
Configuration Interaction Methods and
Large-scale Matrix Diagonalization
Bachelor of Science Thesis for the Engineering Physics Programme

PONTUS HANSSON, JOAKIM LÖFGREN,
KARIN SKOGLUND KEIDING, SIMON VAJEDI

Department of Fundamental Physics
Division of Subatomic Physics
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden, 2012
Bachelor Thesis No. FUFX02-12-01

Configuration Interaction Methods and
Large-scale Matrix Diagonalization
Bachelor of Science Thesis for the Engineering Physics Programme

PONTUS HANSSON, JOAKIM LÖFGREN,
KARIN SKOGLUND KEIDING, SIMON VAJEDI

Department of Fundamental Physics
Division of Subatomic Physics
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden, 2012
Bachelor Thesis No. FUFX02-12-01

Configuration Interaction Methods and Large-scale Matrix Diagonalization.
Pontus Hanssona, Joakim Löfgrenb, Karin Skoglund Keidingc, Simon Vajedid

Email:
apontush@student.chalmers.se
bjoalof@student.chalmers.se
ckeiding@student.chalmers.se
dsimonv@student.chalmers.se

© Pontus Hansson, Joakim Löfgren, Karin Skoglund Keiding, Simon Vajedi, 2012.

FUFX02 - Bachelor thesis at Fundamental Physics
Bachelor Thesis No. FUFX02-12-01

Supervisor: Christian Forssén, Division of Subatomic Physics
Co-Supervisor: Håkan Johansson, Division of Subatomic Physics
Examiner: Daniel Persson

Department of Fundamental Physics
Chalmers University of Technology
SE-412 96 Göteborg
Sweden
+46 (31) 772 1000

Printed by Chalmers reproservice
Göteborg, Sweden 2012

Cover: The distribution of the nonzero elements of a Hamiltonian matrix of a
system of ten bosons. The matrix has a dimension of 5147 and was generated by the
NCSMb code.

Abstract

This thesis presents investigations made with matrices representing quantum mechan-
ical many-body systems in order to provide recommendations for a future eigensolver.
The matrices are generated using the No-Core Shell Model for bosons (NCSMb) code.
Finding the eigenvalues is of interest since these correspond to the energy spectrum of
the system of particles, where examples of such systems include nucleons in a nuclei or
trapped atomic gases at low temperatures. The eigensolver will be based on the Lanczos
algorithm, a method well suited to reduce the complexity of the eigenvalue-solving of
large, sparse matrices.

Investigations are performed concerning the Lanczos method and of how to adapt it
in an appropriate way in terms of choice of starting vectors, methods of orthogonalization
and of how to accelerate convergence. Also, the possibility of Block Lanczos is examined.
Guidelines are given in order to make a future eigensolver as effective as possible.

Furthermore, various tests are made investigating the properties of the matrices
generated by NCSMb such as the dimension of the matrix for different model spaces,
the number of nonzero elements and the distribution of the matrix elements among
others.

Acknowledgements

The authors of this report wish to express their sincere gratitude to the supervisors
Christian Forssén and H̊akan Johansson for their support and guidelines throughout the
whole project. Their time invested for constructive discussions, teaching, reading and
correcting this report was invaluable.

Special thanks are also due to Simon Tölle, Christian Forssén, H̊akan Johansson and
Lucas Platter for providing the programming code NCSMb for calculating matrices for
many-boson systems.

Contents

1 Introduction 1
1.1 Specific aims . 2
1.2 Method . 2
1.3 Structure of the thesis . 2

2 Quantum Mechanical Many-Body Systems 3
2.1 Systems of identical particles . 4
2.2 Second quantization . 7

2.2.1 Occupation number representation 8
2.2.2 Fock space . 9
2.2.3 Creation and annihilation operators 9
2.2.4 Many-body operators . 10

2.3 Coupled and uncoupled schemes . 15

3 No-Core Shell Model 17
3.1 The Hamiltonian . 18
3.2 Harmonic oscillator basis . 18
3.3 Calculation of matrix elements . 19
3.4 No-Core Shell Model for bosons . 20

4 Numerical Methods 24
4.1 Krylov subspace methods . 25
4.2 Block Lanczos . 28

4.2.1 A Block Lanczos algorithm . 29
4.3 Restarted Lanczos methods . 32
4.4 Loss of orthogonality . 35

4.4.1 No reorthogonalization . 37
4.4.2 Full reorthogonalization . 38
4.4.3 Partial reorthogonalization . 38
4.4.4 Modified partial reorthogonalization 41
4.4.5 Selective reorthogonalization . 43

4.5 Categorizing different Lanczos methods 43

5 Investigations of Lanczos and Block Lanczos Methods 45
5.1 Stopping criterion and convergence properties 46

5.1.1 A stopping criterion . 47
5.2 Comparison of the Lanczos and Block Lanczos method 51
5.3 Strategies for restoring orthogonality . 54

ii

5.3.1 Properties of partial reorthogonalization 55
5.3.2 Comparison to modified partial reorthogonalization 61

5.4 Starting vectors . 62
5.4.1 Starting vectors created by eigenvector approximations 63
5.4.2 Basic restarting schemes . 67
5.4.3 Computations with reduced precision 68
5.4.4 Approximations acquired from smaller model spaces 69

5.5 A short survey of available software . 71

6 Analysis and Adaptations of the NCSMb Code 74
6.1 Analysis of the code NCSMb . 74
6.2 Storing symmetric sparse matrices . 75
6.3 Implementing CSR format storage in NCSMb 76
6.4 Hash tables . 77

6.4.1 Choosing a hash function . 77
6.4.2 Handling collisions . 77
6.4.3 Dynamic resizing . 79

6.5 Implementation of a hash table in NCSMb 79

7 Investigations of Matrix Properties 81
7.1 Storage size of the matrix . 81

7.1.1 Relation between matrix dimension and Nmax 81
7.1.2 Number of nonzero elements . 83
7.1.3 Storage size of matrix against dimension 87

7.2 Properties of the matrix elements . 88
7.2.1 Number of updates per element . 88
7.2.2 Values of the matrix elements . 90
7.2.3 Distribution of nonzero elements over the matrix 90

7.3 The number of single-particle states . 93

8 Discussion 94
8.1 Lanczos and Block Lanczos methods . 94

8.1.1 Choosing a block size . 94
8.1.2 Choosing a reorthogonalization technique 94
8.1.3 Accelerating convergence . 95
8.1.4 Model spaces and computations with reduced precision 96
8.1.5 Choosing an existing eigensolver 97
8.1.6 Suggestions on areas for further study 98

8.2 Hamiltonian matrix properties . 99
8.2.1 Dimension for different model spaces 99
8.2.2 Number of nonzero elements and storage size 99
8.2.3 Number of updates per element . 100
8.2.4 Values of matrix elements . 100
8.2.5 Distribution of matrix elements . 100

iii

8.2.6 Improvements of the code . 101
8.2.7 Limitations . 101

9 Recommendations for a Future Implementation 102

References 104

A Jacobi Coordinates 107

B The General Behavior of the Lanczos Algorithm 109

C Proofs of Some Basic Properties of the Lanczos Blocks 115

D Links to Source Codes 117

iv

1 Introduction

When dealing with systems of many particles, the complexity of modelling the dynamics
increases dramatically as the number of particles increases. Solving the Schrödinger
equation analytically for such a system is impractical or even impossible, meaning that
certain approximations are required.

One approach is to use the configuration interaction method, where the wavefunction
representing the many-particle system is expressed as a linear combination of many-
particle basis states [1]. These basis states have to respect the appropriate symmetry
under particle exchange, and are themselves made up of a linear combination of product
states of several single-particle states. The single-particle states are expressed in some
appropriate basis, e.g. the harmonic oscillator basis, and form an infinite series expan-
sion that must be truncated to make numerical calculations possible. The Schrödinger
equation can thereafter be put on matrix form, with the problem remaining of finding
the eigenvalues of the large, sparse Hamiltonian matrix of the system.

Finding the eigenvalues of such a matrix is complicated despite its sparseness, due to
the growing dimension of the matrix as the number of particles and the model space
increase. However, there are algorithms especially useful for these cases, as they re-
duce the complexity of the eigenvalue problem. By implementing such an algorithm
with appropriate adaptations based on the structure of the matrix, the computation of
eigenvalues becomes feasible also for large model spaces.

The retrieved energy eigenvalues correspond to the energy spectrum of the system that
is being modeled. Studying the bound-state energy spectrum and the corresponding
eigenfunctions is one of the main tools available for scientists to gain more knowledge
about the physics of many-particle systems. Examples of such systems are many-nucleon
states in the nucleus of an atom, many-electron systems in atoms and molecules, or
trapped atomic gases at low temperatures.

1

1.1 Specific aims

The ultimate goal of the project has been to develop guidelines and recommendations
for a future implementation of an eigensolver, where the matrices are calculated by
the code No-Core Shell Model for bosons, NCSMb, currently under development [2].
The eigensolver is based on the Lanczos algorithm, a method particularly well suited
to reduce the complexity of finding a few eigenvalues of large, sparse and symmetric
matrices.

1.2 Method

Initially, literature studies were conducted on how the matrix elements of the Hamilto-
nian matrix representing the many-particle problem arise. In order to find statistics of
the properties of the matrices, the code NCSMb was run with different values of its in-
put parameters. Lanczos-based algorithms were written in Matlab, and the particular
features of the algorithms were investigated and evaluated.

1.3 Structure of the thesis

In Chapter 2 the reader is given an introduction to quantum-mechanical many-body
theory, leading to the matrix formulation of the eigenvalue problem. The numerical
approach utilized in No-Core Shell Model is then examined in Chapter 3, where the key
features of the NCSMb code are described.

Chapter 4 provides a discussion on the numerical Lanczos methods, with the intention
of giving the reader a background to the subsequent Chapter 5, presenting the investiga-
tions made concerning the Lanczos method. Thereafter Chapter 6 presents the analysis
of the code NCSMb, introduces concepts needed to understand the adaptations made
of the code, and describes the adaptations. Chapter 7 presents the investigations made
on the properties of the matrices generated with NCSMb.

In Chapter 8 a discussion is held of the results from the investigations, where these
are compared and limitations are discussed. Finally, Chapter 9 contains a summary of
the results by proposing recommendations for a future implementation of an eigensolver
using a Lanczos-based method.

2

2 Quantum Mechanical
Many-Body Systems

Quantum mechanical many-particle systems is an important subject and a lot of research
is being done to discover new properties of nuclear and atomic systems. Analytical so-
lutions for such systems do not exist for the most part, and the complexity that arises
while increasing the number of interacting particles places high demands on the devel-
opment of novel approaches and numerical methods. Efficient algorithms are required
to attain accurate descriptions of many-particle systems, otherwise the problem may
become too computationally intense. To obtain any solutions for interacting particles
however, it is crucial to understand the theory behind many-body systems. This chap-
ter introduces several useful quantum mechanical concepts necessary for manipulating
many-particle systems, and the intention is to present the elementary terminology and
notions for further studies in this field.

In contrast to classical theory, particles of the same species are truly indistinguishable
in quantum mechanics, and this will influence the behavior of interacting particles. An
understanding of identical particles is crucial when studying many-body systems, and the
quantum mechanical formalism is introduced in Section 2.1 at a basic level. We find that
only two species of particles are possible: fermions and bosons. Furthermore, the many-
particle states as well as the general wavefunctions for these systems are formulated,
and it is shown how these can be constructed from single-particle states. To delve more
into this subject it is encouraged to read the introductory chapters of [3].

It is not unusual in quantum mechanics to express the physical operators in terms of
the position operator x̂ and the momentum operator p̂, and formulate particle states in
coordinate representation using the eigenstates of these operators. However, a more con-
venient description of many-particle systems is obtained in the second quantized form,
discussed in Section 2.2. The aim is here to introduce the occupation number repre-
sentation with creation and annihilation operators to greatly facilitate the treatment of
many-body systems. Interested readers who want to learn more about this topic are
referred to the works of [4] and [5].

Section 2.3 covers coupled and uncoupled schemes and the difference between them. In
short, correlated particles can be treated as a coupled entity by using an inseparable
wavefunction. What scheme is chosen has an impact on how a many-body system is
characterized.

3

2.1 Systems of identical particles

Consider a system of N identical particles. The state of one particle in the system
can be described by the single-particle state ket |α〉, where α denotes a set of single-
particle quantum numbers that uniquely identifies the state. The single-particle states
are elements of a Hilbert space H . The Hilbert space of theN -particle system is denoted
HN and is defined as the N -fold tensor product of the single-particle Hilbert space H :

HN ≡ H ⊗ H ⊗ . . .⊗ H = H ⊗N . (2.1)

An element in HN is denoted |α1α2. . . αN 〉 and constitutes a many-particle state. These
states are constructed by a linear superposition of product states, which are formed by
tensor products of single-particle states and can be written as

|α1α2 . . . αN) ≡ |α1〉 ⊗ |α2〉 ⊗ . . .⊗ |αN 〉 = |α1〉|α2〉 . . . |αN 〉, (2.2)

where {|αi〉} is an orthonormal basis in H . The completeness of the product states
implies that1 ∑

α1α2...αN

|α1α2 . . . αN)(α1α2 . . . αN | = 1̂, (2.3)

which is referred to as the completeness relation. Different many-particle states are
formed by linear combinations of these product states and can thus be written as

|α1α2 . . . αN 〉 =
∑
σ∈SN

cσ|ασ(1)ασ(2) . . . ασ(N)) , (2.4)

where SN is the set of permutations of {1,2, . . . ,N}, and cσ is an arbitrary constant for
the permutation. Note the difference between the notations | . . .〉 and | . . .); the latter is
used for product states, which are linearly combined to form the many-particle states,
denoted by an angle bracket. Since single-particle states are used to construct product
states, bases of HN can ultimately be built using single-particle states as constituents.

There are many combinations of product states that are mathematically valid bases in
HN but do not correspond to a physical system, an example being the product states
{|α1α2. . . αN)}. Thus for instance,

|α1α2 . . . αN 〉 = |α1α2 . . . αN) (2.5)

is not a valid multiparticle state. The reason why many combinations of product
states are invalid derives from the indistinguishability of the particles. Since permuting
two identical particles does not change the system’s physical properties, the proba-
bility of either state must therefore be equal. Therefore, if ψα1α2...αN (x1x2 . . .xN) =

11̂ is the identity operator.

4

(x1x2 . . .xN |α1α2...αN 〉 is the wavefunction of the original many-particle system, where
xi is the set of coordinates of the quantum numbers αi, then∣∣ψα1α2...αN (x1x2 . . .xN)

∣∣2 = ∣∣ψα2α1...αN (x2x1 . . .xN)
∣∣2

⇔ ψα1α2...αN (x1x2 . . .xN) = eiθψα2α1...αN (x2x1 . . .xN)
(2.6)

Interchanging the same particles again would result in the original wavefunction, hence

e2iθ = 1, (2.7)

which holds for θ = 0 and θ = π. Thus, when permuting two particles the resulting
state is obtained by multiplication of either 1 or −1, and this implies that many-particle
states must be either symmetric or antisymmetric, respectively, under interchange of
two particles. Symmetric particles are called bosons, and antisymmetric particles are
fermions, and only these two species of particles are found in nature. To obtain a general
expression of their respective many-particle states we first introduce the permutation
operator P̂ij , which permutes the states of particles i and j,

P̂ij |α1α2 . . . αi . . . αj . . . αN) = |α1α2 . . . αj . . . αi . . . αN)

= ±|α1α2 . . . αi . . . αj . . . αN). (2.8)

Hence the eigenvalues of the permutation operator are +1 and −1, and the eigenstates
are bosonic and fermionic, respectively. In either case the physical properties of the
states do not change when applying the permutation operator. From the properties of
the permutation operator it is clear that

P̂ij = P̂ji , P̂ 2
ij = 1̂. (2.9)

The antisymmetrizer A and the symmetrizer S are used in order to obtain the correct
symmetry of the N -particle states, and they are defined as

A =
1

N !

∑
ij

(−1)π(ij)P̂ij and S =
1

N !

∑
ij

P̂ij , (2.10)

where the sums run over all N ! permutations of the N -particle states, and (−1)π is the
parity (the sign) of the permutation and specifies whether the permutation π is even or
odd. The permutation is even if an even number of pairs are interchanged, otherwise it
is odd.

In the case of fermions the eigenvalue of the permutation operator P̂ij is as mentioned
−1 and the states are therefore antisymmetric. The effect of this is that two particles in
a system cannot have the same quantum numbers, and this is referred to as the Pauli
exclusion principle. Consequently, the general representation of a many-body state with
identical fermions becomes

|α1α2 . . . αN 〉 =
√
N !A |α1α2 . . . αN). (2.11)

5

The phases contained in A is an important ingredient in this formula, as it ensures
that the resulting many-body state is zero when at least two particles occupy the same
quantum state. Since for instance

|α1α2 . . . αN 〉 = −|α2α1 . . . αN 〉 (2.12)

represent the same physical state, the completeness relation should only consider one of
these kets in the sum. This can be accomplished by the ordered sum

ordered∑
α1α2...αN

|α1α2 . . . αN 〉〈α1α2 . . . αN | = 1̂. (2.13)

If the single-particle quantum numbers are not ordered, the completeness relation instead
reads

1

N !

∑
α1α2...αN

|α1α2 . . . αN 〉〈α1α2 . . . αN | = 1̂, (2.14)

because there are N ! equivalent states for each N -particle state.

A system of identical bosons is, in contrast to fermions, symmetric, and this implies
that the total wavefunction of the system is unchanged when permuting two particles.
For bosons there is therefore no exclusion principle, and all bosons can occupy the same
quantum state. With these rules in mind, the formula for the state vector for bosons
becomes

|α1α2 . . . αN 〉 =
[

N !∏
i ni!

]1/2
S |α1α2 . . . αN), (2.15)

where ni is the multiplicity of state |i〉. One can conclude from this formula that e.g.

|α1α1α2 . . . αN 〉 = |α1α2α1 . . . αN 〉, (2.16)

and these are considered to be physically equivalent states. This implies that the com-
pleteness relation in Eq. (2.14) does not hold; instead one has to introduce weights ni!
so that ∑

α1α2...αN

n1!n2!...

N !
|α1α2 . . . αN 〉〈α1α2 . . . αN | = 1̂. (2.17)

This is also equal to the sum in Eq. (2.13).

Example. (Two identical particles) In the case of two identical particles, the normalized
state for fermions can be written as

|α1α2〉 =
1√
2
{|α1α2)− |α2α1)}. (2.18)

Note that if α1 = α2 the two-particle state is zero, due to the Pauli exclusion principle.
For bosons the two-particle state becomes

|α1α2〉 =
1√

2n1!n2!
{|α1α2) + |α2α1)}, (2.19)

6

where n1 = 2 and n2 = 0 if α1 = α2. As expected the product states do not cancel even
if α1 = α2. �

Now that a general representation of symmetrized many-particle states has been estab-
lished the next step is to find the corresponding wavefunctions in coordinate representa-
tion. The wavefunction of a many-body system can be written as a linear combination
of product states of single-particle wavefunctions ψα(x) = (x|α〉. Incorporating the
properties of antisymmetric states, the normalized wavefunction of identical fermions
can be written as a so-called Slater determinant,

ψα1α2...αN (x1x2 . . .xN) =
1√
N !

det


ψα1(x1) · · · ψα1(xN)
ψα2(x1) · · · ψα2(xN)

...
. . .

...
ψαN (x1) · · · ψαN (xN)

 . (2.20)

To formulate the corresponding wavefunction for bosons we first note that the permanent
of a square, n×n matrix A = (aij)1≤i,j≤n is defined by

perm(A) =
∑
σ∈Sn

n∏
i=1

ai,σ(i), (2.21)

where Sn is the set of permutations of {1,2, . . . , n}. This is just the determinant without

the minus signs, which in practice means that for a matrix A =

(
a b
c d

)
, the permanent

of A is

perm

(
a b
c d

)
= ad+ bc. (2.22)

The general wavefunction for an N -boson system is now

ψα1α2...αN (x1x2 . . .xN) =
1√
N !

perm


ψα1(x1) · · · ψα1(xN)
ψα2(x1) · · · ψα2(xN)

...
. . .

...
ψαN (x1) · · · ψαN (xN)

 . (2.23)

2.2 Second quantization

The first quantization refers to the canonical quantization of classical theory, which leads
to a semi-classical description of quantum mechanics. The disadvantage of this approach
is that manipulating many-body systems becomes very difficult, and it can only be used
for systems where the number of particles is fixed. A more suitable way to deal with
many-particle systems is therefore to convert the operators to a second quantized form
and express them in terms of creation and annihilation operators. As it turns out, this
will make many-body states much easier to handle. Second quantization is used in many
fields of physics, and it is an essential part in e.g. quantum field theory.

7

2.2.1 Occupation number representation

Working with wavefunctions that are represented by Slater determinants and perma-
nents of a many-body system may become tedious even for a small number of particles.
Fortunately, it is possible to simplify many-body wavefunctions by the use of occupation
number representation. Occupation number formalism can be used for both antisym-
metric and symmetric multiparticle states. The idea is that the many-particle state
|α1α2 . . . αN 〉 is represented by specifying how many particles there are in each available
state of the system. Thus the state is denoted as

|α1α2 . . . αN 〉 = |n1n2n3 . . .〉, (2.24)

where ni is the number of particles in state |i〉. For a system of N particles we must
have

∞∑
i=1

ni = N. (2.25)

If the particles in question are fermions then ni can only be either zero or one, while
for bosons it can be any nonnegative integer as long as Eq. (2.25) holds. Table 2.1 lists
a few of the occupation number bases for fermions and bosons. The states span the
Hilbert spaces H0, H1, H2, The Hilbert space H0 has N = 0 and only contains
the vacuum state |0〉 = |000...〉, so it is customary to set H0 = C. States with different
number of particles are defined to be orthogonal.

Table 2.1. Occupation number basis states that span the Hilbert spaces H0, H1, H2, . . ., for
both fermions and bosons.

N Occupation number basis states (fermions)

0 |0000...〉
1 |1000...〉, |0100...〉, |0010...〉, . . .
2 |1100...〉, |1010...〉, |0110...〉, |1001...〉, |0101...〉,

|0011...〉, . . .
... . . .

N Occupation number basis states (bosons)

0 |0000...〉
1 |1000...〉, |0100...〉, |0010...〉, . . .
2 |2000...〉, |1100...〉, |0200...〉, |1010...〉, |0110...〉,

|0020...〉, |1001...〉, . . .
... . . .

8

2.2.2 Fock space

So far we have only looked at Hilbert spaces that admit systems of a fixed number of
particles. However, a more general treatment of many-body problems should allow for
systems where the number of particles may vary. In the next section we will introduce
operators that effectively changes the number of particles in a system, and this enforces
us to employ the Fock space, denoted F , which can handle systems with both varying
and unknown number of particles.

There are different Fock spaces, depending on the particles that are involved and conse-
quently what spaces the many-body states span. The free (or full) Fock space is spanned
by occupation number bases and is an infinite direct sum of many-particle Hilbert spaces,

F ≡ H0 ⊕ H1 ⊕ H2 ⊕ . . . =
∞⊕
n=0

H ⊗n. (2.26)

The states in this space may be fermionic, bosonic or an arbitrary combination of product
states. There are also the antisymmetric and symmetric Fock spaces, corresponding to
fermionic and bosonic systems, respectively. These Fock spaces use different tensor
products and are constructed with the symmetric properties of the particles in mind.

2.2.3 Creation and annihilation operators

The creation operator c†α and its Hermitian conjugate cα, the annihilation operator,
create and annihilate, respectively, a particle in state |α〉. The creation operator is
defined by

c†α|n1n2 . . . nα . . .〉 = η†α|n1n2 . . . nα + 1 . . .〉, (2.27)

where the phase factor

η†α =

{ √
1 + nα (bosons)

√
1− nα (−1)

∑
β<α

nβ

(fermions)
(2.28)

For fermions the resulting state when applying the creation operator c†α is thus zero if
nα = 1, which it has to be because two fermions cannot occupy the same state. In all
other cases the creation operator adds one particle to an N -particle state so that the
system then contains N + 1 particles. The action of the annihilation operator is

cα|n1n2 . . . nα . . .〉 =
{
ηα|n1n2 . . . nα − 1 . . .〉 , nα > 0
0 , nα = 0

(2.29)

where the factor

ηα =

{ √
nα (bosons)

√
nα (−1)

∑
β<α

nβ

(fermions)
(2.30)

9

There are a couple of operations that are important to know about when working with
creation and annihilation operators. Important commutation relations2 for bosons are

[cα,c
†
β] = δαβ

[cα, cβ] = [c†α,c
†
β] = 0

(bosons) (2.31)

There is also the anticommutation relations3 for fermions, given by

{cα,c†β} = δαβ

{cα, cβ} = {c†α,c†β} = 0
(fermions) (2.32)

The vacuum state |0〉 can now be used in conjunction with creation operators in order
to obtain an equivalent way of writing a many-particle state;

|α1α2. . . αN 〉 ≡ c†α1
c†α2

. . . c†αN
|0〉 =

∏
i

c†αi
|0〉. (2.33)

However, this only holds for fermions. The anticommutation rules in Eq. (2.32) make
sure that the state is antisymmetric, because

|α1α2. . . αN 〉 = c†α1
c†α2

. . . c†αN
|0〉

= {c†α1
, c†α2

}. . . c†αN
|0〉 − c†α2

c†α1
. . . c†αN

|0〉 (2.34)

= −|α2α1. . . αN 〉.

Bosons will instead require a normalization factor when two or more particles occupy
the same state. The general formula that holds for both fermions and bosons is

|nα1nα2 . . .〉 =
∏
i

1√
nαi !

(c†αi
)nαi |0〉. (2.35)

We have now found a way to easily construct many-body states from a system of no
particles using creation operators, and the (anti)commutation rules enforce the states
to be properly symmetrized.

2.2.4 Many-body operators

In order to proceed to the formulation of the equation of motion it is important to
understand the action of operators on many-body states and to introduce the matrix
representation of operators. We will now investigate how to quantize the relevant phys-
ical operators and express them in a more convenient form of creation and annihilation
operators. This will make it easier to work with many-body systems.

2The commutator is defined as [A,B] = AB −BA.
3The anticommutator is defined as {A,B} = AB +BA.

10

The operators can be categorized according to how many particles they act on; there are
one-body operators, two-body operators etc. In order to simulate interactions between
particles that correspond to effective degrees of freedom it is usually necessary to include
operators in the Hamiltonian that act on more than two particles at a time. Therefore,
we will consider one-, two- and three-body operators in this work. Four-body operators
and higher are rarely considered.

