

Chalmers Publication Library

Initial studies of the recovery of Cu from MSWI fly ash leachates using solvent extraction

This document has been downloaded from Chalmers Publication Library (CPL). It is the author's version of a work that was accepted for publication in:

Waste Management and Research (ISSN: 1096-3669)

Citation for the published paper: Karlfeldt Fedje, K. ; Ekberg, C. ; Skarnemark, G. et al. (2012) "Initial studies of the recovery of Cu from MSWI fly ash leachates using solvent extraction". Waste Management and Research, vol. 30(10), pp. 1072-1080.

http://dx.doi.org/10.1177/0734242X12441385

Downloaded from: http://publications.lib.chalmers.se/publication/158613

Notice: Changes introduced as a result of publishing processes such as copy-editing and formatting may not be reflected in this document. For a definitive version of this work, please refer to the published source. Please note that access to the published version might require a subscription.

Chalmers Publication Library (CPL) offers the possibility of retrieving research publications produced at Chalmers University of Technology. It covers all types of publications: articles, dissertations, licentiate theses, masters theses, conference papers, reports etc. Since 2006 it is the official tool for Chalmers official publication statistics. To ensure that Chalmers research results are disseminated as widely as possible, an Open Access Policy has been adopted. The CPL service is administrated and maintained by Chalmers Library.

Elsevier Editorial System(tm) for Journal of Environmental Management Manuscript Draft

Manuscript Number: JEMA-D-12-02500R1

Title: Remediation of Metal Polluted Hotspot Areas through Enhanced Soil Washing — Evaluation of Leaching Methods

Article Type: Research Paper

Keywords: Soil remediation, soil washing, sequential extraction, leaching, Cu, metals

Corresponding Author: Dr. Karin Karlfeldt Fedje,

Corresponding Author's Institution: Water Environment Technology

First Author: Karin Karlfeldt Fedje

Order of Authors: Karin Karlfeldt Fedje; Li Yillin, Dr.; Ann-Margret Strömvall, Prof.

Highlights:

- Acidic process waste water could leach \geq 90% of Cu from <u>contaminated polluted</u> soils.
- Incineration of <u>contaminated polluted</u> soils with high organic content reduces metal leaching.
- After one leaching step the soil residue metal content exceeds Swedish guidelines.

<u>Washing — Evaluation of Leaching Methods</u> <u>Contaminated Sites through Enhanced Soil Washing — Evaluation of</u>	Formatted: Font: Bold, Not Italic
Contaminated Sites through Enhanced Soil Washing - Evaluation of	
Leaching Methods	
Karin Karlfeldt Fedje _{a,b} [*] , Li Yillin _{a,1} , Ann-Margret Strömvall _a	
aWater Environment Technology, Department of Civil and Environmental	
Engineering, Chalmers University of Technology SE-412 96 Gothenburg, Sweden	
Tel: +46 31 772 21 49 Fax: +46 31 772 56 95	
_b Recycling and Waste Management, Renova AB, Box 156, SE-401 22	
Gothenburg, Sweden Tel: +46 31 618352	
¹ Permanent address: College of materials and chemistry & chemical engineering,	
Chengdu University of Technology, Shiling Town, Chengdu City Sichuan	
Province, P. R. China 610106	
E-mail addresses	
*Corresponding author; karin.karlfeldt@chalmers.se	
liyilin@cdut.cn	
ann-margret.stromvall@chalmers.se	Field Code Changed
Abstract	
Soil washing offers a permanent remediation alternative for metal contaminated	
polluted sites. In addition, the washed out metals can be recovered from the	
leachate and re-introduced into the social material cycle instead of landfilled. In	
	^a Water Environment Technology, Department of Civil and Environmental Engineering, Chalmers University of Technology SE-412 96 Gothenburg, Sweden Tel: +46 31 772 21 49 Fax: +46 31 772 56 95 ^b Recycling and Waste Management, Renova AB, Box 156, SE-401 22 Gothenburg, Sweden Tel: +46 31 618352 ^j Permanent address: College of materials and chemistry & chemical engineering, Chengdu University of Technology, Shiling Town, Chengdu City Sichuan Province, P. R. China 610106 <i>E-mail addresses</i> -Corresponding author; karin.karlfeldt@chalmers.se liyilin@cdut.cn ann-margret.stromvall@chalmers.se <i>Abstract</i> Soil washing offers a permanent remediation alternative for metal contaminated polluted sites. In addition, the washed out metals can be recovered from the

1	this paper, soil <u>, bark and bark-ash</u> washing <u>was tested</u> of <u>n</u> four different kinds of
2	metal contaminated polluted soil and bark samples from hotspots at former
3	industrial sites. Sixusing 6-different leaching agents; HCl, NH ₄ Cl, lactic acid,
4	EDDS and two acidic process waters from solid waste incineration-, is-were
5	tested, discussed and evaluated. For the soil washing processes, the final pH in the
6	leachate strongly influences the metal leachability. The results show that a pH<2
7	is needed to achieve a high leaching yield, while <50 w% of most metals were
8	leached when the pH was higher than 2 or below 10. The acidic process waste
9	waters were generally the most efficient at leaching metals from all the samples
10	studied, and as much as 90–100 w% of the Cu was released from some soil
11	samples. Initial experiments show that from one of these un-purified leachates, Cu
12	metal (>99% purity) could be recovered. After a single leaching step, the metal
13	contents of the soil residues still exceed the maximum limits according to the
14	Swedish guidelines. An additional washing step is needed to reduce the contents
15	of easy soluble metal compounds in the soil residues. The overall results from this
16	study show that soil and bark-ash washing followed by metal recovery is a
17	promising on-site permanent alternative to remediate metal contaminated polluted
18	soils and to utilize non-used metal resources. However, more research is needed to
19	develop an efficient and solid treatment method; this is currently underway.
20	

1 1. Introduction

2	More than 80,000 sites that may be contaminated polluted due to earlier industrial	
3	activities are known in Sweden, and about 2 million potentially	
4	contaminated polluted sites have been identified in Europe and in the United States	
5	(Dermont et al. 2008a, SEPA 2009a). Metals are the main problem at about 50%	Field Code Changed
6	of these sites. Contrary to many organic pollutants, metals cannot be destroyed	Field Code Changed
7	and are non-degradable. For this reason, metal contaminated polluted soils must	
8	always be treated and remediated to decrease the risks of pollution. Consequently,	
9	the need for metal remediation technologies is enormous. The most commonly	
10	used metal remediation method is to excavate, transfer and landfill the	
11	contaminatedpolluted soil and replace it with new, clean material (Dermont et al.	 Field Code Changed
12	2008a, Shammas 2009). Techniques such as solidification/stabilization (S/S) are	 Field Code Changed
13	often applied prior to landfilling to decrease the potential leaching of metals	
14	(Dermont et al. 2008a, Shammas 2009). However, this treatment does not reduce	Field Code Changed
14 15	(Dermont et al. 2008a, Shammas 2009). However, this treatment does not reduce the amounts of pollutants in the materials and metals may leach out in the longer	Field Code Changed Field Code Changed
15	the amounts of pollutants in the materials and metals may leach out in the longer	
15 16	the amounts of pollutants in the materials and metals may leach out in the longer term. In addition, metals are removed from the material cycle, resulting in the loss	
15 16 17	the amounts of pollutants in the materials and metals may leach out in the longer term. In addition, metals are removed from the material cycle, resulting in the loss	
15 16 17 18	the amounts of pollutants in the materials and metals may leach out in the longer term. In addition, metals are removed from the material cycle, resulting in the loss of valuable resources.	
15 16 17 18 19	the amounts of pollutants in the materials and metals may leach out in the longer term. In addition, metals are removed from the material cycle, resulting in the loss of valuable resources. An alternative to landfilling is soil washing. Soil washing is used commercially in	Field Code Changed
15 16 17 18 19 20	the amounts of pollutants in the materials and metals may leach out in the longer term. In addition, metals are removed from the material cycle, resulting in the loss of valuable resources. An alternative to landfilling is soil washing. Soil washing is used commercially in both Europe and the Unites States and can be carried out on site (Dermont et al.	Field Code Changed
 15 16 17 18 19 20 21 	the amounts of pollutants in the materials and metals may leach out in the longer term. In addition, metals are removed from the material cycle, resulting in the loss of valuable resources. An alternative to landfilling is soil washing. Soil washing is used commercially in both Europe and the Unites States and can be carried out on site (Dermont et al. 2008b). A recent example is the remediation of the Olympic Park site in London	Field Code Changed
 15 16 17 18 19 20 21 22 	the amounts of pollutants in the materials and metals may leach out in the longer term. In addition, metals are removed from the material cycle, resulting in the loss of valuable resources. An alternative to landfilling is soil washing. Soil washing is used commercially in both Europe and the Unites States and can be carried out on site (Dermont et al. 2008b). A recent example is the remediation of the Olympic Park site in London in 2012, where more than 800,000m ³ of soil contaminatedpolluted with e.g. oil	Field Code Changed

1	common practice to use stronger leaching agents like acids or complex forming
2	ligands such as EDTA (Bisone et al. 2012, Labanowski et al. 2008, Laporte-
3	Saumure et al. 2010, Moon et al. 2012, Moutsatsou et al. 2006, Tandy et al. 2004,
4	Voglar and Lestan 2013). The selection of leaching agent depends on e.g. the
5	properties of the contaminants at each specific site and on the remediation goal,
6	i.e. the acceptable levels of the pollutants in the soil after remediation.
7	
8	Generally, the costs for soil washing are comparable with those for techniques
9	like S/S and electrokinetics and much lower than for vitrification (Shammas
10	2009). Vitrification means that the soil matrix is transferred into a glassy material
11	through heating, something which requires a lot of energy and is therefore
12	associated with high costs. Soil washing offers another important opportunity to
13	reduce the overall costs: through the potential recovery of the released metals. The
14	leachate generated from the enhanced soil washing is rich in pollutants and can
15	act as a source for metal recovery. This is not much studied and the washing
16	procedures currently applied focus on metal removal, as it has this far not has
17	been economically favorable to recover metals from waste materials like
18	contaminated polluted soils and ashes. However, there is one example of a
19	leaching based profitable metal recovery process from municipal solid-waste
20	incineration (MSWI) ash. In Switzerland, the world's first commercial full-scale
21	plant where high purity Zn (99.9%) is recovered from MSWI waste fly ash has
22	recently been started up (Schlumberger and Bühler 2012, Schlumberger et al.
23	2007). In another study, based on laboratory experiments on the recovery of Cu
24	from MSWI-waste fly ash, it was shown that 90% of the Cu could be selectively
25	recovered and that this treatment could potentially be more profitable than the

Field Code Changed	
Field Code Changed	

1	way in which ash is usually handled, i.e. landfilling (Karlfeldt Fedje et al. 2012,	
2	Karlsson et al. 2010). In the study by Karlsson et al (2010), the Cu content in the	
3	ash was about 0.8% , and earlier studies on sites used for wood preservation show	
4	that Cu concentrations of 0.5% or higher are common (Dermont et al. 2008b,	
5	Shammas 2009). As a comparison, the Cu content in a workable Swedish mine is	
6	0.3% (Boliden AB 2011). The world stocks of metals like Cr, Cu and Zn are at or	
7	near historically low levels and are predicted to last about 15, 40 and 20 years,	
8	respectively (Stenzel et al. 2011). Consequently, Hit is likely plausible that metal	
9	prices will increase in the near future, as the virgin resources are finite and there is	
10	a great demand for metals. The world stocks of metals like Cr, Cu and Zn are at or	
11	near historically low levels and are predicted to last about 15, 40 and 20 years,	
12	respectively (Stenzel et al. 2011).	
13		
14	In this lab-scale study, soil, bark and bark-ash washing with various leaching	
15	agents is used for leaching of metals, and its potential as a method to remediate	
16	highly metal contaminated polluted soil and bark samples is tested. The metal	
17	leaching properties and the solid residues of soil samples taken at different	
18	contaminatedpolluted sites with different pollution situations are studied using the	
19	various leaching agents. The aim is to maximize the metal release, with particular	
20	focus on Cu and Cr, and to produce a metal rich leachate from which valuable	
21	metals can be recovered by e.g. electrolysis.	
22		
23	2. Material and methods	

24 2.1 Soil samples

1	Soil samples with different characteristics and degree of contamination from two
2	sites- Långö in western Sweden and Österbybruk in eastern Sweden- were used in
3	this study. Both sites are strongly contaminated polluted with metals. The first site
4	(Långö=A) was historically used for wood preservation, using CuSO ₄ according to
5	the Boucherie method_(Vougy 1856). Based on results from sampling and
6	chemical analyses in previous studies, representative samples of bark and soil
7	were collected from a hotspot with a high metal content; A1 is a bark sample from
8	the surface <u>level_horizon (0–10</u> cm depth) and A2 is a soil sample from a depth of
9	50–100 cm. Both samples are mixtures of several sub-samples taken from the
10	bark and the soil, respectively.
11	
12	The second site (Österbybruk=B) has been used within the iron and steel industry
13	since the late 16 th century. More recently, the area has also been used as e.g. a car
14	breaker's yard and for wood processing. Based on previous investigations on this
15	site, a hotspot with high concentrations of several metals was chosen, and a
16	representative surface horizon soil sample was collected, i.e. B1.
17	
18	2.1.1 Pre-treatment of the soil samples
19	All samples were dried at 80°C (100 %DS) until a constant weight was achieved.
20	The pure soil samples i.e. A2 and B1 were directly cooled down in desiccators
21	before being stored in air-tight containers until used, while -Tthe bark in the A1
22	sample was cut into smaller pieces using an automatic mixer. Part -of the bark was
23	thereafter stored until further analyses (A1), and part of the sample while the other
24	part of the sample was incinerated at 860°C-for 10h to form an ash sample (A1a).
25	This incineration step was done in order to reduce the organic content of the bark
ļ	

