

C.3 Dirac Notation

Let us now say a few words about the notation developed by P. A. M. Dirac called Dirac
notation (or bra-ket notation).

In this notation state vectors, which are called kets, are denoted on the form |·〉. The
state ket of a given physical system contains all the information about the state of the system
and is an element of the so called ket space H of the system, which is a complex Hilbert
space.

Since the ket space is a vector space two kets |ψ1〉, |ψ2〉 ∈ H may be added

|ψ1〉+ |ψ2〉 (C.3.1)

and their sum is another ket in H.
For the same reason, a scalar multiple c|ψ〉 of any ket in H with an arbitrary complex

number c is another ket in H. We also have that

c|ψ〉 = |ψ〉c, ∀c ∈ � and ∀|ψ〉 ∈ H, (C.3.2)

even though commutativity for multiplication by scalars is not required by the definition of
a vector space.

If c = 0 in equation (C.3.2) then the product is the null ket, which is denoted by 0.
Moreover, to every ket |ψ〉 in the ket space corresponds a bra 〈ψ| in the associated bra

space H∗. The bra 〈ψ| is the dual to the ket |ψ〉 and the bra space is the dual space to the
ket space (see appendix D for a definition of dual spaces). Note that the mapping |ψ〉 → 〈ψ|
is bijective and that the dual to c|ψ〉, where c ∈ �, is c∗〈ψ| rather than c〈ψ| ([14], p. 13).

More generally, we have that

c|ψ1〉+ d|ψ2〉 DC↔ c∗〈ψ1|+ d∗〈ψ2|, ∀|ψ1〉, |ψ2〉 ∈ H and ∀c, d ∈ �, (C.3.3)
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where DC stands for dual correspondence.
An arbitrary operator Â acting on the ket space acts on the kets from the left, Â|ψ〉, while

an arbitrary operator B̂ acting on the bra space acts on the bras from the right, 〈ψ|B̂. Note
that in general 〈ψ|Â is not the dual to Â|ψ〉.

An operator B̂ which satisfies the condition

Â|ψ〉 DC↔ 〈ψ|B̂, ∀|ψ〉 ∈ H (C.3.4)

is by definition the Hermitian adjoint of Â and it is denoted by Â†.
Two operators Â and B̂ are said to be equal (which is written as Â = B̂) iff

Â|ψ〉 = B̂|ψ〉, ∀|ψ〉 ∈ H. (C.3.5)

If Â = Â† then Â is called an Hermitian operator.
In Dirac notation the inner product of two arbitrary state vectors ψ1 and ψ2 is written

as
〈ψ2|ψ1〉 def= 〈ψ1, ψ2〉. (C.3.6)

Note that ψ1 and ψ2 traded places. This is necessary in order to make the inner product
linear on the “ket-side” and antilinear on the “bra-side” (se definition C.1.2).

The outer product of a given ket |ψ1〉 in H and a given bra 〈ψ2| in H∗ is denoted by
|ψ1〉〈ψ2| and defined as

(
|ψ1〉〈ψ2|

)
|ψ〉 def= |ψ1〉〈ψ2|ψ〉, ∀|ψ〉 ∈ H. (C.3.7)

Moreover, in quantum mechanics operator multiplication is in general associative, i.e. Â(B̂Ĉ) =
(ÂB̂)Ĉ, but noncommutative, i.e. ÂB̂ �= B̂Â.
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Appendix D

Dual Spaces

We mentioned in section 5.1 that the set V ∗ of all linear functions f : V → �, where V is a
vector space, is called the dual space to V and that the elements of V ∗ are called functionals.
A more general definition of a dual space is given below1.

Definition D.0.1. The dual space V ∗ to a given vector space V over a field F is the set
of all linear functions f : V → F . Such functions are by definition called functionals. Note
that V ∗ also becomes a vector space over F if vector addition and scalar multiplication on V ∗

are defined as:

(f + g)(x) def= f(x) + g(x), ∀f, g ∈ V ∗ and ∀x ∈ V (D.0.1)

(cf)(x) def= cf(x), ∀f ∈ V ∗,∀x ∈ V and ∀c ∈ F. (D.0.2)

If V is a finite dimensional vector space then V ∗ (as a vector space) has the same dimension
as V . Otherwise dim(V ∗) > dim(V ). Moreover, the elements of V ∗ are sometimes called
covectors or one-forms.

Let us now define a field.

Definition D.0.2. A field is a set F together with two binary operators + and ∗ which for
all a, b, c ∈ F satisfy the conditions:

Additive associativity: (a + b) + c = a + (b + c)

Additive commutativity: a + b = b + a

Additive identity: ∃0 ∈ F : 0 + a = a + 0 = a

Additive inverse: ∃(−a) ∈ F : a + (−a) = (−a) + a = 0

Multiplicative associativity: (a ∗ b) ∗ c = a ∗ (b ∗ c)

Multiplicative commutativity: a ∗ b = b ∗ a

Multiplicative identity: ∃1 ∈ F : 1 �= 0 and 1 ∗ a = a ∗ 1 = a

1To be precise, definition D.0.1 is the definition of an algebraic dual space. Every vector space has such
a dual space, but the dual space to a topological vector space also has a subspace of continuous functionals
known as a continuous dual space.

176



Multiplicative inverse: ∀a �= 0 ∃a−1 ∈ F : a ∗ a−1 = a−1 ∗ a = 1

Left distributivity: a ∗ (b + c) = (a ∗ b) + (a ∗ c)

Right distributivity: (b + c) ∗ a = (b ∗ a) + (c ∗ a)

Note that since the multiplicative identity must differ from the additive identity every field
has at least two elements.

Simple examples of fields include �,� and �, for which the + and ∗ operators are the
ordinary addition and multiplication operators. Note that � is not a field since the elements
of � have no multiplicative inverses in �.