One-body operators

If Ô is a one-body operator acting on HN it measures the quantum numbers of only
one particle at a time. The action of Ô on an N -body state must therefore be given by
the sum of its action on each particle, giving

Ô = O1 +O2 + . . .+ON =
N∑
i=1

Oi , (2.36)

where Oi acts solely on particle i. To better understand how Oi operates on a product
state we may insert a complete set of states and write

Oi|α1α2...αN) = |α1〉|α2〉...|αi−1〉
{∑

βi

|βi〉〈βi|O|αi〉
}
|αi+1〉...|αN 〉

=
∑
βi

〈βi|O|αi〉|α1...αi−1βiαi+1...αN), (2.37)

where the operator O acts in the single-particle space H , and where we have used the
completeness relation ∑

βi

|βi〉〈βi| = 1̂. (2.38)

We see that the operator Oi picks particle i with quantum numbers αi and the state
is changed to |βi〉 with probability |〈βi|O|αi〉|2. If the matrix element 〈βi|O|αi〉 is zero
then of course this transition cannot happen. As the particles are identical the element
〈βi|O|αi〉 only depends on the quantum numbers and not on which particle is considered.
The total effect of Ô on a product state is

Ô|α1α2...αN) = O1|α1〉|α2〉...|αN 〉+ . . .+ |α1〉|α2〉...ON |αN 〉

=
∑
β1

〈β1|O|α1〉|β1α2...αN) + . . .+
∑
βN

〈βN |O|αN 〉|α1α2...βN) (2.39)

=

N∑
i=1

∑
βi

〈βi|O|αi〉|α1...αi−1βiαi+1...αN),

by the use of Eqs. (2.36) and (2.37). The one-body operator Ô obviously commutes with
both the antisymmetrizer A and the symmetrizer S, that is

ÔA = AÔ,
ÔS = SÔ.

(2.40)

11

Consequently, when the one-body operator Ô acts on an N -particle state of fermions
one obtains

Ô|α1α2 . . . αN 〉 = Ô
√
N !A |α1α2...αN) =

√
N !A Ô|α1α2...αN)

=
√
N !A

N∑
i=1

∑
βi

〈βi|O|αi〉|α1...αi−1βiαi+1...αN)

=
N∑
i=1

∑
βi

〈βi|O|αi〉
√
N !A |α1...αi−1βiαi+1...αN)

=
N∑
i=1

∑
βi

〈βi|O|αi〉|α1...αi−1βiαi+1...αN 〉,

(2.41)

and a similar treatment for bosons yields the same result. Hence, no matter if the
particles in a system are fermions or bosons we have

Ô|α1α2 . . . αN 〉 =
N∑
i=1

∑
βi

〈βi|O|αi〉|α1 . . . αi−1βiαi+1 . . . αN 〉. (2.42)

Considering how Ô operates on product and many-body states we may write it in the
matrix representation

Ô =
∑
α,β

|β〉〈β|O|α〉〈α|. (2.43)

The simple interpretation of this is again that in each term the particle with state |α〉
is picked and transformed into |β〉 with probability |〈β|O|α〉|2. The sum over α is in
accordance with the expression of Ô in Eq. (2.36).

The next step is to generalize the one-body operator in Eq. (2.43) by expressing it in
terms of creation and annihilation operators. This will yield an operator Ô in Fock
space. It can be done by using the fact that 〈α| = (c†α|0〉)† = 〈0|cα and |β〉 = c†β |0〉, and
the result is

Ô =
∑
α,β

〈β|O|α〉c†β |0〉〈0|cα =
∑
α,β

〈β|O|α〉c†βcα. (2.44)

We see that the annihilation operator cα destroys the particle of state |α〉, and the

operator c†β then creates a particle in state |β〉. The matrix element 〈β|O|α〉 is the
amplitude of this transition. The one-body operator is now expressed in terms of creation
and annihilation operators and this was the result we aimed for. It is much easier to
use this form in practice, because the problem is now reduced to calculating the matrix
elements 〈β|O|α〉.

12

Example. (The number operator) An interesting example of a one-body operator is

N̂ =
∑
α

c†αcα . (2.45)

When this operator acts on a many-particle state one obtains, by using Eq. (2.44),

N̂ |α1α2...αN 〉 =
∑
i,j

〈βj |c†αi
cαi |αi〉c†βj

cαi |α1α2...αN 〉

=
∑
i,j

〈βj |αi〉|α1...αi−1βiαi+1...αN 〉 (2.46)

=
∑
i

|α1...αi−1αiαi+1...αN 〉 = N |α1α2...αN 〉,

so this operator counts how many particles a particular system contains. It is therefore
often called the number operator, or the occupation number operator. �

Other important one-body operators are the one of kinetic energy, T̂ , and the angular
momentum operators Ĵz and Ĵ±. The eigenvalues of T̂ are the kinetic energies of the
particles.

Many-body operators

Now that we understand one-body operators it is easier to extend the formalism to many-
body operators. Two-body operators involve two interacting particles and operate on
every pair of particles in a system. Since the particles are identical it does not matter
if two particles in a pair are interchanged, and one should make sure that every pair is
counted only once. If the operator V̂ is a two-body operator, its total effect on a system
of N particles is the sum of its action on each pair of particles,

V̂ = V1,2 + V1,3 + . . .+ V1,N+
V2,3 + . . .+ V2,N+

.. .
...

VN−1,N =
N∑

i<j=1
Vi,j =

1
2

N∑
i 6=j

Vi,j ,

(2.47)

where Vi,j acts on particles i and j. Note that Vi,j = Vj,i because of the indistinguisha-
bility of the particles. If Vi,j acts on a product state a similar derivation as in Eq. (2.37)
for the one-body operator yields

Vi,j |α1α2. . . αN) =∑
βiβj

(βiβj |V |αiαj)|α1 . . . αi−1βiαi+1 . . . αj−1βjαj+1 . . . αN 〉, (2.48)

13

where V operates in H2. The total effect of V̂ on the product state is thus

V̂ |α1α2. . . αN) =

N∑
i<j=1

∑
βiβj

(βiβj |V |αiαj)|α1. . . βi. . . βj . . . αN). (2.49)

The operator V̂ does like the one-body operator commute with both the antisymmetrizer
A and the symmetrizer S, and using the same approach as before will finally yield the
action of V̂ on a many-body state,

V̂ |α1α2 . . . αN 〉 =
N∑

i<j=1

∑
βiβj

(βiβj |V |αiαj)|α1. . . βi. . . βj . . . αN 〉. (2.50)

V̂ can also be written as

V̂ =
∑
αβ

∑
γδ

|αβ)(αβ|V |γδ)(γδ|, (2.51)

and using creation and annihilation operators one obtains

V̂ =
1

2

∑
αβγδ

(αβ|V |γδ)c†αc
†
βcδcγ . (2.52)

This holds for both fermions and bosons. It is possible to extend this to operators that
work on an arbitrary number of particles; an m-body operator would be written as

M̂ =
1

m!

∑
12...m

∑
1′2′...m′

(12...m|M |1′2′...m′)c†1c
†
2...c

†
mcm′c(m−1)′ ...c1′ . (2.53)

Finally we can express the Hamiltonian in a second quantized form with one- and two-
body operators. If T̂ and V̂ are the operators of kinetic and potential energy, respectively,
the Hamiltonian may be written as

Ĥ = T̂ + V̂ =
∑
αβ

〈α|T |β〉c†αcβ +
1

2

∑
αβγδ

(αβ|V |γδ)c†αc
†
βcδcγ , (2.54)

and of course this must hold for both fermions and bosons. Including three-body forces
would result in

Ĥ =
∑
αβ

〈α|T |β〉c†αcβ +
1

2

∑
αβγδ

(αβ|V |γδ)c†αc
†
βcδcγ

+
1

6

∑
αβγ

∑
α′β′γ′

(αβγ|W |α′β′γ′)c†αc
†
βc

†
γcγ′cβ′cα′ . (2.55)

The sums are over all possible single-particle states so there is no assumption on how
many particles there are in the system. If |i〉 and |f〉 are the initial and final states, the
matrix elements become 〈f |Ĥ|i〉. The calculation of the matrix elements is now simpli-
fied by the use of the formulation of Ĥ in Eqs. (2.54) and (2.55) and the commutation
and anticommutation rules given in Eqs. (2.31) and (2.32).

14

2.3 Coupled and uncoupled schemes

A coupled quantum state involves two or more particles that are linked in such a way
that changing the state of one particle affects the others as well. It is similar to entangled
states, but entanglement often refers to particles that are also correlated over relatively
large distances.

We start with two particles with single-particle states |j1m1〉 and |j2m2〉, where j1 and
j2 are the total angular momenta, and m1 and m2 the corresponding projections given
by

m1 = −j1, − j1 + 1, . . . , j1 − 1, j1,

m2 = −j2, − j2 + 1, . . . , j2 − 1, j2.

Now, in order to construct a two-particle state with these two particles, there are two
choices. The uncoupled two-body state is the product state |j1m1〉|j2m2〉, and the
coupled two-body state, expanded in uncoupled states, is given by

|j12m12〉 =
∑
m1

∑
m2

Cj12m12
j1m1j2m2

|j1m1〉|j2m2〉, (2.56)

where Cj12m12
j1m1j2m2

are the Clebsch-Gordan coefficients. The coefficients are zero if either
|j1−j2| ≤ j12 ≤ |j1+j2| orm12 = m1+m2 does not hold. These conditions are important
for coupled states. The normalization condition for the Clebsch-Gordan coefficients is
given by ∑

m1

∑
m2

(
Cj12m12
j1m1j2m2

)2
= 1. (2.57)

Example. (Two coupled spin-12 particles) In the case of two spin-12 particles their pro-
jections are ms1 = ±1

2 and ms2 = ±1
2 . The particles are fermions because they have

half-integer spin. The coupled state is given by

|s12ms12〉 =
∑
ms1

∑
ms2

C
s12ms12
s1ms1s2ms2

|s1ms1〉|s2ms2〉. (2.58)

The possible values for the total spin s12 = 1
2 ± 1

2 = 0, 1 and the projection is ms12 =
−1, 0, 1 if s12 = 1 and ms12 = 0 if s12 = 0. Thus different states are possible, given by

|11〉 = |12
1
2〉|

1
2
1
2〉

|10〉 = 1√
2

(
|12

1
2〉|

1
2–

1
2〉+ |12–

1
2〉|

1
2
1
2〉
)

(2.59)

|1–1〉 = |12–
1
2〉|

1
2–

1
2〉

|00〉 = 1√
2

(
|12

1
2〉|

1
2–

1
2〉 − |12–

1
2〉|

1
2
1
2〉
)

15

Note that the Clebsch-Gordan coefficients satisfy the normalization condition in Eq. (2.57).

�

One may extend this to more than two particles. If three particles are considered several
coupling schemes are possible. The coupled state may for instance be written as

|j123m123〉 =
∑
m12
m3

Cj123m123
j12m12j3m3

|j12m12〉|j3m3〉 =∑
m12
m3

∑
m1
m2

Cj123m123
j12m12j3m3

Cj12m12
j1m1j2m2

|j1m1〉|j2m2〉|j3m3〉.
(2.60)

The quantum numbers j123 and m123 should satisfy j123 ≥ |m123| and m123 = m1 +
m2 +m3.

There are a couple of advantages and disadvantages using either coupled or uncoupled
schemes. The coupled scheme has a smaller basis dimension, which means that the
Hamiltonian matrix will be smaller. On the other hand, it is very complicated to evaluate
the matrix elements, and the Hamiltonian is less sparse. In contrast, using uncoupled
schemes, like the m-scheme, demands a larger dimension of the many-body basis to
obtain an equivalent approximation. However, the resulting matrix contains less nonzero
values, and calculating and storing matrix elements is easy. A more detailed account
regarding this is found in [6].

16

3 No-Core Shell Model

Many-body physics can be distinguished from few-body physics by the number of parti-
cles that is considered. A few-body system may contain three or four particles, whereas
many-particle systems do not have any such restriction. The distinction is induced by
the fact that some basically exact numerical techniques, such as solving the Faddeev
equations, exist for three-body systems, but not for larger number of particles. At the
moment there are few approaches available that successfully solve the many-body prob-
lem, with N > 4, with a realistic potential [7]. This chapter will briefly describe one of
these approaches, called the No-Core Shell Model (NCSM), by employing the tools and
ideas discussed in the previous chapter.

The NCSM was developed in nuclear physics to study systems with strongly interacting
fermionic nucleons. The dimensionality problem of the many-body system is handled by
utilizing a truncated model space, and this makes it possible to generate a Hamiltonian
matrix of finite size. Because of the finite model space a truncated harmonic oscillator
(HO) basis is used in NCSM [8]. However, a consequence of using a truncated basis is
that strong short-range correlations cannot be accounted for. It is therefore necessary
to construct effective interactions, which turn to the original realistic potentials as the
size of the basis tends to infinity.

In this chapter the modified, effective Hamiltonian and the truncated HO basis used
in NCSM are first introduced. Some characteristics of the matrix elements will then
be discussed. A knowledge of Jacobi coordinates may be in order when reading these
sections, and this is covered in Appendix A. Lastly, in Section 3.4 the No-Core Shell
Model for bosons, or NCSMb for short, is introduced. This computer code was the
centerpiece of our study. Specifically, the essential functions of the subroutine, which
computes the matrix elements for an arbitrary number of bosons, will be investigated to
get a better picture of how the different aspects of the many-body theory come together.
Note that, as opposed to the usual systems studied with the NCSM, NCSMb does not
work with fermions and thus the particles cannot be nucleons. The systems may instead
consist of bosonic atoms such as 4He.

17

3.1 The Hamiltonian

The Hamiltonian for theN -body system should include the kinetic energy of the particles
and the interactions between them. We will consider realistic two- as well as three-
body potentials that have been derived using theory together with experimental data.
Denote the two-body potential V̂ =

∑
i<j Vi,j and the three-body interaction Ŵ =∑

i<j<kWi,j,k. To start with we express the Hamiltonian as

Ĥrel =

N∑
i<j

(p̂i − p̂j)
2

2m
+

N∑
i<j

Vi,j +

N∑
i<j<k

Wi,j,k . (3.1)

The NCSMb can handle particles in an external trapping potential. The trap is modelled
by an HO potential

ĤHO(Ω) = T̂ +
1

2
NmΩ2R̂2 = T̂ +

1

2
NmΩ2

(
1

N

N∑
i=1

r̂i

)2

=

N∑
i=1

p̂i
2m

+

N∑
i=1

1

2
mΩ2r̂2i −

N∑
i<j

mΩ2

2N
(r̂i − r̂j)

2. (3.2)

Combining this with Ĥrel finally gives the total Hamiltonian

Ĥtot,Ω = Ĥrel + ĤHO(Ω) =

N∑
i=1

[
p̂i
2m

+
1

2
mΩ2r̂2i

]
+

N∑
i<j

[
Vi,j −

mΩ2

2N
(r̂i − r̂j)

2

]
+

N∑
i<j<k

Wi,j,k, (3.3)

where the terms are grouped into one-, two- and three-body operators.

3.2 Harmonic oscillator basis

The single-particle basis used in the NCSM is the harmonic oscillator basis. Using a
total energy cut-off it allows translational invariance also for truncated model spaces.
The basis is constructed by the analytical solutions of particles in a HO potential, when
the correlations between the particles are not taken into account. The wavefunction of
a HO state |α〉 with quantum numbers n, l and m can be written in the form

(x|α〉 = (x|nlm〉 = ψnlm(x) = Rnl(r)Ylm(θ, ϕ), (3.4)

where the radial wavefunction is given by

Rnl =

[
(2n)!!2l+2

(2(n+ l) + 1)!!
√
π

]1/2
rle−r2/2Ll+1/2

n (r2). (3.5)

18

In the HO basis all lengths are measured in units of b =
√

~/mΩ, which is related to
the HO frequency Ω. The letter m will in this chapter interchangeably be used for both
mass quantity and the magnetic quantum number. The wavefunctions are orthonormal
and satisfy ∫

d3x ψ†
n′l′m′(x)ψnlm(x) = δnn′δll′δmm′ . (3.6)

The eigenstates of a single particle in an HO potential are given by

ĤHO ψnlm(x) = ~Ω
(
2n+ l + 3

2

)
ψnlm(x) ≡ ~Ω

(
N + 3

2

)
ψnlm(x). (3.7)

From now on, if not explicitly stated otherwise, the energies will be expressed in units
of ~Ω and the zero-energy, the 3/2-term, is omitted. The energy is thus N = 2n + l,
and since the parity is given by π = (−1)l, clearly

π = (−1)l = (−1)N−2n = (−1)N , (3.8)

which means that the parity is completely determined by N .

As have already been stated, the NCSM works in a finite model space defined by a
maximum allowed energy for the N particles; denote this cut-off energy by Nmax. This
means that the sum of all energies of the particles cannot exceed this parameter, that is

N∑
i=1

Ni ≤ Nmax , (3.9)

where N is the number of particles and Ni their energies. This conflicting notation is
unfortunate, but hopefully it will always be clear what quantity N refers to.

3.3 Calculation of matrix elements

Using the basis expansion of the eigenvectors the Schrödinger equation turns into a
matrix eigenvalue problem. We now turn to the calculation of matrix elements from the
Hamiltonian operator written in the second quantized form

Ĥ =
∑
αβ

〈α|T |β〉c†αcβ +
1

2

∑
αβγδ

(αβ|V |γδ)c†αc
†
βcδcγ

+
1

6

∑
αβγ

∑
α′β′γ′

(αβγ|W |α′β′γ′)c†αc
†
βc

†
γcγ′cβ′cα′ . (3.10)

The matrix elements are then given by 〈f |Ĥ|i〉, as stated before. It is easy to see, using
occupation number representation, that an a-body operator only gives a nonzero contri-
bution to the matrix element if the initial (i) and the final (f) many-body basis states

19

differ from each other with at most a single-particle states. Take for instance the two-
body operator V̂ , and initial and final states |n′1n′2n′3 . . .〉 and |n1n2n3 . . .〉, respectively.
A term in the sum over the single-particle states is then given by

〈n1n2n3 . . . |(αβ|V |γδ)c†αc
†
βcδcγ |n

′
1n

′
2n

′
3 . . .〉 =

= η†αη
†
βηγηδ(αβ|V |γδ) (3.11)

× 〈n1n2n3...|n′1n′2...n′α–1...n′β–1...n′γ+1...n′δ+1...〉,

where the factors η†α and ηα result from the action of the creation and annihilation
operators and are given in Eqs. (2.28) and (2.30). This term is nonzero if the coefficients
are nonzero and if

|n1n2n3 . . .〉 = |n′1n′2...n′α–1...n′β–1...n′γ+1...n′δ+1...〉,

because the states are orthogonal. If more than two states differ then this equation
does not hold for any (α,β,γ,δ). It is therefore not surprising that a Hamiltonian with
three-body operators will result in a matrix with less zeros than obtained with only one-
and two-body operators.

There are different methods of calculating the two-body matrix elements (αβ|V |γδ),
and one can use either coupled or uncoupled schemes. We will not delve deeply into it
except giving some ideas on how it is done in NCSMb in the next section.

3.4 No-Core Shell Model for bosons

The No-Core Shell Model for bosons uses the same techniques as NCSM but some
modifications are made to accommodate for symmetric particles. The code is being
written by Simon Tölle from the Bonn University in collaboration with C. Forssén, H.
T. Johansson, and L. Platter at Chalmers University of Technology. What follows is a
summary of the first few tasks performed by the NCSMb code. It is by no means an
extensive description, but relevant features are discussed.

Create single-particle basis

The first thing the program does is to create the single-particle basis for a model space
with a cut-off parameter Nmax and with the number of bosons given by Nboson. This is
done by letting the energy N = 2n + l be iterated over all integers from zero to Nmax.
For every value of l there are 2l + 1 values of m given by

m = −l, –l+1, . . . , l–1, l . (3.12)

20

The single-particle states are denoted |nlm〉 and are completely determined by these
quantum numbers. However, apart from satisfying the condition in Eq. (3.9) there is
also a condition on the mi quantum numbers, given by

M =

Nboson∑
i=1

mi . (3.13)

All single-particle states that fulfill these conditions are used to make up the many-
particle states.

Example. Let Nmax = 2, Nboson = 3 and M = 0. N should then go from zero to two.

N = 0: n and l must be zero and consequently m = 0.

N = 1: The only possible values for n and l are n = 0 and l = 1. Thus m = −1, 0, 1.

N = 2: Either n = 0 and l = 2, or n = 1 and l = 0. In the first case m = −2, –1, 0, 1, 2
and in the second case m = 0.

The many-body basis (see below) will be composed of combinations of these single-
particle states. However, the total-M condition adds an additional constraint and there
will be no configuration of the three particles that contains the states |nlm〉 = |02–2〉,
|02–1〉, |021〉 or |022〉. The single-particle basis is therefore made up of the states

|000〉, |01–1〉, |010〉, |011〉, |100〉 and |020〉.

�

Create two- and three-particle bases

The next step of the computer program is to create a two- and three-particle basis,
because this will facilitate the computation of two- and three-body matrix elements. It
is only necessary to construct a three-particle basis when three-body forces are used. The
way these bases are constructed is by combining the quantum numbers of the individual
particles.

Consider the case of two particles and denote N1 = 2n1 + l1 and N2 = 2n2 + l2. These
combine into N1 + N2 = N , which should be less than or equal to the energy cut-off
Nmax. Furthermore, the total angular momentum L is in the range

|l1 − l2| ≤ L ≤ l1 + l2,

and M = m1 + m2, where the magnetic quantum numbers mi are obtained from the
angular momenta li as in Eq. (3.12). The basis consists of coupled two-particle states
|(n1l1n2l2)LM〉 that are constructed by all possible combinations of the single-particle
states. In the code NCSMb, an array of indices is created in order to easily map from two
single-particle states to their corresponding two-particle states, and this is used when
two-particle interactions are considered.

21

Create many-particle basis

The size of the many-body basis corresponds to the dimension of the matrix. The
many-particle states are formed by all possible combinations of single-particle states,
each having the same value of M , total energy N ≤ Nmax, and total parity Π.

The many-particle states are represented by occupation numbers, giving states |n1n2n3 . . .〉,
because this makes it easier to remove and add single-particle states. Since the single-
particle states are referenced by indices it is, by the use of occupation number represen-
tation, very easy to check if a specific state is occupied for a specific multiparticle state.
To facilitate the search through many-particle states a lookup table is made in NCSMb,
and each state is referenced by a number.

Compute matrix elements

The calculation of many-body matrix elements is a rather complicated task that involves
a lot of bookkeeping. In short one has to find all pairs of many-body basis states that
differ by at most two (three) single-particle states when studying contributions from
two-(three-)body operators. The two- and three-body matrix elements that are needed
to evaluate the many-body matrix elements, see Eq. (3.11), can either be read from file
or computed assuming contact interactions between the particles given by

V̂ = cδ3(x1 − x2). (3.14)

An efficient algorithm for computing the many-body matrix involves fast identification
of the location of nonzero matrix elements. A subroutine in NCSMb loops over initial
states |I〉 in the many-body basis and finds all possible final states |F 〉 that can be
reached by two-body jumps. A many-body state is stored as an array with N entries
specifying the occupied single-particle states. In summary, the algorithm includes the
following steps:

1. Loop over all many-body states in the model basis, and in each iteration use the
multiparticle state as an initial state I.

2. Within the outer loop, loop over pairs of particle indices
∑N

i=1

∑N
j>i. This should

correspond to single-particle indices αiαj in the initial state I.

3. For each pair ij; remove αiαj and create all possible (see below) new pairs of
single-particle states βiβj at this position. For each such replacement we will form
a final state F .

4. In general, the state |I − αiαj + βiβj〉 does not have the required property of
ascending single-particle indices. Thus, the state must be sorted to accomplish
the next step.

22

5. Figure out the index of this final state (using a hash table4) and compute the
contribution to the many-body matrix element VIF (ij,βiβj).

Diagonalize the matrix

When the Hamiltonian matrix has been generated, the next step is to diagonalize the
matrix to find the eigenenergies and eigenstates. Only the smallest eigenvalues are
generally sought, which includes the ground state energy and the first excitation energies.
A suitable candidate for the diagonalization of the Hamiltonian is the Lanczos method,
which is an efficient method to apply on symmetric, sparse matrices.

Moreover, the first eigenvalues that converge using Lanczos are the smallest and largest,
and this is, in terms of execution time, advantageous in this case. The Lanczos method
and its variations is therefore the topic of the following chapter.

4The concept of a hash table will be explained in Section 6.4.

23

4 Numerical Methods

The previous chapters described the elementary theory of quantum mechanical many-
body problems involving systems of identical, interacting bosons or fermions. An ex-
pansion in terms of a many-body basis led to a matrix formulation of the Hamiltonian
eigenvalue problem. These matrices are symmetric, sparse and generally of large order.
Furthermore, physicists are often only interested in finding the energy of the ground
state and possibly of a few of the first excited states. For these reasons, traditional
eigensolvers based on QR-factorization and similar techniques are ill-fitted for the task
at hand. The main disadvantages are:

1. An excessive amount of storage space is required.

2. Unwanted eigenpairs are computed.

3. Many methods are based on similarity transformations that destroy the sparse
structure.

4. Convergence requires gargantuan amounts of arithmetic operations.

Fortunately, there is a family of methods much better suited for dealing with large, sparse
and symmetric eigenvalue problems, namely methods based on the Lanczos algorithm.
Originally conceived by Cornelius Lanczos5 in 1950, the early versions of the Lanczos
algorithm were used to solve an eigenvalue problem by computing what is known as a
minimal polynomial. This approach however led to issues regarding implementation and
Lanczos’ work was quickly overshadowed by methods that were considered superior, such
as QR-factorization with Householder reflections. It was not until 20 years later that the
true potential of the Lanczos algorithm was discovered by the pioneering work of C. Paige
and G. Golub, among others. These authors suggested the use of the Lanczos algorithm
as a means of solving large and sparse eigenproblems and they are largely responsible
for the modern interpretation of the Lanczos algorithm given in this chapter. Another
notable application of Lanczos-based methods is in the field of structural mechanics,
where numerical solutions based on the method of finite elements lead to generalized
sparse eigenproblems.

The remainder of this chapter introduces several important topics regarding the Lanczos
algorithm. Section 4.1 contains a general introduction to Krylov Subspace Methods

5Lanczos was notably an assistant to A. Einstein and made several important contributions in the
fields of mathematics and theoretical physics.

24

which is a much larger family of methods of which the Lanczos-based methods are
only a subset. The next section describes how to extend the Lanczos algorithm to
operate on blocks, appropriately named the Block Lanczos algorithm. The last few
sections explores modifications of these algorithms to accommodate for finite precision
and memory requirements.

4.1 Krylov subspace methods

In this section the basics of the Krylov Space is presented, which in turn leads to the
Lanczos algorithm. The basic advantage of the Lanczos algorithm is that it makes it
possible to by only a few matrix multiplications create a new matrix of much smaller
dimension than the original, containing information about the extreme eigenvalues and
eigenvectors of the original matrix. The structure and content of this section is largely
based on a similar exposition found in [9].