1	and to increase the potential Cu release. The incineration temperature used was	
2	860°C and chosen to avoid vaporization of Cu compounds. All samples were	
3	cooled down in desiccators before being stored in air-tight containers until used.	
4	No pre-treatment using e.g. grain-size fractioning to generate highly polluted and	
5	less polluted fractions of the soils was done due to too small sample volumes.	
6		
7		
8	2.2 Leaching agents	
9	For the leaching experiments, four chemically different leaching agents known to	
10	effectively leach metals from natural materials like soils were chosen for this	
11	study; 0.01M HCl, 8M NH4Cl adjusted to pH 10 to enhance amine complex	
12	formation, 1M lactic acid, and 0.1M EDDS ((S,S)-Ethylenediamine-N,N-	
13	disuccinic acid tri sodium salt) adjusted to pH 7 to especially enhance Cu and Pb	
14	leaching. The leaching agents and their concentrations were chosen based on	
15	literature research (Lo et al. 2011, Moon et al. 2012, Schöning and Brümmer	
16	2008). In addition, two highly acidic process waste waters "a" and "n" (pH around	
17	0) were used. These process waters came from two different places in the wet flue	
18	gas cleaning processes after waste incineration and therefore contained metal ions	
19	and high concentrations of chlorides. The concentrations of different ions in the	
20	process waters vary naturally depending on e.g. the conditions during the	
21	incineration process and the kind of waste used, but representative concentrations	
22	of the most common ions are given in Table 1. Today these acidic waters are	
23	purified through precipitation processes of the toxic metal ions and small	
24	particles. Thereafter the metal sludge is landfilled, while the clean water is	
25	released to the recipient.	

Field Code Changed Field Code Changed Field Code Changed

2 2.3 Leaching experiments

- 3 2.3.1 Sequential extraction
- 4 The modified three-step BCR method is proposed by the commission of the
- 5 European communities Bureau (BCR) as the European standard method for
- 6 sequential extraction schedules (Rauret 1999). In brief, the leaching steps are first;
- 7 acetic acid (exchangeable ions), second; hydroxyl ammonium chloride (reducible
- 8 fraction) and third; H_2O_2 + ammonium acetate (oxidizable fraction). This method
- 9 was used to predict the mobility of As, Ba, Co, Cr, Cu, Mo, Ni, Pb, V and Zn in
- 10 the original samples. However, due<u>Due</u> to toxicity the hydroxyl ammonium
- 11 chloride solution (NH₂OH'HCl) originally used in the second step was exchanged
- 12 for non-toxic ascorbic acid (0.2 M). It has been shown that ascorbic acid has the
- 13 same metal extraction efficiency as hydroxyl ammonium chloride, especially in
- 14 the case of Cu (Shuman 1982). <u>This method was used to predict the mobility of</u>
- 15 As, Ba, Co, Cr, Cu, Mo, Ni, Pb, V and Zn in the original samples. All experiments
- 16
- 17

18 2.3.2. Enhanced batch leaching

were carried out in triplicates.

In each experiment, 0.5 g soil was leached in airtight plastic containers using 5
mL of either of the chosen leaching agents (liquid-to-solid ratio (L/S) of 10). The
leaching time was set to 2 hours with continuous shaking at 140 rpm. After
leaching, the soil-liquid-mixture was centrifuged for 15 minutes at 3000G
(gravity). The supernatant was transferred to a new container and acidified before
being stored in a refrigerator until analyzed. The ash residue was washed for 5
minutes with continuous shaking using 5 mL ultrapure water (18.2 MΩ/cm²).

Formatted: Subscript Formatted: Subscript

Field Code Changed

1	Thereafter, the mixture was centrifuged for 15 minutes at 3000G and the ash	
2	residue was dried and stored in airtight containers until used. All leaching	
3	experiments were carried out in duplicates.	
4		
5	2.4 Analytical methods	
6	In order to measure metal content in the original soil samples, two commonly	
7	used digestion methods were chosen, based on the sample characteristics. Due to	
8	its high organic content, sample A1 was completely dissolved following the	
9	procedure in ASTM D3683 (As, Cd, Co, Cu, Hg, Ni, Pb, S and Zn) and ASTM	
10	D3682 (Al, Ca, Fe, K, Mg, Na, P, S, Si, Ti, Ba, Cr, Mn, Mo, Sb, Se, Sn, Sr and	
11	V). The methodology in the ASTM D3683 was also used to analyze the total	
12	metal content (Al, Sb, As, Ba, Pb, P, Fe, Cd, Ca, K, Cu, Cr, Hg, Mg, Mn, Mo, Na,	
13	Ni, Sr, S, Ti, V and Zn) in A1a, while A2 and B1 were digested using the	
14	standardized procedure SS 028311. All analyzes were carried out in triplicates	
15	except for A1a, which was analyzed in duplicate.	
16		
17	The total element concentrations of all the solutions from the total digestion were	
18	measured using ICP-MS (inductively coupled plasma mass spectrometry) (Al, As,	
19	<u>Ba, Pb, Ca, Cd, Co, Cu, Cr, Fe, K, Mg, Mn, Na, P, Ti, Hg, Mo, Ni, S, Sb, Sn, Sr,</u>	Formatted: English (U.S.)
20	<u>V and Zn</u>) or ICP-AES (inductively coupled plasma atomic emission	
21	spectrometry) (Se and W). The soil leachates obtained from the leaching	
22	experiments and the sequential extraction were analyzed for metals (Al, As, Ba,	
23	Be, Pb, Cd, Co, Cu, Cr, Li, Mn, Mo, Ni, Se, Ag, Sr, Tl, U, V and Zn) using ICP-	
24	MS. A Dionex ICS AS-DV ion chromatograph with ICS-900 columns for cation	
25	and anion analyzes was used to analyze the K^+ , Mg^{2+} , Na^+ , NH_4^+ , Ca^{2+} , Cl^- , NO_2^- ,	

1	NO_3^{-} , PO_4^{-3-} and SO_4^{-2-} concentrations in the acidic process waters, while the	
2	amounts of Al, Pb and Zn were analyzed using ICP-MS-or ICP-AES.	
3		
4	The main crystalline compounds in the original samples, and in some of the	
5	leached samples, were identified by qualitative X-ray powder diffractometry	
6	(XRD) using a Siemens D5000 X-ray powder diffractometer with the	
7	characteristic Cu radiation and a scintillation detector. Identification of	
8	compounds was carried out using the JCPDS database (Joint Committee of	Field Code Changed
9	Powder Diffraction Standards 2006). The detection limit of this method is about 1	
10	% by weight. The samples were dried and ground in an agate mortar before being	
11	analyzed. The particle size distributions in the original dried samples were	
12	measured using manual dry sieving with sieve size fractions of between 0.125 mm	
13	and 1 mm. The pH was measured in the original samples $(pH_{(\mbox{H}2\mbox{O})})$ and at the start	
14	and end of each leaching experiment using a Methrom SM 702 pH meter.	
15		
16	3. Results and discussion	
17	3.1 Characterization of original samples	
18	The total amounts of selected major and minor elements in the original samples	
19	are shown in Table 2. For comparison, the Swedish generic guideline values for	
20	sensitive and less sensitive land use are also given (SEPA 2009b).	Field Code Changed
21		
22	In the original samples from site A, i.e. A1 and A2, only Cu exceeds the Swedish	
23	guidelines for contaminated polluted soils, while at site B several metals exceed	
24	the guidelines (Table 2). In an earlier study of site B, four times higher amounts of	
25	Fe, Al and K, and 15 times higher amounts of Na, were detected at spot B1	

1	compared to the results in this study (Elander et al. 2010). This is due to	F
2	heterogeneities between sub-samples but the choice of digestion method is also	
3	very important. In the previous study, the methods in ASTM 3682 and 3683 (total	
4	digestion using bomb and melting) were used, while the SS 028311 (HNO ₃ and	
5	H ₂ O ₂ leaching method) was used in this study. For the minor elements, like As,	
6	Co and Cu, no significant differences could be seen, suggesting that these metals	
7	are present in compounds soluble in strong acid solutions. Chromium and W are	
8	exceptions, perhaps because they are incorporated together with Fe, Al, K and Na	
9	in very low-soluble minerals and compounds. In sample A1, the total amounts of	
10	minor elements are generally somewhat higher when using ASTM 3682 and 3683	
11	than with acidic leaching $(7M \text{ HNO}_3)$, which was used in an previous study on	
12	soils from the same spot (Kemakta Konsult AB 2012). However, for Cu the	F
13	content is about 2.5 times higher when bomb digestion is used than with acid	
14	leaching, which shows that Cu is effectively adsorbed to the organic matter in the	
15	bark, thus reducing the leachability.	
16		
17	From 3 g of dry bark about 0.6 g of ash was obtained. Theoretically, if no Cu was	
18	volatilized during incineration, the Cu content in the ash would be about 5 times	
19	higher than in the original bark. However, according to the total content analyses,	
20	Cu is enriched less than 3 times during incineration (Table 2). This means that the	
21	chosen incineration temperature of 860°C is too high to optimize the enrichment	
22	of Cu in the bottom ash. The reason for this is probably an uneven oxygen	
23	distribution, resulting in a reducing atmosphere, which can increase metal	
24	volatilization (Mojtahedi et al. 1987, Wikman et al. 2003). However, in a real	
25	incineration process, the volatilized Cu would be caught in the flue gas cleaning	

1	system and captured in the fly ash. The enrichment factors for most other	
2	elements were around 5, but for the soil matrix forming elements, such as Al, K,	
3	Mg and Na, the enrichment factors were higher (Table 2). This shows that these	
4	elements are present as low-volatile minerals in the original soilample as well as	
5	in the ash, which to some extent is shown in the XRD analyses (Table 3). Barium	
6	was enriched almost 8 times during incineration, causing the amount in the	
7	resulting ash to exceed the Swedish guidelines for less sensitive land use (Table	
8	2). This is not surprising, as a majority of the most common Ba compounds have	
9	boiling and smelting points well above $850^{\circ}C$ (Alberty et al. 2008).	
10		
11	Even though the Cu content in sample A1 and A2 were around 1% or higher, no	
12	crystalline Cu compounds could be identified (Table 2 and 3). This suggests that	
13	the Cu is present in amorphous forms, in very small crystals or as several different	
14	Cu compounds. The first reason is the most likely in sample A1, as Cu effectively	
15	sorbs to organic matter, something which has been thoroughly discussed in the	
16	literature (Bodek 1988, Kalmykova et al. 2008, Stumm and Morgan 1981).	Field C
17	However, when the bark was incinerated to ash the amorphous, i.e. the organic,	Field C Field C
18	phase drastically decreased and Cu oxides were clearly identifiable (Table 3). The	
19	presence of amorphous material was low both in A2 and in B1. Silica oxide, SiO ₂ ,	
20	was identified as a major compound in all samples but the presence of other	
21	minerals varied between the samples, indicating different characteristics, which	
22	will influence the metal leaching (Table 3).	
23		
24	An overview of t ^T he particle size distributions in the original samples are shown	
25	in Figure 1. The bark (A1) contains pieces larger than ≥ 1 mm, while the	

ield Code Changed ield Code Changed ield Code Changed

1	corresponding ash (A1a) mainly consists of smaller particles. Sample A2 hasis a		
2	in an earlier investigation been classified as elayclayey -soil (Kemakta Konsult		
3	AB 2012)_and was expected to contain a larger fraction of small particles. This		
4	could not be found, something which is probably due to clustering of the small		
5	clay particles into stable agglomerates during drying. An ocular inspection of the		
6	soil particles that remained after leaching confirmed this, as a majority of the		
7	particles were smaller than those in the original dried sample. A full size		
8	distribution analysis could unfortunately not be carried out, as the amount of soil		
9	residue was too small. The dry sieving technique that was used in this study only		
10	gives a brief overview of the particle size distribution. To get more accurate		
11	results the use of a laser diffraction analyzer is recommended.		
12			
13	3.2 Sequential extraction		
14	As a rule, about 50% or more of the studied metals are found in the residue		
15	fraction of all the samples, indicating low mobility during normal environmental		
16	circumstances (Figure 2). In the bark sample A1 (Figure 2a), As $>$ Co $>$ Ni $>$ Cu		
17	are the metals released to the highest degree during the three-step leaching		
18	procedure, and all the metals were more easily released from the bark matrix than		
19	from the ash from the combusted bark sample A1a (Figure 2b). From the ash		
20	sample, $Mo > As > Cu > V$ were released to the highest percentage. Copper is the		
21	only metal released to a high percentage from the soil sample A2 (Figure 2c),		
22	while several more metals were released from the sample from site B (Figure 2d):		
23	$C_0 > N_i > A_s > B_a > C_u \simeq Z_n$. About 30% of the As, Co and Ni are found in the		
24	2 nd fraction, and can be released if the redox potential is changed towards a more		
25	reducing environment.		