To give an example of a dual space let us consider the dot product on �n. For any fixed
vector v ∈ �n we may think of v· as an operator which acts on an arbitrary vector x ∈ �n

and gives a real number v ·x. �n is a vector space and we mentioned above that � is a field.
Moreover, the operator v· is clearly linear since

v · (ax + by) = av · x + bv · y, ∀x, y ∈ �n and ∀a, b ∈ �. (D.0.3)

This means that v· is a functional and therefore an element of the dual space (�n)∗ to �n.
If the elements of �n are written as column vectors then their dual elements in (�n)∗ are

the corresponding row vectors, since v · x = vT x for all v, x ∈ �n.
Another example of a dual space is the bra space H∗ associated with the ket space H of a

physical system. The ket space is a complex Hilbert space and therefore a vector space. Any
given element 〈ψ1| in the bra space is an operator which acts on an arbitrary ket |ψ〉 ∈ H
and gives a complex number 〈ψ1|ψ〉. Since � is a field and the operator 〈ψ1| is linear,

〈ψ1|cψ2 + dψ3〉 = c〈ψ1|ψ2〉+ d〈ψ1|ψ3〉, ∀|ψ2〉, |ψ3〉 ∈ H and ∀c, d ∈ �, (D.0.4)

we can conclude that 〈ψ1| is a functional and indeed an element of H∗.
Let us now consider a general bilinear form

〈·,·〉 : V × V → F, (x, y) �→ 〈x, y〉, (D.0.5)

where V is a vector space over a field F .
Let x be a given vector in V and fx be defined by

fx
def= 〈x,·〉 : V → F, y �→ 〈x, y〉. (D.0.6)

Then fx is clearly an element of V ∗. Moreover, if 〈·,·〉 is nondegenerate then the mapping
x �→ fx is a by the definition of a nondegenerate bilinear form a group isomorphism from
V onto a subspace Ṽ ∗ of V ∗, assuming that vector addition and multiplication by scalars
have been defined on V ∗ (every vector space is a group under vector addition). If V is finite
dimensional then Ṽ ∗ = V ∗. Conversely, a given group isomorphism V → Ṽ ∗, x �→ gx, from
V onto a subspace Ṽ ∗ of V ∗ uniquely determines a nondegenerate bilinear form

〈·,·〉 : V × V → F, (x, y) �→ 〈x, y〉 def= gx(y). (D.0.7)

Hence, to every nondegenerate bilinear form 〈·,·〉 on V corresponds a uniquely determined
isomorphism from V onto a subspace Ṽ ∗ of V ∗ and vice versa.
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The inner product on �n is a nondegenerate bilinear form and the homomorphism from
�

n to (�n)∗ simply means that if x, y ∈ �n and z = x + y then z· = (x·) + (y·), which is
obviously true. Moreover, the mapping � → �

∗, x �→ x· is clearly bijective, which proves
that it is a group isomorphism.

Another important example of a nondegenerate bilinear form is the inner product 〈x, y〉 =
gijxiyj on a arbitrary metric space V , where g is the metric tensor. For any given x ∈ V we
know that 〈x,·〉j = gijxi is the jth component of an operator 〈x,·〉 which acts on an arbitrary
vector y ∈ V and gives a real number 〈x, y〉. Since 〈x,·〉 is a linear operator it is an element
of V ∗. Moreover, if we define xj as

xj
def= gijxi, (D.0.8)

then the inner product on V can simply be written as 〈x, y〉 = xjyj .
This means that the metric tensor g is actually an operator g : V → V ∗, x �→ x∗. So

when we for instance use the Minkowski metric to lower the index of a vector in �1, 3 then we
are actually mapping the element on its dual element in the dual space (�1, 3)∗ to spacetime.

If V is vector space over � then the natural choice of an inner product is an Hermitian
inner product (defined in section C.1). Such an inner product 〈·,·〉 satisfies the conditions

〈u, cv + dw〉 = c∗〈u, v〉+ d∗〈u, w〉 (D.0.9)
〈cv + dw, u〉 = c〈v, u〉+ d〈w, u〉, (D.0.10)

for all u, v, w ∈ V and c, d ∈ �.
In this case the inner product determines an isomorphism from V to the complex conjugate

V̄ ∗ of V ∗. The complex conjugate of V ∗ is the set of all functionals f : V → �, x → f(x)
such that

f(cx) = c∗f(x), ∀x ∈ V and ∀c ∈ �. (D.0.11)

Note that for a ket space the homomorphism from V to V̄ ∗ can clearly be seen in equation
(C.3.3) in section C.3.
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Appendix E

Matrix Lie Groups

In this appendix we will prove theorem 2.2.1 in section 2.2 which states that every matrix Lie
group is a Lie group.

Let Mn(�) be the set of all n×n matrices with complex entries. We recall that a matrix Lie
group is a closed subgroup of GL(n,�) and that a Lie group is a differentiable manifold which
is also a group G, with the properties that the group operation G × G → G, (g1, g2) �→ g1g2
and the inverse mapping G → G, g �→ g−1 are both differentiable. More specifically, a Lie
group is a smooth (i.e. infinitely differentiable) manifold!

For any matrix Lie group L the group operation is matrix multiplication. If l1 and l2
are arbitrary elements of the underlying set of L then the entries of their product l1l2 are
polynomials in the entries of l1 and l2 and therefore smooth. This proves that the group
operation L × L → L, (l1, l2) �→ l1l2 is differentiable.

Moreover, for any given l ∈ L the equation

lx = ej ⇔ x = l−1ej
def= l−1

j , x ∈ �n (E.0.1)

gives the jth column l−1
j of l−1, where ej is the jth column of the n× n identity matrix 1 in

�n×n.
The ith entry of x = l−1

j is therefore the element (l−1)ij of l−1, which is given by Cramér’s
rule

(l−1)ij = det li(ej)
det l

, (E.0.2)

where li(ej) is the matrix obtained from l by replacing the ith column of l with the jth
column of 1.

The determinants in (E.0.2) can be calculated by the method of cofactor expansion and
are therefore polynomials in the entries of l (including det li(ej)). This gives that (l−1)ij is
a rational function and the inverse operation is consequently smooth, which proves that the
inverse mapping L → L, l �→ l−1 is differentiable.

We now have to prove that L is a smooth manifold (the definition of a differentiable
manifold is given in chapter A). To do so, it suffices to prove that L is a smooth embedded
submanifold of Mn(�) ([35], p. 22).

Definition E.0.3. A subset S of a smooth manifold M is a n-dimensional smooth em-
bedded submanifold of M if there exists a covering {mi} of S by open sets (i.e. small
neighborhoods) in the ambient smooth manifold M such that the elements of {mi ∩ M} are
all connected n-dimensional open subsets of M .
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Note that Mn(�) is a smooth manifold. In order to prove that L is a smooth embedded
submanifold of Mn(�) we need the following lemma.