Assume A is a symmetric n×n matrix with eigenvalues (λi)
n
i=1 and associated eigenvec-

tors (vi)
n
i=1. An arbitrary real vector x0 of length n can then be expanded in the basis

of the eigenvectors;

x0 =
n∑

i=1

ci,0 vi, (4.1)

where ci,0 are real coefficients. After multiplying with the matrix A the result will
therefore become

Ax0 =
n∑

i=1

λici,0vi =
n∑

i=1

ci,1vi, (4.2)

where ci,1 = λici,0. Observe that if two eigenvalues are distinct, λi 6= λj , then

ci,1
ci,0

6= cj,1
cj,0

, (4.3)

thus making the two vectors x0 and Ax0 linearly independent.

In fact, it can be shown that the whole sequence (Ak−1x0)
n′
k=1 is linearly independent,

where n′ is the number of distinct eigenvalues λi for which there is a starting coefficient
ci,0 6= 0. Any vector An′

x0 will at the same time be possible to express with the earlier
ones, and because n′ ≤ n, this will always be true for Anx0 as well.

The sequence (Ak−1x0)
n′
k=1 is called a Krylov sequence and the matrix

Kk = [x0 Ax0 . . . A
k−1x0] = [x0 x1 . . . xk−1] (4.4)

is defined as the n×k Krylov matrix, with the Krylov subspace Kk = span(Kk). If Kk

is multiplied by A, then

AKn = [Ax0 Ax1 . . . Axn−1] = [x1 x2 . . . xn] =
Kn[e2 e3 . . . en K

−1
n xn] ≡ KnCn,

(4.5)

25

assuming n′ = k = n, and that Kn is not singular. ei denotes the ith unit vector. Note
that Cn lacks nonzero elements below its first sub-diagonal. Matrices of this form are
defined as upper Hessenberg. Furthermore, the relation

AKn = KnCn (4.6)

means that A is similar to Cn, which in turn means that if A is symmetric, then so is
Cn. Considering that Cn is both upper Hessenberg and symmetric, all of the nonzero
elements of Cn needs to be either on its diagonal or its first sub-diagonal. Cn is thus a
tridiagonal matrix.

Kn on the other hand is a basis for Kn. There is however an issue associated with this
basis. Since

xk = Akx0 =

k∑
i=1

λki civi, (4.7)

the components associated with the dominant eigenvalue λmax will grow more rapid than
any other eigenvalue as k → ∞, in practice making xk more or less parallel with the
dominant eigenvector vmax. This means that the Krylov-sequence becomes an increas-
ingly more ill-conditioned basis as k increases. To tackle the problem QR-factorisation
is performed so that

QnRn = Kn, (4.8)

where Qn is an orthonormal basis to Kn. The similarity relation from Eq. (4.6) then
reads

AQnRn = QnRnCn. (4.9)

By defining a new matrix T ≡ RnCnR
−1
n we get the new important similarity equation

QT
nAQn = T. (4.10)

As the similarity condition still holds, and the Hessenberg form remains under pre- or
post-multiplication by another Hessenberg matrix, T is tridiagonal as well and gets the
following appearance:

T =



α1 β1 0 · · · 0

β∗1 α2 β2
...

0 β∗2
. . .

. . . 0
...

. . . αn−1 βn−1

0 · · · 0 β∗n−1 αn


. (4.11)

The orthonormal basis Qn from the QR-factorisation can be expressed as

Qn = [q1 q2 . . . qn]. (4.12)

If Eq. (4.10) is reordered as AQn = QnT , one column qk will satisfy the relation

Aqk = βk−1qk−1 + αkqk + β∗kqk+1. (4.13)

26

A re-ordering of Eq. (4.13) gives

qk+1 =
1

β∗k
(Aqk − αkqk − βk−1qk−1) , (4.14)

and because qk+1 is normalized it can be concluded that

β∗k = ‖Aqk − αkqk − βk−1qk−1‖2 . (4.15)

By multiplying qTk with Eq. (4.13) and using the fact that qTi qj = δij , the following
relation is also found:

αk = qTk Aqk. (4.16)

These equations are all that is needed to successively build up both Qn and T , leading
to the Lanczos iteration in Algorithm 1. Furthermore: Since the vectors qi of Qn and
the elements of T are acquired step by step, the Lanczos algorithm can be terminated
at any iteration s. This will prove useful later on.

Algorithm 1 The Lanczos algorithm

1: q0 = 0
2: β0 = 0
3: x0 = arbitrary nonzero vector
4: q1 = x0/ ‖x0‖2 (the starting vector)
5: for i = 1 → s do
6: xi = Aqi
7: αi = qTi xi
8: xi = xi − βiqi−1 − αiqi
9: βi = ||xi||2

10: qi+1 = xi/βi
11: end for

By terminating the algorithm at a step s < n the known vectors (qi)
s
i=1 forms the

columns of the matrix Qs = [q1 q2 ... qs], fulfilling the relation

Qn =
[
Qs Un−s

]
, (4.17)

where Un−s contains the n− s remaining unknown vectors. Eq. (4.10) thus becomes

T = QT
nAQn =

[
QT

s

UT
n−s

]
A
[
Qs Un−s

]
=

[
QT

s AQs QT
s AUn−s

UT
n−sAQk UT

n−sAUn−s

]
=

[
Ts T̃s
T̃ T
s Nn−s

]
. (4.18)

Because T is symmetric and tridiagonal the same must hold for Ts, and T̃s can have at
most one nonzero element, βs, in its bottom left corner. Finally,Nn−s is an (n−s)×(n−s)

27

tridiagonal matrix with unknown values. The eigenvalues of Ts are called Ritz values
and the vectors v = Qsw, where w is an eigenvector of Ts, are called Ritz vectors.

It can be shown that the Ritz values converge to the extreme eigenvalues of A, and the
corresponding Ritz vectors converge to the corresponding eigenvectors, as s increases,
which is the reason why the Lanczos algorithm is so useful.

Even for s � n the Ritz pairs tend to be good approximations for the smallest and
largest eigenpairs of A, saving a lot of computer power as the evaluation of Ts is far less
intense than the one of A, if A is of considerable size. A more exhaustive discussion of
the behavior and convergence of Lanczos may be found in Appendix B.

4.2 Block Lanczos

The Lanczos method described in the last section may be extended to operate with
blocks, i.e. small matrices, rather than a single vector, and is then commonly referred to
as a Block Lanczos method. The motivation behind introducing a block generalization
of the Lanczos algorithm is two-fold: Firstly, when dealing with matrices of extremely
large order, the computations are bound by memory access rather than the speed with
which the arithmetic operations are performed. This suggests that it might be favorable
to multiply the stored matrix with a small set of vectors rather than a single vector in
the hopes of receiving a few number of matrix-vector multiplications essentially for free.
Secondly, without modification the Lanczos algorithm is inherently unable to detect
degenerate eigenvalues. This is a glaring issue especially in the context of quantum
mechanics where such quantum states occur frequently.

Recall that for a given symmetric matrix A and an arbitrary starting vector q, the basic
Lanczos algorithm generates:

1. A sequence of vectors (qi)
s
i=1 which constitutes an orthonormal basis for the asso-

ciated Krylov subspace Ks(q,A) = span(q,Aq, . . . ,As−1q).

2. Sequences of scalars (αi)
s
i=1 and (βi)

s
i=2 containing the diagonal and subdiagonal

entries respectively, of a tridiagonal matrix Ts which is the projection of A onto
to the Krylov subspace Ks(q,A).

Similarly, for a symmetric n×n matrix A and an arbitrary n×p orthonormal matrix Q
the Block Lanczos method with block size p will generate:

1. A sequence of n×p orthonormal matrices (Qi)
s
i=1 whose columns constitue an

orthonormal basis for the Block Krylov subspace Ks(Q,A) spanned by the columns
of the matrices Q,AQ, . . . , As−1Q.

28

2. Sequences of p×p matrices (Ai)
s
i=1 and (Bi)

s
i=2 containing the diagonal and sub-

diagonal blocks respectively, of a ps×ps block tridiagonal matrix, which will also
be denoted Ts for convenience. Ts is then the projection of A onto Ks(Q,A).

4.2.1 A Block Lanczos algorithm

In this section the basic properties of the algorithm are derived. The goal is to first
construct an orthonormal basis for the Krylov subspace Ks(Q,A) and then proceed to
show that projecting the matrix A onto this space yields a block tridiagonal matrix Ts.
In some cases, rigorous proofs are omitted for simplicity. Curious readers are referred
to [10] for a more detailed account of the Block Lanczos algorithm.

Suppose A is an n×n symmetric matrix, choose integers p, s such that 1 ≤ ps ≤ n and
let Q be an arbitrary n×p matrix with orthonormal columns. Thus, p is the width of
the initial block, commonly referred to as the block size, while s is the number of steps
performed which determines the size of the basis. Set Q1 = Q and compute

Y1 = AQ1. (4.19)

Next, let Z2 be the projection of Y1 onto the space orthogonal to the column space of
Q1, given by

Z2 = (I −Q1Q
T
1)AQ1 = AQ1 −Q1Q

T
1AQ1 = AQ1 −Q1A1 (4.20)

where A1 ≡ QT
1AQ1 is a p×p matrix. Whereas each column of Z2 is guaranteed to

be orthogonal to each of the columns in Y1, the columns of Z2 may not be mutually
orthogonal. This can be remedied by a reduced QR-factorization

Z2 = Q2B2, (4.21)

yielding an n×p orthonormal matrix Q2 and a p×p upper triangular matrix B2. Note
that QT

2Q1 = 0 by construction since Q2 is simply the normalized version of Z2 which
was the result of projeting AQ1 onto the space orthogonal to Q1.

The third Lanczos block Q3 can now be obtained through the same sequence of steps.
Compute Y2 = AQ2 and project the resulting matrix onto the space orthogonal to Q2

and Q1 yielding

Z3 = (I −Q1Q
T
1 −Q2Q

T
2)AQ2 = AQ2 −Q2A2 −Q1Q

T
1AQ2, (4.22)

where A2 ≡ QT
2AQ2. Since Q

T
2Q1 = 0 it follows from Eq. (4.21) that

B2 = QT
2 Z2 = QT

2 (AQ1 −Q1A1) = QT
2AQ1. (4.23)

Using the above equation and the fact that A is symmetric, Eq. (4.22) reduces to

Z3 = AQ2 −Q2A2 −Q1B
T
2 . (4.24)

29

The third block Q3 and the upper triangular matrix B3 is then obtained by a QR-
factorization, Z3 = Q3B3. For a general j, the correct generalization6 of Eq. (4.24)
accompanied by the usual QR-factorization is written

Qj+1Bj+1 = Zj+1 = AQj −QjAj −Qj−1B
T
j , (4.25)

where Aj is defined by
Aj ≡ QT

j AQj . (4.26)

Thus, upon completion of j steps three sequences of matrices have been obtained,
(Qi)

j
i=1, (Ai)

j
i=1 and (Bi)

j
i=2, related by

Q2B2 =Z2 = AQ1 −A1Q1

Q3B3 =Z3 = AQ2 −A2Q2 −Q1B
T
2 (4.27)

...

Qj+1Bj+1 =Zj+1 = AQj −AjQj −Qj−1B
T
j

Since the goal is to build an orthonormal basis for the Block Krylov space Ks(Q,A) and
the columns of each individual Lanczos block are orthonormal by way of construction,
it remains to show that distinct Lanczos blocks are mutually orthogonal. An inductive
proof of this orthogonality can be found in Appendix C. The proof yields some useful
side results which are stated here for future reference:

QT
j−1AQj = BT

j , (4.28)

QT
j AQi = 0 for i = 1, . . . , j − 2. (4.29)

Thus, a total of s steps yields matrices Q1, Q2, . . . , Qs such that the set of their collected
columns constitute an orthonormal set of vectors, which is in fact the sought-after basis
for the Block Krylov space Ks(Q,A). This can be shown by a simple inductive argument
the proof can be found in [10] but is omitted here for brevity. The columns of the
sequence of Lanczos blocks (Qi)

s
i=1 can be collected in a single matrix

Qs ≡ [Q1Q2 . . . Qs] . (4.30)

Now, define a matrix Ts by
Ts ≡ QT

s AQs. (4.31)

This can be interpreted as the matrix A being orthogonally projected onto the subspace
spanned by (Qi)

s
i=1, i.e. the Block Krylov space Ks(Q,A). This projection is repre-

sented by the matrix Ts
7 and it is natural to think of Ts as an s×s block matrix,8 the

6The approach here is to anticipate the result and show that this way of constructing new blocks
yields the desired properties rather than attempting a straightforward derivation which can be a bit
messy.

7To put it in other words: computing Ts amounts to expressing A in the new basis derived for the
Krylov subspace. It is a remarkable fact that even if the dimension of this space is comparatively small,
eigenvalues of Ts still provides good approximations to the extreme eigenvalues of A.

8If the individual elements of each block is taken into consideration the dimension is actually ps×ps.

30

constituents of which are the p×p blocks given by

(
QT

s AQs

)
ij
= QT

i AQj =


Ai, i = j
Bi, i = j + 1
BT

i , i = j − 1
0, otherwise

(4.32)

which is just a restatement of Eqs. (4.26), (4.28) and (4.29) respectively. Ts may be
written explicitly as

Ts =



A1 BT
2 0 · · · 0

B2 A2 BT
3

...

0 B3
. . .

. . . 0
...

. . . As−1 BT
s

0 · · · 0 Bs As


, (4.33)

which is the block equivalent of the tridiagonal matrix obtained in the original Lanczos
algorithm. Following the conventions introduced in Section 4.1, an eigenvalue of Ts is
called a Ritz value and if w is the corresponding eigenvector then v ≡ Qsw is the Ritz
vector. Furthermore, it is possible to prove that these Ritz pairs converges to eigenpairs
of A [10], as was the case in the vector Lanczos algorithm.

It is sometimes convenient to compactify the set of equations in Eq. (4.27) relating the
three sequences of matrices generated by the Block Lanczos recurrence in Eq. (4.25) for
an arbitrary j:

AQj = QjTj +Qj+1Bj+1E
T
j , (4.34)

where ET
j is the n×p matrix whose n−p first rows are all zero and the last p×p block is

Ip. This is sometimes referred to as a Block Lanczos decomposition and the expression
may be verified by direct substitution using the defining equation for Qj and ET

j .

The results obtained thus far may be condensed into a Block Lanczos algorithm. To
reiterate, suppose A is an n×n symmetric matrix, integers p, s have been chosen such
that p ≥ 1 and 1 ≤ ps ≤ n and Q is an arbitrary orthonormal n×p matrix Q. Compute
matrices Qs and Ts through the steps of Algorithm 2. Note that the order of the
computation in this algorithm differs somewhat from the original construction. From
a theoretical viewpoint, this rearrangement makes no difference but is employed rather
because it is less sensitive to rounding errors [11].

31

Algorithm 2 The Block Lanczos algorithm

1: Q0 = 0
2: B1 = 0
3: Q1 = Q
4: for i = 1,2, . . . ,s do
5: Ui = AQi −Qi−1B

T
i

6: Ai = QT
i Ui

7: Zi+1 = Ui −QiAi

8: Compute the reduced QR-factorization Qi+1Bi+1 = Zi+1

9: end for

4.3 Restarted Lanczos methods

In practical applications, the amount of memory available for a given computation is
limited. Depending on the dimension of the problem, the type of Lanczos method used,
the number of eigenpairs sought and so forth, it may prove inconvenient or impossible
to build a large enough Krylov space to attain the desired level of convergence. Indeed,
as the dimension of the Krylov space increases, so does the cost of each increment (due
to the need for reorthogonalization measures, see Section 4.4) and for this reason alone
it may be desirable to limit the allowed dimension of the Krylov space.

Difficulties of this nature are commonly circumvented by restarting the Lanczos pro-
cedure and is then referred to as a restarted Lanczos method or an iterative Lanczos
method. A restarted Lanczos method can be loosely defined as a Lanczos procedure
where, after a specified number of steps, the algorithm is halted and restarted using
information from the previous run. The reason why this works is due to the fact that
the degree of eigenpair convergence in relation to the number of iterations depends on
how well the space spanned by the starting vectors approximates the space spanned by
the desired eigenvectors. In principle, if a run starts with better eigenvector approxima-
tions than the previous run, the eigenpairs will converge faster using the same number
of iterations, resulting in an even better starting approximation for an additional run,
see Section 5.4.1. The reason why this works is due to the fact that the degree of eigen-
pair convergence in relation to the number of iterations depends on how well the space
spanned by the starting vectors approximates the space spanned by the desired eigen-
vectors. So in principle, if a run starts with better approximations than the previous
run, the second run will converge further in the same number of iterations than the
previous one, resulting in an even better starting approximations for an additional run,
see Section 5.4.1.

Consider as an example the Block Lanczos algorithm described in the last section, Al-
gorithm 2. Suppose the algorithm is initialized with a random starting block and ter-
minated once the dimension of the Krylov space has reached one maximum tolerant
dimension. The resulting block tridiagonal matrix T and the generated Lanczos blocks

32

are then used to compute Ritz pairs. If the desired level of convergence has not been at-
tained, the Ritz vectors corresponding to the desired eigenvalues are used as the starting
block for the next Lanczos run. This can be summarized in Algorithm 3 for computing
the r least (or largest) eigenvalues of a matrix A. Note that Algorithm 3 hinges on using
a block size which is greater than or equal to desired number of eigenvalues.

Algorithm 3 Restarted Block Lanczos algorithm

1: Generate an arbitrary orthonormal starting block Q1 of width at least r.
2: Compute matrices Ts and Qs using Algorithm 2.
3: Compute the r least eigenvalues µi and corresponding eigenvectors wi of Ts.
4: Compute vi = Qswi, i = 1, . . . ,r.
5: Estimate the accuracy of the Ritz pairs (µi,vi) as approximations to eigenpairs of
A.

6: if Convergence has occurred then
7: stop
8: else
9: Set Q = [v1 . . . vr] and repeat from step 2.

10: end if

This restarting scheme can be expanded on somewhat: Suppose that after a Block
Lanczos run, only a subset of the Ritz vectors v1, . . . ,vk, where k < r, have converged.
Since Algorithm 3 makes no distinction between these vectors and the remaining vectors
vk+1, . . . ,vr, converged Ritz pairs will be recomputed during subsequent runs.

It is possible to rid Algorithm 3 of this superfluous computational expense using a scheme
where Ritz vectors that have converged sufficiently during a particular run are effectively
banished during the following runs. The easiest way to accomplish this is to compute an
eigendecomposition of Ts at the end of each Lanczos run and store the converged Ritz
vectors while using those not yet converged as starting approximations for the next run.
This results in Algorithm 4 for this modification of the restarted Block Lanczos method.

Thus, when a few Ritz vectors have converged in Algorithm 4, these vectors will be
ignored in the formation of the new starting block Q1 and this new block will in fact be
orthogonal to the set of converged Ritz vectors since any eigenvectors computed from Ts
are orthogonal and will remain so under multiplication with the unitary matrix Qs. In
ideal settings, this orthgonality would be preserved during the formation of new Lanczos
blocks during step 4 in Algorithm 4 where Algorithm 2 is used to compute new the Ts
and Qs. In practice however, the orthogonality is quickly lost due to round-off errors
which introduce components in the directions of the banished Ritz vectors. This general
phenomenon is more thoroughly explained in Section 4.4 and an easy but not so elegant
way to purge the Lanczos blocks from these unwanted components is to orthgonalize
each newly generated block against the set of converged Ritz vectors.

33

Algorithm 4 Restarted Block Lanczos algorithm (modified)

1: Generate an arbitrary orthonormal starting block Q1 of width at least r.
2: m = 0
3: while m < r do
4: Compute matrices Ts and Qs using Algorithm 2.
5: Compute the r least eigenvalues µi and corresponding eigenvectors wi of Ts.
6: Compute vi = Qswi, i = 1, . . . ,r.
7: Estimate the accuracy of the Ritz pairs (µi,vi) as approximations to eigenpairs

of A.
8: Suppose that k Ritz vectors have converged, store these vectors and increase
m = m+ k.

9: Q1 = [vm+1vm+2 . . . vr]
10: end while

In the case of the vector Lanczos it is obviously not possible to use a block of nearly
converged Ritz vectors to start the algorithm but there are other options: For instance,
after a particular run a linear combination of the current Ritz vectors can be used to
restart the algorithm. This is just a special case of applying a filter polynomial to the
starting vector. To see how this works, suppose that q is an arbitrary vector and let
(λi,vi)

n
i=1 be a complete set of eigenpairs of A. q can now be expanded in terms of the

eigenvectors vi:

q =
n∑

i=1

civi . (4.35)

Next, let P (x) be an arbitrary polynomial and denote by P (A) the corresponding matrix
polynomial which is the result of substituting x for A everywhere in P . Multiplying q
by this polynomial and using Eq. (4.35) yields

P (A)q = P (A)

n∑
i=1

civi =

n∑
i=1

ciP (A)vi =

n∑
i=1

ciP (λi)vi . (4.36)

Now, suppose that only the k first of the eigenpairs of A are to be calculated and split
up the sum in Eq. (4.36) into two parts:

P (A)q =

k∑
i=1

ciP (λi)vi +

n∑
i=k+1

ciP (λi)vi . (4.37)

Thus, by using P (A)q as the starting vector for the next Lanczos run and choosing an
appropriate polynomial P , it is possible to minimize the components of P (A)q along the
directions of the unwanted eigenvectors vk+1, . . . ,vn. In this case, P is referred to as a
filter polynomial.

34

Example. If µk+1, . . . ,µn are Ritz values corresponding to the unwanted end of the
spectrum, an obvious choice of P is given by

P (x) = (x− µk+1) · · · (x− µn). (4.38)

Inserting this into equation Eq. (4.36) yields

P (A)q =

n∑
i=1

ci

n∏
j=k+1

(λi − µj)vi . (4.39)

Since the Ritz values µi ≈ λi, terms in Eq. (4.39) containing the factor (λi − µi) are
small. But these factors can only appear for i ≥ k+1 thus damping only the unwanted
components vk+1. �

Computing a filter polynomial is usually a formidable task. However, without going into
further details, if q is used to start the Lanczos algorithm it is possible to compute the
Lanczos decomposition of P (A)q using a QR-method with shifts without introducing
any further matrix products involving A. This leads to a scheme for restarting the
Lanczos algorithm known as implicit restarting and readers are referred to [12] for a
detailed account. It is possible to extend the technique described above to include the
block version of the Lanczos algorithm as well, see [13].

A quick note on terminology: In literature, restarted Lanczos methods that use some
kind of filter polynomial without the addition of the shifted QR steps, are sometimes
(rather confusingly) referred to as explicitly restarted. Similarly, Block Lanczos methods
such as the one described in Algorithm 3 are occasionally called explicitly restarted as
well.

4.4 Loss of orthogonality

Up until this point, both the vector and the Block Lanczos methods have been discussed
in the context of infinite precision arithmetic. This section will discuss the issues that
arise in finite-precision arithmetic, i.e. when the actual computations are made using
computers.

In the following discussion the vector Lanczos method will be regarded as a special
case of the Block Lanczos method with the block size set to one unless stated otherwise.
Recall that new orthonormal Lanczos blocks are constructed via a three term recurrence,
see Eq. (4.25), and that these blocks were shown to be mutually orthogonal. In an ideal
setting, this means that if the most recently generated block is Qj+1 then for all k ≤ j∣∣∣∣QT

kQj+1

∣∣∣∣ = 0, (4.40)

35

where ||. . . || denotes the spectral norm or 2-norm of a matrix A defined by

||A|| ≡ max

{
||Ax||
||x||

: x ∈ Rn

}
. (4.41)

In practice however, round-off errors incurred in computing the matrix products will
result in what is called a (global) loss of orthogonality among the Lanczos blocks. This
can be clarified by a simple geometric argument: Suppose that when a Lanczos block
Qj+1 is computed, a round-off error introduces small components in the directions of
some vectors contained in some of its predecessors Qj ,Qj−1, . . . , which are assumed to be
perfectly orthogonal, so that Qj+1 is no longer perfectly orthogonal to these blocks. Next
Qj+2 will be computed but according to Eq. (4.25) only components in the directions
contained in Qj+1 and Qj will be purged and thus Qj+2 will not be orthogonal to
Qj−1, Thus, round-off errors propagate as new blocks are added. Furthermore, it
can be argued that these errors not only propagate but may be amplified during the
formation of the basis [14].

The loss of orthogonality occurs surprisingly fast as the example below will illustrate.
The level of orthogonality between distinct blocks is measured by

∣∣∣∣QT
kQj+1

∣∣∣∣ in Eq. (4.40)
and it will be shown that this quantity will quickly exceed the unit round-off εmach

9 as
new blocks are added.

Example. (Loss of orthogonality) Consider a 119240×119240 symmetric matrix rep-
resenting the Hamiltonian of a quantum mechanical system consisting of 10 interact-
ing bosons. The block size is set to p = 4 and the block Lanczos algorithm has
been run for j = 20 steps. The orthogonality of the most recently generated block
against its predecessors is measured by log10

(∣∣∣∣QT
kQj

∣∣∣∣ /εmach

)
and displayed for each

step in Table 4.1. For instance, the third row contains log10
(∣∣∣∣QT

1Q3

∣∣∣∣ /εmach

)
and

log10
(∣∣∣∣QT

2Q3

∣∣∣∣ /εmach

)
. This measure indicates by how many orders of magnitude the

unit round-off εmach = 2.2204× 10−16 is exceeded. �

The formulas previously derived for the Block Lanczos recursion, see Section 4.2.1,
remain valid for small errors up to about the size of the unit round-off. Thus, referring
to the above example, it is clear that losses of orthogonality introduce errors which are
not negligible since they surpass the unit round-off by several orders of magnitude. Left
unattended, the loss of orthogonality among Lanczos blocks results in the appearance of
multiple copies of one or more eigenvalues, even if the true multiplicity of the eigenvalue
is one. This is sometimes referred to as the ghost eigenvalue problem. Furthermore, given
enough iterations the basis for the Krylov space eventually deteriorates completely and
the resulting spectrum of T may be very different from that of A.

To adress both these problems, it is almost always necessary to include some degree of
reorthogonalization of the generated Lanczos blocks and the options available are dis-
cussed below. With the exception of Section 4.4.1, the schemes outlined in Sections 4.4.2,

9Also referred to as machine-epsilon and is roughly speaking a bound on the relative error in the used
floating point representation of a real number.

36

Table 4.1. A table illustrating the global loss of orthogonality among Lanczos blocks. The (j,k)-
th entry is given by log10

(∣∣∣∣QT
kQj

∣∣∣∣ /εmach

)
and shows by how many orders of magnitude

the unit round-off is exceeded.