1				
2	The metals are least mobile in sample A2 (Figure 2c), hHowever, as much as			
3	40% of the Cu is released in the first step of the leaching procedure, which shows			
4	that soil washing has a high potential as an efficient method for remediation and			
5	metal recovery. The reason for this may be that CuSO ₄ from the wood			
6	preservation process has leached through the surface bark layer and into the			
7	underlying elay-soil (50 -100cm). When water at high L/S ratio is added, as is the			
8	case during infiltration of rain water in the soil at Långön-during storm events, the			
9	water soluble $CuSO_4$ may be released. In the bark (A1), the Cu is less mobile due			
10	to the high affinity between Cu and organic materials (Figure 2a) (Bodek 1988,		Field Code Changed	
11	Kalmykova et al. 2008, Stumm and Morgan 1981). When the bark is incinerated,		Field Code Changed	
12	the mobility is generally decreased due to the formation of less soluble metal		Field Code Changed	
13	compounds, such as CuO, identified in the XRD analysis (Figure 2b and Table 3).			
14	Additionally, encapsulation of the metals into the ash matrix further decreases the			
15	mobility.			
16				
17	while sseveral more metals were released from the sample from site B (Figure			
18	<u>2d): Co > Ni > As > Ba > Cu \approx Zn. About 30% of the As, Co and Ni are found in</u>			
19	the 2 nd fraction, and can be released if the redox potential is changed towards a			
20	more reducing environment.			
21				
22	3.2 Enhanced leaching			
23	As discussed in section 1, mineral acid solutions have been used to leach metals			
24	from contaminated polluted soils (Moon et al. 2012, Moutsatsou et al. 2006).	< >	Field Code Changed	
25	Usually, a stronger acid solution releases more metals but on the other hand it also		Field Code Changed	

1	dissolves the soil matrix itself (Kuo et al. 2006, Moutsatsou et al. 2006).		
2	Depending on the properties of each unique soil, these effects will be more or less		
3	pronounced. For instance, the presence and release of alkaline compounds like		
4	CaCO ₃ or (hydr)oxides dissolve the soil matrix and could cause a higher pH and		
5	decreased metal leaching. When comparing the metal release achieved with the		
6	mineral acidic solutions used in this study, i.e. process waters and HCl, it is		
7	obvious that a 0.01M HCl solution is too weak to neutralize the released alkaline		
8	compounds and keep the pH constant_ , see (Table 4). It should be noted that even		
9	though the original ash, i.e. A1a, is more alkaline than B1, pH 12.1 and 7.9,		
10	respectively, the alkaline compounds are more easily released from the latter,		
11	resulting in a higher end pH after HCl leaching (Table 4). In contrast, the pH		
12	levels of the acidic process water leachates are barely affected by the release of		
13	alkaline compounds and these were the leaching agents that released metals most		
14	effectively from all the samples (Table 4). As discussed in section 2.2, the process		
15	waters contain metal ions (Table 1). In samples A1, A2 and B2, the concentrations		
16	of Pb^{2+} and Zn^{2+} in the original process waters <u>(Table 1)</u> are often comparable to,		
17	or even higher than, the concentrations in the final leachates. This is mainly due to		
18	the low amounts of these metals that are present in the original soil samples		
19	compared to the concentrations in the original process waters (Tables 1 and 2).		
20	Other reasons for this phenomenon are the presence of active sites in the soil		
21	matrix to which the metal ions can adsorb, the particle sizes, and the speciation of		
22	the metals. The importance of size distribution and the presence of active sites on		
23	Pb and Zn leaching have been studied earlier by Karlfeldt and Steenari (2007).		
24	They found that grinding of the solid material (fly ash) before leaching in some		
25	cases strongly reduced the detected amounts of Pb^{2+} and Zn^{2+} in the leachate		

(Karlfeldt and Steenari 2007). After leaching A1a, only the concentrations of Ba
 were lower in the final leachates than in the original process waters as a
 consequence of the stable and low-soluble Ba compounds formed during
 incineration. In addition, if Ba is leached from the ash, formation of low soluble
 BaSO₄ is likely to occur due to the presence of sulfates in the process waters
 (Table 1).

7

8 Ammonium nitrate, NH₄NO₃, has been used in many studies, both to leach and to 9 predict the bioavailability of metal contaminants in soils, and it has been shown to 10 be especially effective for Cu leaching from ash (Gryschko et al. 2005, Karlfeldt 11 Fedje et al. 2010, Pueyo et al. 2004, Schöning and Brümmer 2008). High Cl 12 concentrations can promote metal release due to the formation of soluble metalchloride-complexes like $CdCl_v^{(2-y)}$ and $PbCl_3^-$. For this reason, it was expected that 13 NH₄Cl would also be effective for non-amine complex forming elements like Pb. 14 The results showed that about 70% of the Cu was leached from A1 and A2, while 15 16 only 6% was leached from the ash sample A1a (Table 4). This is consistent with 17 the results from the sequential extraction procedure where the Cu was shown to be 18 most mobile in A1 and A2, but transformed to less soluble CuO and/or 19 encapsulated in the ash, i.e. A1a (Figure 2). The same leaching tendencies for Cu 20 were also seen after the EDDS and lactic acid leaching; \geq 50% of the Cu was 21 leached from A1 and A2, while <20% was leached from the other samples (Table 22 4). The leaching of Pb was generally <15% from all samples, irrespective of 23 whether NH₄Cl, EDDS or lactic acid was used.

24

Field Code Changed

Field Code Changed Field Code Changed Field Code Changed Field Code Changed

1	The overall leaching results suggest that the lower leaching from A1a compared to	
2	A1 and A2 is due to encapsulation and formation of stable metal compounds	
3	during the incineration. In the case of B1, the lower leaching is mainly due to the	
4	metal speciation and incorporation of the metals in the soil matrix, caused by the	
5	former industrial activities at the site. Therefore, it is not only important to gain a	
6	deep knowledge about the soil matrixes and their contamination history prior to	
7	soil washing, but also to remember that pre-treatment, such as grinding and	
8	incineration before the washing, influence the leaching properties. On the other	
9	hand, pre-treatment like incineration makes it possible to utilize the energy in the	
10	contaminated samples. This must be balanced against the potentially lower metal	
11	recovery efficiency.	
12		
13	The concentrations of Ag, Be, Cd, Se, Tl and U were also detected in the	
14	leachates (<0.6 mg/kg) but for simplicity there are not included in Table 4.	
15		
16	Due to the combination of low fractional release and low total amounts of many	
17	valuable metals in B1, the corresponding concentrations in the leachates are all	
18	<0.25 g/L (Tables 2 and 4). Metal recovery from these leachates is therefore not	
19	yet economically viable. However, when using the acidic process waters to leach	
20	A1 and A1a, the concentrations of Cu in the corresponding leachates are around	
21	1.5 and 6 g Cu/L, respectively. This is comparable with the concentrations in the	
22	initial solutions from ores used for high purity Cu production by electrolysis (1-6	
23	g/L) (Jenkins et al. 2002). To minimize the presence of impurities in the Cu	
24	metal, solvent extraction is used in full-scale recovery systems prior to	
25	electrolysis, to selectively extract Cu. In addition, the solvent extraction step	

1	increases the Cu concentration, which is necessary to operate an energy efficient	
2	electrolysis. An interesting alternative, which would reduce the energy required	
3	during electrolysis, is the use of microbial bio-electrochemical systems (BES). In	
4	BES, microorganisms oxidize organic compounds present in e.g. waste-water,	
5	thereby transforming the energy in the organic compounds into electrical energy.	
6	In several recent studies on diluted Cu solutions (~1g/L) the energy consumption	
7	was significantly lower with BES compared to traditional electrolysis (Modin and	
8	Karlfeldt Fedje 2012, Tao et al. 2011, Ter Heijne et al. 2010). At certain cathode	
9	potentials, electrical energy could even be extracted from the system together with	
10	the Cu metal (Modin and Karlfeldt Fedje 2012, Tao et al. 2011). By varying the	
11	cathode potential in the system it is not only possible to control the energy output	
12	but also which metal to recover. Modin and co-workers showed that high purity	
13	Cu (99.9%) could be recovered from a simulated ash leachate containing a	
14	mixture of Cu, Cd, Pb and Zn ions (1g/L) without energy input (Modin and	
15	Karlfeldt Fedje 2012). In addition, high purity Zn (>99.9%) could be recovered	
16	from the mixture, while the Cd and Pb metals needed further purification. Initial	
17	experiments to recover Cu using BES from the original process water ash	
18	leachates used in this study have been performed with satisfying results. Copper	
19	metal of at least 99% purity could be recovered from the ash process water	
20	leachates, which contained a variety of metal ions (Table 4). This opens up for	
21	simplification of the metal recovery process, as no purification step is needed	
22	prior to electrolysis. In addition, the reduced energy consumption can make the	
23	process profitable even though the Cu concentrations are lower than in	
24	commercial electrolysis systems. More experiments on how to reduce the energy	

Field Code Changed Field Code Changed

Field Code Changed Field Code Changed

1	
2	

25

consumption and increase the pureness of the Cu and other metalsresearch is -are in progress and will be discussed and published in a-future articles.

4	The release of Cu from the A1a and A2 samples when using the acidic process
5	waters varies between 90-100% (Table 4) and predictions indicate that there is as
6	much as >30 tons of Cu present at the contaminated polluted site A (Kemakta
7	Konsult AB 2012). If on average 90% of this could be recovered from the
8	leachates, the potential Cu metal value is about 170,000 Euro and if the
9	incineration process is optimized to minimize the volatilization of Cu compounds,
10	the corresponding potential value is almost 200,000 Euro. Even without taking
11	into account the high environmental value of remediation of site A-(Långö), this
12	could motivate soil washing , but further investigations into the quality and
13	function of the rest soil after metal recovery need to be carried out.
14	
17	
15	3.3 Characterization of leached soil samples
	3.3 Characterization of leached soil samples The major crystalline structure in the soil residues after leaching in the acidic
15	
15 16	The major crystalline structure in the soil residues after leaching in the acidic
15 16 17	The major crystalline structure in the soil residues after leaching in the acidic process water "a" is more similar across the samples, than in the original samples
15 16 17 18	The major crystalline structure in the soil residues after leaching in the acidic process water "a" is more similar across the samples, than in the original samples (Table 3). The soil residues are dominated by silicates and oxides and no Cu
15 16 17 18 19	The major crystalline structure in the soil residues after leaching in the acidic process water "a" is more similar across the samples, than in the original samples (Table 3). The soil residues are dominated by silicates and oxides and no Cu compounds could be identified. Sample A1still contained large amounts of
15 16 17 18 19 20	The major crystalline structure in the soil residues after leaching in the acidic process water "a" is more similar across the samples, than in the original samples (Table 3). The soil residues are dominated by silicates and oxides and no Cu compounds could be identified. Sample A1still contained large amounts of amorphous material. However, no amorphous material was found after NH ₄ Cl
15 16 17 18 19 20 21	The major crystalline structure in the soil residues after leaching in the acidic process water "a" is more similar across the samples, than in the original samples (Table 3). The soil residues are dominated by silicates and oxides and no Cu compounds could be identified. Sample A1still contained large amounts of amorphous material. However, no amorphous material was found after NH ₄ Cl leaching, probably because NH ₄ Cl hides the content of other phases (Table 3). In

Field Code Changed

waters and HCl, dissolved the highest fractions of A1, A1a and B1 (10-15 w%),

1	while lactic acid showed the lowest weight losses (2-6 w%). Less than 6 w% of	
2	sample A2 was dissolved irrespective of the leaching agent used, indicating a	
3	stable soil matrix. In contrast, about 5 times more of sample A1a was dissolved	
4	when the pH was decreased from 3.6 to ~0, i.e. when HCl-process water was used	
5	instead of process water <u>HCl</u> . On the other hand, tThe release of Cu and Zn from	
6	A1a increased more than 20 times when the pH was decreased, confirming the	
7	importance of metal encapsulation and that ash matrix dissolution is needed to	
8	achieve efficient metal leaching.	
9		
10	Unfortunately, most of the metals which were present at concentrations above the	
11	Swedish generic guideline values in the original soils are still above the guidelines	
12	in the soil residues that remain after leaching (Table 5). This is due to the	
13	dissolution of the soil matrixes, as well as to the adsorption of metal ions from the	
14	process water in the case of Ba^{2+} , Zn^{2+} and Pb^{2+} , as discussed in section 3.2.	
15	However, probably more important is the low leachability of some metals and the	
16	fact that only one leaching step was used in these experiments. A qualitative	
17	washing test using deionized water on the A sample residues remaining after	
18	process water leaching clearly showed the release of blue Cu ²⁺ ions, indicating a	
19	higher metal release with an increased number of washing steps. However, it is	
20	likely that even with the introduction of several leaching steps, some metals will	
21	still exceed the Swedish guidelines (SEPA 2009b) due to their low leachability.	
22	On the other hand, the leaching is generally less than 50% for most metals when	
23	pH is $2 \le X \ge 10$ (Table 4) and therefore the potential release of these metals in a	
24	natural environment is expected to be low, even though the total amounts exceed	
25	the guidelines.	