Lemma E.0.1. Let Mε = {m ∈ mn(�); ||m|| < ε} and Eε = {exp(m); m ∈ Mε}. If L
is a matrix Lie group with the Lie algebra l, then there exists an ε ∈ (0, ln 2) such that
x ∈ Eε ⇒ (x ∈ L ⇔ log(x) ∈ l).

The proof of this lemma will be omitted here, but may be found in chapter 2 of [35]. Note
though that the condition 0 < ε < ln 2 guarantees that log(exp x) is well-defined and equal
to x for all x ∈ Eε.

Also note that there is nothing obvious about lemma E.0.1 since the exponential mapping
for l may not cover all of L, i.e. L may not be an exponential group (see section 2.3). For
instance, the matrix

l =
(
−1 1
0 −1

)
(E.0.3)

is in SL(2,�), and yet one can easily show that there is no matrix x ∈ sl(2,�) such that
exp(x) = l ([35], p. 49).

We will now prove that L is a smooth embedded submanifold of Mn(�) and therefore a
Lie group.

Proof. Let ε ∈ (0, ln 2) be such that E.0.1 applies and x0 any given element of the underlying
set of L. Next, consider a neighborhood x0Eε = {x0x1; x1 ∈ Eε} of x0 in Mn(�). Let x be
an element of x0Eε and note that x ∈ x0Eε ⇔ x−1

0 x ∈ Eε. This means that there exists a
matrix X ∈ Mε such that x−1

0 x = exp(X). Lemma E.0.1 therefore gives that x−1
0 x ∈ L ⇔

log(x−1
0 x) ∈ l⇔ log[exp(X)] ∈ l⇔ X ∈ l. We also have that x−1

0 x ∈ L ⇔ x ∈ L since

x ∈ L ⇒ x−1
0 x ∈ L (E.0.4)

x−1
0 x ∈ L ⇒ x ∈ x0L ⇒ x ∈ L, (E.0.5)

where we have used the fact that x−1
0 ∈ L and that L is closed under matrix multiplication.

We have thus proven that for any x ∈ x0Eε

x ∈ L ⇔ X ∈ l, (E.0.6)

for some X ∈ Mε.
In other words, we can cover L with small neighborhoods x0Eε to the elements x0 ∈ L

such that x0Eε “behaves” as l, which is naturally a connected open subset of Mn(�).
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Appendix F

Central Charges in the Poincaré
Algebra

The following calculation shows how to eliminate central charges from the Poincaré algebra,
see ([5], pp. 84-86). This follows approximately the same procedure which was shown for a
general case in section 6.7.1. With central charges the commutation relations for the defining
representation of the Poincaré algebra become

i
[
Ĵρσ, Ĵμν

]
= ησμĴρν − ηρμĴσν − ηνρĴμσ + ηνσĴμρ + Cμν, ρσ

i
[
P̂ ρ, Ĵμν

]
= ηρμP̂ ν − ηρνP̂ μ + Cμν, ρ[

P̂ ρ, P̂ μ
]

= Cμ, ρ

(F.0.1)

where the central charges C adhere to the following antisymmetric condition, which can easily
be found by adding the expressions above to commutation relations where the generators have
switched places,

Cμν, ρσ = −Cρσ, μν

Cμν, ρ = −Cρ, μν

Cμ, ρ = −Cρ, μ.

(F.0.2)

These charges must also obey the Jacobi identity. Writing out this identity for each of the
commutation relations mentioned above, we are able to deduce some additional information
about the charges. For the pure translational commutation generators, the Jacobi identity
with three of the components of P̂ is automatically satisfied. Yet, for the others we obtain

[
Ĵκλ, [Ĵρσ, Ĵμν ]

]
+
[
Ĵμν , [Ĵκλ, Ĵρσ]

]
+
[
Ĵρσ, [Ĵμν , Ĵκλ]

]
= 0[

Ĵκλ, [Ĵρσ, P̂ μ]
]

+
[
P̂ μ, [Ĵκλ, Ĵρσ]

]
+
[
Ĵρσ, [P̂ μ, Ĵκλ]

]
= 0[

Ĵκλ, [P̂ ρ, P̂ μ]
]

+
[
P̂ μ, [Ĵκλ, P̂ ρ]

]
+
[
P̂ ρ, [P̂ μ, Ĵκλ]

]
= 0.

(F.0.3)

Now combining the Jacobi identities with (F.0.1) will result in the following conditions on
the central charges
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0 = ησμCρν, κλ − ηρμCσν, κλ − ηνρCμσ, κλ + ηνσCμρ, κλ+
+ ηλρCκσ, μν − ηκρCλσ, μν − ησκCρλ, μν + ησλCρκ, μν+
+ ηνκCμλ, ρσ − ημκCνλ, ρσ − ηλμCκν, ρσ + ηλνCκμ, ρσ

0 = ησμCρ κλ − ηρμCσ, κλ − ηνρCμ, κλ + ηνσCμ, κλ+
+ ηκσCμ ρλ − ηλσCμ, ρκ − ημκCλ, ρσ + ημλCκ, ρσ

0 = ησμCρ, ν − ηρμCσ, ν − ησνCρ, μ + ηρνCσ, μ.

(F.0.4)

These relations might seem slightly intimidating at first glance, but if we contract the last
line with ησμ, then

0 = ησμ (ησμCρ, ν − ηρμCσ, ν − ησνCρ, μ + ηρνCσ, μ) =

= Cρ, ν − Cν, ρ − Cν, ρ + Cρ, ν (F.0.2)= 4 · Cρ, ν ⇒ Cρ, ν = 0.
(F.0.5)

For the other two coefficients on the first line and on the second line of equation (F.0.4),
respectively, we have insufficient information to determine whether they are identically zero
or not. Still, if we contract the two lines with ησμ, this will yield

Cρν, κλ = ηλρCκν − ηκρCλν − ηνκCλ,ρ − ηλνCκρ

with Cκν def= 1
2ησμCκσ, νμ

(F.0.6)

for the first line and for the second line the result is

Cρ, κλ = ηρλCκ − ηρκCλ

with Cκ def= 1
3ημσCμ, κσ.