Lanczos
step j

1 0
2 3
3 2 3
4 3 2 3
5 3 3 3 3
6 3 3 3 3 3
7 3 3 3 3 3 3
8 3 3 3 3 3 3 3
9 4 4 4 4 3 3 3 3

10 4 4 4 4 4 4 3 3 3
11 5 5 5 4 4 4 4 3 3 3
12 5 5 5 5 5 5 4 4 3 3 3
13 6 6 6 6 5 5 5 4 4 3 3 3
14 7 7 7 6 6 6 5 5 5 4 4 3 3
15 7 7 7 7 7 7 6 6 5 5 5 4 3 3
16 8 8 8 8 8 7 7 7 7 6 6 5 5 4 3
17 9 9 9 9 8 8 8 7 7 7 6 6 5 5 4 4
18 9 9 9 9 9 9 8 8 8 7 7 7 6 5 5 4 3
19 10 10 10 10 10 9 9 9 8 8 8 7 7 6 5 4 4 3
20 11 11 11 10 10 10 10 9 9 8 8 8 7 6 6 5 4 3 2

4.4.3, 4.4.4 and 4.4.5 are all compatible with the restarted Lanczos methods described
in Section 4.3.

4.4.1 No reorthogonalization

It has been argued that the appearance of multiple copies of eigenvalues is indicative
of the convergence of the associated Ritz vectors. This has led some authors [15],
to propose a vector Lanczos using no reorthogonalization. Spurious as well as ghost
eigenvalues can be dealt with but this generally requires additional computation. For
Block Lanczos-based methods this is generally not viable since the loss of orthogonality
is more pronounced and occurs rapidly.

37

4.4.2 Full reorthogonalization

An obvious way to maintain orthogonality among the Lanczos blocks is to reorthogo-
nalize each newly generated block against all the previously computed blocks. This is
accomplished using the Gram-Schmidt process or some improvement thereof, such as
the modified Gram-Schmidt (MGS). As an example, consider the basic Block Lanczos
algorithm presented in Section 4.2.1 with full reorthogonalization (FRO) using MGS,

Algorithm 5 Block Lanczos with full reorthogonalization

1: Perform steps 1 through 13 of Algorithm 2.
2: for j = 1, . . . ,i do
3: Orthogonalize Qi+1 against Qj using MGS.
4: end for

While this option solves the issue of maintaining the orthogonality in a satisfactory
manner, it comes with two major drawbacks. Firstly, a full reorthogonalization against
all previously generated Lanczos blocks each iteration significantly increases the amount
of arithmetic operations required, and this additional cost increases with the number of
steps since there will be more Lanczos blocks available. Secondly, it requires, at each step
of reorthogonalization, the presence of all previously generated blocks in main memory.
This is a crucial point since much of the appeal of Lanczos-based methods lies in their
relative cheapness when considering the amount of high-speed storage space required.

4.4.3 Partial reorthogonalization

A third option is to maintain just enough orthogonality among the Lanczos blocks in
order to avoid the problems associated with no reorthogonalization while reducing the
amount of arithmetic operations entailed by the FRO. While the details of the scheme
used for maintaining near-orthogonality among the Lanczos blocks varies between dif-
ferent implementations they usually share the same basic features. One such scheme is
outlined below for the Block Lanczos algorithm.10

The main idea is to simulate the loss of orthogonality among the blocks and only perform
a reorthogonalization when the estimated losses exceed some level of preset tolerance.
The first goal is to get a theoretical bound on the deviation of the product QT

kQj+1 from
the zero matrix for k < j − 1. Consider the main recurrence Eq. (4.25) in Algorithm 2
where an additional matrix Fj has been introduced to account for round-off errors,11

Qj+1Bj+1 = AQj −QjAj −Qj−1B
T
j + Fj . (4.42)

10The vector Lanczos is retained as the special case when the block size p = 1.
11Thus Qj+1,Aj , . . . now refer to the actual values computed rather than the ideal quantities of the

previous sections.

38

Premultiplying both sides of this expression with QT
k where k < j − 1 yields

QT
kQj+1Bj+1 = QT

kAQj −QT
kQjAj −QT

kQj−1B
T
j +QT

k Fj . (4.43)

Define Wjk ≡ QT
kQj and rewrite the above equation in terms of Wjk,

Wj+1kBj+1 = QT
kAQj −WjkAj −Wj−1kB

T
j +QT

k Fj . (4.44)

A useful bound onWjk should contain only quantities that are either already accessible or
easily computable and thus the first term on the right hand side of Eq. (4.44) containing
the matrix A must be eliminated. This is done by permuting the indices (j,k) → (k,j)
and rearranging the terms in Eq. (4.44):

QT
j AQk =Wk+1jBk+1 +WkjAk +Wk−1jB

T
k −QT

j Fk. (4.45)

Taking the transpose of this expression and using the fact that A is symmetric yields

QT
kAQj = BT

k+1Wjk+1 +AkWjk +BkWjk−1 − F T
k Qj . (4.46)

Substitute Eq. (4.46) for the first term on the right hand side of Eq. (4.44):

Wj+1kBj+1 = BT
k+1Wjk+1 +AkWjk +BkWjk−1 −WjkAj −Wj−1kB

T
j +Gjk (4.47)

where the term Gjk ≡ QT
k Fj − F T

k Qj accounts for the round-off errors. Eq. (4.47) may
now be turned into an upper bound on Wjk by taking the spectral norm:12

||Wj+1k|| ≤
∣∣∣∣∣∣B−1

j+1

∣∣∣∣∣∣ [||Bk+1|| ||Wjk+1||+ ||Bk|| ||Wjk−1||

+ ||Bj || ||Wj−1k||+ (||Aj ||+ ||Ak||) ||Wjk||+ ||Gjk||
]
.

(4.48)

Here, repeated use has been made of two elementary inequalities satisfied by the spectral
norm for any two matrices A and B:

1. The triangle inquality : ||A+B|| ≤ ||A||+ ||B||

2. ||AB|| ≤ ||A|| ||B||

For notational convenience, define αk ≡ ||Ak||, βk ≡ ||Bk||, β̃k ≡ 1/σmin (Bk), where
σmin (Bk) is the smallest singular value of Bk, and let ωjk denote the bound on ||Wjk||.
Note that in the special case where the block size p = 1 the quantities αk and βk are
the same ones encountered in Section 4.1 and no evaluation of matrix norms is required.
The bound in Eq. (4.48) can now be used in Algorithm 6 for simulating the loss of
orthogonality between generated Lanczos blocks, where s denotes the step length, n is
the dimension of the matrix A, p is the block size and εmach is the unit round-off.

12Except for the vector Lanczos, i.e. when p = 1. In this case Eq. (4.47) is already scalar and can be
used without further modification.

39

Algorithm 6 Estimating the loss of orthogonality

1: At each Lanczos step i > 2 after computing Qj+1 do
2: εs ≡ εmachp

√
n

3: ω11 = εs
4: ω21 = εsβ̃2
5: ω22 = εs
6: for j = 2,3, . . . ,s do
7: ωj+1j+1 = εs
8: ωj+1j = εs
9: for k = 1, . . . ,j − 1 do

10: ωj+1k = ˜βj+1

[
βk+1ωjk+1 + βkωjk−1 + βjωj−1k + (αj + αk)ωjk

]
11: end for
12: end for

Here, the quantity εs is a bound on the rounding error, i.e. ||Gjk|| < εs [14]. At any
given step j > 2 of the Block Lanczos algorithm bounds on the quantity ||Qj+1Qk||,
k = 1, . . . ,j − 1, are computed using the above algorithm and a natural choice is to
reorthogonalize the two most recent Lanczos blocks against all previously generated
blocks only when the maximum of these bounds exceeds a preset tolerance. Numerical
experiments indicate that a suitable choice of this tolerance is

√
εmach [16], i.e. a full

reorthogonalization step is performed whenever

max
x

ωj+1k ≥
√
εmach (4.49)

Putting all this together gives Algorithm 7 for Block Lanczos with partial reorthogonal-
ization.

Algorithm 7 Block Lanczos with partial reorthogonalization

1: At each Lanczos step i > 2 after computing Qj+1 do
2: Update the ω recurrence according to Algorithm 6.
3: ωmax = max

x
ωj+1k

4: if ωmax ≥ √
εmach then

5: for k = 1, . . . ,j − 1 do
6: Orthgonalize Qj against Qk using MGS.
7: Orthgonalize Qj+1 against Qk using MGS.
8: end for
9: Orthgonalize Qj+1 against Qj

10: ωj+1k = εs, k = 1, . . . ,j . Update the ω-recurrence
11: ωjk = εs, k = 1, . . . ,j
12: end if

Note that step 9 in Algorithm 7 introduces a local reorthogonalization (LRO) between
the blocks Qj+1 and Qj after each step of PRO. In addition, an extra LRO is done during

40

each ordinary Block Lanczos step as well. This is due to previous results indicating a
strong correspondence between the global loss of orthogonality among Lanczos blocks
and the local loss of orthogonality between adjacent blocks, see [16]. This way, LRO
is guaranteed to hold which justifies the choice of ωj+1j = εs in Algorithm 6. The
level of orthogonality maintained between the blocks using this scheme (i.e.

√
εmach) is

sometimes referred to as semi-orthogonality. This particular choice also has a theoretical
motivation and it can be proved that under this level of orthogonality, the (block)
tridiagonal matrix T is up to round-off the orthogonal projection of A onto the Krylov
space, which is the real reason behind the success of PRO [14].

To summarize, this PRO scheme simulates the loss of orthogonality among Lanczos
blocks and orthogonalizes the two most recently generated blocks against all previously
computed blocks, whenever the condition in Eq. (4.49) is violated. On top of this a LRO
is performed during every step to maintain a working-precision orthogonality between
Qj+1 and Qj . At each step j, the Algorithm 6 requires the computation of the spectral
norms of two p×p matrices and one pj×pj matrix, which is cheap compared to an
orthogonalization using Gram-Schmidt when the dimension of the matrix is large. While
the PRO lowers the arithmetic operations count considerably, all generated Lanczos
blocks still have to be kept in main memory (or possibly in secondary storage).

4.4.4 Modified partial reorthogonalization

In the interest of minimizing the total number of orthogonalizations performed, one
question concerning the PRO-scheme has yet to be addressed. Algorithm 7 above cer-
tainly reduces the number of orthogonalization steps13 but once the condition of semi-
orthogonality is violated the following reorthogonalization is done against all previously
computed Lanczos blocks which might very well involve unnecessary calculations. If
this is indeed the case, the next question is how to determine an appropriate subset of
Lanczos blocks to use for orthogonalization. The ω-simulation described in Algorithm
6 provides a natural starting point for such investigations since it contains all the in-
formation of the global loss of orthogonality. Indeed, a few observations can be made
immediately from the main recurrence governing the bound ωj+1,k:

ωj+1k = β̃j+1 (βk+1ωjk+1 + βkωjk−1 + βjωj−1k + (αj + αk)ωjk) . (4.50)

From the right hand side of this equation it is plain that terms contributing to ωj+1k

are not limited to ωjk and ωj−1k but will also include the neighboring terms ωjk−1 and
ωjk+1. This suggests that for a fixed k, ωj+1k will remain reasonably small for the next
few iterations only if ωjk−1 and ωjk+1 are made small as well. However, these terms are
themselves dependent on neighboring terms (and so forth). The easiest way to go about
deciding the actual number of neighboring terms to include is to devise an algorithm
which simply selects a bunch of these terms, the size of which is determined by a free

13Numerical evidence for this claim will be presented in Chapter 5.

41

parameter η. More specifically, at each iteration j of the Block Lanczos algorithm, the
ω-recurrence is updated according to Algorithm 6 and rather than reorthogonalizing
whenever Eq. (4.49) is violated, a search is done to reveal the individual offending
ωj+1k for k = 1, . . . ,j − 1. Along with each of these offending k, an interval containing
some of its neighbors is determined and all corresponding blocks falling within one of
these intervals are then selected for orthogonalization. For a fixed k, the size of the
corresponding interval [lk,uk] is determined by the bounds lk and uk defined by

lk = min
i
ωj+1i ≥ η (4.51)

and
uk = max

i
ωj+1i ≤ η. (4.52)

This leads to a slightly altered version of the PRO-scheme, sometimes referred to as
modified partial reorthogonalization (MPRO) and is implemented as follows:

Algorithm 8 Block Lanczos with modified partial reorthogonalization

1: Perform steps 1 through 9 of Algorithm 2.
2: Update the ω recurrence according to Algorithm 6.
3: while k < j − 1 do
4: if ωj+1k ≥ √

εmach then
5: Determine the interval [lk,uk] defined by Eqs. (4.51) and (4.52).
6: k = k + uk . Avoid overlapping intervals
7: else
8: k = k + 1
9: end if

10: end while
11: for each interval [lk,uk] do
12: Orthogonalize Qj+1 against Ql, for all l ∈ [lk,uk]
13: ωj+1l = εs
14: [lk,uk] = [lk − 1,uk + 1]
15: end for

Furthermore, whenever a reorthogonalization step occurs during an iteration in Algo-
rithm 8 it is immediately repeated during the next iteration to guarantee that semi-
orthogonality holds between the most recently generated block and all its ancestors.
This was not explicitly stated in Algorithm 8 so as to avoid unnecessary complications.

It is important to note that by no means is it clear that this modified scheme is actually
an improvement of the original scheme as described in Algorithm 7. Rather, an attempt
can be made to minimize the number of orthogonalizations for a given problems by
choosing different values of the free parameter η in the interval [εs,

√
εmach]. Whether

this results in any significant decrease in orthogonalizations compared to the original
PRO-scheme can only be determined by numerical experiments.

42

4.4.5 Selective reorthogonalization

Another scheme for reducing the amount of orthogonalizations is selective reorthogonal-
ization where new Lanczos vectors are orthogonalized against a small set of Ritz vectors
that have very nearly converged. This technique has been extensively treated by B.
Parlett and D. Scott, see [17]. Available to both the vector as well as the Block Lanc-
zos algorithm, selective reorthogonalization is based on the following theorem originally
proved by Paige. The version stated here is that of G. Golub and C. Van Loan [18].

Theorem 4.4.1 (Paige, 1971) Suppose that a tridiagonal matrix Tj and an orthonormal
basis Qj = [q1, . . . , qj] have generated by the Lanczos algorithm. Let µ1, . . . ,µj denote
the Ritz values computed from Tj and let V = [v1, . . . , vj] be a matrix formed from the
corresponding Ritz vectors, vk = Qjwk, k = 1, . . . ,j where wk is an eigenvector of Tj.
Then for k = 1, . . . ,j, ∣∣qTj+1vk

∣∣ ≈ εmach ||A||
|βk| |vjk|

A direct consequence of this theorem is that the most recently generated Lanczos vector
qj+1 has a component in the direction of any computed Ritz vector assuming it has
converged sufficiently. The right hand side of the above equation also indicates that the
size of this component is in general not negligible. Indeed, more thorough investiga-
tions reveal that the losses of orthogonality occurring in the directions of converged Ritz
vectors tend to dominate other directions, suggesting that instead of a FRO or PRO,
a reorthogonalization against a small subset of converged Ritz vectors might prove suf-
ficient. This is the main idea behind selective reorthogonalization (SO), and for the
details of its realisation the curious reader is referred to [17].

4.5 Categorizing different Lanczos methods

The different aspects and variations of the Lanczos algorithms discussed in the previous
sections, both theoretical and practical, may be summarized in the following table for
specifying a particular Lanczos-based method. In the column specifying the different
reorthogonalization techniques, the PRO and MPRO are grouped together under the
same label “Limited: Partial”.

43

Type of choice Choices available

Type of recursion -Vector
-Block

Restart -None
-Implicit restart (Vector/Block)
-Explitict restart (Vector/Block)

Reorthogonalization -None
-Full
-Limited: Partial
-Limited: Selective
-Limited: Local

44

5 Investigations of Lanczos and
Block Lanczos Methods

In Chapter 4 it was found that large symmetric sparse eigenproblems (LSSEs) are more
efficiently dealt with using a Lanczos-based method. However as was also noted, there
exists a wide range of such methods that share a common theoretical foundation but
ultimately differ in some respect or another. Despite years of intense research there is
not, and arguably will never be, a black box Lanczos method where the user simply
inputs a desired number of eigenvalues to be computed regardless of the problem at
hand. A physicist or engineer looking to solve a LSSE is thus faced with the difficult
choice of which particular brand of Lanczos-solver to use, a decision that requires him
or her to factor in the specific details of the problem. For the purpose of solving the
LSSEs that arise in the context of quantum mechanical few- and many-body problems,
as studied in this work, there are several important factors that directly limit or affect
this choice:

1. Typically, no more than 10-20 of the algebraically smallest eigenvalues have to be
computed.

2. Eigenstates should be available for computation without too much effort.

3. Multiple eigenvalues should be computed naturally since energy-levels are fre-
quently near-degenerate.

4. The dimension of the matrix representing the Hamiltonian may be of orders larger
than 109, severely limiting the amount of information that can be kept in main
memory or stored on disk.

The remainder of this chapter is devoted to a numerical study of the Lanczos and
Block Lanczos methods, including different techniques for restoring orthogonality among
Lanczos vectors, convergence analysis, model spaces and restarting schemes. The aim
is then to use the results from this investigation in conjunction with the knowledge of
the quantum mechanical problem in order to establish a set of recommendations for a
future implementation of an eigensolver, see Chapter 9. Throughout this chapter, all
numerical tests are based on Matlab implementations of the basic algorithms described
in Chapter 4. Furthermore, all test matrices were generated by the NSCMb code unless
stated otherwise. Descriptions as well as a link to the Matlab functions that were used
are provided in Appendix D.

45

5.1 Stopping criterion and convergence properties

Before turning to any numerical tests concerning block size, reorthgonalization schemes
and so forth, it is instructive to take a quick look at the typical behavior of the conver-
gence of some of the algebraically smallest eigenvalues. Consider the basic vector Lanczos
described in Section 4.1; Fig. 5.1 shows the convergence of the four algebraically smallest
eigenvalues of a 5147×5147 matrix A, measured by the absolute error14 εabs = |λ− λ̃| as
a function of the number of steps. Accurate eigenvalues λi, i = 1, 2, 3, 4, were computed
to working-precision using a conventional QR-based eigensolver.

20 40 60 80 100 120 140 160 180 200
−14

−12

−10

−8

−6

−4

−2

0

2

4

#Lanczos steps

lo
g 10

 ε
ab

s

λ

1

λ
2

λ
3

λ
4

Figure 5.1. The convergence of the four algebraically smallest computed eigenvalues λ̃i, i =
1, 2, 3, 4, towards the true eigenvalues λi, measured by the absolute error εabs = |λi − λ̃i|
(shown on a logarithmic scale) as a function of the number of Lanczos steps.

Note that the rate of the convergence of the eigenvalues in Fig. 5.1, i.e. the slope of
the lines, occasionally reaches a plateau where for the next few Lanczos steps almost no
change is observed in the absolute error. It is also clear that the smaller the eigenvalue,
the faster the convergence. This behavior is characteristic of all Lanczos methods and a
quantitative explanation is provided in Appendix B.

14This is not to be confused with εmach which is used to denote the unit round-off.

46

5.1.1 A stopping criterion

In order for a practical Lanczos method to be efficient a stopping criterion is required.
A natural choice is to terminate a particular Lanczos run whenever∣∣∣∣∣∣Aṽ − λ̃ṽ

∣∣∣∣∣∣ ≤ tol (5.1)

for an approximate eigenpair (λ̃,ṽ) and some tolerance tol specified by the user. The
quantity on the left hand side of Eq. (5.1) is sometimes referred to as the residual norm.
This seemingly involves an unwanted computation of the matrix-vector product Av
which can in fact be circumvented using information generated by the Lanczos run. In
the following derivation, any tildes denoting an approximate eigenvalue will be dropped
for notational convenience.

Suppose that the algorithm is paused after j steps yielding a Block Lanczos decompo-
sition (see Chapter 4, Section 4.2.1)

AQj = QjTj +Qj+1Bj+1E
T
j . (5.2)

Let µ be an eigenvalue of Tj and w the corresponding eigenvector. Recall that this
eigenpair is related to an approximate eigenpair (λ,v) of A by λ = µ and v = Qjw. The
quantity ||Av − λv|| can now be expressed using these two identities and the decompo-
sition in Eq. (5.2):

||Av − λv|| = ||AQjw −Qjwλ||
=
∣∣∣∣QjTjw +Qj+1Bj+1E

T
j w −Qjwλ

∣∣∣∣
=
∣∣∣∣Qj+1Bj+1E

T
j w
∣∣∣∣ = ∣∣∣∣Bj+1E

T
j w
∣∣∣∣

≡
∣∣∣∣∣∣Bj+1w

(p)
∣∣∣∣∣∣ ,

(5.3)

where w(p) denotes the last p components of w. Note that the spectral norm is unitarily
invariant, which is why the the block Qj+1 was dropped in the last equality. For the
vector Lanczos, Eq. (5.3) reduces to

||Av − λv|| =
∣∣∣βj+1w

(1)
∣∣∣ , (5.4)

where w(1) is the last component of w. Eq. (5.3) provides a cheap measure since Bj+1 is
p×p and the number of arithmetic operations involved in an eigenvalue decomposition
of Tj is independent of the dimension n of the large matrix A. In practice, it turns out
that the last components of w are typically small, thus lending credence to the fact that
µ and Qjw provide a good approximation to an eigenpair of A.

The Matlab implementations used for conducting the numerical tests throughout this
chapter all employ the stopping criterion in Eq. (5.1) where the residual norm is com-
puted using Eq. (5.3). The algorithms were halted at regular intervals where Ritz pairs

47

were computed from the current block tridiagonal matrix T and the criterion in Eq. (5.1)
was subsequently checked for all the eigenvalues of interest.

Note that Eq. (5.1) includes both the eigenvector and the corresponding eigenvalue,
but for some applications only the spectrum of A is required and it is then natural
to ask if a particular value for tol can be translated into the accuracy of the computed
eigenvalue. That is, if the true eigenvalue is denoted λ and the approximation computed
by a Lanczos method is λ̃, the goal is to relate the absolute error εabs = |λ− λ̃| to tol in
Eq. (5.1). Indeed, it is not difficult to show [10] that Eq. (5.3) implies that

|λ− λ̃| ≤
∣∣∣∣∣∣Aṽ − λ̃ṽ

∣∣∣∣∣∣ = ∣∣∣∣∣∣Bj+1w
(p)
∣∣∣∣∣∣ . (5.5)

Thus, if it were possible to determine the right hand side of Eq. (5.5) to working-precision
it would immediately follow from Eq. (5.5) that the computed eigenvalue was accurate
to working-precision as well. Previous results [14] show however, that∣∣∣∣∣∣Aṽ − λ̃ṽ

∣∣∣∣∣∣ ≤ εmach ||A|| (5.6)

is the best that can be done. To illustrate this fact the Lanczos algorithm was used to
find an approximation of the least eigenvalue λ̃1 of a 5147×5147 matrix A with different
values of the tolerance in Eq. (5.1). Fig. 5.2 relates these to the corresponding absolute
error |λ1 − λ̃1|, shown on a logarithmic scale. The true eigenvalue λ1 was computed
to working precision using a QR-based eigensolver. From Fig. 5.2 it is evident that
values of tol ≤ 10−4 yields an approximate eigenvalue which is correct up to the tenth or
eleventh decimal place but no more. This is just a reflection of Eq. (5.6) which becomes
apparent when evaluating the right hand side where ||A|| εmach ≈ 10−11.

Upon closer inspection of Fig. 5.2 it is evident that the value of residual norm tends to
underestimate the number of accurate digits in any computed eigenvalue by a significant
amount, indeed possibly by several orders of magnitude. It has however been noted that
λ̃ = ṽTAṽ can be viewed as a Rayleigh quotient which in many cases obey the sharper
estimate [10]

|λ− λ̃| ≤

∣∣∣∣∣∣Aṽ − λ̃ṽ
∣∣∣∣∣∣2

γi
, (5.7)

where γi denotes the minimum gap between λ̃i and the rest of the spectrum of A. As-
suming that the eigenvalues are reasonably well separated, the absolute error in Eq. (5.7)
should thus fall off as roughly the square of the residual norm. This claim can be checked
by taking the square of the tolerance in Fig. 5.2 yielding Fig. 5.3.

48

−7 −6 −5 −4 −3 −2 −1 0 1
−11

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

log
10

tol

lo
g 10

 ε
ab

s

Figure 5.2. The absolute error εabs = |λ − λ̃| of the computed eigenvalue λ̃ as a function of
the tolerance used in Eq. (5.1), shown with logarithmic scales.

−14 −12 −10 −8 −6 −4 −2 0 2
−11

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

2× log
10

 tol

lo
g 10

ε ab
s

Figure 5.3. The absolute error εabs = |λ − λ̃| of the computed eigenvalue λ̃ as a function of
the square tolerance used in Eq. (5.1), shown with logarithmic scales.

49

Comparing Fig. 5.3 to Fig. 5.2 it is obvious that Eq. (5.7) gives a better estimate on
the error while still underestimating the accuracy by about one order of magnitude for
some values of the residual norm.

In most available Lanczos-based eigensolvers (see e.g. [13] or ARPACK), the stopping
criterion used is, following Eq. (5.6):∣∣∣∣∣∣Aṽ − λ̃ṽ

∣∣∣∣∣∣ ≤ tol ||A|| . (5.8)

The new resulting correspondence between the absolute error in the computed eigenvalue
and the user set tolerance is shown in Fig. 5.4. In this case the correspondence is actually
better than both Figs. 5.2 and 5.3 but this need not always be true.

−13 −12 −11 −10 −9 −8 −7 −6 −5 −4
−11

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

log
10

tol

lo
g 10

 ε
ab

s

Figure 5.4. The accuracy of the computed eigenvalue λ̃ measured by the absolute εabs =
|λ − λ̃| as a function of the redefined tolerance used in Eq. (5.8), shown with logarithmic
scales.Orders of magnitude of the specified tolerance corresponds to roughly the amount
accurate digits in the computed eigenvalue for values of tol with 10−10 < tol < 10−5.

For the investigations in this chapter, the original form of the criterion given in Eq. (5.1)
will be used unless stated otherwise. The reason for this is mainly that it is the most
easily calculated criterion and still provides a measurement that ensures the quality
of both the eigenvalue and the eigenvector. As most examinations will investigate the
different convergence rates on a specific matrix as a function of various approaches, the

50

choice of a stopping criterion is arbitrary as long as it is fair inside the frames of the
study.

As a concluding remark, note that in this section no mention of the speed of the con-
vergence or the impact of the block size has been made. Readers are instead referred to
[19] for rigorous theoretical bounds for the vector as well as the Block Lanczos method.

5.2 Comparison of the Lanczos and Block Lanczos method

This section examines how block size affects the computational cost of obtaining eigen-
pairs with a given tolerance, where an eigenpair is defined as an eigenvalue with its
associated eigenvector. The study is performed on a number of matrices depicting a
system of 6 bosons, differing from each other in that they have different values of the
cut-off energy Nmax. All of these matrices are generally denoted by A, but sometimes
the matrix dimension n is also specifically defined.