4. Conclusions

3	٠	When $2 \le pH \ge 10$ the release of metals is generally < 50 w%, indicating a
4		low metal leaching during normal environmental circumstances. However,
5		for Cu a high total content (7600-2000 mg/kg DS at site A (Långö)) can
6		lead to a significant environmental impact. From a metal recovery
7		perspective, the pH value has to be lower than 2 to achieve effective
8		leaching.
9	•	The acidic process waste waters leached metals the most efficiently from
10		all samples studied, i.e. bark (A1), bark ash (A1a) and soil (A2 and B1).
11	•	Incineration of contaminated polluted soils with a high organic content
12		(sample A1) before washing generally reduced the metal leaching and is
13		not suggested as a pre-treatment step before soil washing. However, the
14		release of Cu was higher from the ash than from the original bark when the
15		acidic process waters were used, indicating that in certain situations
16		incineration can be a good pre-treatment alternative.
17	•	Between 90 and 100 w% of the Cu was released from A1a and A2 and
18		from the un-purified leachate Cu metal (>99% purity) could be generated
19		by electrolysis, indicating that the potential for Cu metal recovery is high.
20	•	After one leaching step the metal contents in the soil residues still exceed
21		the Swedish guideline values. An additional washing step is likely to
22		reduce the contents of easy soluble metal compounds in the soil residues.
23		
24	The re	sults from this study show that soil washing followed by metal recovery is a
25	promis	sing permanent alternative to remediate contaminated polluted soils and to

1	utilize non-used metal resources. However, more research is needed to develop an
2	efficient and solid treatment method. Two urgent matters to investigate are how to
3	optimize the leaching procedure to produce a satisfyingly clean and stable soil
4	residue, and to carry out electrolysis experiments on how to reduce the energy
5	consumption during electrolysis; both these are currently being studied. Pre-
6	treatment of the soils using e.g. grain-sizing is another important issue to study as
7	this effectively can reduce the soil amount needed to be washed and at the same
8	time increase the metal content in the enriched fraction. Another important
9	is that this study only looks at sites with metal contaminants,
10	whereas in reality contaminated polluted sites often contain not only metals or
11	organic pollutants, but a mixture of both. For this reason, it is important to
12	understand what happens to toxic organic compounds during the optimized soil
13	washing process, something which will be studied in further research.
14	
15	5. Acknowledgements
16	This work was funded by Renova (a waste and recycling management company),
17	FORMAS (the Swedish Research Council for Environment, Agricultural Sciences
18	and Spatial Planning) and China Scholarship Council, which are gratefully
19	acknowledged. The authors also want to express their gratitude to Qianyu Li and
20	Mona Pålsson for their assistance with laboratory work.
21	
22	6. References

- 23 Bisone, S., Blais, J., Drogui, P., Mercier, G., 2012. Toxic metal removal from
- 24 polluted soil by acid extraction. Water Air Soil Poll. 223, 3739-3755

- 1 Bodek, I. B., 1988. Environmental inorganic chemistry. Properties, processes and
- 2 estimation methods. Pergamon Press, New York, USA.

3	Boliden Ab, 2011-01-13. www.boliden.com	Field Code Changed
4	Dermont, G., Bergeron, M., Mercier, G., Richer-Lafleche, M., 2008a. Metal-	
5	Contaminated Soils: Remediation practices and treatment technologies. Pract.	
6	Period. Hazard., Toxic, Radioact. Waste Manage. 12, 188-209	
7	Dermont, G., Bergeron, M., Mercier, G., Richer-Laflèche, M., 2008b. Soil	
8	washing for metal removal: A review of physical/chemical technologies and field	
9	applications. J. Hazard. Mater. 152, 1-31	
10	Douglas, L., 2009. Olympic Watch - The main site. Engineering and Technology	
11	Magazine. The Institution of Engineering and Technology, London, UK, 6, 4	
12	Elander, P., Andersson, F., Wrene, R., Larsson, N., 2010. Kompletterande	Formatted: Swedish (Sweden)
13	utredningar Österbyverken (Complementary investigations Österbyverken).	
14	Envipro, H. A., Linköping, Sweden.	
15	Gryschko, R., Kuhnle, R., Terytze, K., Beruer, J., Stahr, K., 2005. Soil extraction	
16	of readily soluble heavy metals and As with 1 M NH_4NO_3 solution. J. Soils	
17	Sediments. 5, 101-106	
18	Jenkins, J., Dodge, P., Morenci, A., 2002. Solvent extraction transfer of Cu from	
19	leach solution to electrolyte, in Davenport, W. G., King, M., Schlesinger, M. and	
20	Biswas, A. K., (Eds.), Extractive metallurgy of copper, 4th edition. Pergamon,	Formatted: Swedish (Sweden)
21	New York, USA.	
22	Kalmykova, Y., Strömvall, AM., Steenari, BM., 2008. Adsorption of Cd, Cu,	
23	Ni, Pb and Zn on <i>Sphagnum</i> peat from solutions with low metal concentrations. J.	Formatted: Swedish (Sweden)
24	Hazard. Mater. 152, 885-891	

1	Karlfeldt Fedje, K., Ekberg, C., Skarnemark, G., Steenari, BM., 2010. Removal	
2	of hazardous metals from MSW fly ash- An evaluation of ash leaching methods.	
3	J. Hazard. Mater. 173, 310-317	Formatted: Swedish (Sweden)
4	Karlfeldt Fedje, K., Ekberg, C., Skarnemark, G., Steenari, BM., 2012. Initial	
5	studies of the recovery of Cu from MSWI fly ash leachates using solvent	
6	extraction. Waste Manage. Res. 30, 1072-1080	
7	Karlfeldt, K., Steenari, BM., 2007. Assessment of metal mobility in MSW	
8	incineration ashes using water as the reagent. Fuel. 86, 1983-1993	Formatted: Swedish (Sweden)
9	Karlsson, S., Carlsson, P., Åberg, D., Karlfeldt Fedje, K., Krook J., Steenari, B	
10	M., 2010. What is required for the viability of metal recovery from municipal	
11	solid waste incineration fly ash? -Design and assessment of a process plant for	
12	copper extraction. Linnaeus ECO-TECH '10. Kalmar, Sweden.	
13	Kemakta Konsult Ab, 2012. Kompletterande huvudstudie för förorenad mark vid	
14	f.d. stolpimpregnering på Långö, Köpmannebro, Mellerud kommun	
15	(Complementary core study for the contaminated area at the former wood	
16	preservation at Långö, Köpmannebro, Mellerud municipality) Stockholm,	
17	Sweden.	
18	Kuo, S., Lai, M. S., Lin, C. W., 2006. Influence of solution acidity and CaCl2	
19	concentration on the removal of heavy metals from metal-contaminated rice soils.	
20	Environ. Pollut. (Dordrecht, Neth.). 144, 918-925	
21	Labanowski, J., Monna, F., Bermond, A., Cambier, P., Fernandez, C., Lamy, I.,	
22	Van Oort, F., 2008. Kinetic extractions to assess mobilization of Zn, Pb, Cu, and	
23	Cd in a metal-contaminated soil: EDTA vs. citrate. Environ. Pollut. (Dordrecht,	
24	Neth.). 152, 693-701	

- 1 Laporte-Saumure, M., Martel, R., Mercier, G., 2010. Evaluation of
- 2 physicochemical methods for treatment of cu, pb, sb, and zn in canadian small
- 3 arm firing ranges backstop soils. Water Air Soil Poll. 213, 171-189
- 4 Lo, I. M. C., Tsang, D. C. W., Yip, T. C. M., Wang, F., Zhang, W., 2011.
- 5 Significance of metal exchange in EDDS-flushing column experiments.
- 6 Chemosphere 83, 7-13
- 7 Modin, O., Karlfeldt Fedje, K., 2012. Combined wastewater treatment and
- 8 recovery of copper from ash leachate IWA World Water Congress & Exhibition,
- 9 16 31 september. Busan, Korea.
- 10 Moon, D. H., Lee, J.-R., Wazne, M., Park, J.-H., 2012. Assessment of soil
- 11 washing for Zn in contaminated soils using various washing solutions. J. Ind. Eng.
- 12 Chem. (Amsterdam, Neth.). 18, 822-825
- 13 Moutsatsou, A., Gregou, M., Matsas, D., 2006. Washing as a remediation
- 14 technology applicable in soils heavily polluted by mining-metallurgical activities.
- 15 Chemosphere 63, 1632-1640
- 16 Pueyo, M., Lopez-Sanchez, J. F., Rauret, G., 2004. Assessment of CaCl₂, NaNO₃
- 17 and NH₄NO₃ extraction procedures for the study of Cd, Cu, Pb and Zn
- 18 extractability in contaminated soils. Anal. Chim. Acta. 504, 217-226
- 19 Rauret, G. S. A., 1999. Improvement of the BCR three step sequential extraction
- 20 procedure prior to the certification of new sediment and soil reference materials. J.
- 21 Environ. Monit. 57-61
- 22 Schlumberger, S., Bühler, J., 2012. Metal recovery in fly and filter ash in waste to
- 23 energy plants. Ash 2012. Strömberg, B. Stockholm, Sweden.

Formatted: Swedish (Sweden)

Formatted: Swedish (Sweden)

1	Schlumberger, S., Schuster, M., Ringmann, S., Koralewska, R., 2007. Recovery
2	of high purity zinc from filter ash produced during the thermal treatment of waste
3	and inerting of residual materials. Waste Manage. Res. 25, 547-555
4	Schöning, A., Brümmer, G. W., 2008. Extraction of mobile element fractions in
5	forest soils using ammonium nitrate and ammonium chloride. J. Plant Nutr. Soil
6	Sci. 171, 392-398
7	Sepa, 2009a. Lägesbeskrivning av efterbehandlingsarbetet i landet 2008 (The state
8	of art for after-treatment of contaminated areas in the country 2008). Swedish
9	Environmental Protection Agency, Stockholm, Sweden.
10	Sepa, 2009b. Riktvärden för förorenad mark Modellbeskrivning och vägledning
11	Rapport 5976 (Guidelines for contaminated soil Model description and guidance
12	Report 5976) Swedish Environmental Protection Acency, Stockholm, Sweden.
13	Shammas, N., 2009. Removal of heavy metals from soil in Handbook of advanced
14	industrial and hazardous wastes treatment, in Wang, L., (Eds.), Advances in
15	Industrial and Hazardous Wastes Treatment Taylor & Frances group, LLC, New
16	York.
17	Shuman, L. M., 1982. Separating Soil Iron- and Manganesse- Oxide Fractions for
18	Microelement Analysis. J. Soil Sci. 1099-1102
19	Stenzel, F., Mocker, M., I., L., Faulstich, M., 2011. Resource efficiency of bottom
20	ash. From ashes to metals - Bottom ash from Waste-to-Energy plants as a material
21	resource, 5th-6th of September. Copenhagen, Denmark.
22	Stumm, W., Morgan, J. J., 1981. Aquatic Chemistry, 2nd edition. Wiley, New
23	York, USA.

- 1 Tandy, S., Bossart, K., Mueller, R., Ritschel, J., Hauser, L., Schulin, R., Nowack,
- 2 B., 2004. Extraction of heavy metals from soils using biodegradable chelating
- 3 agents. Environ. Sci. Technol. 38, 937-944
- 4 Tao, H. C., Liang, M., Li, W., Zhang, L. J., Ni, J. R., Wu, W. M., 2011. Removal
- 5 of copper from aqueous solution by electrodeposition in cathode chamber of
- 6 microbial fuel cell. J. Hazard. Mater. 189, 186-192
- 7 Ter Heijne, A., Liu, F., Weijden, R. V. D., Weijma, J., Buisman, C. J. N.,
- 8 Hamelers, H. V. M., 2010. Copper recovery combined with electricity production
- 9 in a microbial fuel cell. Environ. Sci. Technol. 44, 4376-4381
- 10 Voglar, D., Lestan, D., 2013. Pilot-scale washing of Pb, Zn and Cd contaminated
- 11 soil using EDTA and process water recycling. Chemosphere. 91, 76-82
- 12 Vougy, H. D., 1856. Dr. Boucherie's patent process for preserving wood from
- 13 decay. J Franklin I. 62, 1-4
- 14
- 15

1 Remediation of Metal Polluted Hotspot Areas through Enhanced Soil

2 Washing – Evaluation of Leaching Methods

- 3 Karin Karlfeldt Fedje_{a,b}^{*}, Li Yillin_{a,1}, Ann-Margret Strömvall_a
- 4
- 5 aWater Environment Technology, Department of Civil and Environmental
- 6 Engineering, Chalmers University of Technology SE-412 96 Gothenburg, Sweden
- 7 Tel: +46 31 772 21 49 Fax: +46 31 772 56 95
- 8 b Recycling and Waste Management, Renova AB, Box 156, SE-401 22
- 9 Gothenburg, Sweden Tel: +46 31 618352
- 10 ₁Permanent address: College of materials and chemistry & chemical engineering,
- 11 Chengdu University of Technology, Shiling Town, Chengdu City Sichuan
- 12 Province, P. R. China 610106
- 13

14 E-mail addresses

- 15 *Corresponding author; karin.karlfeldt@chalmers.se
- 16 liyilin@cdut.cn
- 17 ann-margret.stromvall@chalmers.se
- 18

19 Abstract

- 20 Soil washing offers a permanent remediation alternative for metal polluted sites.
- 21 In addition, the washed out metals can be recovered from the leachate and re-
- 22 introduced into the social material cycle instead of landfilled. In this paper, soil,
- 23 bark and bark-ash washing was tested on four different metal polluted soil and
- 24 bark samples from hotspots at former industrial sites. Six different leaching
- agents; HCl, NH₄Cl, lactic acid, EDDS and two acidic process waters from solid

1 waste incineration, were tested, discussed and evaluated. For the soil washing 2 processes, the final pH in the leachate strongly influences the metal leachability. 3 The results show that a pH<2 is needed to achieve a high leaching yield, while 4 <50 w% of most metals were leached when the pH was higher than 2 or below 10. 5 The acidic process waste waters were generally the most efficient at leaching 6 metals from all the samples studied, and as much as 90–100 w% of the Cu was 7 released from some samples. Initial experiments show that from one of these un-8 purified leachates, Cu metal (>99% purity) could be recovered. After a single 9 leaching step, the metal contents of the soil residues still exceed the maximum 10 limits according to the Swedish guidelines. An additional washing step is needed 11 to reduce the contents of easy soluble metal compounds in the soil residues. The 12 overall results from this study show that soil and bark-ash washing followed by 13 metal recovery is a promising on-site permanent alternative to remediate metal 14 polluted soils and to utilize non-used metal resources.