(F.0.7)

Reaching these expressions we see that we can redefine our operators Ĵ and P̂ to accommodate
for these constants

P̂ ′ρ def= P̂ ρ + Cρ

Ĵ ′ρσ def= P̂ ρσ + Cρσ
(F.0.8)

and replacing the generators in (F.0.1) with the new ones and dropping the ′:s afterwards
will give the familiar commutation relations for the defining representation of the Poincaré
algebra without central charges

i
[
Ĵρσ, Ĵμν

]
= ησμĴρν − ηρμĴσν − ηνρĴμσ + ηνσĴμρ

i
[
P̂ ρ, Ĵμν

]
= ηρμP̂ ν − ηρνP̂ μ[

P̂ ρ, P̂ μ
]

= 0.

(F.0.9)
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Appendix G

Details on Equation (7.1.28)

Here we present the details behind the expansion of the comparator U(x + εn, x) in equation
(7.1.28) which we restate here for convenience:

U(x + εn, x) = exp
[
−iλεAμ(x + ε

2n) +O(ε3)
]

. (7.1.28)

Through the definition of Aμ in equation (7.1.19), the assumption that U(y, x) is a pure phase
and that U(x, x) = 1 we can rewrite U as

U(y, x) = Pe−iλ
∫ y

x
Aμ(x′) dx′μ

. (G.0.1)

Note that this is a pathordered exponential as indicated by the path ordering operator P
which for a path between x and y is defined as

Pe−iλ
∫ y

x
Aμ(x′) dx′μ

= 1− iλ

∫ 1

0
dtAμγ̇

∫ 1

0
dt + i2λ2

∫ t

0
dt′Aμ(t)γ̇(t)Aμ(t′)γ̇(t′) + . . . (G.0.2)

Using this form for the infinitesimal displacement we obtain

U(x + εn, x) = exp
[
−iλ

∫ ε

0
Aμ(x + ξn) dξ

]
= exp

[
−iλ

∫ ε/2

−ε/2
Aμ(x + ε

2n + ξn) dξ

]
(G.0.3)

and expanding Aμ in ξ yields

exp
[
−iλ

∫ ε/2

−ε/2

(
Aμ(x + ε

2n) + ξnν∂νAμ(x + ε
2n) + ξ2

2 (nν∂ν)2Aμ(x + ε
2n) + . . .

)
dξ

]
=

= /even integration interval/ =

= exp
[
−iλ

(
εAμ(x + ε

2n) + 2
6

(
ε

2

)3
(nν∂ν)2Aμ(x + ε

2n)
)

+O(ε5)
]

=

= exp
[
−iλεAμ(x + ε

2n) +O(ε3)
]

. (G.0.4)

This is the expansion in equation (7.1.28).
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Appendix H

Calculus of Variation and Least
Action Principle

The calculus of variations is a very versatile tool and appears in many applications. The
main usage is to find a function or curve which gives a stationary point, usually a minimum,
of a quantity expressed as an integral, i.e. a functional. In this appendix we apply this
technique to some unspecified problem involving the minimization of the quantity I in the
most basic case. The possible generalizations to more variables and constraints are omitted
as the relevant parts of these are pretty straightforward and should not cause any problem for
the main part of this text. However, the reader is in general encouraged to study the subject
more closely. As one of many good presentations [36] is recommended. But for now, suppose
we want to find a function y(x) which minimizes I expressed as

I =
∫ xf

xi

f(y, y′, x) dx (H.0.1)

where f(y, y′, x) is a known function of y, its derivative y′ = ∂y
∂x and the independent variable

x. y is of course unknown since it is what we seek. To find the minimizing y we let it vary
with a parameter α and we define y(x, α = 0) to be the function sought for. We can express
this variation as

y(x, α) = y(x, 0) + αη(x) (H.0.2)
where η(x) is an arbitrary differentiable function with the requirements that it vanishes at
the end points xi, xf . Now I = I(α) varies with α and to find a stationary point we derivate
and set to zero as in elementary calculus,

∂I

∂α
=
∫ xf

xi

(
∂f(y, y′, x)

∂y(x)
∂y(x)

∂α
+ ∂f(y, y′, x)

∂y′(x)
∂y′(x)

∂α

)
dx = 0. (H.0.3)

By equation (H.0.2) we get
∂I

∂α
=
∫ xf

xi

(
∂f(y, y′, x)

∂y(x) η(x) + ∂f(y, y′, x)
∂y′(x)

∂η(x)
∂x

)
dx = 0 (H.0.4)

and by integrating the second term by part we find

∫ xf

xi

∂f(y, y′, x)
∂y′(x)

∂η(x)
∂x

dx =
[
η(x)∂f(y, y′, x)

∂y′(x)

xf]
xi

−
∫ xf

xi

( d
dx

∂f(y, y′, x)
∂y′(x)

)
η(x) dx (H.0.5)
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where the first term is zero through the vanishing η at the end points. This partial integration
is a standard procedure in these calculations. We are left with (H.0.4) in the form

∂I

∂α
=
∫ xf

xi

(
∂f(y, y′, x)

∂y(x) − d
dx

∂f(y, y′, x)
∂y′(x)

)
η(x) dx = 0 (H.0.6)

and for this to vanish for any arbitrary function η(x) we must have

∂f(y, y′, x)
∂y(x) = d

dx

∂f(y, y′, x)
∂y′(x) . (H.0.7)

This is called the Euler-Lagrange equation and gives the condition which our minimizing
function y(x) has to satisfy.

H.0.1 The Principle of Least Action

The calculus of variation has an important application in the analytic formulation of mechan-
ics. Classically the action I is a functional of some chosen coordinates qi of a mechanical
system. It is defined as the time integral of the Lagrangian L, a scalar function of the coor-
dinates, their time derivatives and the time,

I =
∫ tf

ti

L(q, q̇, t) dt (H.0.8)

where the Lagrangian is the difference between the kinetic energy T and the potential energy
V ,

L(q, q̇, t) = T (q, q̇, t)− V (q, q̇, t). (H.0.9)

Varying the action with respect to the coordinates yields the equations of motion, found
directly from the Euler-Lagrange equations, i.e. the coordinates describing the systems dy-
namics are the ones who minimize the action. This is the principle of least action. Quantum
mechanics and relativity may use other Lagrangians (or Lagrangian densities also integrated
over space) but the principle stays the same.
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Appendix I

List of Symbols

The lists below contain the most commonly used symbols in this survey, which have been
divided into the categories “Elementary Linear Algebra and Analysis”, “Group Theory”,
“Representation Theory”, “Special Relativity”, “Gauge Theory” and “Quantum Mechanics”.
In addition to these symbols there is a list of general notation as well as a list of abbreviations
and a list of physical constants. Moreover, since symbols tend to have different meanings in
different contexts, a list of ambiguities has been placed after the last list of symbols.