As the dimension of the n×nmatrix A grows large, the cost of each matrix multiplication
increases as well. It is therefore necessary to find out if the use of blocks instead of
vectors, which will allow each multiplication to produce more information, will increases
the convergence enough to outweigh the increased cost of using several vectors instead
of one.

Fig. 5.5 shows the required number of multiplications by A for a residual norm ε lower
than the tolerance level tol, as a function of the block size.15 In this case randomly
generated starting blocks were employed.

From Fig. 5.5 it can be seen that larger blocks require fewer multiplications, and this
holds for all values of the desired eigenpairs k in the figure. However, it comes at a price,
since even though the number of multiplications by A decreases, the storage cost of the
Krylov space created does not. After s multiplications by the n×n matrix A and with
a block size of p, the dimension of the created Q matrix is going to be n×sp, and the
matrix T will be of size sp×sp. Especially Q will soon require a lot of storage space as
p increases, because in general n � sp. Another effect of the larger blocks is that the
cost of reorthogonalization grows as the blocks of Q hold more vectors that need to be
held orthonormal with respect to each other.

However, the great advantage of dealing with blocks stems from the fact that when a
computer needs to access an element in a vector, it needs to collect the whole cache-line,
in which that element lies, to its cache-memory.16 By using blocks instead of vectors,
elements of the same row in the block can be stored in the same cache-line. This makes

15Note that the regular Lanczos method is equivalent to the Block Lanczos method with a block size
p = 1.

16In current hardware, these cache-lines usually have a capacity of 64 bytes, i.e. eight elements of size
double (8 bytes).

51

0 5 10 15
0

20

40

60

80

100

120

Block Size

#M
at

rix
 M

ul
tip

lic
at

io
ns

0 5 10 15
0

50

100

150

200

250

300

Block Size

M

at
rix

 M
ul

tip
lic

at
io

ns

k=1
k=4
k=10
k=20

k=1
k=3
k=5
k=10
k=20

n ≈ 21 000
tol =1

n ≈ 1000
tol = 1

Figure 5.5. The number of required multiplications by the matrix A to obtain a precision
ε < tol = 1 from a set of random start vectors, versus the block size p. Each value is
the mean value of 5 runs. k is the number of computed eigenpairs. Left: k = 1,3,5,10,20,
n ≈ 1000. Right: k = 1,4,10,20, n ≈ 21 000.

it possible to access the whole block row more or less with the same effort as for one
element, as long as the block size is smaller than eight. Since it is the transfer from
the memory to the cache-memory that is limiting, the extra multiplications are much
cheaper than they would be if the vectors of the blocks were collected one by one.

Not all block sizes are practical for computations however. For instance, a block size of
p = 9 is terrible in terms of cost, as it means that two cache-lines need to be collected
for each row of the block and seven positions of the second line are unused. If instead a
block size of p = 16 is used the cache will still collect two cache-lines but in this case it
will use all the data. A block size of p = 1, 2 or 4 is advantageous as it allows additional
block rows to be stored in the same cache-line, without wasting any space.

To decide the optimal block size, the average time for a matrix-block multiplication was
measured and normalized according to the time it takes to compute a regular matrix-
vector multiplication. The measured data can be seen in Table 5.1 [20]. It can be seen
that for instance with a block size p = 2, the matrix multiplication takes 1.1 times the
time of a regular multiplication with p = 1.

52

Table 5.1. The relative computational time for matrix-vector multiplication with different block
sizes.

Blockwidth Computational time

1 1
2 1.1
3 1.13
4 1.25
8 1.86
16 3.61
32 8.65

By weighting the factors from Table 5.1 with the required number of multiplications
with A for a certain block size, as seen in Fig. 5.5, this yields a figure of how fast the
eigenpairs can be computed as a function of block size p. This can be seen in Fig. 5.6.
Note that one unit of time is the time it takes to multiply a regular vector with A
once. Values for the computational time for block sizes p = 5–7 and p = 9–15 were
approximated to the same values as for p = 8 and 16 respectively, which are found in
Table 5.1. This is because the entire cache-line must be collected from memory in both
of these cases.

5 10 15
20

40

60

80

100

120

140

160

Block Size

C
om

pu
tin

g
T

im
e

5 10 15
0

50

100

150

200

250

300

350

Block Size

C
om

pu
tin

g
T

im
e

k=20
k=10
k=4
k=1

k=20
k=10
k=5
k=3
k=1

n≈21 000
ε=1

n≈1000
ε=1

Figure 5.6. The time taken to compute eigenpairs of the matrix A with a precision of ε = 1
and a set of random startvectors, versus the block size p. The computing time is in unit of
the time it takes to multiply a regular vector with A once. Each value is the mean value of
5 runs. k is the number of computed eigenpairs. Left: k = 1,3,5,10,20, n ≈ 1000. Right:
k = 1,4,10,20, n ≈ 21 000.

53

From Fig. 5.6 it is clear that if more than one eigenpair is desired, p = 4 or 8 is the ideal
block size using a random starting vector. If the desired number of eigenpairs is k < 10,
a block size of p = 4 is the natural choice, and with values of k > 10 it is more or less
a dead race. If the computing time of a block size p = 4 and p = 8 is equivalent at
this point it could be better to choose the former, as this would keep the Krylov space
dimension down, making the reorthogonalizations less expensive. These advices so far
only apply to the case of a random starting block. The effects of other starting blocks
are studied in Section 5.10.

5.3 Strategies for restoring orthogonality

Section 4.4 showed that without modification, the mutual orthogonality between Lanczos
blocks (or vectors) is gradually lost as the dimension of the Krylov space increases. This
eventually leads to the appearance of spurious or duplicate eigenvalues which are hard
to separate from the true eigenvalues. In order to avoid this scenario several schemes for
restoring orthogonality among the Lanczos blocks were proposed. It was also noted that
any form of reorthogonalization invariably comes at a price. In particular, previously
generated Lanczos blocks are often required to be kept in main memory so as to be readily
available for reorthogonalization. Furthermore, since these blocks are composed of n-
vectors, the reorthogonalizations themselves introduce a significant number of arithmetic
operations that would not otherwise be present. Any practical Lanczos method should
therefore strive to keep such reorthogonalizations at a minimum, both in terms of the
frequency with which they are performed and the number of blocks which are being
operated on.

The purpose of this section is a numerical investigation of what is perhaps the most
straightforward way of reducing the number of reorthogonalizations needed, namely Par-
tial Reorthogonalization (PRO) which was discussed at length in Section 4.4. As was
briefly indicated in Section 5.2, the Block Lanczos algorithm seems to be the preferable
choice when dealing with large-scale eigenproblems. Therefore, the following investiga-
tions are based on a basic implementation of the Block Lanczos algorihtm as described
in Section 4.2.1, Algorithm 2.

To begin with, the basic PRO-scheme outlined in Section 4.4.3, Algorithms 6 and 7, will
be compared to an otherwise identical implementation using a full reorthogonalization
(FRO) (Section 4.4.2, Algorithm 5). Next, the scheme for modified partial reorthogonal-
ization (MPRO), Algorithm 8, will be compared to the basic PRO-scheme to see whether
the increased complexity of the MPRO-scheme will yield fewer orthogonalizations.

54

5.3.1 Properties of partial reorthogonalization

Consider the Block Lanczos algorithm with partial reorthogonalization; it is impossible
to tell from Algorithms 6 and 7 the amount by which the number of orthogonalizations
can be reduced when comparing to a Block Lanczos solver with full reorthogonalization.
A related quantity of interest is the number of reorthogonalization steps, or recalls. This
is simply the number of times a reorthogonalization happens and is equal to the number
of times that the reorthgonalization criterion

max
x

ωj+1k ≥
√
ε (5.9)

is violated, see Section 4.4.3 for a reminder.

To get an idea of the numbers involved two instances of the Block Lanczos algorithm,
one using PRO and the other FRO, was run 10 times each on a matrix A of order
4966×4966. Both instances used the same randomly generated starting block for each
run and were asked to compute a total number of six eigenvalues with a block size p = 6
and the tolerance set to 10−3. The results are summarized in Table 5.2, where the second
column is the average number of steps required for convergence and the third column
is the average number of orthogonalizations performed in a blockwise sense, i.e. the
orthogonalization of a block Q2 against Q1 counts as a single orthogonalization. The
last column is the average number of recalls.

Table 5.2. A comparison of partial reorthogonalization and full reorthogonalization.

Scheme Steps Orthogonalizations Recalls

PRO 111 3342 28
FRO 111 6229 111

Table 5.2 indicates that the Block Lanczos with PRO used on average 53% as many
orthogonalizations as the Block Lanczos using FRO and only 25% as many recalls,
which is a considerable improvement. Furthermore, the second column in Table 5.2
indicates that the convergence was equally fast in both cases. Note that the dimension
of the corresponding Krylov space does not equal the number of iterations but rather p
times this number.

In practical applications, the dimension of the matrix is usually much larger and the
block size used may range somewhere between p = 2–10 (see Section 5.2 for an analysis
of the impact of the block size on convergence and more). Since orthogonalizations can
quickly become a bottleneck for large-scale computations it is important to know how
the numbers from Table 5.2 scale with the block size, dimension of the Krylov space and
order of the matrix.

For this purpose, the Block Lanczos with PRO was run for a total of 100 steps on
three different test matrices A1, A2 and A3 with sizes 5147×5147, 25474×25474 and

55

119240×119240. The range of the block size was p = 2, 4, 6, 8, 10. The results are
displayed in Fig. 5.7, where the number of orthogonalizations and recalls are both plotted
as functions of the block size p. The counts were averaged over a total of five runs for
each value of p. New starting blocks were randomly generated for each value of p and
for each matrix.

From Fig. 5.7 it is evident that both the frequency of the reorthogonalizations, i.e.
the number of recalls divided by the total number of steps, and the amount of actual
orthogonalizations is insensitive to the order n of the matrix for values of n up to at least
105. Furthermore, the frequency and number of orthogonalizations both increase with
the block size. In fact, the results could both have been predicted from the simulation
of the loss of orthogonality in Algorithm 6. Here, the only quantity that depends on n
is εs, which only plays a minor role in the propagation of the losses, whereas the block
size p determines the size of all the small matrices and hence affects the corresponding
spectral norms.

Note that in Fig. 5.7 the growth of the number of orthogonalizations falls of somewhat
for the higher values of p. This behavior can be examined more closely by focusing on
one of the matrices above. For A1, two expanded plots of number of orthogonalizations
and recalls as functions of block size is shown in Fig. 5.8. Here, the number of orthog-
onalizations/recalls is displayed as a fraction of the corresponding number made by the
Block Lanczos with FRO. These figures thus give an estimate of how the benefits of
PRO diminish as the block size increases. The result is actually more general than the
experiment suggests since no real correlation between the number of orthogonalizations
and the order of the matrix was found for n ∼ 105.

The fluctuations in Fig. 5.8 are mainly due to the random selection of new starting
blocks. From Fig. 5.8 (a) it is possible to conclude that in terms of the pure number of
orthogonalizations, PRO is nearly as bad as FRO for block sizes around p = 20 where
the fraction is about 80%. However, in terms of the number of recalls, there is still
a significant improvement since only about 36% as many recalls is done using PRO.
The reason for the discrepancy between these two quantities is that during a step of
reorthogonalization in PRO, the two most recent blocks are orthogonalized against all
their predecessors while in FRO only the most recent block is used.

Lastly, consider the number of orthogonalizations as a function of the number of steps
or equivalently the dimension of the Krylov space since the two are proportional. Since
no s-dependent quantity is involved in the updating, Eq. (4.50), of the simulation in
Algorithm 6 and the PRO-scheme is designed to maintain semi-orthogonality among
the Lanczos blocks, the frequency of the recalls should remain constant for a given p
as the number of steps increases. Numerical results show that this is indeed the case,
see Fig. 5.9 (a). Here the number of recalls made by the Block Lanczos with PRO was
plotted for the matrix A1 as function of the number of steps s, displayed as a dashed
line. The full line is a linear fit to this plot with an approximate gradient k = 0.32. Thus
the number of recalls is expected to increase by a factor 0.32 for each increment of s or

56

equivalently, a step of PRO is done approximately every third step. A plot of the number
of orthogonalizations as a function of the number of steps s is shown in Fig. 5.9 (b). The
expected behavior here is a quadratic increase since the amount of orthogonalizations is
proportional to both the number of available blocks, which equals the number of steps
s, and the number of recalls which was also shown to be proportional to s above. Hence,
the number of orthogonalizations should be ∼ s2 which is confirmed by the quadratic
fit in Fig. 5.9 (b).

57

2 3 4 5 6 7 8 9 10
2000

2200

2400

2600

2800

3000

3200

3400

Block size p

#O
rt

ho
go

na
liz

at
io

ns

A1
A2
A3

(a) The average number of orthogonalizations versus the block size p.

2 3 4 5 6 7 8 9 10
20

22

24

26

28

30

32

Blocksize p

#R
ec

al
ls

A1
A2
A3

(b) The average number of recalls versus the block size p.

Figure 5.7. The average number of (a) orthogonalizations and (b) recalls computed by the
Block Lanczos with PRO shown against block size p, for the three matrices A1, A2 and A3

of different order.

58

2 4 6 8 10 12 14 16 18 20
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Blocksize p

#O
rt

hg
on

al
iz

at
io

ns
 (

fr
ac

tio
n)

A1

(a) The average number of orthogonalizations, as a fraction, versus the block size p.

2 4 6 8 10 12 14 16 18 20
0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

Blocksize p

#R
ec

al
ls

 (
fr

ac
tio

n)

A1

(b) The average number of recalls, as a fraction, versus the block size p.

Figure 5.8. The average number of (a) orthogonalizations and (b) recalls computed using the
PRO-scheme, displayed as fractions of the corresponding numbers for FRO, versus block
size p for the matrix A1.

59

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

90

100

#Steps

#R
ec

al
ls

y = 0.32*x − 3.9

A1
 linear fit

(a) The average number of recalls (dashed line) versus the the number of steps s.

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3
x 10

4

#Steps

#O
rt

ho
go

na
liz

at
io

ns

A1
 quadratic fit

(b) The average number of orthogonalizations (dashed line) versus the block size p.

Figure 5.9. The average number of (a) recalls and (b) orthogonalizations computed using the
PRO-scheme, as a function of the number of steps s, for the matrix A1. The block size was
set to p = 6. The full line represents (a) a linear fit and (b) a quadratic fit to the curve.

60

5.3.2 Comparison to modified partial reorthogonalization

In an attempt to further minimize the number of orthogonalizations/recalls the MPRO-
scheme of Section 4.4.4 will be compared to the PRO-scheme which was thoroughly
investigated in the last section. The crucial difference between MPRO and simple PRO
is the number of Lanczos blocks which are selected for reorthogonalization. In the
MPRO-scheme these are grouped into batches, where the size of the batch is determined
by the free parameter η, see Algorithm 8. Since MPRO also uses the ω-recurrence
(Algorithm 6) to simulate the loss of orthogonality its dependency on the block size,
number of steps and matrix order is essentially the same, but the actual number of
orthogonalizations/recalls will depend on η.

In practice, it is impossible to make theoretical predictions concerning the optimal value
of η. Instead, an experimental approach is adopted where the values of η will range
over an appropriately chosen interval for a few selected test matrices. The resulting
data will then be used to determine a minimum. By Algorithms 6 and 7, the level of
orthogonality between blocks is bounded by εs and

√
ε, hence values of η should lie in

the interval [εs,
√
ε].

The Block Lanczos with MPRO was run for 60 steps with the block size p = 4 on the
5147×5147 matrix A1 from the previous Section 5.3.1. The bounds of the level of or-
thogonality were given by εs = 6.37×10−14 and

√
ε = 1.49×10−8. The resulting number

of orthogonalizations and recalls are summarized in Table 5.3 for their corresponding
values of η. The last row indicates the corresponding values for PRO.

Table 5.3. A comparison of MPRO and PRO for different values of the batch size bound η. The
first six rows are the results for the MPRO-scheme while the last row gives the corresponding
values for PRO.

η Recalls Orthogonalizations

10−1
√
ε 47 734

10−2
√
ε 29 728

10−3
√
ε 23 705

10−4
√
ε 22 705

10−5
√
ε 22 705

10−6
√
ε 22 705

PRO 14 1001

From Table 5.3 it is clear that values of η in the range 10−6√ε to 10−4√ε yields the
fewest number of recalls as well as orthogonalizations. The fact that they remain con-
stant for η < 10−4√ε is due to the neighborhood of the first offending k detected by
Algorithm 8 having grown large enough to include all the previously generated Lanczos
blocks and hence no further values of k will be found. Comparing these results to the
last row containing the corresponding numbers for PRO, it is evident that MPRO re-
duces the amount of orthogonalizations while the number of recalls increases. This last

61

fact is due to the difference in implementations of MPRO and PRO, as the particular
PRO-scheme described in Section 4.4.3 included local orthogonalization as well as a re-
orthogonalization of the two most recently computed blocks rather than only the most
recent block as in MPRO. Hence, at least twice as many blocks are chosen for each recall
operation in PRO and because of this the recalls occur less frequently.

To see if these numbers scale, a similar test was done for the 25474×25474 matrix A2

of Section 5.3.1. The number of steps was set to s = 100 and a block size of p = 8 was
used. The results are shown in Table 5.4.

Table 5.4. A comparison of MPRO and PRO for different values of the batch size bound η. The
first six rows are the results for the MPRO-scheme while the last row gives the corresponding
values for PRO.

η Recalls Orthogonalizations

10−1
√
ε 76 1918

10−2
√
ε 63 2085

10−3
√
ε 40 2114

10−4
√
ε 40 2122

10−5
√
ε 40 2122

10−6
√
ε 40 2122

PRO 24 2677

In this case, a larger bound η = 10−1√ε on the size of the batches seems to yield fewer
orthogonalizations while keeping the number of recalls at a maximum. Yet the difference
in the number of orthogonalizations is comparatively small between different values of
η and while this is clearly an improvement on the 2677 orthogonalizations computed by
the original PRO, as indicated in the last row, it is unclear whether MPRO is preferable
since the number of recalls seems to increase as well. There is one caveat when comparing
the number of recalls for different values of η: The total amount of work is proportional
to the number of recalls times the batch size, but the latter is determined by η. Hence,
the amount of work required for scanning and retrieving old Lanczos blocks cannot be
directly inferred from the number of recalls alone.

5.4 Starting vectors

In this section a study follows of the behavior of the Lanczos algorithm when the starting
blocks are created by approximations of the desired eigenvectors. It is essentially divided
into two separate parts: One part will deal with how to acquire the approximations,
and the other with how to best apply them. Should for example each approximation
become one vector in the starting block, or should each vector in the starting block be a
combination of many approximated eigenvectors? Before answering this question, some
tools are needed in order to measure the quality of an approximation. Since the essence

62

of this problem really is how well a vector fulfills its role as an eigenvector, an easy way
to evaluate this would be to use the same precision measure that was earlier used as a
stopping criterion for the Lanczos algorithm, i.e. the residual norm:

ε = ||Aṽ − λ̃ṽ||2, (5.10)

where ṽ is the eigenvector approximation, and λ̃ is an eigenvalue approximation.

5.4.1 Starting vectors created by eigenvector approximations

There are some different strategies for building starting blocks from a given set of eigen-
value approximations. Suppose that eight eigenpairs are wanted. As shown in Section 5.2
the optimal block size p, at least with a block of random starting vectors, turned out to
be about p = 4 if eight eigenpairs were desired. Therefore it is interesting to examine
if it still is preferable to use a block size p = 4 if each starting vector is a combination
of two of the eigenvector approximations, or if it is better to use block size p = 8 even
though every matrix multiplication would be more time consuming.

Let us begin by looking at two approximate eigenvectors, ṽ1 and ṽ2, and two desired
eigenpairs. From Section 5.2 it seems that a block size of p = 2 would be optimal for this
number of eigenpairs. To investigate this, the number of matrix multiplications needed
to gain the eigenpairs, with a tolerance of 10−10, was computed, with different qualities
of the approximations in the sense of Eq. (5.10). The different strategies to utilize the
approximated eigenvectors were:

Table 5.5. Generated starting blocks.

Tactic Vector 1 Vector 2

1 ṽ1 ṽ2

2
ṽ1 + ṽ2√

2

ṽ1 − ṽ2√
2

3
ṽ1 + ṽ2√

2
random

4
ṽ1 + ṽ2√

2
−

5 random random

The result of the investigation may be seen in Fig. 5.10. It is interesting that of all the
curves in Fig. 5.10 that employ the approximations, the curve of tactic 3 is the least
successful. How come that for instance tactic 4 is better? Both tactic 3 and 4 have their
first starting vector in common, but as tactic 4 only uses a block size p = 1, tactic 3 has
one additional vector that is randomly created. One explanation of the difference might
be that as one random vector is introduced, components of undesired eigenvectors are
introduced as well. This lowers the overall approximation precision, and thus gives the

63

algorithm a less favorable starting point. Thus, it seems like one vector, containing as
few unwanted components as possible, is better than two vectors with the same data
plus some unwanted data.

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

0

50

100

150

200

250

Start Approximation Residual Norm

#M
ul

tip
lic

at
io

ns
 b

y
A

Tactic 1
Tactic 2
Tactic 3
Tactic 4
Tactic 5

n ≈ 21’000
ε = 10−10

Figure 5.10. The number of block-matrix multiplications needed to compute the two first
eigenpairs with a tolerance of ε = 10−10, as a function of how well chosen the starting
vectors were, and for a matrix of dimension n. The different curves correspond to different
tactics of using these approximations which can be seen in Table 5.5.

What is also evident considering tactic 1 and 2 is that it does not matter if the start
vectors are mixed or held apart in the start approximation, as long as they store the
same amount of information. It also seems as if tactic 4 with only one block is almost
as good as tactic 1 or 2. If the extra time taken for each matrix multiplication by a
block of size p = 2 would have been taken into account there would be no difference at
all. Even though this was the result of but one matrix, investigations done with other
matrices gave similar results. Some general behavior for tactic 1, 2 and 4 seems to be
that if the starting vectors are as good as the stopping criterion – in this case 10−10 –
almost no multiplications are needed, and if the approximations have a tolerance greater
than one, they do not give any advantage over a random block of size p = 2.

64

Table 5.6. Generated starting blocks.

Tactic Vector 1 Vector 2 Vector 3 Vector 4

1 ṽ1 ṽ2 ṽ3 ṽ4

2
ṽ1 + ṽ2√

2

ṽ3 + ṽ4√
2

— —

3
ṽ1 + ṽ2 + ṽ3 + ṽ4√

4
— — —

Furthermore, it was investigated how the results hold for four eigenvalues. The tactics
that were employed are listed in Table 5.6. The acquired results can be seen in Figs. 5.11
and 5.12. So far it seems as if a block size equal to the number of approximations is
preferable, but what happens if a greater number of eigenpairs are requested? For eight
eigenpairs, the discussion in Section 5.2 suggested that a block size of p = 4 or 8 would
do equally well, and therefore we examined if this also holds when using approximations
as starting vectors. Tactic 1 is this time a block with p = 8 and each starting vector
is an approximation of an eigenvector, while tactic 2 uses a block with p = 4 and two
eigenvector approximations for each starting vector. Fig. 5.13 shows the results of this
test.

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

0

50

100

150

200

250

300

350

Start Approximation Mean Residual Norm

#M
ul

tip
lic

at
io

ns
 b

y
A

Tactic 1
Tactic 2
Tactic 3
Block Size 1
Block Size 2
Block Size 4

n ≈ 5000
ε = 10−10

Figure 5.11. The number of matrix multiplications needed to compute the four first eigenpairs
with a tolerance of ε = 10−10, as a function of how well chosen the starting approximations
were. The dashed lines mark the needed multiplications from a random start with block sizes
1, 2 and 4. The matrix used was of dimension 5000.

65

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

0

50

100

150

200

250

300

350

Start Approximation Mean Residual Norm

C
om

pu
ta

tio
na

l T
im

e

Tactic 1
Tactic 2
Tactic 3
Block Size 1
Block Size 2
Block Size 4

n ≈ 5000
ε = 10−10

Figure 5.12. The needed time to reach a tolerance of 10−10, were one unit of time is the time
it takes to multiply a regular vector with the matrix once, as a function of the tolerance of
the input eigenvector approximations.

10
−10

10
−5

10
0

0

50

100

150

200

250

300

Start Approximation Mean Residual Norm

C
om

pu
ta

tio
na

l T
im

e

Tactic 1
Tactic 2
Block Size 8
Block Size 4

n≈5000
ε=10−10

Figure 5.13. The number of matrix multiplications needed to compute the eight first eigenpairs
with a tolerance of ε = 10−10, as a function of how well chosen the starting approximations
were in general. The dashed lines mark the needed numbers of multiplications from a random
start with block sizes 4 and 8. The matrix used was of dimension 5000.

66

From these figures it can be concluded that the starting approximations must have
a tolerance < 10 in order for them to be of any use at all. If only approximations
are used it seems as if the recommendations of block sizes in Section 5.2 hold, with a
possible exception of the case when the approximations are already quite close to the
desired precision. It could then be better to use a block size equal to the number of
approximated eigenvectors.

5.4.2 Basic restarting schemes

Now when it is a bit clearer how to best put the approximated eigenvectors to use,
some method is needed to compute them. The most straightforward way to construct
accurate approximations to eigenpairs is to run the Lanczos algorithm with either a lower
tolerance than the tolerance in the end requested, or with a Krylov space dimension
already set in advance. The first method has the advantage that the precision of the
approximation is as good as desired, while the second option is advantageous in the
sense that the needed data storage space is known in advance, but with the risk that
the approximation is not good enough to give any advantages. However, both of these
methods are of little use if the higher goal is to reduce the needed number of matrix
multiplications. Fig. 5.14 shows the convergence of the fourth eigenpair of the same
matrix as in Fig. 5.11.

0 20 40 60 80 100 120 140 160

10
−10

10
−5

10
0

10
5

#Multiplications by A

T
ol

er
an

ce
 =

 ||
A

v
−

 λ
v|

| 2

n ≈ 5000
Block Size = 4
Eigenpairs = 4

Figure 5.14. The convergence of the fourth eigenpair of the same matrix as in Fig. 5.11, from
a random starting block of size 4.

67

The problem is that to obtain the desired precision of the previous figure it takes fewer
iterations to simply continue in the first run, than it takes to create a start approximation
and start over. Thus, the only time one would want to use this method to create start
approximations is when the sizes of Q and T need to be small. The reorthogonalization
costs of Q grows large as the dimension increases, and for smaller matrices this effect
might as well be the dominating time consumer, which is why the restarted Lanczos is
so widely used.