1 1. Introduction

2	More than 80,000 sites that may be polluted due to earlier industrial activities are
3	known in Sweden, and about 2 million potentially polluted sites have been
4	identified in Europe and in the United States (Dermont et al. 2008a, SEPA 2009a).
5	Metals are the main problem at about 50% of these sites. Contrary to many
6	organic pollutants, metals cannot be destroyed and are non-degradable. For this
7	reason, metal polluted soils must always be treated and remediated to decrease the
8	risks of pollution. Consequently, the need for metal remediation technologies is
9	enormous. The most commonly used metal remediation method is to excavate,
10	transfer and landfill the polluted soil and replace it with new, clean material
11	(Dermont et al. 2008a, Shammas 2009). Techniques such as
12	solidification/stabilization (S/S) are often applied prior to landfilling to decrease
13	the potential leaching of metals (Dermont et al. 2008a, Shammas 2009). However,
14	this treatment does not reduce the amounts of pollutants in the materials and
15	metals may leach out in the longer term. In addition, metals are removed from the
16	material cycle, resulting in the loss of valuable resources.
17	
18	An alternative to landfilling is soil washing. Soil washing is used commercially in
19	both Europe and the Unites States and can be carried out on site (Dermont et al.
20	2008b). A recent example is the remediation of the Olympic Park site in London
21	in 2012, where more than 800,000m ³ of soil polluted with e.g. oil and Pb was
22	treated (Douglas 2009). Soil washing can be based on either physical separation,
23	like magnetic fractionation or size separation, on chemical leaching, or on a
24	combination of both. Water is often used as leaching agent, but it is also common
25	practice to use stronger leaching agents like acids or complex forming ligands

such as EDTA (Bisone et al. 2012, Labanowski et al. 2008, Laporte-Saumure et
al. 2010, Moon et al. 2012, Moutsatsou et al. 2006, Tandy et al. 2004, Voglar and
Lestan 2013). The selection of leaching agent depends on e.g. the properties of the
contaminants at each specific site and on the remediation goal, i.e. the acceptable
levels of the pollutants in the soil after remediation.

6

7 Generally, the costs for soil washing are comparable with those for techniques 8 like S/S and electrokinetics and much lower than for vitrification (Shammas 9 2009). Soil washing offers another important opportunity to reduce the overall 10 costs: through the potential recovery of the released metals. The leachate 11 generated from the enhanced soil washing is rich in pollutants and can act as a 12 source for metal recovery. This is not much studied and the washing procedures 13 currently applied focus on metal removal, as it has this far not been economically 14 favorable to recover metals from waste materials like polluted soils and ashes. 15 However, there is one example of a leaching based profitable metal recovery 16 process from waste incineration ash. In Switzerland, the world's first commercial 17 full-scale plant where high purity Zn (99.9%) is recovered from waste fly ash has 18 recently been started up (Schlumberger and Bühler 2012, Schlumberger et al. 19 2007). In another study, based on laboratory experiments on the recovery of Cu 20 from waste fly ash, it was shown that 90% of the Cu could be selectively 21 recovered and that this treatment could potentially be more profitable than the 22 way in which ash is usually handled, i.e. landfilling (Karlfeldt Fedje et al. 2012, 23 Karlsson et al. 2010). In the study by Karlsson et al (2010), the Cu content in the 24 ash was about 0.8%, and earlier studies on sites used for wood preservation show 25 that Cu concentrations of 0.5% or higher are common (Dermont et al. 2008b,

1	Shammas 2009). As a comparison, the Cu content in a workable Swedish mine is
2	0.3% (Boliden AB 2011). The world stocks of metals like Cr, Cu and Zn are at or
3	near historically low levels and are predicted to last about 15, 40 and 20 years,
4	respectively (Stenzel et al. 2011). Consequently, it is plausible that metal prices
5	will increase in the near future, as the virgin resources are finite and there is a
6	great demand for metals.
7	
8	In this lab-scale study, soil, bark and bark-ash washing with various leaching
9	agents is used for leaching of metals, and its potential as a method to remediate
10	highly metal polluted soil and bark samples is tested. The metal leaching
11	properties and the solid residues of soil samples taken at different polluted sites
12	with different pollution situations are studied using the various leaching agents.
13	The aim is to maximize the metal release, with particular focus on Cu and Cr, and
14	to produce a metal rich leachate from which valuable metals can be recovered by
15	e.g. electrolysis.

17 **2. Material and methods**

18 2.1 Soil samples

Soil samples with different characteristics and degree of contamination from two sites- Långö in western Sweden and Österbybruk in eastern Sweden- were used in this study. Both sites are strongly polluted with metals. The first site (Långö=A) was historically used for wood preservation, using CuSO₄ according to the Boucherie method (Vougy 1856). Based on results from sampling and chemical analyses in previous studies, representative samples of bark and soil were collected from a hotspot with a high metal content; A1 is a bark sample from the

surface horizon (0–10 cm depth) and A2 is a soil sample from a depth of 50–100
cm. Both samples are mixtures of several sub-samples taken from the bark and the
soil, respectively.

4

5 The second site (Österbybruk=B) has been used within the iron and steel industry 6 since the late 16th century. More recently, the area has also been used as e.g. a car 7 breaker's yard and for wood processing. Based on previous investigations on this 8 site, a hotspot with high concentrations of several metals was chosen, and a 9 representative surface horizon soil sample was collected, i.e. B1.

10

11 2.1.1 Pre-treatment of the soil samples

12 All samples were dried at 80°C (100 %DS) until a constant weight was achieved. 13 The pure soil samples i.e. A2 and B1 were directly cooled down in desiccators 14 before being stored in air-tight containers until used, while the bark sample was 15 cut into smaller pieces using an automatic mixer. Part of the bark was thereafter 16 stored until further analyses (A1), while the other part of the sample was 17 incinerated for 10h to form an ash sample (A1a). This incineration step was done 18 in order to reduce the organic content of the bark and to increase the potential Cu 19 release. The incineration temperature used was 860°C and chosen to avoid 20 vaporization of Cu compounds. All samples were cooled down in desiccators 21 before being stored in air-tight containers until used. No pre-treatment using e.g. 22 grain-size fractioning to generate highly polluted and less polluted fractions of the soils was done due to too small sample volumes. 23

- 24
- 25

1 2.2 Leaching agents

2 For the leaching experiments, four chemically different leaching agents known to 3 effectively leach metals from natural materials like soils were chosen for this 4 study; 0.01M HCl, 8M NH4Cl adjusted to pH 10 to enhance amine complex 5 formation, 1M lactic acid, and 0.1M EDDS ((S,S)-Ethylenediamine-N,N-6 disuccinic acid tri sodium salt) adjusted to pH 7 to especially enhance Cu and Pb 7 leaching. The leaching agents and their concentrations were chosen based on 8 literature research (Lo et al. 2011, Moon et al. 2012, Schöning and Brümmer 9 2008). In addition, two highly acidic process waste waters "a" and "n" (pH around 10 0) were used. These process waters came from two different places in the wet flue 11 gas cleaning processes after waste incineration and therefore contained metal ions 12 and high concentrations of chlorides. The concentrations of different ions in the 13 process waters vary naturally depending on e.g. the conditions during the 14 incineration process and the kind of waste used, but representative concentrations 15 of the most common ions are given in Table 1. Today these acidic waters are 16 purified through precipitation processes of the toxic metal ions and small 17 particles. Thereafter the metal sludge is landfilled, while the clean water is 18 released to the recipient.

19

20 **2.3 Leaching experiments**

21 2.3.1 Sequential extraction

22 The modified three-step BCR method is proposed by the commission of the

- 23 European communities Bureau (BCR) as the European standard method for
- 24 sequential extraction schedules (Rauret 1999). In brief, the leaching steps are first;
- 25 acetic acid (exchangeable ions), second; hydroxyl ammonium chloride (reducible

1	fraction) and third; H_2O_2 + ammonium acetate (oxidizable fraction). Due to
2	toxicity the hydroxyl ammonium chloride solution (NH ₂ OH·HCl) originally used
3	in the second step was exchanged for non-toxic ascorbic acid (0.2 M). It has been
4	shown that ascorbic acid has the same metal extraction efficiency as hydroxyl
5	ammonium chloride, especially in the case of Cu (Shuman 1982). This method
6	was used to predict the mobility of As, Ba, Co, Cr, Cu, Mo, Ni, Pb, V and Zn in
7	the original samples. All experiments were carried out in triplicates.
8	
9	2.3.2. Enhanced batch leaching
10	In each experiment, 0.5 g soil was leached in airtight plastic containers using 5
11	mL of either of the chosen leaching agents (liquid-to-solid ratio (L/S) of 10). The
12	leaching time was set to 2 hours with continuous shaking at 140 rpm. After
13	leaching, the soil-liquid-mixture was centrifuged for 15 minutes at 3000G
14	(gravity). The supernatant was transferred to a new container and acidified before
15	being stored in a refrigerator until analyzed. The ash residue was washed for 5
16	minutes with continuous shaking using 5 mL ultrapure water (18.2 M Ω /cm ²).
17	Thereafter, the mixture was centrifuged for 15 minutes at 3000G and the ash
18	residue was dried and stored in airtight containers until used. All leaching
19	experiments were carried out in duplicates.
20	
21	2.4 Analytical methods
22	In order to measure metal content in the original soil samples, two commonly
23	used digestion methods were chosen, based on the sample characteristics. Due to

24 its high organic content, sample A1 was completely dissolved following the

25 procedure in ASTM D3683 (As, Cd, Co, Cu, Hg, Ni, Pb, S and Zn) and ASTM

1	D3682 (Al, Ca, Fe, K, Mg, Na, P, S, Si, Ti, Ba, Cr, Mn, Mo, Sb, Se, Sn, Sr and
2	V). The methodology in the ASTM D3683 was also used to analyze the total
3	metal content (Al, Sb, As, Ba, Pb, P, Fe, Cd, Ca, K, Cu, Cr, Hg, Mg, Mn, Mo, Na,
4	Ni, Sr, S, Ti, V and Zn) in A1a, while A2 and B1 were digested using the
5	standardized procedure SS 028311. All analyzes were carried out in triplicates
6	except for A1a, which was analyzed in duplicate.
7	
8	The total element concentrations of all the solutions from the total digestion were
9	measured using ICP-MS (inductively coupled plasma mass spectrometry) (Al, As,
10	Ba, Pb, Ca, Cd, Co, Cu, Cr, Fe, K, Mg, Mn, Na, P, Ti, Hg, Mo, Ni, S, Sb, Sn, Sr,
11	V and Zn) or ICP-AES (inductively coupled plasma atomic emission
12	spectrometry) (Se and W). The soil leachates obtained from the leaching
13	experiments and the sequential extraction were analyzed for metals (Al, As, Ba,
14	Be, Pb, Cd, Co, Cu, Cr, Li, Mn, Mo, Ni, Se, Ag, Sr, Tl, U, V and Zn) using ICP-
15	MS. A Dionex ICS AS-DV ion chromatograph with ICS-900 columns for cation
16	and anion analyzes was used to analyze the K^+ , Mg^{2+} , Na^+ , NH_4^+ , Ca^{2+} , Cl^- , NO_2^- ,
17	NO_3^{-} , PO_4^{-3-} and SO_4^{-2-} concentrations in the acidic process waters, while the
18	amounts of Al, Pb and Zn were analyzed using ICP-MS.
19	
20	The main crystalline compounds in the original samples, and in some of the
21	leached samples, were identified by qualitative X-ray powder diffractometry
22	(XRD) using a Siemens D5000 X-ray powder diffractometer with the
23	characteristic Cu radiation and a scintillation detector. Identification of
24	compounds was carried out using the JCPDS database (Joint Committee of
25	Powder Diffraction Standards 2006). The detection limit of this method is about 1

% by weight. The samples were dried and ground in an agate mortar before being
analyzed. The particle size distributions in the original dried samples were
measured using manual dry sieving with sieve size fractions of between 0.125 mm
and 1 mm. The pH was measured in the original samples (pH_(H2O)) and at the start
and end of each leaching experiment using a Methrom SM 702 pH meter.