Note that the symbols from section 7.2 and chapter 8 have not been included since these
are relatively self-contained parts of this survey.

I.1 General Notation

Symbols Descriptions
group, subgroup etc. When a concept is defined it is written in upright

bold font.
“η = ημν ” The components of a given tensor are sometimes

identified with the tensor itself.
“O(1, n) = SO+(1, 3)” The Lorentz groups are the groups O(1, n),

but in this survey the “Lorentz group” usually
means the subgroup SO+(1, 3) of O(1, n).

“P (1, n) = ISO+(1, 3)” The Poincaré groups are the groups P (1, n),
but in this survey the “Poincaré group” usually
means the subgroup ISO+(1, 3) of P (1, n).

“G = (G, �)” The underlying set of a group is usually identi-
fied with the group. This applies to representa-
tions of groups and Lie algebras as well.

“c = � = 1” The speed of light in free space and the reduced
Planck constant are usually set equal to 1.

I.2 Abbreviations

Symbols Descriptions
O Orthogonal.
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S Special.
U Unitary.
SO Special orthogonal.
SU Special unitary.
ISO Isometry.
Sym Symmetry.
Aut Automorphism
LHS Left hand side.
RHS Right hand side.
P.i. Partial integration.

I.3 Constants

Symbols Descriptions
� = h/(2π) The reduced Planck constant (or Dirac con-

stant), where h is Planck’s constant.
i The imaginary unit.
e The elementary electric charge or the base of the

natural logarithm.
c = (ε0μ0)−1/2 The speed of light in free space.
ε0 The permittivity of free space.
μ0 The permeability of free space.

I.4 Elementary Linear Algebra and Analysis

Symbols Descriptions
∅ The empty set.
� The set of all natural numbers (not including 0),

which is not a field.
� The set of all integers, which is a ring but not a

field.
�+ The set of all strictly positive integers (i.e. �),

which is not a field.
�− The set of all nonpositive integers (including 0),

which is not a field.
� The field of all rational numbers.
� The field of all real numbers.
� The field of all complex numbers.
�n The set of all ordered sets (a1, . . . , an) of n real

numbers, which are usually written as column
vectors.

�n The set of all ordered sets (c1, . . . , cn) of n com-
plex numbers, which are usually written as col-
umn vectors.

�n×n The set of all n× n matrices with real entries.
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�n×n The set of all n × n matrices with complex en-
tries.

Sn A topological n-dimensional hypersphere in
�n+1, which is the same as a geometrical (n+1)-
dimensional hypersphere. Note that topologists
refer to the number of parameters which de-
scribes the sphere, while geometers refer to the
dimension of �n+1.

V, W etc. General vector spaces and other sets are usually
denoted by upper case Latin letters.

(a1, a2, . . . , an) An ordered set.
{a1, a2, . . . , an} A (disordered) set.
an Abbreviation for (a1, a2, . . .).
{an} Abbreviation for {a1, a2, . . . , an}.
span�{t1, t2, . . . , tn} The set of all complex linear combinations of the

elements t1, t2, . . . , tn.
V⊥ The orthogonal complement of a vector space V .

Note that this space is usually denoted by V ⊥,
but for practical reasons the symbol V⊥ is used
instead in this survey.

V ∗ The algebraic dual space to a vector space V
over a field.

A ∪B The union of two sets A and B.
A ∩B The intersection of two sets A and B.
V ⊕W The direct sum of two vector spaces V and W .⊕n

i=1 Vi Abbreviation for V1 ⊕ V2 ⊕ · · · ⊕ Vn.
V ⊗W The tensor product (or tensor direct product) of

two vector spaces V and W , which is spanned
by the set {vi ⊗wj}, where {vi} and {wj} are
arbitrary bases for V and W , respectively.

�⊗n Abbreviation for �⊗�⊗ · · · ⊗�.
W ⊆ V W is a subset of V and may be equal to V .
W ⊂ V W is a subset of V but may not be equal to V .
v ∈ V v is an element of a set V .
v /∈ V v is not an element of a set V .
dim(V ) The dimension of a vector space V .
f : A → B A function (map) f from a set A to a set B.
x �→ y An element x is mapped on an element y.
1 An identity matrix.
R A matrix for a rotation.
R(φ) A matrix for a rotation by the angle φ.
Rl(φ) A matrix for a rotation by the angle φ about the

axis l through the origin. Note that in chapter 4
the same notation is used for the rotation itself.

R(θ) A matrix for a rotation by the angle θ about the
axis through the origin with a direction vector
θ.
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φ, θ Denotes angles.
A, B etc. General matrices are usually denoted by upper

case Latin letters.
A−1 The inverse of a matrix A.
AT The transpose of a matrix A.
A† The Hermitian adjoint (or conjugate transpose)

of a matrix A.
eA or exp(A) The exponential of a matrix A.
det(A) The determinant of a matrix A.
Tr(A) The trace of a matrix A.
Aij An element of a matrix A.
AB Multiplication of a matrix A with a matrix B.
Av Multiplication of a matrix A with a vector v.
n̂, x̂ etc. Unit vectors are adorned with “hats”.
v, w etc. General vectors in �n are usually denoted by

lower case Latin letters in bold font.
vT The transpose of a vector v.
v† The Hermitian adjoint of a vector v.
v ·w The ordinary scalar product of two vectors

v, w ∈ �n.
v2 Abbreviation for v · v = |v|2.
vi En element of a vector v.
z∗ The complex conjugate of a complex number z.
|z| The absolute value of a real or complex number

z.
ε The Levi-Civita tensor (or permutation symbol).
δ The Kronecker delta.
∂f/∂x or ∂xf The partial derivative of a function f of several

variables with respect to the variable x.
df/ dx The derivative of a function f of a single variable

x.
f(x)|x=y The value of f(x) at the point x = y.
〈·,·〉 Inner products and bilinear forms (note that the

inner product on�3 is also a bilinear form, while
Hermitian inner products are antilinear).