There is however a special case when a restarted Lanczos could be attractive for com-
putations of larger matrices, and this is when the eigenpairs are collected in turns. If
for example eight eigenvalues are needed, but only the first four pairs are approximated
for some reason, then the Lanczos algorithm can find these first four pairs to the de-
sired precision. As this is done, the algorithm will inevitably approximate the closest
following eigenpairs as well. Thus when the first four eigenpairs have converged, the
approximations of the remaining four could be used to form a starting block of the next
run.17

5.4.3 Computations with reduced precision

Another general approach that is closely connected to the basic restarting method is to
decrease the floating point precision of the matrix for the first run when the approxi-
mations are created. A matrix stored in single precision (sp) instead of double precision
(dp) only requires half the storage space. As the computational cost of the first run
is less for sp matrices, it is not a problem if more matrix multiplications are needed in
total, as long as the needed multiplications in the final run is decreased.

Fig. 5.15 shows how the residual norm of an eigenvector approximation to the sp matrix
varies when the same vector is measured towards the dp matrix. It seems as an eigen-
vector approximation to a sp matrix approximates eigenvectors to the dp matrix just
as good for residual norms above 10−4, but after that it does not matter how well the
vectors are approximated to the sp matrix; the vectors will still only approximate the
dp matrix eigenvectors to a residual norm of 10−4. This seems to apply independently
of the matrix dimensions that were examined.

For the matrix of dimension 5000 that was examined in Fig. 5.11, this would mean
that around 100 multiplications by the sp matrix gives four start approximations to
the dp matrix of ε = 10−4, which in turn, according to Fig. 5.11, means that just 100
matrix multiplications suffice to give an eigenpair accuracy of the four first eigenpairs of
10−10. This requires in total 200 matrix multiplications to reach that tolerance level, in
comparison to 160 that would be needed if they all were collected in one run of the dp
matrix. However, the 100 multiplications of the single matrix is cheaper, and depending
on how much cheaper, one strategy could be preferable over the other. What is clear

17This method would require that the earlier eigenvectors were forbidden.

68

however, is that if a tolerance larger than 10−4 is acceptable, there is no need to use the
dp matrix at all.

10
−6

10
−4

10
−2

10
0

10
2

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Residual Norm Single Matrix

R
es

id
ua

l N
or

m
 D

ou
bl

e
M

at
rix

n=1000
n=5000

Figure 5.15. The residual norm that an eigenvector to the single matrix (sp) has to the
double matrix (dp), compared to its precision to the single matrix. Essentially this tells how
similar the eigenvectors of a sp matrix are compared to the eigenvectors of the dp matrix.
Two matrices are compared of dimensions 1000 and 5000.

If one is only interested in the eigenvalues there is another trick. The dp and the
sp matrices are slightly different and therefore their eigenvalues differ as well. In the
example of the 5000×5000 matrix the difference between the eigenvalues of the sp and the
dp matrices are in the order of 10−5. But a better eigenvalue can easily be approximated
from the eigenvector approximation. Since this approximation is so close to the true
eigenvector of the dp matrix, it will rescale approximately like the true eigenvector if
multiplied by the dp matrix. By taking the norm of this multiplication an eigenvalue
approximation is acquired that is only 10−8 away from the true eigenvalue. So by only
using the dp matrix once it was possible to increase the accuracy of the eigenvalue
approximation by a thousand times.

5.4.4 Approximations acquired from smaller model spaces

This last strategy is not general but highly dependent on how the matrices are formed.
It arises from the fact that the Hamiltonian needs to be cut off at some energy level,
and depending on where, different model spaces arise. The higher energy levels that are
allowed, the better the approximation is of the true system. In this particular case when
the bosons try to find the lowest possible energy configuration this means that the more

69

states that are available, the more opportunities there are for new mixes of the Slater
determinant building blocks, and this could ultimately lower the energy of the system.
Therefore each eigenvalue found using a finite model space is slightly higher than the
true value, even though the eigenvalues converge towards the true value as the cut-off
level increases. Fig. 5.16 shows how the eigenvalues for successive model spaces change.

1 2 3 4 5 6
0

2

4

6

8

10

12

Succesive Model Spaces

E
ig

en
va

lu
e

S
iz

es

Figure 5.16. This graph shows how the 24 first eigenpairs change between the 6 first model
spaces. The dimension of the successive matrices are: n1 = 63, n2 = 384, n3 = 2065,
n4 = 9817, n5 = 41 787 and n6 = 161 032.

The fact that smaller model spaces approximate larger ones opens up for an opportunity
to create starting vectors in smaller spaces, and scale them for the larger ones, as all
states of the smaller space also exist in the larger. The problem is however as Fig. 5.16
indicates, that even with a matrix dimension of 160 000, the eigenvalues are far from
converging. There is still too much information in the higher energy levels that has not
been taken into account so far. The eigenvectors reflect this as a eigenvector of a smaller
model space will not reach a higher precision than 100 when projected onto the higher
model space, see Fig. 5.17. The figure also shows that there is no need to compute the
eigenpairs to the smaller model space with a precision lower than 100.

The particular matrix studied was for a system of six particles. Perhaps the conver-
gence between the model spaces are faster for systems of fewer particles, but in this case
far larger matrices need to be studied before this starting vector approximation might
become more useful. Anyhow, a start approximation of tolerance 100 is not completely
wasted. According to Fig. 5.11 the iterations might be reduced with approximately
20 by using the approximation in that context, which could be worthwhile since the
smaller model space matrix is considerably smaller. To compute the eigenpairs with
a precision of 100 from that start approximation will not take many iterations either.
However, a high precision on eigenpairs of matrices to model spaces that changes this

70

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
0

10
1

10
2

Residual Norm of Smaller Model Space

R
es

id
ua

l N
or

m
 o

f L
ar

ge
r

M
od

el
 S

pa
ce

n=10’000 ⇒ 42’000
n=200 ⇒ 1’000

Figure 5.17. The tolerance that an eigenvector of the smaller model space matrix has to the
succeeding model space matrix, compared to how accurate it is computed for the larger model
space matrix.

much between two successive spaces is rather uninteresting. There is not much point in
computing an eigenvalue to a precision that is higher than the accuracy of the matrix,
as an approximation to the true physical system. It is possible that the use of approxi-
mations from smaller model spaces are of greater use as the matrices grow really large
and the eigenpairs change less between the spaces.

5.5 A short survey of available software

Since an actual implementation of an eigensolver (for purposes other than quick evalua-
tions of different methods) was not in the scope of this project a short survey of available
software has been conducted. The findings are summarized in Table 5.7 where a partic-
ular routine or library is specified by eight columns. The first five contains the name,
type of recursion, reorthogonalization technique and the programming language used.
The sixth column indicates whether the user is required to supply a separate routine
for calculating the matrix-vector product Av, abbreviated by UCMP (User Controlled
Matrix Product). Similarily, the seventh column indicates whether the user is free to
control the computation of any other vector or matrix products necessary on request
by the program (User Controlled Vector Products) or if these are handled internally by
the driver. The final column shows if the software can be run in parallell either using a
message-passing paradigm via MPI or a shared-memory paradigm via OpenMP.

Note that this table exclusively lists eigensolvers based on Lanczos methods, hence
eigensolvers based on e.g. Davidson-methods and software using Lanczos methods for
purposes other than finding eigenvalues (i.e. solving linear equations or singular value

71

decomposition) have all been excluded. Following the table is a short description of each
entry. Links to repositories containing source code and documentation can be found in
Appendix D.

Table 5.7. Available software for solving LSSEs.

Name Recursion Restart Orthogonalization

IRBLEIG Block Implicit Partial
ARPACK Vector Implicit Full
BLZPACK Block Explicit Partial/Selective
LASO Block Explicit Selective
LANCZOS Vector None None

Language UCMP UCVP Parallell

IRBLEIGS Matlab Yes No No
ARPACK FORTRAN 77 Yes No MPI
BLZPACK FORTRAN 77 Yes No MPI
LASO FORTRAN IV Yes No No
LANCZOS FORTRAN Yes No No

IRBLEIGS is based on the Block Lanczos algorithm and currently only available in
Matlab. IRBLEIGS combines several advanced features such as an implicit restarting
scheme to accelerate convergence, partial reorthogonalization and shift-invert strategies
for calculating interior eigenvalues.

ARPACK 18 is a library of subroutines written in FORTRAN 77/C++ for solving large
eigenproblems. The implementation is centered around the Arnoldi algorithm which
reduces to the Lanczos algorithm in the case when A is symmetric. A full reorthogo-
nalization is employed to guarantee working-precision orthogonality among the Lanczos
vectors and furthermore, ARPACK uses an implicit restarting scheme (briefly discussed
in Section 4.3).

BLZPACK 19 is a Block Lanczos-solver written in FORTRAN. BLZPACK mainly uses
modified partial reorthogonalization to maintain semi-orthogonality between the Lanc-
zos blocks. In the event that the process runs out of memory, BLZPACK performs an
explicit restart while storing any converged Ritz vectors and orthogonalizing with re-
spect to these vectors in order to avoid having to recompute any sufficiently converged
eigenvalues (this is more appropriately referred to as external selective orthogonaliza-
tion).

18ARPACK is also available in Matlab through the function eigs.
19BLZPACK actually computes the algebraically largest eigenvalues but the smallest values can easily

be obtained by using −A instead of A, thus reversing the spectrum.

72

LASO is another Block Lanczos-solver written in FORTRAN IV and notably the only
one using selective reorthogonalization as described in Section 4.4.5. Similarly to BLZ-
PACK, it uses an explicit restart in the event that it runs out of memory.

LANCZOS is a FORTRAN implementation of a vector Lanzos method using no re-
orthogonalization. Spurious eigenvalues are systematically detected and removed by a
scheme for post-processing the tridiagonal matrix T , see Section 4.4.1.

Of the available solvers included in Table 5.7, only ARPACK and BLZPACK can be run
in parallel (the parallel implementation of ARPACK is called P ARPACK), a necessary
feature in order to tackle any truly large-scale computation. While all of the solvers
listed above allowed for a user specified matrix-vector product, seemingly none of them
allowed for user specified vector products. However, this was not always clear from the
documentation and for the cases where no explicit mention of this feature was made or
could be easily deduced from the code the answer was assumed to be negative.

73

6 Analysis and Adaptations of the
NCSMb Code

In the two previous chapters the eigensolvers Lanczos and Block Lanczos have been dealt
with. In Chapter 4 the underlying mathematical theory was thoroughly explained and
presented together with explicit outlines of the algorithms, taking into account the effects
of finite precision etc. The succeeding Chapter 5 presented various tests made with the
Lanczos algorithm investigating different aspects such as the width of the starting block,
reorthogonalization schemes and how to accelerate convergence.

The following two chapters will instead put focus on the code No-Core Shell Model
for bosons, NCSMb, and the properties of the matrices it calculates. In Section 6.1
analysis of NCSMb is presented, where certain areas of improvement have been identified.
Based on these areas, adaptations have been made to the code, which are discussed in
Section 6.3 and Section 6.5.

However, understanding the reasoning behind the adaptations made to the code re-
quires knowledge of some formats and methods used. In Section 6.2 a storage format
is introduced, used to effectively store large, sparse and symmetric matrices, while in
Section 6.4 the main features are explained of a hash table; a structure that provides
a quick lookup of values given that the hash table is well-dimensioned and the hashing
function is chosen with care.

6.1 Analysis of the code NCSMb

The code NCSMb has several arguments: the cut-off level of the energy of the model
space Nmax, the number of particles Nboson, the projection of the total angular momen-
tum Mtotal and the choice of two- and/or three body operators, with energies E2 and
E3.

Using these arguments it calculates the matrix elements of the resulting matrix repre-
senting the Hamiltonian using a for-loop over all rows of the matrix. A hash table is used
to find the connections of the many-particle states that generate additions to the matrix
elements. The connections in turn are found by taking a many-particle state and for
each such state, iterate over all possible many-particle states that can generate nonzero
matrix elements, when computing the interaction of two- and/or three-body operators.
Due to the way the elements are calculated, the updates to the elements in a row in the

74

matrix are not made in any particular order. Several updates can also be made to each
elements as there can be several connections between many-particle states. A somewhat
more detailed account is given in Section 3.4. The matrix elements are thereafter stored
in the format of gsl_matrix20, which is done to be able to compute the eigenvalues of
the matrix using gsl_eigen21.

While analyzing the code NCSMb the following areas of improvement were discovered:

– final storage of the matrix elements
As the Hamiltonian matrix is large and sparse, storage space would be much less
by only storing the nonzero elements, together with their positions in the matrix.

– storage of the matrix elements during computations
Depending on the number of updates made to each matrix element during calcu-
lations of each row, a hash table could be advantageous at this stage, instead of a
large array for storing both the zero and nonzero elements.

6.2 Storing symmetric sparse matrices

To store a sparse Hermitian matrix as efficiently as possible the properties of the matrix;
the sparseness and the symmetry, should be used in order to reduce the number of matrix
elements that needs storing. Due to the sparseness, only the relatively few nonzero
elements must be stored together with their position in the matrix. The symmetry also
allows storage of only the upper- or lower triangular half of the matrix together with
the diagonal.

When it comes to storing the nonzero elements there are two choices: go through each
column and store the elements as they appear in the matrix (column-major format), or
go through each row (row-major format). One of several ways of storing the matrix is
the compressed sparse row format (CSR) [21], specified by the following three arrays:

values: an array containing the nonzero elements of the matrix, stored when walking
along each row.

columns: an array in which element i contains the column number of element i in
values.

rowIndex: an array in which element j contains the index of the element in values

which corresponds to the first nonzero element of row j.

20gsl_matrix is a matrix storage format in the GNU Scientific Library (GSL).
21gsl_eigen is a numerical routine in the GNU Scientific Library (GSL) for calculating the eigenvalues

of a matrix stored in the gsl_matrix format.

75

Should row j contain no nonzero elements, the value of the next element in rowIndex

will be the same, i.e. rowIndex(j+1) = rowIndex(j). This means that the number
of nonzero elements in row j can be found through the difference rowIndex(j+1) −
rowIndex(j). As this must hold for all rows, an additional entry is added to the end
of rowIndex, where its value is the total number of nonzero elements plus one or zero,
depending on if the last row contains a nonzero element or not.

The arrays values and columns will have as many elements as there are nonzero ele-
ments in the matrix, while rowIndex will have d+1 elements, where d is the dimension
of the matrix.

Example. (CSR storage) A symmetric matrix A is to be stored in the CSR format,
and the matrix elements will be stored from the upper diagonal. The matrix A has the
following appearance:

A =


1 0 −1 3
0 2 4 0
−1 4 0 −2
3 0 −2 5

 . (6.1)

The three arrays specifying the matrix, using one-based indexing, will then become:

values 1 -1 3 2 4 -2 5

columns 1 3 4 2 3 4 4

rowIndex 1 4 6 7 8

Table 6.1. The three arrays defining the matrix A, according to the CSR format.

�

6.3 Implementing CSR format storage in NCSMb

Since the code NCSMb stored the entire matrix, nonzero and zero elements, in the format
gsl_matrix, storage space could be saved by implementing a sparse storage format. As
a future implementation of an eigensolver will be based on the Lanczos algorithm, many
matrix-vector multiplications will be performed, and a sparse format is advantageous
in making the computations effective. The format chosen for output from the NCSMb
code was CSR, as described in Section 6.2.

Due to the symmetry of the matrix, only the matrix elements of the upper or lower part
needed to be stored. The upper part was chosen as the part to store the elements from,
meaning only the elements of this part had to be calculated.

As a first step an array oneRow was introduced, with length of a row in the matrix, which
stored all the elements in a row, zero or nonzero. This was repeated in each iteration

76

of the loop over the rows. After each row a for-loop went through oneRow, storing the
nonzero elements into values and their position in the matrix into columns, as described
in Section 6.2. The next entry of rowIndex was filled to indicate the number of nonzero
elements in the row.

6.4 Hash tables

A hash table is a data structure that allows one to map certain identifying keys, to their
associated values and store them in an array [22]. The mapping is realized using a hash
function that accepts a key, transforms it in an appropriate way, and returns a hash
coding. The hash coding will correspond to an index of an array where the associated
values can be found, which means that a value can be put into the hash table using a key
together with the hash function, and later it can be retrieved with the same procedure.
A schematic diagram of a simple hash table with its hash function can be seen in Fig. 6.1,
where the full names of John, Lisa and Sandra act as keys while their phone numbers
act as values.

The main advantage of using a hash table as means of storage and lookup22 over other
data structures is due to the speed. The lookups will in principle be constant in time
up until an occupancy level of 2/3 of the total size of the table. If the number of entries
in the hash table can be predicted beforehand, this reduces the time taken for lookups
as no resizing of the hash table is needed.

6.4.1 Choosing a hash function

A perfect hash table would use a hash function that uniquely maps all keys to indices
of the array, thereby avoiding any problems associated with two keys mapping to the
same position in the table; a so-called hash collision. In practice however, this is rarely
achievable meaning collisions will occur, and must be dealt with in appropriate ways.
Still, the number of collisions can be kept to a minimum by choosing a good hash
function; one that distributes the generated indices evenly over the array, and minimizes
micro-clustering of the hash values.

6.4.2 Handling collisions

When it comes to collisions, two different ways of dealing with them are chaining and
rehashing, both with their advantages and drawbacks.

A chained hash table will have linked lists at every position in the array, called buckets.
An example can be seen in Fig. 6.1. When inserting a new element into the table, the

22A lookup is the process of searching through a data structure for a specific value.

77

Figure 6.1. A small phone book as a hash table, where the buckets indicate the arrays where
values are stored in the hash table.23

hash function returns an index for the element, and the value together with the key will
be put in the bucket, at the beginning of the linked list of that position. If another
element receives the same index, that key and value will be placed at the next available
position in the list, and the collision has thereby been dealt with. However, with many
elements stored in the same bucket the linked list will be long, and a search through
the list will take its time, negating the high efficiency of finding the bucket in constant
time.

In a hash table that uses rehashing, or resizing of the hash table, all the elements are
stored in the actual array. When an element is to be stored in a position where another
element already is placed, the table will be probed for other available positions. A linear
probing of a hash table, where the initial index of the value is h′(k) and the index after
i iterations is h(k,i), can be expressed as follows:

h(k,i) = (h′(k) + i) modm, (6.2)

with the iteration variable i = 0,1, . . . ,m−1 and with m positions in the hash table. To
find an available position the index is increased by i, and the modulus is taken of the
length of the hash table, to ensure that the new index does not exceed the maximum
index of the hash table. This procedure is repeated until an available position is found.

A condition could also be set concerning the maximum number of hash collisions that are
allowed for a single hash entry, as a considerable amount of hash collisions will require
much longer time for the hash table to be filled.

23Reference: http://en.wikipedia.org/wiki/File:Hash_table_3_1_1_0_1_0_0_SP.svg by Jorge
Stolfi. Licensed under the Creative Commons Share-a-Like-license: http://creativecommons.org/

licenses/by-sa/3.0/deed.en.

78

http://en.wikipedia.org/wiki/File:Hash_table_3_1_1_0_1_0_0_SP.svg
http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://creativecommons.org/licenses/by-sa/3.0/deed.en

6.4.3 Dynamic resizing

In order to make the storage as useful as possible, the hash table can be made to change
its size to adapt to the number of entries in the table. This is practical since the number
of entries might not be known, but having a very large hash table will waste time and
storage. At the same time a too small hash table will cause lots of collisions, and this
should be avoided as dealing with them takes time. Using a rehashing function the size
of the table can be adapted when the number of entries reaches a critical value. At this
point, the size of the hash table is increased to a larger size and the rehashing function
converts the old indices of the hash table into new indices, as the length of the table
now has changed. The keys and values are stored in their new positions in the new hash
table.

6.5 Implementation of a hash table in NCSMb

Chapter 7 presents results from a number of investigations performed to find out the
matrix properties, where Fig. 7.5 shows the average number of updates of the elements
in the matrix against dimension. From the curves in the figure and in the discussion of
Section 7.2.1 the implementation of a hash table is motivated, since the average number
of updates is low for both two- and threebody-forces and the number of elements will
thus be few compared to the dimension of the matrix.

The implemented hash table handles collisions by rehashing, and uses dynamic resizing.
The variable length was motivated both by the possibility to handle many collisions,
but also due to that only the upper diagonal of matrix needs to be calculated, and the
number of available elements will decrease as the loop iterates through the rows. The
size of the hash table will be notably smaller than the dimension of the matrix and
contain much fewer elements to go through.

The implementation is done in the for-loop over the rows. Instead of the use of an array
oneRow, which stored all the matrix elements and then had to been iterated through
to collect the nonzero elements, a hash table with allocated memory of one row is
introduced. The actual length of the hash table however, is set at the beginning of the
loop, to a length adapted according to the number of nonzero elements of the previous
row. In the first loop the length of the hash table is set to some predetermined value.

If one row should contain unexpectedly many nonzero elements, a function reHash will
adapt the size of the hash table according to a new standard, and translate the old indices
into new ones. The size of the new hash table will however still be small compared to
the dimension of the matrix.

The hash function of the table is written so that the value of the column of the matrix
becomes the key, taking the modulus of the current size of the hash table. This actually

79

provides a quite uniform distribution of the indices as the updates made to elements in
the matrix are rather well spread out over the columns, except for several updates on
the diagonal. The hash function is therefore index = key mod l where l is the current
length of the table.

80

7 Investigations of
Matrix Properties

In order to find further possibilities and limitations of an eigensolver based on the Lanc-
zos algorithm, the structure and traits of the matrices to be diagonalized were inves-
tigated. For instance, depending on the sparseness of the matrices or how quickly the
dimension grows with the cut-off energy Nmax, decisions can be made on how large ma-
trices it is reasonable to diagonalize or how much storage space that will be needed. This
chapter will therefore present the results of several tests made with the NCSMb code
detailing the number of nonzero elements, the relation between the matrix dimension
and the cut-off energy, and number of updates per element, among others. Note that
every calculation that used three-body forces also used two-body interactions, but not
vice versa. In NCSMb one could specify the two- and three-body potentials with the
energies E2 and E3 respectively, and both of them were set to one in all tests. This
value does not correspond to a physical system, but the structure of the matrix should
be the same in either case and is only affected by extreme choices of these parameters.

7.1 Storage size of the matrix

Knowledge of the size of the matrix and the number of nonzeros for a given dimension
helps in predicting the memory usage for large matrices. This information is important
to be able to prepare appropriate hardware and memory for large-scale computations of
the eigenenergies. It was therefore investigated how the dimension of the Hamiltonian
increases for growing model spaces, and how the number of nonzero elements depend on
dimensions.

7.1.1 Relation between matrix dimension and Nmax

In order to find out the storage size we first investigated the matrix dimensions for
various values of the cut-off energy Nmax and the number of particles Nboson. This was
done for relatively small dimensions as computing very large matrices consumes a lot of
time and memory. Nevertheless, reasonable estimates of the matrix dimension can be
made for larger model spaces using the obtained data.

We used the NCSMb code to compute the dimensions of matrices for Nmax = 2–22 and
Nboson = 2, 3, 4, 5, 7, 10, 15, 20 and 30. The results are plotted in Fig. 7.1, showing both a

81

normal and a logarithmically scaled graph. It appears that the dimension is independent
of the number of bosons when Nboson reaches a specific value, a value that does in fact
depend on Nmax. It can be found numerically that the dimension becomes independent
of Nboson approximately when 2Nbosons > Nmax. Hence, if this condition holds, the
dimension will not be influenced further when increasing the number of bosons while
holding the value of Nmax constant.

0 5 10 15 20
Nmax

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

d

1e7

 Nboson

2
3
4
5
7
10
15
20
30

0 5 10 15 20
Nmax

100

101

102

103

104

105

106

107

108

d

 Nboson

2
3
4
5
7
10
15
20
30

Figure 7.1. The dimension d of the Hamiltonian matrix in normal (above) and logarithmic
(below) scale, for Nmax = 2–22 and various numbers of particles Nboson.

82

7.1.2 Number of nonzero elements

Calculating the relationship between the number of nonzero elements Nnz and the di-
mension d is the next step in understanding the memory consumption of large model
spaces. The number of nonzero elements in the matrix is expected to grow as Nnz = dx,
with the exponent x having a value of 1 ≤ x ≤ 2. A value of x = 1 implies that only
the diagonal of the matrix contains nonzero elements, while x = 2 instead implies that
the entire matrix is nonzero.

To find the exponent x the number of nonzero elements was calculated for various Nmax

and Nboson and stored together with the dimension of the matrix. Furthermore, as the
number of nonzeros depends on whether three-body forces are incorporated or not, the
same tests were made with and without three-body interaction. The results of these
tests can be seen in Fig. 7.2, which indicates that the number of nonzero elements
indeed grows as Nnz = dx. Since it was observed in Section 7.1.1 that the dimension
mainly grows with Nmax, and is only influenced by Nboson up until a certain value,
curves with different values of Nboson are plotted to display the results most effectively.
In addition, Fig. 7.3 shows the fraction rnz = Nnz/d

2 of nonzero elements with respect
to the dimension of the matrix.

With Nnz = dx, it follows that log10(Nnz) = x · log10(d). The value of x can thereby
be found as the slope of a plot of log10(Nnz) against log10(d), as seen in Fig. 7.4. In
the figure it can be observed that as the number of bosons Nboson increases the straight
lines for the different values of Nboson converges approximately towards a limiting line,
for both the case of two- and three-body forces.

A linear fit was performed with the curves of Nboson = 30 in both cases, and the results
are shown in Fig. 7.4 (a) and (b). For the case of two-body forces this results in the
linear equation

log10(Nnz) = 1.44 log10(d) + 0.52, (7.1)

while in the case of three-body forces it results in the following equation:

log10(Nnz) = 1.75 log10(d) + 0.26. (7.2)

This means that for the two different types of forces, the numbers of nonzero elements
grow approximately as

Nnz,2 = d3/2, (7.3)

Nnz,3 = d7/4. (7.4)

83

0 20000 40000 60000 80000 100000 120000 140000
d

0

1

2

3

4

5
N

n
z

1e7

 Nboson

2
3
4
5
7
10
15
20
30

(a) Two-body forces.

0 5000 10000 15000 20000 25000 30000
d

0

1

2

3

4

5

6

7

8

9

N
n
z

1e7

Nboson

3
4
5
7

10
15
20
30

(b) Two- plus three-body forces.

Figure 7.2. The relationship between the number of nonzero elements Nnz and the dimension
d, for various values of Nmax and Nboson.

84

0 10000 20000 30000 40000 50000 60000
d

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
r n

z

 Nboson

2
3
4
5
7
10
15
20
30

(a) Two-body forces

0 5000 10000 15000 20000 25000 30000
d

0.0

0.2

0.4

0.6

0.8

1.0

r n
z

 Nboson

3
4
5
7
10
15
20
30

(b) Two- plus three-body forces

Figure 7.3. The relationship between the fraction rnz of nonzero elements and the dimension
d.

85

101 102 103 104 105 106 107 108

d

100
101
102
103
104
105
106
107
108
109
1010
1011
1012
1013

N
n
z

 Nboson

2
3
4
5
7

10
15
20
30
Fitted
line

10-11
10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100
101
102

M
em

or
y
us

ag
e
(T
B)

(a) Two-body forces.