6

7 **3. Results and discussion**

8 3.1 Characterization of original samples

9 The total amounts of selected major and minor elements in the original samples
10 are shown in Table 2. For comparison, the Swedish generic guideline values for
11 sensitive and less sensitive land use are also given (SEPA 2009b).

12

13 In the original samples from site A, i.e. A1 and A2, only Cu exceeds the Swedish 14 guidelines for polluted soils, while at site B several metals exceed the guidelines 15 (Table 2). In an earlier study of site B, four times higher amounts of Fe, Al and K, 16 and 15 times higher amounts of Na, were detected at spot B1 compared to the 17 results in this study (Elander et al. 2010). This is due to heterogeneities between 18 sub-samples but the choice of digestion method is also very important. In the 19 previous study, the methods in ASTM 3682 and 3683 (total digestion using bomb 20 and melting) were used, while the SS 028311 (HNO₃ and H₂O₂ leaching method) 21 was used in this study. For the minor elements, like As, Co and Cu, no significant 22 differences could be seen, suggesting that these metals are present in compounds 23 soluble in strong acid solutions. Chromium and W are exceptions, perhaps 24 because they are incorporated together with Fe, Al, K and Na in very low-soluble 25 minerals and compounds. In sample A1, the total amounts of minor elements are

generally somewhat higher when using ASTM 3682 and 3683 than with acidic
leaching (7M HNO₃), which was used in an previous study on soils from the same
spot (Kemakta Konsult AB 2012). However, for Cu the content is about 2.5 times
higher when bomb digestion is used than with acid leaching, which shows that Cu
is effectively adsorbed to the organic matter in the bark, thus reducing the
leachability.

7

8 From 3 g of dry bark about 0.6 g of ash was obtained. Theoretically, if no Cu was 9 volatilized during incineration, the Cu content in the ash would be about 5 times 10 higher than in the original bark. However, according to the total content analyses, 11 Cu is enriched less than 3 times during incineration (Table 2). This means that the 12 chosen incineration temperature of 860°C is too high to optimize the enrichment 13 of Cu in the bottom ash. The reason for this is probably an uneven oxygen 14 distribution, resulting in a reducing atmosphere, which can increase metal 15 volatilization (Mojtahedi et al. 1987, Wikman et al. 2003). However, in a real 16 incineration process, the volatilized Cu would be caught in the flue gas cleaning 17 system and captured in the fly ash. The enrichment factors for most other 18 elements were around 5, but for the soil matrix forming elements, such as Al, K, 19 Mg and Na, the enrichment factors were higher (Table 2). This shows that these 20 elements are present as low-volatile minerals in the original sample as well as in 21 the ash. Barium was enriched almost 8 times during incineration, causing the 22 amount in the resulting ash to exceed the Swedish guidelines for less sensitive 23 land use (Table 2). This is not surprising, as a majority of the most common Ba 24 compounds have boiling and smelting points well above 850°C (Alberty et al. 25 2008).

1

2	Even though the Cu content in sample A1 and A2 were around 1% or higher, no
3	crystalline Cu compounds could be identified (Table 2 and 3). This suggests that
4	the Cu is present in amorphous forms, in very small crystals or as several different
5	Cu compounds. The first reason is the most likely in sample A1, as Cu effectively
6	sorbs to organic matter (Bodek 1988, Kalmykova et al. 2008, Stumm and Morgan
7	1981). However, when the bark was incinerated to ash the amorphous, i.e. the
8	organic, phase drastically decreased and Cu oxides were clearly identifiable
9	(Table 3). The presence of amorphous material was low both in A2 and in B1.
10	Silica oxide, SiO ₂ , was identified as a major compound in all samples but the
11	presence of other minerals varied between the samples, indicating different
12	characteristics, which will influence the metal leaching (Table 3).
13	
14	
14	An overview of the particle size distributions in the original samples are shown in
14	An overview of the particle size distributions in the original samples are shown in Figure 1. The bark (A1) contains pieces >1mm, while the corresponding ash
15	Figure 1. The bark (A1) contains pieces >1mm, while the corresponding ash
15 16	Figure 1. The bark (A1) contains pieces >1mm, while the corresponding ash (A1a) mainly consists of smaller particles. Sample A2 has in an earlier
15 16 17	Figure 1. The bark (A1) contains pieces >1mm, while the corresponding ash (A1a) mainly consists of smaller particles. Sample A2 has in an earlier investigation been classified as clayey soil (Kemakta Konsult AB 2012) and was
15 16 17 18	Figure 1. The bark (A1) contains pieces >1mm, while the corresponding ash (A1a) mainly consists of smaller particles. Sample A2 has in an earlier investigation been classified as clayey soil (Kemakta Konsult AB 2012) and was expected to contain a larger fraction of small particles. This could not be found,
15 16 17 18 19	Figure 1. The bark (A1) contains pieces >1mm, while the corresponding ash (A1a) mainly consists of smaller particles. Sample A2 has in an earlier investigation been classified as clayey soil (Kemakta Konsult AB 2012) and was expected to contain a larger fraction of small particles. This could not be found, something which is probably due to clustering of the small clay particles into
15 16 17 18 19 20	Figure 1. The bark (A1) contains pieces >1mm, while the corresponding ash (A1a) mainly consists of smaller particles. Sample A2 has in an earlier investigation been classified as clayey soil (Kemakta Konsult AB 2012) and was expected to contain a larger fraction of small particles. This could not be found, something which is probably due to clustering of the small clay particles into stable agglomerates during drying. An ocular inspection of the soil particles that
15 16 17 18 19 20 21	Figure 1. The bark (A1) contains pieces >1mm, while the corresponding ash (A1a) mainly consists of smaller particles. Sample A2 has in an earlier investigation been classified as clayey soil (Kemakta Konsult AB 2012) and was expected to contain a larger fraction of small particles. This could not be found, something which is probably due to clustering of the small clay particles into stable agglomerates during drying. An ocular inspection of the soil particles that remained after leaching confirmed this, as a majority of the particles were smaller

1 the particle size distribution. To get more accurate results the use of a laser

2 diffraction analyzer is recommended.

3 3.2 Sequential extraction

4 As a rule, about 50% or more of the studied metals are found in the residue fraction of all the samples, indicating low mobility during normal environmental 5 6 circumstances (Figure 2). In the bark sample A1 (Figure 2a), As > Co > Ni > Cu 7 are the metals released to the highest degree during the three-step leaching 8 procedure, and all the metals were more easily released from the bark matrix than 9 from the ash A1a (Figure 2b). From the ash sample, Mo > As > Cu > V were 10 released to the highest percentage. The metals are least mobile in sample A2 11 (Figure 2c). However, as much as 40% of the Cu is released in the first step of the 12 leaching procedure, which shows that soil washing has a high potential as an 13 efficient method for remediation and metal recovery. The reason for this may be 14 that CuSO₄ from the wood preservation process has leached through the surface 15 bark layer and into the underlying soil (50 -100cm). When water at high L/S ratio 16 is added, as is the case during infiltration of rain water during storm events, the 17 water soluble CuSO₄ may be released. In the bark (A1), the Cu is less mobile due 18 to the high affinity between Cu and organic materials (Figure 2a) (Bodek 1988, 19 Kalmykova et al. 2008, Stumm and Morgan 1981). When the bark is incinerated, 20 the mobility is generally decreased due to the formation of less soluble metal 21 compounds, such as CuO, identified in the XRD analysis (Figure 2b and Table 3). 22 Additionally, encapsulation of the metals into the ash matrix further decreases the 23 mobility.

24

Several metals were released from the sample from site B (Figure 2d): Co > Ni >
 As > Ba > Cu ≈ Zn. About 30% of the As, Co and Ni are found in the 2nd fraction,
 and can be released if the redox potential is changed towards a more reducing
 environment.

5

6 3.2 Enhanced leaching

7 As discussed in section 1, mineral acid solutions have been used to leach metals 8 from polluted soils (Moon et al. 2012, Moutsatsou et al. 2006). Usually, a stronger 9 acid solution releases more metals but on the other hand it also dissolves the soil 10 matrix itself (Kuo et al. 2006, Moutsatsou et al. 2006). Depending on the 11 properties of each unique soil, these effects will be more or less pronounced. For 12 instance, the presence and release of alkaline compounds like CaCO₃ or 13 (hydr)oxides dissolve the soil matrix and could cause a higher pH and decreased 14 metal leaching. When comparing the metal release achieved with the mineral 15 acidic solutions used in this study, i.e. process waters and HCl, it is obvious that a 16 0.01M HCl solution is too weak to neutralize the released alkaline compounds and 17 keep the pH constant (Table 4). It should be noted that even though the original 18 ash, i.e. A1a, is more alkaline than B1, pH 12.1 and 7.9, respectively, the alkaline 19 compounds are more easily released from the latter, resulting in a higher end pH 20 after HCl leaching (Table 4). In contrast, the pH levels of the acidic process water 21 leachates are barely affected by the release of alkaline compounds and these were 22 the leaching agents that released metals most effectively from all the samples (Table 4). In samples A1, A2 and B2, the concentrations of Pb^{2+} and Zn^{2+} in the 23 24 original process waters (Table 1) are often comparable to, or even higher than, the 25 concentrations in the final leachates. This is mainly due to the low amounts of

1 these metals that are present in the original soil samples compared to the 2 concentrations in the original process waters (Tables 1 and 2). Other reasons for 3 this phenomenon are the presence of active sites in the soil matrix to which the 4 metal ions can adsorb, the particle sizes, and the speciation of the metals. The importance of size distribution and the presence of active sites on Pb and Zn 5 6 leaching have been studied earlier by Karlfeldt and Steenari (2007). They found 7 that grinding of the solid material (fly ash) before leaching in some cases strongly reduced the detected amounts of Pb^{2+} and Zn^{2+} in the leachate (Karlfeldt and 8 9 Steenari 2007). After leaching A1a, only the concentrations of Ba were lower in 10 the final leachates than in the original process waters as a consequence of the 11 stable and low-soluble Ba compounds formed during incineration. In addition, if 12 Ba is leached from the ash, formation of low soluble $BaSO_4$ is likely to occur due 13 to the presence of sulfates in the process waters (Table 1).

14

15 Ammonium nitrate, NH₄NO₃, has been used in many studies, both to leach and to 16 predict the bioavailability of metal contaminants in soils, and it has been shown to 17 be especially effective for Cu leaching from ash (Gryschko et al. 2005, Karlfeldt 18 Fedje et al. 2010, Puevo et al. 2004, Schöning and Brümmer 2008). High Cl⁻ 19 concentrations can promote metal release due to the formation of soluble metalchloride-complexes like $CdCl_{y}^{(2-y)}$ and $PbCl_{3}^{-}$. For this reason, it was expected that 20 21 NH₄Cl would also be effective for non-amine complex forming elements like Pb. 22 The results showed that about 70% of the Cu was leached from A1 and A2, while 23 only 6% was leached from the ash sample A1a (Table 4). This is consistent with 24 the results from the sequential extraction procedure where the Cu was shown to be 25 most mobile in A1 and A2, but transformed to less soluble CuO and/or

1	encapsulated in the ash, i.e. A1a (Figure 2). The same leaching tendencies for Cu
2	were also seen after the EDDS and lactic acid leaching; \geq 50% of the Cu was
3	leached from A1 and A2, while <20% was leached from the other samples (Table
4	4). The leaching of Pb was generally <15% from all samples, irrespective of
5	whether NH ₄ Cl, EDDS or lactic acid was used.
6	
7	The overall leaching results suggest that the lower leaching from A1a compared to
8	A1 and A2 is due to encapsulation and formation of stable metal compounds
9	during the incineration. In the case of B1, the lower leaching is mainly due to the
10	metal speciation and incorporation of the metals in the soil matrix, caused by the
11	former industrial activities at the site. Therefore, it is not only important to gain a
12	deep knowledge about the soil matrixes and their contamination history prior to
13	soil washing, but also to remember that pre-treatment, such as grinding and
14	incineration before the washing, influence the leaching properties.
15	
16	The concentrations of Ag, Be, Cd, Se, Tl and U were also detected in the
17	leachates (<0.6 mg/kg) but for simplicity there are not included in Table 4.
18	
19	Due to the combination of low fractional release and low total amounts of many
20	valuable metals in B1, the corresponding concentrations in the leachates are all
21	<0.25 g/L (Tables 2 and 4). Metal recovery from these leachates is therefore not
22	yet economically viable. However, when using the acidic process waters to leach
23	A1 and A1a, the concentrations of Cu in the corresponding leachates are around
24	1.5 and 6 g Cu/L, respectively. This is comparable with the concentrations in the
25	initial solutions from ores used for high purity Cu production by electrolysis (1-6