[·,·] The ordinary commutator (and Lie algebras).
O Big ordo.
lim Limes.
∀ For all.
∞ Infinity.
∝ Proportional to.

I.5 Group Theory

Symbols Descriptions
�n Cyclic groups.
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Dn Dihedral groups.
GL(n,�) General linear groups with real entries.
GL(n,�) General linear groups with complex entries.
GL(V ) The general linear group acting on a vector

space V .
SL(n,�) Special linear groups with real entries.
SL(n,�) Special linear groups with complex entries.
SL(V ) The special linear group acting on a vector space

V .
O(n) Orthogonal groups.
SO(n) Special orthogonal groups.
U(n) Unitary groups.
SU(n) Special unitary groups.
O(n, k) The generalized orthogonal groups.
O(1, n) The Lorentz groups.
O(1, 3) The “ordinary” (i.e. three spatial dimensions)

Lorentz group.
SO(1, 3) The ordinary proper Lorentz group.
SO+(1, 3) The ordinary proper orthochronous Lorentz

group.
P (1, n) The Poincaré groups.
P (1, 3) The “ordinary” (i.e. three spatial dimensions)

Poincaré group.
ISO(1, 3) The ordinary proper Poincaré group.
ISO+(1, 3) The ordinary proper orthochronous Poincaré

group.
Spin(1, 3) The double cover of SO(1, 3).
Aut(G) The automorphism group of a group (G, �).
(G, �), (H, �) etc General groups.
� A group operation. Such an operation is often

called composition, product operation or simply
multiplication.

a � g = ag The star is often omitted.
G,H etc. The underlying sets of groups, which are often

identified with the groups themselves.
G ×H The underlying set of the direct product of two

groups (G, �) and (H, �).
G �ϕ H The underlying set of the semidirect product of

two groups (G, �1) and (H, �2).
G/N The underlying set of the quotient group of two

groups (G, �) and (N , �), where (N , �) is a nor-
mal subgroup of (G, �). Note that G/N is the
set of all left cosets of N in G.

� Semidirect product.
N � G (N , �) is normal subgroup of a group (G, �).
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gH,Hg Left and right coset of H, respectively, where g
is an element of the underlying set G of a group
(G, �) and (H, �) is a subgroup of (G, �).

Ca, Cb etc Conjugacy classes.
|G| The order of a group (G, �).
N/n If (G, �) is a group of order N with a subgroup

(H, �) of order n then N/n is the index of (H, �)
in (G, �).

< a > , < b > etc. < · > is used to denote generators of groups.
e The unit element of the underlying set of a

group.
a, g etc. General elements of the underlying sets of

groups are denoted by lower case Latin letters.
a−1 The inverse of an element a of the underlying

set of a group.
g̃1 = g2g1g−1

2 If g1 and g2 are both elements of the underlying
set of a group then g̃1 is the conjugate of g1 with
respect to g2.

sl(n,�), su(n) etc. The underlying sets of the Lie algebras of
SL(n,�), SU(n) etc.

(g, [·,·]), (h, [·,·]) etc. General Lie algebras.
g, h etc. The underlying sets of Lie algebras are denoted

in the same way as their corresponding Lie
groups, except that lower case Gothic letters are
used.

g� The complexified equivalence of the underlying
set g of a Lie algebra (g, [·,·]).

X, Y etc. General elements of the underlying sets of Lie
algebras are usually denoted by upper case Latin
letters, but there are plenty of exceptions in this
survey.

C A Cartan subalgebra.
A Cartan matrix.
α A root.
ej , fj Root vectors.
(·,·) A Cartan-Killing form.
∼= Isomorphism.
[·,·] A Lie bracket.

I.6 Representation Theory

Symbols Descriptions
Π The underlying set of a representation of a Lie

group, which is often identified with the repre-
sentation itself.
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Π(G) The underlying set of a representation of the Lie
group (G, �).

〈S|R〉 A presentation of a group, where S is a set of
generators for the group and R is a set of rela-
tions between the generators.

Π1 ⊕Π2 The direct sum of the underlying sets Π1 and
Π2 of two representations of Lie groups.

Π1 ⊗Π2 The tensor product of the underlying sets Π1
and Π2 of two representations of Lie groups.

Π(g) The element of Π corresponding to a Lie group
element g.

Ad The adjoint representation of a Lie Group.
3 The underlying set of the fundamental represen-

tation of sl(3,�).
ρ(g) If g is an element of the underlying set of a Lie

group then ρ(g) is a realization of g.
π The underlying set of a representation of a Lie

algebra, which is often identified with the repre-
sentation itself.

π(g) The underlying set of a representation of the Lie
algebra (g, [·,·]).

π1 ⊕ π2 The direct sum of the underlying sets π1 and π2
of two representations of Lie algebras.

π1 ⊗ π2 The tensor product of the underlying sets π1 and
π2 of two representations of Lie algebras.

ad The adjoint representation of a Lie algebra.
ρ(X) If X is an element of the underlying set of a Lie

algebra then ρ(X) is a realization of X.

I.7 Special Relativity

Symbols Descriptions
�1, 3 Minkowski space (or spacetime).
A, B etc. General four-vectors are usually denoted by up-

per case Latin letters in bold font.
A ·B = AμBμ The inner product of two four-vectors A and B.

Note that the inner product on spacetime is not
the same as the inner product on �n.

P̂ , Ĵ The generators of the Poincaré group.
P = (E/c, px, py, pz) A four-momentum vector, where E is the energy

and p = (px, py, pz) is the linear momentum vec-
tor.

J = (Jx, Jy, Jz) An angular momentum vector, which has only
three components and despite its appearance is
not a four-vector.

Ĵ = (Ĵx, Ĵy, Ĵz) The operator for angular momentum.
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P̂ = (Ĥ, p̂x, p̂y, p̂z) The operator for four-momentum, where Ĥ is
the Hamiltonian operator.

K̂ = (Ĵ10, Ĵ20, Ĵ30) The operator for boosts (i.e. velocity changes).
x A position vector in spacetime.
x′, x′′ etc. A position vector x in different inertial frames

S′, S′′ etc.
x′μ or xμ′ The components of a position vector x in an

inertial frame S′.
a Translation vectors in �3 are denoted by a.
Λ The matrix of a Lorentz transformation.
ημν An element of the Minkowski metric tensor,

which are often identified with η.
T A general symmetry transformation.
T −1 The inverse of a symmetry transformation T .
T (Λ, a) A Poincaré transformation.
Û A unitary operator acting on a Hilbert space.
Û(Λ, a) The operator for a Poincaré transformation

T (Λ, a).
A(μν), A[μν] An element of the symmetric part and antisym-

metric part, respectively, of a matrix A.