101 102 103 104 105 106 107

d

100
101
102
103
104
105
106
107
108
109
1010
1011
1012
1013

N
n
z

 Nboson

3
4
5
7
10

15
20
30
Fitted
line

10-11
10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100
101
102

M
em

or
y
us

ag
e
(T
B)

(b) Two- plus three-body forces.

Figure 7.4. The number of nonzero elements and memory usage, in terabytes (TB), against
dimension d.

86

7.1.3 Storage size of matrix against dimension

After computing the number of nonzero elements and the dependence of the dimension on
Nmax and Nboson a prediction can be made of the storage size of the Hamiltonian matrix.
The storage of the matrix requires, based on the CSR format explained in Section 6.2,
storing the three arrays values, columns and rowIndex. As double precision is a usual
choice of format for the matrix values, each nonzero value would need 8 bytes of memory,
and every column and row index is an integer which consumes 4 bytes.24 Therefore, the
total storage size of a matrix is given by[

(8 + 4) ·Nnz + 4 · (d+ 1)
]
bytes ≈

[
12Nnz + 4d

]
bytes, (7.5)

since the number of elements in rowIndex is d+ 1, and there are Nnz elements in both
values and columns. Thus, all that is needed are Nnz and d, which we already have,
and by extending the linear fit found previously we get an idea of how much memory
is needed for matrix calculations of much larger scale. The memory usage is greatly
dependent on the inclusion of three-body potentials as Nnz is quite different between
the two cases. Therefore a second scale can be seen in Fig. 7.4, showing the total storage
size as a function of d. In the figures the memory usage has been scaled in terms of
terabytes (TB). To see the difference between two- and three-body forces the storage
space of 1TB could be taken as example, which allows storage of a matrix of dimension
in the order of 107 in the case of two-body forces, while this value is 106 for three-body
forces.

24If the dimension is large enough, 8 bytes may be needed for each index.

87

7.2 Properties of the matrix elements

In our investigations of the Hamiltonian matrix some properties were found of how the
NCSMb code generates the matrix elements and how the elements are distributed. These
kind of investigations are helpful to e.g. optimize the matrix generating code as well
as determine how to split the matrix to different CPUs, when performing calculations
in a future eigensolver. For instance, knowing the average number of updates of the
elements motivated us to implement a hash table that reduced the execution time of the
algorithm.

7.2.1 Number of updates per element

The use of a hash table for storing the nonzero elements of one row would only be
valuable if the number of updates per element was reasonably low compared to the
dimension of the matrix, i.e. the length of one full row. With many updates per matrix
element, many lookups in a hash table would be required, and the cost of lookups and
handling collisions might not be lower than the cost of searching for nonzero values in
an array the size of one row.

The average number of updates per matrix element have been calculated from the code
NCSMb, and this is shown in logarithmic scale against dimension in Fig. 7.5, for both
the case of two- and three-body forces. The average is taken over the entire matrix,
including both zero and nonzero elements, and the number of bosons varies according
to Nboson = 2–30. As can be seen in the figure the average number of updates decreases
rapidly as the dimension grows, and this is the case for all values of Nboson. At a value
of d = 104 the average number of updates is below 10−2 for two-body forces and below
10−1 for three-body forces, when Nboson ≥ 4. It can also be noted that except for the
smallest value of Nboson, the average number of updates is well below 1.

88

0 10000 20000 30000 40000 50000 60000
d

10-3

10-2

10-1

100

101
Av

er
ag

e
nu

m
be

r o
f u

pd
at
es

 Nboson

2
3
4
5
7
10
15
20
30

(a) Two-body forces

0 10000 20000 30000 40000 50000 60000
d

10-3

10-2

10-1

100

101

Av
er
ag

e
nu

m
be

r o
f u

pd
at
es

 Nboson

3
4
5
7
10
15
20
30

(b) Two- plus three-body forces

Figure 7.5. The relation between average number of updates per matrix element and matrix
dimension d.

89

7.2.2 Values of the matrix elements

Fig. 7.6 shows the distribution of the absolute values of the matrix elements, for both
the two- and three-body case. The number of counts is one order of magnitude larger
for three- than two-body forces, as expected since the matrix resulting from three-body
interactions is less sparse. We note that a significant number of elements have values
less than 10−12, and the guess is that these elements emerge due to numerical errors
and should actually correspond to elements that are summed up to zero. This is not an
unreasonable guess since the next chunk of nonzero values are several orders of magnitude
greater. It can also be noted in Fig. 7.6 that there are two groups of elements situated
around 10−2 and 103, even though the latter is more prominent in the case of two-body
forces.

7.2.3 Distribution of nonzero elements over the matrix

In order for the matrix-vector multiplications of the eigensolver to be performed as ef-
fectively as possible, it is of interest to analyze how the nonzero elements are distributed
over the matrix. A future implementation of an eigensolver will most likely use parallel
threads to perform calculations, and depending on the distribution of the nonzero ele-
ments the matrix can be split into blocks with equal or different sizes. In Fig. 7.7 the
distribution of the nonzero elements over the matrix can be seen for both the case of
two- and three-body potentials, where dark areas indicate a concentration of nonzero
elements. The middle pictures show the matrix with decreased resolution to observe the
patterns more clearly.

In order to visualize where the largest elements are situated in the matrix (arbitrarily
defined as those with absolute values larger than 102), 2D plots of the matrix with only
large values are shown in the bottom panels of Fig. 7.7, and in both cases Nboson = 10
and Nmax = 10. Note that both the numbers and the locations of the largest absolute
values are almost the same.

90

−18 −16 −14 −12 −10 −8 −6 −4 −2 0 2 4 6
log10|value|

0

1

2

3

4

5

6

7

8
Nu

m
be

r o
f c

ou
nt

s
1e5

(a) Two-body forces.

−18 −16 −14 −12 −10 −8 −6 −4 −2 0 2 4 6
log10|value|

0

1

2

3

4

5

6

Nu
m

be
r o

f c
ou

nt
s

1e6

(b) Two- plus three-body forces

Figure 7.6. The number of elements of a given value, for a matrix with dimension d = 5147.
The parameters were Nmax = 10 and Nboson = 10.

91

Figure 7.7. The distribution of nonzero elements of the Hamiltonian for Nboson = 10, Nmax =
10, and d = 5147. The left panels are with only two-body interactions, and the right panels
include three-body forces. The center panels show the matrices with lower resolution, for
clarity. The bottom panels show the distribution of the elements whose absolute value is
larger than 102.

92

7.3 The number of single-particle states

If a many-particle system has the cut-off energy Nmax then there is a number of single-
particle states that in principle can be constructed. However, some of these are not
available to the many-body system because of the restriction that all many-body states
must have the same total M (for details see Section 3.4). By not generating the unused
states the indexing of the states becomes dense, reducing the storage need for auxiliary
arrays using these indices.

In Fig. 7.8 a comparison can be seen between the number of originally enumerated
single-particle states in NCSMb and the ones actually used, for different Nmax. The
number of single-particle states have no dependence on Nboson.

2 4 6 8 10 12 14 16 18 20
Nmax

0

200

400

600

800

1000

1200

1400

1600

1800

Nu
m
be

r o
f s

p
st
at
es

sp states
total
used

Figure 7.8. The number of single-particle (sp) states with respect to Nmax.

93

8 Discussion

8.1 Lanczos and Block Lanczos methods

In Chapter 5 a thorough investigation of different aspects of the Lanczos and Block
Lanczos method was presented. The aim of this section is to provide a short summary
of the results obtained from these investigations as well as a discussion of the possible
implications for a future implementation of an eigensolver in the NCSMb code.

8.1.1 Choosing a block size

In Section 5.2 it was shown that an increase in block size reduced the number of multipli-
cations with the matrix A required for convergence. For a truly large-scale eigenproblem,
when the dimension A may be of the order & 109, the cost of computing matrix-vector
products involving A is believed to dominate the cost of the entire Lanczos run, thus
providing preliminary evidence in favor of operating with blocks instead of a single vec-
tor. The situation is somewhat complicated by the fact that multiplying A with a set of
vectors rather than a single vector comes at a price. It turns out that some block sizes
are more preferable than others in this regard, as they manage to fill the cache-lines
more effectively, see Section 5.2. To get a realistic estimate of the effective computa-
tional time needed for convergence, numbers based on a preliminary investigation using
a cache-friendly routine for sparse matrix multiplication were used to scale the number
of multiplications with A used by the Block Lanczos. In the end, the results favored a
Block approach when several eigenpairs were required. In particular, if the number of
eigenvalues sought is less than ten, the optimal choice seems to be a block of size p = 4.
If more eigenvalues are required, a size of p = 8 seems to work equally well.

8.1.2 Choosing a reorthogonalization technique

Section 5.3 investigated the various schemes for restoring orthogonality among Lanczos
blocks (or vectors) which were discussed in Section 4.4. The main contestants were
full reorthogonalization (FRO) and partial reorthogonalization (PRO), of which FRO
is the more conservative choice. The comparison was based on two factors: the actual
number of orthogonalizations performed and the number of recall operations where
previously generated Lanczos blocks have to be scanned and retrieved from primary
memory or possibly fast secondary storage. On both counts, PRO was found to be the

94

superior choice, using only a third of the number of recalls used by FRO and cutting the
required number of orthogonalizations in half for reasonable choices of the block size.
Data indicating (see Figs. 5.7 and 5.9) how these numbers scaled with block size and
dimension of the Krylov space was also provided for future estimates of the cost of using
PRO for a given problem. This data showed that PRO gives diminishing returns as the
block size increases beyond p = 10, thus lending further support for a restrictive choice
of the block size.

The second part of Section 5.3 was comprised of a comparison between the PRO scheme
and a closely related scheme called modified partial reorthogonalization (MPRO). The
motivation behind using MPRO rather than PRO is to further reduce the amount of
reorthogonalizations and recalls needed. As explained in Section 4.4.4 this comes at
the price of an increased complexity of the algorithm and a heavy dependence on a
free parameter η which determines the number of blocks selected for orthogonalization.
Thus, MPRO was run for different values of η in the hope of establishing an optimal value
(possibly dependent on the given problem). The results were however inconclusive: while
the number of orthogonalizations performed was definitely less than the corresponding
number for PRO, there was no dramatic decrease, and the number of recall operations
was actually found to increase using MPRO for all values of η in the range considered.
A recall made by MPRO is not equivalent to recalls made by PRO, however, since in
many cases fewer blocks have to be scanned with MPRO, depending on η. Such scans
are memory-bandwith limited which makes it hard to predict which method will come
out on top.

To summarize, partial reorthogonalization is recommended for the purpose of maintain-
ing orthogonality (or technically, semi-orthogonality) between Lanczos blocks. Prelimi-
nary results (see Section 5.3.2) indicate that there are no significant benefits from using
MPRO, its performance being roughly equal to that of PRO.

8.1.3 Accelerating convergence

In Section 5.4.1 it was shown that a set of approximate eigenvectors can be used to build
the Block Lanczos starting block, and accelerate the convergence of the approximated
vectors. Estimates were provided for how the rate of convergence was related to the
accuracy of the eigenpairs used to start the algorithm. The accuracy of an approximation
were determined in terms of its tolerance as an eigenvector, defined in Eq. (5.10). The
findings indicate that in order to reduce the number of matrix multiplications required
for convergence by any appreciable amount, all of the approximate eigenvectors have
to be fairly accurate. This puts restrictions on what other methods may be used to
calculate these vectors. In generally it seems as if, independently of the dimensions of
the matrices studied, a mean approximation tolerance in the order of ≥ 101 is not better
than random at all. Below that point, the benefit seems almost linear, seen with a
logaritmic tolerance scale. For example, assume that it takes m multiplications to reach

95

a precision of 10−9 from a random starting point, which is equal to a starting tolerance
of 101. Then the precision has been improved by 1010. If the starting point instead is
10−4 then the precision only needs to be improved by half as much, which means that
the number of needed matrix multiplications to reach 10−9 is now only m

2 .

Furthermore, given a particular number of available eigenvector approximations it seems
as if it does not matter if each column in the starting block only contains one approximate
eigenvector in each column, or if each column is a linear combination of these vectors. A
reasonable guideline is to choose an optimal block size for the desired number of eigen-
pairs in agreement with Section 8.1.1, except when the precision of the approximations
only needs to be improved by just a little. That is, if a number of approximations have
a precision of ε, and a precision of ε · 10−1 is needed, then a block size equal to the
number of approximations seems to accelerate the convergence enough to outweigh the
increased cost of the matrix-block multiplication.

8.1.4 Model spaces and computations with reduced precision

Since it has been demonstrated that the convergence can be accelerated by fitting ap-
proximate eigenvectors in starting blocks a natural follow-up question is if these approxi-
mations can somehow be obtained at a reduced cost. This was the topic of Sections 5.4.3
and 5.4.4.

In Section 5.4.3 a matrix with single precision (sp) elements, as opposed to double
precision (dp), was used to calculate approximate eigenpairs. The results indicate that
if the computed tolerance only needs to be in the area of 10−4 then one Lanczos run
(with an appropriate choice of block size etc.) with the sp matrix is enough. Since
each use of that matrix approximately costs half as much as a use of the dp matrix,
a precision of 10−4 could thus be reached at half the price. Thereafter, the dp matrix
needs to be used in order to increase the tolerance further, where the additional number
of multiplications are proportional to the desired increase of tolerance. It seems as if a
tipping point occurs when the tolerance needs to be increased to around 10−10, when
the combined cost of the initial run with the sp matrix and the subsequent run with the
dp matrix ended up costing roughly the same as a single run with only the dp matrix.
It thus seems advantageous to use the sp matrix as long as a final tolerance ≥ 10−10 is
needed.

It was also demonstrated that if only the eigenvalues are of interest the relative error
could be lowered considerably by introducing just one extra multiplication with the
corresponding dp matrix.

In Section 5.4.4, approximations of eigenvectors were obtained from smaller model
spaces. These spaces describe the same physical system as the larger space, but with a
reduced energy cut-off Nmax resulting in a smaller matrix representing the Hamiltonian.
From a physical viewpoint it seems reasonable that eigenvectors of these model spaces

96

might serve as approximations to the desired eigenvectors if they are projected onto
the larger space. However, it was found that the correlation between the eigenpairs of
the model spaces was fairly low in the range of model spaces that was examined,25 in
particular the residual norm of a projected eigenpair almost never dropped below 100.
Furthermore, using the projected eigenvectors to start a new Lanczos run in the larger
space reduced the number of matrix multiplications only slightly, depending on the de-
sired tolerance. Still, since the cost of using the smaller model space matrix is just a
fraction of that of the larger one, this is almost always favorable.

However, in these cases it does not seem to be much point in computing the eigenpairs
of the larger spaces to any higher tolerance, since a low precision of the projected vector
of the smaller matrices indicates that the eigenpairs are still far from converging to their
true physical values. According to Fig. 5.17 the eigenvector of the smaller model space
will not get a better residual precision in the higher model space, independent of its
precision in the smaller space. From our current data it is hard to tell when this is going
to happen as the eigenpairs do not show any obvious signs of convergence, considering
the rate of which the eigenvalues change between the first six model spaces, as seen in
Fig. 5.16. It seems as if the initial trend holds; at least 5–6 additional spaces are needed
for the eigenvalues to stabilize, which would mean matrices with dimension in the order
of 109. However this is probably too early to predict. At the point where it starts to
converge the precision of the smaller space approximations is hopefully much better,
which also would increase the usefulness of this method considerably.

8.1.5 Choosing an existing eigensolver

Now that the advantages and disadvantages of the various features of Lanczos-based
methods have been established and compared through the lens of the underlying quan-
tum mechanical many-body problem, there is still the matter of the implementation left.
Since there are currently a number of libraries and routines available for the express pur-
pose of solving LSSEs the question is to what degree this software matches our specific
list of requirements. A survey of the available software can be found in Section 5.5 with
a table detailing the different aspects of the existing implementations.

Based on the conclusions drawn thus far, an eigensolver based on the Block Lanc-
zos algorithm seems to be the best option which immediately excludes ARPACK and
LANCZOS. Furthermore a prospective eigensolver has to be able to run in parallel in
order to efficiently handle large-scale computations thus eliminating LASO from the
three remaining eigensolvers. This leaves IRBLEIGS and BLZPACK, but IRBLEIGS,
while an intriguing option, is currently only available in Matlab which comes with a
lot of restrictions and an expensive license.

Hence, by principle of elimination BLZPACK is the only viable option, but there are

25The largest model spaces had a dimension of approximately 300 000.

97

stronger arguments in favor of it as well. BLZPACK uses modified partial reorthogonal-
ization which significantly reduces the amount orthogonalizations required according to
the investigation in Section 5.3.2. Other investigations [23], [24] give positive accounts
of this approach to restoring orthogonality as well. The restarting scheme used by BLZ-
PACK is fairly simple: after the maximum number of iterations is reached, the algorithm
restarts using the unconverged Ritz vector to build a new starting block. The block size
remains unaltered between different runs and Ritz vectors are passed as linear combina-
tions to a new starting block if their numbers exceed the block size, which is consistent
with the discussion in Section 8.1.3. If a restart is required, converged Ritz vectors are
stored and banished during subsequent runs using external selective reorthgonalization,
which is a scheme for monitoring the return of components along the converged Ritz
vector, see [16].

8.1.6 Suggestions on areas for further study

Although a lot of ground has been covered concerning Lanczos methods the study has
been far from comprehensive. The purpose of this section is to emphasize a few areas
of interest that for various reasons were not included in this study.

One interesting possibility is a Block Lanczos solver using selective reorthogonalization
(SO) which was briefly discussed in Section 4.4.5. The main reason for not including
this option in the numerical tests was simply a lack of time. The vector version of this
scheme is discussed at length in [17] but no papers detailing how to properly extend SO
to the block case were found. Instead of attempting to work out the details, other areas
of investigation were prioritized. SO is an attractive option for restoring orthogonal-
ity since it involves orthogonalization against only a few selected Ritz vectors. This of
course necessitates computing Ritz vectors at intervals but in practice these are made to
coincide with check for converge which reduces the cost somewhat [17]. Since eigenstates
are required for many quantum mechanical applications it would not be an actual waste
to periodically compute the Ritz vectors. There is however one caveat to this approach:
as demonstrated in Section 5.2, operating with blocks instead of a single vector accel-
erates convergence in many situations, especially in combination with other techniques
such as an implicit restart [13]. This causes Ritz vectors to converge faster and since
losses of orthogonality are especially pronounced in these directions it is possible that
reorthogonalizations become more frequent [25]. In the end, numerical results will have
to decide whether SO is worth considering.

Another area which was somewhat neglected in this project is implicit restarting schemes.
These have been thoroughly investigated and are known to accelerate convergence in the
case of the vector Lanczos algorithm.26 In recent years however, this approach has been
extended to the block case [13] resulting in the Matlab code IRBLEIGS. Since an ac-

26Notable implementations using implicit restarting schemes include ARPACK.

98

celerated convergence would be a desirable feature for any eigensolver this approach is
certainly worth looking in to.

There are also a number of technical issues left to solve, e.g. writing a parallelized
Block Lanczos code that is able to take full advantage of modern computers. According
to the survey in Section 5.5 existing implementations generally do not allow for the
user to control the computation of the matrix products (the exception being the sparse
multiplication with the large matrix A) which is needed for an efficient parallelization.

8.2 Hamiltonian matrix properties

In Chapter 7 several investigations made on the properties of the matrices generated
using the code NCSMb were presented. The investigations are important in order to
understand the properties of the matrices and providing guidance to design an optimal
eigensolver based on the Lanczos algorithm. Since the eigensolver will be implemented
specifically to diagonalize these matrices, the code can be adapted accordingly, if this
will increase efficiency further. Below follows a summary and discussion of the results
obtained.

8.2.1 Dimension for different model spaces

In Section 7.1.1 investigations were made concerning how the dimension of a matrix
generated by NCSMb grows. It was found that the dimension is mainly influenced by
the value of the cut-off energy Nmax, and only up until a certain value does the dimension
grow withNboson. This is due to that the bosons of the system will have a certain number
of available many-particle states for a fixed value of Nmax, and when these have been
constructed, the additional bosons added will not influence the states, but merely take
place in the ground state.

8.2.2 Number of nonzero elements and storage size

The number of nonzero elements Nnz of the matrix was investigated in Section 7.1.2 and
found to increase as Nnz,2 = d3/2 and Nnz,3 = d7/4, in the case of two- and three-body
forces, respectively, where d is the dimension of the matrix. The larger exponent forNnz,3

was expected as three-body forces allows for more connections between many-particle
states, thus resulting in more nonzero elements. Using this information the memory size
needed to store the three arrays defining the matrix: values, columns and rowIndex,
could be found. From the example in Section 7.1.3 it was seen that with a storage
space of 1TB a larger matrix could be stored in the case of two-body forces than with
three-body forces. The values of storage space were calculated with the assumption that

99

the values of the indices in the arrays column and rowIndex each take up four bytes.
With very large dimensions the values might instead take up eight bytes, but this can be
neglected since the number of nonzeros will then be several orders of magnitude larger
than the dimension, Nnz � d.

8.2.3 Number of updates per element

Section 7.2.1 investigated the number of updates made to each element during computa-
tion of the matrix. A figure presented the average number of updates, and it can be seen
to decrease rapidly with the dimension d. The vast majority of the matrix elements were
updated only once or twice, with few elements having up to ten or more updates. At a
dimension of d = 104 the average number of updates was below 0.1 for both two- and
three-body forces, considering values of Nboson > 2 and Nboson > 4 respectively. This
motivated the implementation of a hash table for storage and lookup during calculation
of the matrix, which made computations more efficient.

8.2.4 Values of matrix elements

Given all the nonzero elements of a matrix generated using NCSMb, Section 7.2.2 ex-
amined their absolute values and arranged them according to order of magnitude. It
was found that the values of the elements basically are split into three groups: there is
one concentration of values around 10−15, and two other ones at approximately 10−2

and 103, respectively. The values at 10−15 most probably exist due to round-off errors,
meaning that two terms which should have cancelled instead gave a small contribution.

8.2.5 Distribution of matrix elements

In terms of the distribution of the nonzero elements over the matrix, in Section 7.2.3 it
could be seen that in some parts of the matrix the nonzeros dominated, while other parts
mainly contained zeros. How the elements are distributed is important when it comes
to the many matrix-vector multiplications that will be performed in the implementation
of an eigensolver. Using parallel kernels, the matrix can be split into several pieces to
speed up calculations, and thus the matrix-vector multiplications will also be split. The
question then arises how the split should be made.

If the matrix is to be split in equally large parts, the nonzero and zero elements should
be approximately evenly distributed over the matrix, in order for calculations to be load-
balanced and efficient. This was found through the work of Sternberg et al. [26], i.e.
computations made on large, sparse matrices were found to be much more efficient with
an even distribution of elements over the matrix. The even distribution was achieved

100

by rearranging the order of the many-particle-basis along the rows of the matrix, where
they initially were ordered lexicographically.

In terms of cache, it will be advantageous with large areas of the matrix containing zeros
or nonzeros, as this will allow calculations to be performed more effectively. Memory
caches thrive on microclusterisation. On the other hand, this assumes that the matrix
can be split into blocks of unequal sizes and distributed among the kernels. Otherwise,
if some blocks contain many more nonzeros than others, some CPUs will end up waiting
for others to complete their computations, which is far from ideal.

8.2.6 Improvements of the code

The code NCSMb is not a finished product and still contains areas of possible improve-
ments. One problem that has now been identified and solved was that the program
allocated memory for many more single-particle states than was actually needed, which
was illustrated in Fig. 7.8. This greatly restricted the size of the model space that could
be used. The implementation of an additional hash table improved the execution time.
Furthermore, the sparse matrix storing format CSR reduced the storage size significantly
for the matrices. Another area of improvement is of course the implementation of an
eigensolver, and suggestions on how this should be done are summarized in the next
chapter.

8.2.7 Limitations

The matrices generated using the code NCSMb were limited in dimension due to the
time taken for computations and the storage size. However, the matrix properties that
were analyzed are representative for larger dimensions as well, and therefore our results
will generally hold. When it comes to the interaction parameters E2 and E3 no realistic
values were known, but the results obtained and e.g. the general distribution of the
matrix are expected to follow the same pattern for other values of these parameters.

101

9 Recommendations for a
Future Implementation

The aim of this final chapter is to summarize the discussion from the previous chapter
and provide a specific list of requirements for the future implementation of an eigensolver.
Based on these criteria, an available eigensolver that can be used immediately will also
be recommended.

• The eigensolver should be based on the Block Lanczos algorithm. When the sparse
matrix multiplication is expensive the block size should be set to p = 1 or p = 2
for one respectively two eigenpairs, otherwise p = 4. For more than ten eigenpairs
p = 8 seems to work equally well.27

• A reorthogonalization technique that attempts to minimize the number of orthog-
onalizations and recalls should be used. For these purposes, partial reorthogonal-
ization (or the modified version of this scheme) is recommended. It is also possible
to use selective reorthogonalization which was not investigated but is believed to
be a viable option.

• When out of memory, the algorithm should perform a restart using unconverged
Ritz vectors to form a new starting block. In general, the block size p should
always be equal to one of the recommended sizes and if the number of available
Ritz vectors exceeds p, some of them may be passed as a linear combination to
the new starting block. Converged Ritz vectors may be stored away after the
completion of a Lanczos run and banished during subsequent runs using a suitable
technique, e.g. external selective reorthogonalization.

• Unless extremely accurate eigenpairs need to be computed, it is possible to use
a single-precision matrix to either directly calculate the eigenpairs or to calculate
approximate eigenvectors which can then be used to start a new Lanczos run on
the double-precision matrix.

• Approximate eigenstates may be calculated from a smaller model space and pro-
jected onto a larger space and used to start the Lanczos run resulting in a somewhat
faster convergence. Although no significant decrease in the required number of ma-
trix multiplications was observed it is believed that the benefits of this approach
will increase when larger model spaces are considered.

27This is based on the matrices available for investigation, where the largest matrix was of dimension
300 000.

102

• Of the software currently available, BLZPACK is the best match to this list of
requirements. It is based on a Block Lanczos recursion, uses modified partial
reorthgonalization and is able to run in parallel using MPI.

• During a parallel implementation the demand on the distribution of the matrix
elements will differ depending on if the matrix is to be split into parts of uneven
sizes, or equally large parts. In order to as effectively as possible use the cache, the
columns and rows of the matrix can be rearranged appropriately. For instance, a
more even distribution of the nonzero elements over the matrix can be achieved.

103

References

[1] Sherrill, C. D. and Schaefer III, H. F. (1999) The Configuration Interaction Method:
Advances in Highly Correlated Approaches, San Diego: Academic Press. pp. 143-
269, (Advances in Quantum Chemistry, vol. 34, pp. 143-269).

[2] Tölle, S., Private communication.