1	g/L) (Jenkins et al. 2002). To minimize the presence of impurities in the Cu
2	metal, solvent extraction is used in full-scale recovery systems prior to
3	electrolysis, to selectively extract Cu. In addition, the solvent extraction step
4	increases the Cu concentration, which is necessary to operate an energy efficient
5	electrolysis. An interesting alternative, which would reduce the energy required
6	during electrolysis, is the use of microbial bio-electrochemical systems (BES). In
7	BES, microorganisms oxidize organic compounds present in e.g. waste-water,
8	thereby transforming the energy in the organic compounds into electrical energy.
9	Initial experiments to recover Cu using BES from the original process water ash
10	leachates used in this study have been performed with satisfying results. Copper
11	metal of at least 99% purity could be recovered from the ash process water
12	leachates, which contained a variety of metal ions (Table 4). This opens up for
13	simplification of the metal recovery process, as no purification step is needed
14	prior to electrolysis. In addition, the reduced energy consumption can make the
15	process profitable even though the Cu concentrations are lower than in
16	commercial electrolysis systems. More research is in progress and will be
17	discussed and published in future articles.
18	
19	The release of Cu from the A1a and A2 samples when using the acidic process

20 waters varies between 90–100% (Table 4) and predictions indicate that there is as

21 much as >30 tons of Cu present at the polluted site A (Kemakta Konsult AB

22 2012). If on average 90% of this could be recovered from the leachates, the

23 potential Cu metal value is about 170,000 Euro and if the incineration process is

24 optimized to minimize the volatilization of Cu compounds, the corresponding

- 1 potential value is almost 200,000 Euro. Even without taking into account the high 2 environmental value of remediation of site A, this could motivate soil washing. 3

4 3.3 Characterization of leached soil samples

5 The major crystalline structure in the soil residues after leaching in the acidic 6 process water "a" is more similar across the samples, than in the original samples 7 (Table 3). The soil residues are dominated by silicates and oxides and no Cu 8 compounds could be identified. Sample A1still contained large amounts of 9 amorphous material. However, no amorphous material was found after NH₄Cl 10 leaching, probably because NH₄Cl hides the content of other phases (Table 3). In 11 fact, leaching using NH_4Cl resulted in small (about 1%) or negative soil matrix 12 dissolution (-41% for A1). For the other leaching agents, between 1 and 15w% of 13 the solid samples was dissolved. The acidic leaching agents, i.e. the process 14 waters and HCl, dissolved the highest fractions of A1, A1a and B1 (10-15 w%), 15 while lactic acid showed the lowest weight losses (2-6 w%). Less than 6 w% of 16 sample A2 was dissolved irrespective of the leaching agent used, indicating a 17 stable soil matrix. In contrast, about 5 times more of sample A1a was dissolved 18 when the pH was decreased from 3.6 to ~0, i.e. when process water was used 19 instead of HCl. The release of Cu and Zn from A1a increased more than 20 times 20 when the pH was decreased, confirming the importance of metal encapsulation 21 and that ash matrix dissolution is needed to achieve efficient metal leaching. 22 23 Unfortunately, most of the metals which were present at concentrations above the

24 Swedish generic guideline values in the original soils are still above the guidelines 25 in the soil residues that remain after leaching (Table 5). This is due to the

1	dissolution of the soil matrixes, as well as to the adsorption of metal ions from the
2	process water in the case of Ba^{2+} , Zn^{2+} and Pb^{2+} , as discussed in section 3.2.
3	However, probably more important is the low leachability of some metals and the
4	fact that only one leaching step was used in these experiments. A qualitative
5	washing test using deionized water on the A sample residues remaining after
6	process water leaching clearly showed the release of blue Cu^{2+} ions, indicating a
7	higher metal release with an increased number of washing steps. However, it is
8	likely that even with the introduction of several leaching steps, some metals will
9	still exceed the Swedish guidelines (SEPA 2009b) due to their low leachability.
10	On the other hand, the leaching is generally less than 50% for most metals when
11	pH is $2 \le X \ge 10$ (Table 4) and therefore the potential release of these metals in a
12	natural environment is expected to be low, even though the total amounts exceed
13	the guidelines.
14	
15	4. Conclusions
15 16	 4. Conclusions When 2≤pH≥10 the release of metals is generally <50 w%, indicating a
16	• When $2 \le pH \ge 10$ the release of metals is generally <50 w%, indicating a
16 17	• When 2≤pH≥10 the release of metals is generally <50 w%, indicating a low metal leaching during normal environmental circumstances. However,
16 17 18	 When 2≤pH≥10 the release of metals is generally <50 w%, indicating a low metal leaching during normal environmental circumstances. However, for Cu a high total content (7600–2000 mg/kg DS at site A (Långö)) can
16 17 18 19	 When 2≤pH≥10 the release of metals is generally <50 w%, indicating a low metal leaching during normal environmental circumstances. However, for Cu a high total content (7600–2000 mg/kg DS at site A (Långö)) can lead to a significant environmental impact. From a metal recovery
16 17 18 19 20	 When 2≤pH≥10 the release of metals is generally <50 w%, indicating a low metal leaching during normal environmental circumstances. However, for Cu a high total content (7600–2000 mg/kg DS at site A (Långö)) can lead to a significant environmental impact. From a metal recovery perspective, the pH value has to be lower than 2 to achieve effective
 16 17 18 19 20 21 	 When 2≤pH≥10 the release of metals is generally <50 w%, indicating a low metal leaching during normal environmental circumstances. However, for Cu a high total content (7600–2000 mg/kg DS at site A (Långö)) can lead to a significant environmental impact. From a metal recovery perspective, the pH value has to be lower than 2 to achieve effective leaching.
 16 17 18 19 20 21 22 	 When 2≤pH≥10 the release of metals is generally <50 w%, indicating a low metal leaching during normal environmental circumstances. However, for Cu a high total content (7600–2000 mg/kg DS at site A (Långö)) can lead to a significant environmental impact. From a metal recovery perspective, the pH value has to be lower than 2 to achieve effective leaching. The acidic process waste waters leached metals the most efficiently from

1	as a pre-treatment step before soil washing. However, the release of Cu
2	was higher from the ash than from the original bark when the acidic
3	process waters were used, indicating that in certain situations incineration
4	can be a good pre-treatment alternative.
5	• Between 90 and 100 w% of the Cu was released from A1a and A2 and
6	from the un-purified leachate Cu metal (>99% purity) could be generated
7	by electrolysis, indicating that the potential for Cu metal recovery is high.
8	• After one leaching step the metal contents in the soil residues still exceed
9	the Swedish guideline values. An additional washing step is likely to
10	reduce the contents of easy soluble metal compounds in the soil residues.
11	
12	The results from this study show that soil washing followed by metal recovery is a
13	promising permanent alternative to remediate polluted soils and to utilize non-
14	used metal resources. However, more research is needed to develop an efficient
15	and solid treatment method. Two urgent matters to investigate are how to
16	optimize the leaching procedure to produce a satisfyingly clean and stable soil
17	residue, and to carry out electrolysis experiments on how to reduce the energy
18	consumption during electrolysis; both these are currently being studied. Pre-
19	treatment of the soils using e.g. grain-sizing is another important issue to study as
20	this effectively can reduce the soil amount needed to be washed and at the same
21	time increase the metal content in the enriched fraction. Another important
22	question is that this study only looks at sites with metal contaminants, whereas in
23	reality polluted sites often contain not only metals or organic pollutants, but a
24	mixture of both. For this reason, it is important to understand what happens to

1	toxic organic compounds during the optimized soil washing process, something
2	which will be studied in further research.
3	
4	5. Acknowledgements
5	This work was funded by Renova (a waste and recycling management company),
6	FORMAS (the Swedish Research Council for Environment, Agricultural Sciences
7	and Spatial Planning) and China Scholarship Council, which are gratefully
8	acknowledged. The authors also want to express their gratitude to Qianyu Li and
9	Mona Pålsson for their assistance with laboratory work.
10	
11	6. References
12	Bisone, S., Blais, J., Drogui, P., Mercier, G., 2012. Toxic metal removal from
13	polluted soil by acid extraction. Water Air Soil Poll. 223, 3739-3755
14	Bodek, I. B., 1988. Environmental inorganic chemistry. Properties, processes and
15	estimation methods. Pergamon Press, New York, USA.
16	Boliden Ab, 2011-01-13. www.boliden.com
17	Dermont, G., Bergeron, M., Mercier, G., Richer-Lafleche, M., 2008a. Metal-
18	Contaminated Soils: Remediation practices and treatment technologies. Pract.
19	Period. Hazard., Toxic, Radioact. Waste Manage. 12, 188-209
20	Dermont, G., Bergeron, M., Mercier, G., Richer-Laflèche, M., 2008b. Soil
21	washing for metal removal: A review of physical/chemical technologies and field
22	applications. J. Hazard. Mater. 152, 1-31
23	Douglas, L., 2009. Olympic Watch - The main site. Engineering and Technology
24	Magazine. The Institution of Engineering and Technology, London, UK, 6, 4

- 1 Elander, P., Andersson, F., Wrene, R., Larsson, N., 2010. Kompletterande
- 2 utredningar Österbyverken (Complementary investigations Österbyverken).
- 3 Envipro, H. A., Linköping, Sweden.
- 4 Gryschko, R., Kuhnle, R., Terytze, K., Beruer, J., Stahr, K., 2005. Soil extraction
- 5 of readily soluble heavy metals and As with 1 M NH₄NO₃ solution. J. Soils
- 6 Sediments. 5, 101-106
- 7 Jenkins, J., Dodge, P., Morenci, A., 2002. Solvent extraction transfer of Cu from
- 8 leach solution to electrolyte, in Davenport, W. G., King, M., Schlesinger, M. and
- 9 Biswas, A. K., (Eds.), Extractive metallurgy of copper, 4th edition. Pergamon,
- 10 New York, USA.
- 11 Kalmykova, Y., Strömvall, A.-M., Steenari, B.-M., 2008. Adsorption of Cd, Cu,
- 12 Ni, Pb and Zn on *Sphagnum* peat from solutions with low metal concentrations. J.
- 13 Hazard. Mater. 152, 885-891
- 14 Karlfeldt Fedje, K., Ekberg, C., Skarnemark, G., Steenari, B.-M., 2010. Removal
- 15 of hazardous metals from MSW fly ash- An evaluation of ash leaching methods.
- 16 J. Hazard. Mater. 173, 310-317
- 17 Karlfeldt Fedje, K., Ekberg, C., Skarnemark, G., Steenari, B.-M., 2012. Initial
- 18 studies of the recovery of Cu from MSWI fly ash leachates using solvent
- 19 extraction. Waste Manage. Res. 30, 1072-1080
- 20 Karlfeldt, K., Steenari, B.-M., 2007. Assessment of metal mobility in MSW
- 21 incineration ashes using water as the reagent. Fuel. 86, 1983-1993
- 22 Karlsson, S., Carlsson, P., Åberg, D., Karlfeldt Fedje, K., Krook J., Steenari, B.-
- 23 M., 2010. What is required for the viability of metal recovery from municipal
- solid waste incineration fly ash? -Design and assessment of a process plant for
- 25 copper extraction. Linnaeus ECO-TECH '10. Kalmar, Sweden.