I.8 Gauge Theory

Symbols Descriptions
E Electric field intensity.
V Electric potential.
B Magnetic flux density.
A Magnetic vector potential.
Aμ A component of a gauge field (and not a com-

ponent of A).
ρ Total electric volume charge density.
j Total electric current density.
J = (ρc, j) The four-current, where ρ and j are described

above.
∂μJμ The conserved current.
U A comparator.
U A loop of comparators.
Fμν A component of a field strength (or curvature).
I The action.
L A Lagrangian (or Lagrangian density).
φ A complex scalar field.
φ∗ The complex conjugate of a complex scalar field.
f bc

a A structure constant.
γμ A Dirac matrix.
ψ A Dirac spinor.
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εαβγμ A component of the totally antisymmetric ten-
sor ε, which is the rank four equivalence of the
rank three Levi-Civita tensor.

x In chapter 7 x denotes the position vector in
�

1, 3.
δ A functional derivative.
Dμf The covariant derivative of a scalar field f with

respect to μ.
∇V The gradient of a scalar field V .
∇ · F The divergence of a vector field F .
∇× F The curl of a vector field F .
� The d’Alembertian (or wave) operator.

I.9 Quantum Mechanics

Symbols Descriptions
H A Hilbert space.
R A ray in a Hilbert space (i.e. a 1-dimensional

subspace).
σ = (σx, σy, σz) The Pauli vector.
σx, σy, σz or σ1, σ2, σ3 The Pauli matrices.
J = (Jx, Jy, Jz) An angular momentum vector.
p = (px, py, pz) A linear momentum vector.
x = (x, y, z) A position vector in �3.
Â, b̂ etc. The operators for the physical quantities

A, b etc.
A The matrix of an operator Â.
Â† The Hermitian adjoint of an operator Â.
exp(Â) The exponential of an operator Â.
〈ψ|Â|ψ〉 The expectation value for a physical quantity A

given a state vector ψ.
ψ, Ψ General state vectors.
Âψ An operator Â acting on a state vector ψ.
1̂ or 1 The identity operator.
Ĥ The Hamiltonian operator.
D̂(n̂, φ) A rotation operator, where the rotation is spec-

ified by the unit direction vector n̂ and angle
φ.

Ĵ An operator for spatial translations.
Û An operator for temporal translations.
Ĵ+, Ĵ− Ladder operators for angular momentum.
Ŝ+, Ŝ− Ladder operators for spin.
Ĵ = (Ĵx, Ĵy, Ĵz) The operator for angular momentum.
p̂ = (p̂x, p̂y, p̂z) The operator for linear momentum.
Ĵ

2
Ĵ2

x + Ĵ2
y + Ĵ2

z
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Ŝx, Ŝy, Ŝx The operators for the spin’s projection in the
positive x-, y- and z-direction, respectively.

Â⊗ B̂ The tensor product of two operators Â and B̂.
|j, m〉 An eigenket of Ĵ

2 and Ĵz corresponding to the
eigenvalues j and m, respectively.

|·〉 Kets.
〈·| Bras.
|·〉〈·| The outer product.
〈·|·〉 The standard Hermitian inner product on a

Hilbert space H in Dirac notation.
↑ , ↓ Spin up and spin down, respectively, for a spin

1/2 system.
t The letter t usually denotes time.

I.10 Ambiguities

Symbols Descriptions
H In quantum mechanics H denotes a Hilbert

space, while in group theory the same symbol
usually denotes the underlying set of general
group (H, �).

A, Aμ In chapter 7 A is the magnetic vector potential
and Aμ is a component of a general gauge field.

x, x The position vector in spacetime is denoted by
x in chapter 6 and by x in chapter 7.

x̂, p̂ etc. Unit vectors in �n and quantum mechanical op-
erators are both denoted by “hats”.

Rl(φ) This symbol denotes both a rotation and the
matrix of the same rotation.

[·,·] [·,·] sometimes denotes an ordinary commutator
and other times a Lie bracket, a general binary
operator or a symmetric bilinear operator.

exp() Natural, matrix or operator exponential func-
tion.

ψ ψ usually denotes a general state vector in a
Hilbert space, but in chapter 7 it denotes a Dirac
spinor.

h In general, h denotes an ordinary Lie algebra,
but in chapter 5 it denotes an ideal.

e The unit element of a group, the base of the nat-
ural logarithm or the elementary electric charge.

ε This symbol usually denotes the rank three Levi-
Civita tensor, but in chapter 7 it denotes the
rank four equivalence of the Levi-Civita tensor.
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Index

2-cocycle, 103
4-vector, 83

Abelian, 5
action, 161
adjoint representation, 28
alternating tensor, 163
angular momentum operators, 93
antilinear inner product, 174
antiparticle, 142
antisymmetric tensor, 163
approximate symmetry, 157
associativity, 4
atlas, 160
automorphism, 9

Baker-Campbell-Hausdorff formula, 22
baryon, 144
baryon number, 150
boosts, 93
boson, 111, 141
bottom, 150
bra, 174
bra space, 174
bra-ket notation, 174

Cartan matrix, 67
Cartan subalgebra, 52
Cartan-Killing form, 58
Casimir operator, 43
Cauchy sequence, 174
central charges, 105
charge multiplet, 151
charm, 150
charts, 160
Chevally basis, 68
closed manifold, 161
closure, 4
Coleman-Mandula theorem, 141
color SU(3) symmetry, 157

color charge, 151
color confinement, 152
color hypercharge, 152
color isospin, 152
color singlet, 152
color symmetry, 152
compact manifold, 161
comparator, 116
complete metric space, 174
completely reducible representation, 29
complex conjugate of a dual space, 178
composition, 4
conjugacy class, 9
conjugate, 9
connected, 161
connection, 117, 133
connection one-form, 134
conserved current, 122
contraction of tensors, 167
contravariant tensor, 165
converge, 14
coordinate differential, 166
coset, 8
countably infinite group, 4
covariant derivative, 116
covariant tensor, 165
covector, 176
curvature, 119, 139
cyclic groups, 11

decuplet, 151
defining representation, 27
differentiable manifold, 160
differential one-form, 133
dihedral group, 11
Dirac notation, 174
direct product, 7
direct sum of modules, 30
direct sum of representations, 30
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direct sum of vector spaces, 30
double cover, 42, 106
dual correspondence, 175
dual space, 174, 176
dummy indices, 163