[3] Dickhoff, W. H. and Van Neck, D. (2005) Many-Body Theory Exposed!, Singapore:
World Scientific Publishing Co. Pte. Ltd.

[4] Negele, J. W. and Orland, H. (1998) Quantum Many-particle Systems, Westview
Press.

[5] Bruus, H. and Flensberg, K. (2004) Many-body quantum theory in condensed matter
physics: an introduction, Oxford University Press.

[6] Caurier, E., Martinez-Pinedo, G., Nowacki, F., Poves, A. and Zuker, A. P. (2005)
The shell model as a unified view of nuclear structure, Reviews of Modern Physics,
vol. 77, p.427.

[7] Navrátil, P., Quaglioni, S., Stetcu, I. and Barrett, B. R. (2009) Recent developments
in no-core shell-model calculations, J. Phys. G: Nucl. Part. Phys., vol. 36, no. 8.

[8] Barrett, B. R., Navrátil, P., Nogga, A., Ormand, W. E., Stetcu, I., Vary, J. P. and
Zhan, H. (2005) Ab Initio, Large-Basis No-Core Shell Model. AIP Conf. Proc., vol.
769, pp. 1257-1262.

[9] Heath, M. T. (2002) Scientific Computing : An Introductory Survey, Second Edi-
tion. New York, McGraw-Hill.

[10] Underwood, R. (1975) An interativ Block Lanczos method for the solutions of large
sparse symmetric eigenproblems, Stanford: Standford University (Ph.D. thesis, De-
partment of computer science).

[11] (1978) Error analysis of the Lanczos algorithm for tridiagonalizing a symmetric
matrix, J. Inst. Math. Appl., 18 , pp. 341 - 349.

[12] Stewart, G. (2001) Matrix Algorithms, Volume II: Eigensystems, Philadelphia: So-
ciety for Industrial and Applied Mathematics.

[13] Baglama, J., Calvetti, D. and Reichel, L. (2003) IRBL: An implicitly restarted
Block-Lanczos method for large-scale hermitian eigenproblems, SIAM J. Sci. Com-
put., vol 24, no. 5, pp. 1650-1677.

104

[14] Simon, H. (1984) Analysis of the Symmetric Lanczos Algorithm with Reorthogonali-
ration Methods, Linear Algebra and its applications, vol. 61, pp. 101-131.

[15] Cullum, J. andWilloughby, R. (1985) Lanczos algorithms for large symmetric eigen-
value computations, Vol I: Theory, Boston: Birkhäuser Boston.

[16] Grimes, R., Lewis, J. and Simon, H. (1988) The Implementation of a Block Lanc-
zos algorithm with reothogonalization methods, Moffet Field, CA: NASA Amnes
Research Center.

[17] Parlett B. and Scott D. (1979) The Lanczos algorithm with selective orthogonaliza-
tion, Mathematics of Computation, vol. 33, no. 145, pp. 217-238.

[18] Golub, H. and Van Loan, C. (1996) Matrix computations, Third edition, Baltimore,
Maryland: The Johns Hopkins University Press.

[19] Saad, Y. (1980) On the Rates of Convergence of the Lanczos and the Block-Lanczos
Methods, SIAM Journal on Numerical Analysis, vol. 17, no. 5, pp. 687-706.

[20] Johansson, H., Private communication.

[21] Intel Corporation (2011) Sparse Matrix Storage Formats ,
http://software.intel.com/sites/products/documentation/hpc/

compilerpro/en-us/cpp/win/mkl/refman/appendices/mkl_appA_SMSF.html#

mkl_appA_SMSF_2, (2012-03-09).

[22] Loudon, K. (1999) Mastering Algorithms with C, Sebastopol: O’Reilly Media.

[23] Simon, H. (1984) The Lanczos Algorithm With Partial Reorthogonalization. Math-
ematics of Computation, vol. 42, no. 165, pp. 115-142.

[24] Sanzheng, Q., Liu, G. and Xu, W. (2005) Block Lanczos tridiagonalization of com-
plex symmetric matrices, Advanced Signal Processing Algorithms, Architectures,
and Implementations XV Proceedings of the SPIE, vol. 5910, pp. 285-295.

[25] Grimes, R., Lewis, J. and Simon, H. (1991) A Shifted Block Lanczos Algorithm
for Solving Sparse Symmetric Generalized Eigenproblems, Moffet Field, CA: NASA
Amnes Research Center.

[26] Sternberg, P. et al. (2008) Accelerating Configuration Interaction Calculations for
Nuclear Structure, SC ’08 Proceedings of the 2008 ACM/IEEE conference on Su-
percomputing ; 2008, Austin, Texas, USA.

[27] Parlett, B.N. (1980) The Symmetric Eigenvalue Problem, Englewood Cliffs, N.J:
Prentice-Hall (Prentice-Hall Series in Computational Mathematics), secs. 11-13.

105

http://software.intel.com/sites/products/documentation/hpc/compilerpro/en-us/cpp/win/mkl/refman/appendices/mkl_appA_SMSF.html#mkl_appA_SMSF_2
http://software.intel.com/sites/products/documentation/hpc/compilerpro/en-us/cpp/win/mkl/refman/appendices/mkl_appA_SMSF.html#mkl_appA_SMSF_2
http://software.intel.com/sites/products/documentation/hpc/compilerpro/en-us/cpp/win/mkl/refman/appendices/mkl_appA_SMSF.html#mkl_appA_SMSF_2

Appendices

106

A Jacobi Coordinates

Figure A.1. The Jacobi coordinates for a three-body system.

Jacobi, or relative, coordinates are often used for many-particle systems to simplify
calculations. Consider a many-particle system with coordinates xi relative to origin.
Their positions can also be represented by the Jacobi coordinates ri, and the center of
mass coordinate R. Starting with a system of two particles with masses m1 and m2,
their positions can be given by the Jacobi coordinates

r1 = x1 − x2, R =
1

m1 +m2
(m1x1 +m2x2). (A.1)

The Jacobi coordinates for the third particle in a three-body system is obtained by using
the relative coordinates between the third particle and the center of mass of the first
two particles, giving

r1 = x1 − x2 ,

r2 =
1

m1 +m2
(m1x1 +m2x2)− x3 , (A.2)

R =
1

m1 +m2 +m3
(m1x1 +m2x2 +m3x3).

A three-body system with its Jacobi coordinates can be seen in Fig. A.1. The Jacobi

107

coordinates for an N -body system are

r1 = x1 − x2 ,

ri =
1

m1 +m2 + ...+mi

i∑
k=1

mkxk − xi+1 , (A.3)

R =
1

M

N∑
k=1

mkxk ,

where 2 ≤ i ≤ N − 1 and where M is the total mass of all particles. For N identical
particles inside a HO potential it is convenient to use normalized Jacobi coordinates,
given by

ri =
1√

(n+ 1)n
(x1 + x2 + . . .+ xi − ixi+1), (A.4a)

R =
1√
N

(x1 + x2 + . . .+ xN). (A.4b)

108

B The General Behavior of
the Lanczos Algorithm

This is a discussion of the general behavior of the Lanczos algorithm, and the mechanisms
of which it identifies and singles out the most extreme eigenpairs. For a more complete
proof of the convergence of Lanczos, see [27].

The Lanczos algorithm converges first towards the eigenpairs of endpoint eigenvalues,
unrelated of their magnitude. For example, imagine a symmetric matrix A with eigen-
values evenly spread out from −10 to 100. Lanczos will then find −10 and 100 first,
instead of the eigenvalues with the greatest or smallest magnitudes. One way to better
understand this is to carefully study how the succeeding Lanczos vectors qi, from Sec-
tion 4.1, are formed. The critical question to keep in mind is how the Krylov subspace
Kk with matrices Qk of Qn = [Qk Un−k] and Tk can carry all the important information
about the extreme eigenpairs even for k � n.

In the basic Lanczos algorithm new Lanczos vectors are computed from the relation in
Eq. (4.14). What this does is basically to generate a new vector Aqi and then subtract
the components of the two preceding vectors from it, to finally normalize it. Another
way to put this is by the relation

qi+1 =
1

βi

[
Aqi − (qTi Aqi)qi − (qTi−1Aqi)qi−1

]
, (B.1)

with q0 defined to be the zero vector.

If (vj)
n
j=1 is the set of eigenvectors of the symmetric matrix A, and (λj)

n
j=1 the corre-

sponding eigenvalues, any vector qi, i ≥ 1, can be expressed as

qi =
n∑

j=1

cijvj , (B.2)

where the eigenvectors satisfy
vTi vj = δij , (B.3)

and the real coefficients cij fulfill
n∑

j=1

c2ij = 1, (B.4)

109

as qTi qj = δij . Expressed in this way, as a sum of eigenvectors, a multiplication by A is
easily expressed as

Aqi =
n∑

j=1

cijAvj =
n∑

j=1

cijλjvj . (B.5)

Since q0 = 0, q1 can be arbitrarily chosen, as long as it is normalized. The subsequent
vector q2 can then according to (B.1) be formed, giving

q2 =
1

β1
[Aq1 − α1q1] =

1

β1

n∑
j=1

(c1jλjvj − c1jα1vj)

=
1

β1

n∑
j=1

c1j (λj − α1) vj =

n∑
j=1

c2jvj , (B.6)

where c2j is given by

c2j =
λj − α1

β1
c1j , (B.7)

and α1 = qT1 Aq1. Expressed in the sum notation, using vTj vj′ = δjj′ , this becomes

α1 =

 n∑
j=1

c1jvj

T  n′∑
j′=1

c1j′λj′vj′

 =

nn′∑
jj′

λj′c1jc1j′v
T
j vj′ =

n∑
j=1

λjc
2
1j , (B.8)

because vTj vj′ = δjj′ .

Furthermore, using that λmin ≤ λj ≤ λmax together with (B.4) will give

α1 ≥ λmin

n∑
j=1

c21j = λmin , (B.9)

and

α1 ≤ λmax

n∑
j=1

c21j = λmax . (B.10)

α1 is apparently a number between λmin and λmax,
28 which also holds for any αi. One

way to look at αi is as a weighted mean value of all the eigenvalues. For example, if
every term in the sum has a position λj , and a mass c2ij , then αi simply denotes the
center of mass. According to Eq. (B.7) it can then be concluded that coefficients with
eigenvalues close to this mean value αi will tend to shrink in magnitude, as opposed to
those far away which will grow. To say a little bit more β1 must be found.

28λmax/min denotes the largest or least eigenvalue of an eigenvector with a nonzero coefficient. If there
are more extreme eigenvalues, but with a zero coefficient, this eigenvalue is ignored as it is invincible to
the algorithm at all times.

110

Due to that β1 is the normalizing factor of q2 it is known from Eq. (B.6) that

β21 =

 n∑
j=1

c1j(λj − α1)vj

2

=

n∑
j=1

c21j(λj − α1)
2. (B.11)

Thus, β1 is the 2-norm of a weighted mean distance from α1,

β1 = ||(λ− Inα1)c1||2 , (B.12)

where c1 denotes a vector with the coefficients (c1j)
n
j=1, λ denotes the diagonal eigenvalue

matrix and In is the n×n identity matrix. If α1 is thought of as a center of mass, β1
can be thought of as the mean distance of the mass from the mass center. That means
according to Eq. (B.7) that if an eigenvalue is further from the mean value than the
average distance, then that coefficient will grow, and to the contrary, coefficients that
are closer will shrink. This first step thus enriched q2 in components of the extreme
eigenpairs.

Taking another step forward, from q2 to q3, things will however start to look a little
different, since more terms are introduced:

q3 =
1

β2
(Aq2 − α2q2 − β1q1)

=
1

β2

n∑
j=1

(c2jλj − c2jα2 − c1jβ1) vj . (B.13)

With the use of Eq. (B.7) this becomes

q3 =
1

β2

n∑
j=1

(
(λj − α1)(λj − α2)

β1
− β1

)
c1jvj =

n∑
j=1

c3jvj , (B.14)

where the coefficient relation for c3j is

c3j =

(
(λj − α1)(λj − α2)

β1β2
− β1
β2

)
c1j . (B.15)

α2 was formed in the same way as α1 and will – if we return to the analogy with a center
of mass – be the center of mass of the new distribution. Remember that the first step
favored the elements that were far from α1. That means that if for example α1 is much
closer to λmin than λmax, then the coefficients of the eigenvalues closest to λmax would
have grown the most. This tilts the new center of mass towards λmax, and α2 would
thus take a jump closer to λmax, of a size proportional to the earlier deviation of α1.

29

29In this context a deviation just means that the effect of a mean value placement will force the next
center of mass to shift.

111

To see what will happen to β2 we use the fact that q3 is normalized,

β22 =

n∑
j=1

(
(λj − α1)(λj − α2)

β1
− β1

)2

c21j

= β21

n∑
j=1

(
(λj − α1)(λj − α2)

β21
− 1

)2

c21j = β21

n∑
j=1

X2
2jc

2
1j . (B.16)

β2 cannot be a measure of the mean deviation away from α2 anymore. To analyse this
the sum must be examined more carefully. To begin with, if every term X2

2j would

be equal to some positive constant σ2, then β22 = σ2β21 , using Eq. (B.4). X2j is not a
constant, but it does tell us that if many of the terms (X1j)

n
j=1 are greater than one,

it is more likely that β2 will be greater than β1. There are two cases when X2
2j > 1:

X2j < −1 and X2j > 1. In the first case,

X2j < −1 ⇒ (λj − α1)(λj − α2) < 0. (B.17)

This means that if j fullfills

min(α1,α2) < λj < max(α1,α2) (B.18)

then X2
2j > 1. In the second case,

X2j > 1 ⇒ (λj − α1)(λj − α2) > 2β21 . (B.19)

This is somewhat more difficult to evaluate. However, by using the approximation
α1 ≈ α2 and setting α̃12 >

α1+α2
2 , the following is found:

(λj − α̃12)
2 > 2β21 . (B.20)

Thus, X2
2j > 1 if

λj < α̃12 −
√
2β1 or λj > α̃12 +

√
2β1. (B.21)

To sum this up; β2 will tend to increase if the α2-value changes a lot from α1, or if a lot
of the eigenvalues are further from α̃12 than

√
2β1.

30 The first will happen if the initial
weighted eigenvalues strongly favored one end of the eigenvalue spectrum. The second
will happen if many of the eigenvalues are further from α̃12 than

√
2 times the initial

mean deviation away from α1.

It seems as though β2 will tend to increase if the initial distribution (c1j)
n
j=1 is either

asymmetrical or has most of the“weights”on eigenvectors with eigenvalues somewhere in
the middle of the spectrum. On the other hand, if the initial distribution is symmetrical
or has most of its “weights” at the endpoint eigenvalues, this will tend to decrease β2.
It should be pointed out that this only applies to eigenvalues that do have a weight. If

30Remember that β1 still is a measure of the initial deviation of the weighted eigenvalues, away from
its “center of mass”.

112

a coefficient of an eigenvector at any point becomes zero it will not contribute anymore
to any α or β value.

Finally, considering q3, how will the coefficients change according to Eq. (B.15)? Let us
set β2 = σ1β1, σi > 0, and examine the case when c23j > 1. We have

c23j =
1

σ21

(
(λj − α1)(λj − α2)

β21
− 1

)2

c21j =

(
X2j

σ1

)2

c21j . (B.22)

This is advantageous; since it is already known from the examination of β2 how X2j

behaves, only σ1 must be taken into account. In the first case,

(λj − α1)(λj − α2)

β21
− 1 < −σ1, (B.23)

and with some calculation

λj >
α1 + α2

2
−

√(
α1 − α2

2

)2

+ (1− σ1)β21 (B.24)

or

λj <
α1 + α2

2
+

√(
α1 − α2

2

)2

+ (1− σ1)β21 . (B.25)

From these conditions it can be seen that the smaller σ1 is, the wider the span gets. On
the contrary, when σ1 grows larger the span lessens, until the point where it disappears.
If α1 = α2 for instance, this happens when σ1 = 1.

For the second case, we have

(λj − α1)(λj − α2)

β21
− 1 > σ1 . (B.26)

As before, it can be approximated that α1 and α2 may be exchanged for α1+α2
2

31 and
this yields

λj >
α1 + α2

2
+

√
σ1 + 1β1 , or λj <

α1 + α2

2
−

√
σ1 + 1β1 . (B.27)

In this case a larger value of σ1 means that eigenvalues must be further out on the edges
to fulfill the relation. Very roughly the following can be said about c3j : c3j > c1j if λj
are far enough on the edges, or if it is between two successive αi. Additionally, c3j will
be forced towards zero if λj is at a distance β1 from any αi. If β2 > β1, then σ > 1 and
this range of growth will be moved further out towards the edges.

31This may of course be more or less accurate. However these results will make an impact on the
outer ends of the eigenvalue spectrum, and seen from that perspective the differences between the two
αi should not matter significantly.

113

Since further steps qi+1 in the algorithm will show similar relations, some general be-
havior can now be discussed. With coefficients asymmetrically distributed, the middle
point of the span will be favored, as the next center of mass will be moved closer to the
middle. Therefore the α-values will soon converge approximately in the middle of the
spectrum. The mean distance from the center will thus increase and coefficients need to
be even further from the mass center in order for them to grow. At some point, β will
reach the most extreme values and thus reduce them to zero. This would effectively shift
the load towards the center, forcing the next β to drastically become smaller, which in
turn would benefit the next extreme eigenvalues as they suddenly again are far enough
from α,32 thus restarting the process, increasing the next eigenvalues and taking them
out, moving the load to the center again, and so forth. At the same moment as a coef-
ficient of an eigenvalue reaches zero, no more information can be extracted from it, and
the Lanzos algorithm has found all information of its corresponding eigenpair. Fig. B.1
shows how the magnitudes of cij change for a matrix A with evenly distributed and
weighted eigenvalues.

Eigenvalue

N
um

be
rs

 o
f I

te
ra

tio
ns

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

Figure B.1. An illustration of how the coefficients to the different eigenvalues change their
magnitudes depending on the iteration number and the relative size of the associated eigen-
values. In this case the eigenvalues are evenly distributed and weighted.

32This is measured with the new and shorter β.

114

C Proofs of Some Basic
Properties of the
Lanczos Blocks

This appendix contains a proof of one of the most important properties of the Lanczos
blocks, namely the fact that their columns constitute an orthonormal set of vectors.
This proof can also be found in [16], but readers are referred to [10] for a more rigorous
derivation of the Block Lanczos algorithm. Some of the basic relations derived in the
original Block Lanczos in Chapter 4, Section 4.2.1, will be useful here, namely Eqs. (4.20)
and (4.25). The orthogonality condition is expressed in matrix notation as:

QT
j Qk = 0 for all i 6= k. (C.1)

The proof can now be broken down into two steps: First prove local orthogonality among
neighboring blocks by induction over j, i.e. show that

QT
j Qj+1 = 0 and QT

j−1Qj+1 = 0. (C.2)

For j = 1, the orthogonality follows from Eq. (4.20). Next, suppose that for j ≥ 2
Eq. (4.25) holds for all i < j and premultiply the equation by QT

j :

QT
j Qj+1Bj+1 = QT

j AQj −QT
j QjAj −QT

j Qj−1B
T
j . (C.3)

Here, the last term of the right hand side of Eq. (C.3) vanishes because of the inductive
assumption. Furthermore, since QT

j Qj = Ij where Ij denotes the j×j unity matrix and

QT
j AQj = Aj by definition, the first two terms cancel thus implying that the blocks are

indeed orthogonal. Similarly, premultiplying equation Eq. (4.25) by QT
j−1 yields

QT
j−1Qj+1Bj+1 = QT

j−1AQj −QT
j−1QjAj −QT

j−1Qj−1B
T
j . (C.4)

This time the second term vanishes on account of the inductive assumption while the
first and third terms cancel since QT

j−1Qj−1 = Ij−1 and

QT
j−1AQj = BT

j . (C.5)

The bonus result Eq. (C.5) can be obtained by premultiplying Eq. (4.25) with QT
j−1:

QT
j−1Qj+1Bj+1 = QT

j−1AQj −QT
j−1QjAj −QT

j−1Qj−1B
T
j . (C.6)

115

Here QT
j−1Qj+1 = 0 and QT

j−1Qj = 0 by local orthogonality and thus Eq. (C.6) reduces
to Eq. (C.5). This concludes the proof of local orthogonality among the Lanczos blocks.
Finally, it remains to prove global orthogonality among the blocks, i.e.

QT
i Qj+1 = 0 for i = 1, . . . ,j − 1. (C.7)

Proceeding again by induction over j, for j = 1 it follows that QT
1Q2 = 0 from local

orthogonality. Now, for j ≥ 2 assume that global orthogonality holds for all i < j and
premultiply Eq. (4.25) by QT

i to obtain

QT
i Qj+1Bj+1 = QT

i AQj −QT
i QjAj −QT

i Qj−1B
T
j . (C.8)

The last two terms on the right hand side of Eq. (C.8) vanish from the inductive as-
sumption and the remaining term QT

i AQj can be rewritten by taking the transpose of
Eq. (4.25) to obtain an expression for QT

i A:

QT
i A = BT

j+1Q
T
j+1 +AjQ

T
j +BjQ

T
j−1. (C.9)

Combining this with Eq. (C.8) finally yields

QT
j AQi =

(
BT

j+1Q
T
j+1 +AjQ

T
j +BjQ

T
j−1

)
Qi = 0, (C.10)

where the entire right hand side dropped out because of the inductive assumption. This
concludes the proof of total orthogonality among the Lanczos blocks.

116

D Links to Source Codes

This appendix provides links to file repositories containing source code and documenta-
tion for the various eigensolvers discussed in Section 5.5, as well as descriptions of some
of our own Matlab functions that were used in order to investigate various properties
of the Lanczos methods. The following is a list of links concerning the eigensolvers:

IRBLEIGS: http://www.math.uri.edu/~jbaglama/#Software

ARPACK/P ARPACK: http://www.caam.rice.edu/software/ARPACK/

ARPACK++: http://www.ime.unicamp.br/~chico/arpack++/

BLZPACK: http://crd-legacy.lbl.gov/~osni/#Software

LASO: http://www.netlib.org/laso/

LANCZOS: http://www.netlib.org/lanczos/

The tests that were conducted and described in Chapter 5 made use of some of the
small source packages and Matlab scripts listed in Table D.1. The files can be found
on http://fy.chalmers.se/subatom/kand/2012/cimatrix/.

117

http://www.math.uri.edu/~jbaglama/#Software
 http://www.caam.rice.edu/software/ARPACK/
http://www.ime.unicamp.br/~chico/arpack++/
http://crd-legacy.lbl.gov/~osni/#Software
http://www.netlib.org/laso/
http://www.netlib.org/lanczos/
http://fy.chalmers.se/subatom/kand/2012/cimatrix/

Table D.1. Our own implementations of test functions and Lanczos algorithms using Matlab.

Package Description

Data MatricesWithMaps Some 6-boson matrices, with the corresponding
model space mappings. This data is necessary for
the m-files.

funk BLKLAN A flexible Block Lanczos function where the user can
choose between full or partial reorthogonalization, as
well as starting block. Additionally, the function also
has the possibility to ban undesired vectors from the
Krylov space. It returns a specified number of Ritz-
pairs along with the number of required number of
matrix multiplications.

FinalExample A package including the program ultimateRun.m,
along with required functions and data for an illus-
trating example. In the example some eigenvalues of
a large matrix are calculated by using Block Lanczos
to systematically work the way up through larger and
larger model spaces, while storing data of the over-
lapping residual norms, the needed number of matrix
multiplications and the eigenvalues of the successive
model spaces. This is done by using the eigenvalue
solver IRBLEIGS.

Matlab script Description

BlockSizesEffects.m A program that relates the convergence of Block
Lanczos to the block sizes.

MatrixAprx.m A program that compares the eigenvectors of smaller
model spaces to eigenvectors of larger model spaces.

StartAprx.m Compares the effects of different strategies of starting
vectors, by applying two eigenvector approximations.

SimulatedLanczos.m A test program for illustrating how Lanczos con-
verges by looking at the occurrence of the different
eigenvectors in the Krylov basis, as it is successively
built up.

118

	Bachelor of Science Thesis for the Engineering Physics Programme
	Pontus Hansson, Joakim Löfgren,
	Karin Skoglund Keiding, Simon Vajedi

	Bachelor of Science Thesis for the Engineering Physics Programme
	Pontus Hansson, Joakim Löfgren,
	Karin Skoglund Keiding, Simon Vajedi

	Introduction
	Specific aims
	Method
	Structure of the thesis

	Quantum Mechanical Many-Body Systems
	Systems of identical particles
	Second quantization
	Occupation number representation
	Fock space
	Creation and annihilation operators
	Many-body operators

	Coupled and uncoupled schemes

	No-Core Shell Model
	The Hamiltonian
	Harmonic oscillator basis
	Calculation of matrix elements
	No-Core Shell Model for bosons

	Numerical Methods
	Krylov subspace methods
	Block Lanczos
	A Block Lanczos algorithm

	Restarted Lanczos methods
	Loss of orthogonality
	No reorthogonalization
	Full reorthogonalization
	Partial reorthogonalization
	Modified partial reorthogonalization
	Selective reorthogonalization

	Categorizing different Lanczos methods

	Investigations of Lanczos and Block Lanczos Methods
	Stopping criterion and convergence properties
	A stopping criterion

	Comparison of the Lanczos and Block Lanczos method
	Strategies for restoring orthogonality
	Properties of partial reorthogonalization
	Comparison to modified partial reorthogonalization

	Starting vectors
	Starting vectors created by eigenvector approximations
	Basic restarting schemes
	Computations with reduced precision
	Approximations acquired from smaller model spaces

	A short survey of available software

	Analysis and Adaptations of the NCSMb Code
	Analysis of the code NCSMb
	Storing symmetric sparse matrices
	Implementing CSR format storage in NCSMb
	Hash tables
	Choosing a hash function
	Handling collisions
	Dynamic resizing

	Implementation of a hash table in NCSMb

	Investigations of Matrix Properties
	Storage size of the matrix
	Relation between matrix dimension and Nmax
	Number of nonzero elements
	Storage size of matrix against dimension

	Properties of the matrix elements
	Number of updates per element
	Values of the matrix elements
	Distribution of nonzero elements over the matrix

	The number of single-particle states

	Discussion
	Lanczos and Block Lanczos methods
	Choosing a block size
	Choosing a reorthogonalization technique
	Accelerating convergence
	Model spaces and computations with reduced precision
	Choosing an existing eigensolver
	Suggestions on areas for further study

	Hamiltonian matrix properties
	Dimension for different model spaces
	Number of nonzero elements and storage size
	Number of updates per element
	Values of matrix elements
	Distribution of matrix elements
	Improvements of the code
	Limitations

	Recommendations for a Future Implementation
	References
	Jacobi Coordinates
	The General Behavior of the Lanczos Algorithm
	Proofs of Some Basic Properties of the Lanczos Blocks
	Links to Source Codes