Eightfold way, 153
Einstein’s summation convention, 162
electromagnetic interaction, 141
elementary particle, 140
equivalent representations, 29
exact symmetry, 157
external symmetries, 1, 82
external symmetry, 98

faithful, 26
families of particles, 141
fermion, 111, 141
fiber bundle, 127
field, 176
field representation, 99
finite dimensional complex matrix representa-

tion of a Lie algebra, 26
finite dimensional complex matrix representa-

tion of a Lie group, 26
finite group, 4
flavor, 150
flavor SU(3) symmetry, 157
force carrier, 141
four-tensor, 165
free indices, 163
functional, 176
fundamental commutation relations of angu-

lar momentum, 39

gauge boson, 141, 143
gauge field, 116
gauge group, 115
gauge theory, 113
Gell-Mann matrices, 69
Gell-Mann–Nishijima formula, 149
general linear group, 14
generalized orthogonal group, 15
generations of particles, 141
generator, 11
generator of Lie algebra, 18
gluon, 142
gradient, 166

gravitational interaction, 142
graviton, 142
group, 4

hadron, 142
helicity, 101
Hermitian adjoint of an operator, 175
Hermitian inner product, 173
Hermitian inner product space, 173
Hermitian operator, 175
Higgs boson, 141
highest weight, 64
highest weight state, 64
Hilbert space, 173
holonomy, 137
homomorphism, 9
horizontal lift, 136
hypercharge, 151

ideal, 51
improper Lorentz transformation, 84
index, 8
index permutation, 167
inhomogeneous Lorentz transformation, 84
inhomogeneus Lorentz group, 85
inner product in Dirac notation, 175
inner product of tensors, 167
inner product of vectors, 169
internal symmetries, 1
internal symmetry group of the standard model,

141
intertwining operator, 147
invariance, 59
invariant subspace, 27
inverse element, 4
irreducible representation, 27
isomorphism, 9
isospin, 147
isospin down, 147
isospin projection number, 146
isospin up, 147
isotropy/stabilizer group, 161

ket, 174
ket space, 174
Kronecker delta, 166

ladder operator, 44
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left handed spinors, 96
lepton, 141
Levi-Civita tensor, 166
Lie algebra, 18, 23
Lie bracket, 23
Lie group, 17
lift, 136
little group, mathematically, 161
Lorentz group, 15
Lorentz tensor, 165
Lorentz transformation, 83

main theorem of tensor calculus, 165
manifold, 160
matric Lie group, 14
meson, 144
mesotron, 148
metric, 169
metric space, 169
metric tensor, 169
Minkowski metric, 83, 170
Minkowski metric tensor, 83, 170
mixed tensor, 165
module, 27
momentum operators, 93
multiplication, 4
multiplication table, 5
muon, 148

negative root, 53
non-trivial subspace, 27
nondegenerate bilinear form, 177
nonet, 151
norm of vectors, 170
normal subgroup, 11
nucleon, 146
null ket, 174

octet, 151
one-form, 176
one-parameter group, 18
open manifold, 161
operator equality, 175
operator for angular momentum, 38
operator for infinitesimal rotations, 38
operator for infinitesimal time translations, 38
operator for infinitesimal translations, 38
operator for rotations, 37, 39, 41

operators for spin, 40
order, 5
orthochronous Lorentz transformation, 84
orthogonal group, 14
outer product of a ket and a bra, 175
outer product of tensors, 167

parallel transport, 137
partial derivatives of tensors, 168
path-connected, 161
Pauli matrices, 21, 29
Pauli vector, 43
Pauli-Lubanski pseudo-vector, 101
pi meson, 144
pion, 144, 148
Poincaré algebra, 92
Poincaré group, 85
Poincaré transformation, 84
positive root, 53
positron, 143
presentation, 11
principal bundle, 132
projection map, 106
proper Lorentz transformation, 84
proper matrix, 15
proper subgroup, 7
properly Riemannian metric space, 169
pseudo inner product, 170
pseudo Riemannian space, 169
pullback, 134

quadratic Casimir operator, 79
qualified tensor, 165
quark, 141
quark numbers, 150
quotient group, 12

raising and lowering of indices, 170
rank of a Lie algebra, 53
rank of a tensor, 162
ray in Hilbert space, 174
reducible representation, 27
right handed spinors, 96
right- or left circularly polarized, 102
root, 52
root diagram, 73
root vector, 52
rotation operators and SU(2), 40
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rotational operator, 94

section, 131
semi-simple Lie algebra, 51
semidirect product, 11
Serre relations, 68
sesquilinear inner product, 174
similarity transform, 29
simple algebra, 51
simple root, 53
simply connected, 161
singlet, 151
smooth embedded submanifold, 179
spacetime translation operator, 94
special linear group, 14
special orthogonal group, 14
special unitary group, 15
Spin(n, m), 96
square of vectors, 170
squared displacement, 170
standard matrix, 34
standard model of particle physics, 141
state vectors, 174
strangeness, 150
strong interaction, 142
strong nuclear force, 144
structure constants, 23
subalgebra to a Lie algebra, 51
subgroup, 7
sum of tensors, 167
supermultiplet, 151
symmetric tensor, 163

tangent bundle, 131
tensor, 165
tensor equality, 163
tensor product of representations, 32
tensor product of vector spaces, 31
the little group, 100
the spinorial representation, 96
the tensor representation, 97
the triangular decomposition, 53
the vector representation, 97
top, 150
topological space, 160
total quark number, 150
transition map, 160

trivial bundle, 129
trivial representation, 27
trivial subgroups, 7
two component spinor, 42
type of tensor, 163

uncountably infinite group, 4
underlying set, 4
unit element, 4
unitary group, 15
universal covering group, 106

vartical space, 132
vector bundle, 131
virtual particle, 142

weak interaction, 141
weight, 62
weight lattice, 74

Yang-Mills theories, 113

zero tensor, 166
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