1	Kemakta Konsult Ab, 2012. Kompletterande huvudstudie för förorenad mark vid
2	f.d. stolpimpregnering på Långö, Köpmannebro, Mellerud kommun
3	(Complementary core study for the contaminated area at the former wood
4	preservation at Långö, Köpmannebro, Mellerud municipality) Stockholm,
5	Sweden.
6	Kuo, S., Lai, M. S., Lin, C. W., 2006. Influence of solution acidity and CaCl2
7	concentration on the removal of heavy metals from metal-contaminated rice soils.
8	Environ. Pollut. (Dordrecht, Neth.). 144, 918-925
9	Labanowski, J., Monna, F., Bermond, A., Cambier, P., Fernandez, C., Lamy, I.,
10	Van Oort, F., 2008. Kinetic extractions to assess mobilization of Zn, Pb, Cu, and
11	Cd in a metal-contaminated soil: EDTA vs. citrate. Environ. Pollut. (Dordrecht,
12	Neth.). 152, 693-701
13	Laporte-Saumure, M., Martel, R., Mercier, G., 2010. Evaluation of
14	physicochemical methods for treatment of cu, pb, sb, and zn in canadian small
15	arm firing ranges backstop soils. Water Air Soil Poll. 213, 171-189
16	Lo, I. M. C., Tsang, D. C. W., Yip, T. C. M., Wang, F., Zhang, W., 2011.
17	Significance of metal exchange in EDDS-flushing column experiments.
18	Chemosphere 83, 7-13
19	Moon, D. H., Lee, JR., Wazne, M., Park, JH., 2012. Assessment of soil
20	washing for Zn in contaminated soils using various washing solutions. J. Ind. Eng.
21	Chem. (Amsterdam, Neth.). 18, 822-825
22	Moutsatsou, A., Gregou, M., Matsas, D., 2006. Washing as a remediation
23	technology applicable in soils heavily polluted by mining-metallurgical activities.
24	Chemosphere 63, 1632-1640

1	Pueyo, M., Lopez-Sanchez, J. F., Rauret, G., 2004. Assessment of CaCl ₂ , NaNO ₃
2	and NH_4NO_3 extraction procedures for the study of Cd, Cu, Pb and Zn
3	extractability in contaminated soils. Anal. Chim. Acta. 504, 217-226
4	Rauret, G. S. A., 1999. Improvement of the BCR three step sequential extraction
5	procedure prior to the certification of new sediment and soil reference materials. J.
6	Environ. Monit. 57-61
7	Schlumberger, S., Bühler, J., 2012. Metal recovery in fly and filter ash in waste to
8	energy plants. Ash 2012. Strömberg, B. Stockholm, Sweden.
9	Schlumberger, S., Schuster, M., Ringmann, S., Koralewska, R., 2007. Recovery
10	of high purity zinc from filter ash produced during the thermal treatment of waste
11	and inerting of residual materials. Waste Manage. Res. 25, 547-555
12	Schöning, A., Brümmer, G. W., 2008. Extraction of mobile element fractions in
13	forest soils using ammonium nitrate and ammonium chloride. J. Plant Nutr. Soil
14	Sci. 171, 392-398
15	Sepa, 2009a. Lägesbeskrivning av efterbehandlingsarbetet i landet 2008 (The state
16	of art for after-treatment of contaminated areas in the country 2008). Swedish
17	Environmental Protection Agency, Stockholm, Sweden.
18	Sepa, 2009b. Riktvärden för förorenad mark Modellbeskrivning och vägledning
19	Rapport 5976 (Guidelines for contaminated soil Model description and guidance
20	Report 5976) Swedish Environmental Protection Acency, Stockholm, Sweden.
21	Shammas, N., 2009. Removal of heavy metals from soil in Handbook of advanced
22	industrial and hazardous wastes treatment, in Wang, L., (Eds.), Advances in
23	Industrial and Hazardous Wastes Treatment Taylor & Frances group, LLC, New
24	York.

- 1 Shuman, L. M., 1982. Separating Soil Iron- and Manganesse- Oxide Fractions for
- 2 Microelement Analysis. J. Soil Sci. 1099-1102
- 3 Stenzel, F., Mocker, M., I., L., Faulstich, M., 2011. Resource efficiency of bottom
- 4 ash. From ashes to metals Bottom ash from Waste-to-Energy plants as a material
- 5 resource, 5th-6th of September. Copenhagen, Denmark.
- 6 Stumm, W., Morgan, J. J., 1981. Aquatic Chemistry, 2nd edition. Wiley, New
- 7 York, USA.
- 8 Tandy, S., Bossart, K., Mueller, R., Ritschel, J., Hauser, L., Schulin, R., Nowack,
- 9 B., 2004. Extraction of heavy metals from soils using biodegradable chelating
- 10 agents. Environ. Sci. Technol. 38, 937-944
- 11 Voglar, D., Lestan, D., 2013. Pilot-scale washing of Pb, Zn and Cd contaminated
- 12 soil using EDTA and process water recycling. Chemosphere. 91, 76-82
- 13 Vougy, H. D., 1856. Dr. Boucherie's patent process for preserving wood from
- 14 decay. J Franklin I. 62, 1-4
- 15
- 16

Figure captions

Figure 1. Particle size distribution profiles of the samples from the contaminated sites A1, A1a, A2 and B1 observed by dry sieving.

Figure 2. Sequential extraction distribution and release of As, Ba, Co, Cr, Cu, Mo, Ni, Pb, V and Zn in a) A1, b) A1a, c) A2 (not Mo) and d) B1. All values are given as w% (uncertainties 15-30%). Step 1; acid exchangeable fraction, Step 2; reducible fraction, Step 3; oxidizable fraction.

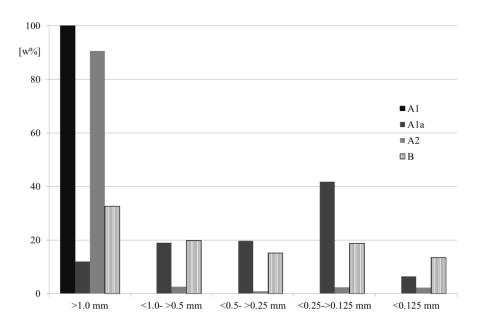
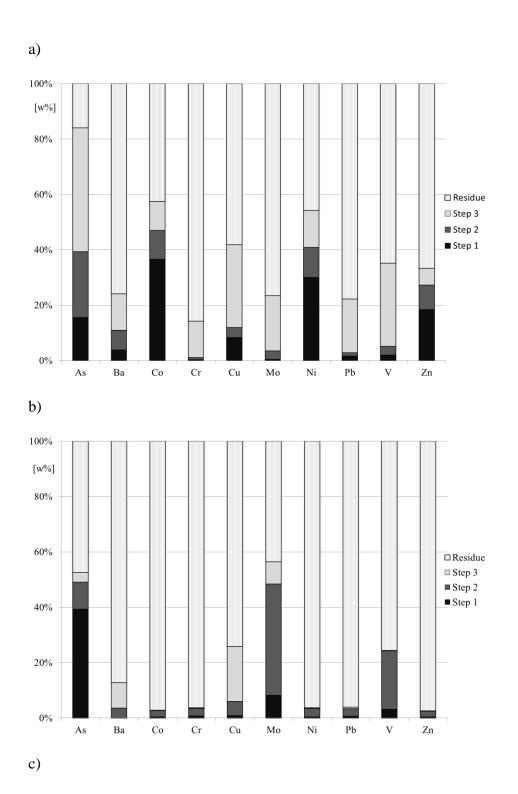



Figure 1. Particle size distribution profiles of the samples from the contaminated sites A1, A1a, A2 and B1 observed by dry sieving.

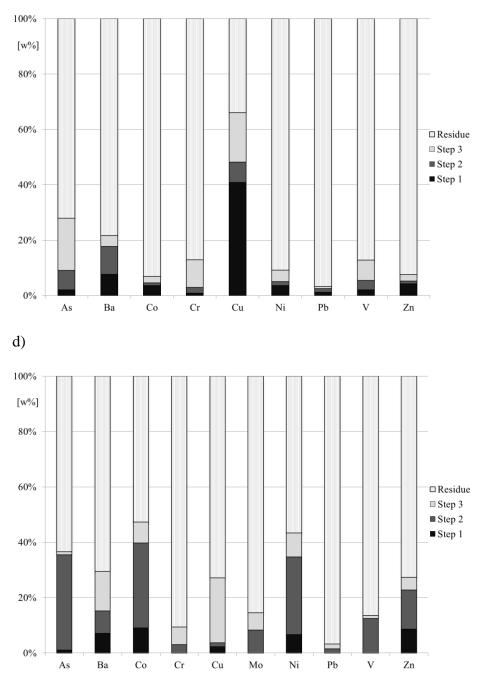


Figure 2. Sequential extraction distribution and release of As, Ba, Co, Cr, Cu, Mo, Ni, Pb, V and Zn in a) A1, b) A1a, c) A2 (not Mo) and d) B1. All values are given as w% <u>(uncertainties</u> <u>15-30%)</u>. Step 1; acid exchangeable fraction, Step 2; reducible fraction, Step 3; oxidizable fraction.

Table 1. Concentrations of major ions present in the acidic process waters "a" and "n" used

for leaching experiments^{$\frac{1}{2}$}.

Process water	Cl	SO ₄ ²⁻	Na ⁺	NH4 ⁺	Ca ²⁺	Pb ²⁺	Zn ²⁺	Al ³⁺
[g/L] ²								
a	60	1.5	0.7	1.2	0.08	0.04	0.28	< 0.01
n	53	1.0	0.5	1.8	2.2	0.03	0.15	0.07

 1 Cu²⁺, K⁺, Mg²⁺, NO₂⁻, NO₃⁻ and PO₄³⁻ were all detected in amounts <0.002g/L.

² Measurement uncertainties are 20-30%,

Formatted: Superscript

Table 2. Average total amounts of selected major and minor elements in the original soil samples. All amounts are shown in mg/kg DS: uncertainties in the analyzes vary between 15-30%.

	A1	A1a	A2	B1	Sensitive	Less sensitive
	(bark)	(bark ash)	(Soil)	(Soil)	land use ¹	land use ¹
pH _(H2O)	4.9	12.1	5.4	7.9		
<u>DS, %</u>	<u>24</u>	<u>100</u>	<u>75</u>	<u>97</u>		
Element [mg/kg DS	5]				
Si	42000	_2	—	_	*3	*
Al	4700	63000	18000	5700	*	*
Ca	6100	25500	2400	16000	*	*
Fe	5800	28000	12000	51000	*	*
K	520	23000	1600	1100	*	*
Mg	570	5500	2900	4600	*	*
Mn	120	590	170	1600	*	*
Na	<110	20000	120	200	*	*
Р	670	2100	360	460	*	*
Ti	_	2700	-	5700	*	*
As	4	15	<3	<i>34</i> ⁴	10	25
Ba	90	700	75	1000	200	300
Cd	0.4	1.0	<0.3	<0.2	0.5	15
Со	2	15	3	1300	15	35
Cr	15	30	10	2100	80	150
Cu	20000	65000	7600	100	80	200

Formatted Table

Hg	0.10	< 0.05	_	_	0.25	2.5
Мо	2	4	-	4000	40	100
Ni	15	60	7.0	960	40	120
Pb	70	220	15	200	50	400
S	-	14000	1000	660	*	*
Sb	<1	<6	-	-	12	30
Se	1	_	<1	<1	*	*
Sn	2.0	_	<0.3	2	*	*
Sr	-	180	-	-	*	*
V	10	70	30	1200	100	200
W	-			560	*	*
Zn	140	400	40	180	250	500
¹ (<u>SEPA 2</u>	. <u>009b</u>)		1			<u> </u>

²-not analyzed

³*no guideline values exist

⁴Italic style; above Swedish guidelines for less sensitive land use

Table 3. Major crystalline compounds identified in the original and selected leached samples A1, A1a, A2 and B1 using XRD.

	A1 ¹		A	1a	I	A2	ŀ	B1 ²
	bark		bar	k ash	s	oil	s	oil
Org ³	L."a",4	L _{NH4Cl} ⁵	Org ³	L."a",4	Org ³	L.",a" ⁴	Org ³	L."a" ⁴
	Minor			Minor		Minor		
Minor			Minor	Minor	Major	Minor	Trace	Trace
		Trace						
							Minor	
Minor					Minor			
	Minor	Minor						
Major	Major	Trace	Major	Major	Major	Major	Major	Major
			Trace					
Trace					Trace			
			Major					
			Minor					
								Minor
								Minor
	<u> </u>	<u> </u>	<u> </u>	1	<u> </u>	<u> </u>	<u> </u>	<u> </u>
							Trace	
		Major						
		Major						
	Minor Minor Minor Major	bark Org ³ L _{"a} " Minor Minor Minor Minor Minor Minor Minor Minor	barkOrg³L _{"a} "L _{NH4C1} 5Org³MinorIMinorIIMinorIIIIIMinorMinorMinorMinorMinorMinorMajorMajorTraceTraceII <td>barkbarOrg³L.~a."L.NH4ClOrg³MinorIIIMinorIIIMinorIIIMinorIIIMinorIIIMinorIIIMinorIIIMinorMinorMinorIMinorMinorTraceMajorMajorMajorTraceITraceIIIInaceIII<t< td=""><td>barkbark ashOrg³La.,4NH4C1Org³La.,4MinorIa.,4Org³La.,4MinorMinorMinorMinorMinorIa.,4MinorMinorMinorIa.,4Ia.,4MinorMinorIa.,4Ia.,4MinorMinorIa.,4Ia.,4Ia.,4MinorIa.,4Ia.,4MinorMinorIa.,4Ia.,4Ia.,4MinorIa.,4Ia.,4Ia.,4MinorIa.,4Ia.,4Ia.,4MinorIa.,4Ia.,4Ia.,4MinorMinorIa.,4Ia.,4MinorMinorIa.,4Ia.,4MinorMinorIa.,4Ia.,4MinorMinorIa.,4Ia.,4MajorMinorIa.,4Ia.,4TraceIa.,4Ia.,4Ia.,4TraceIa.,4I</td><td>barkbark ashs$Org^3$$L_{a^{a^a}}$$L_{NH4Cl}^5$$Org^3$$L_{a^{a^a}}$$Org^3$MinorMinorMinorMinorMinorMajorMinorIIMinorMinorMajorMinorIIIIIMinorIIIIIMinorMinorMinorIIMinorMinorIIIIMinorMinorIIIIMinorMinorIIIIMajorMajorTraceMajorMajorITraceIIIIITraceII<tdi< td=""><td>barkbark ashsoil$Org^3$$L_{aa}^{a}$$L_{NH4C1}^{5}$$Org^3$$L_{aa}^{a}$$Org^3$$L_{aa}^{a}$$Org^3$$L_{aa}^{a}$$Minor$$Minor$MinorMinorMinor$Minor$$Iaa$$Minor$MinorMinor$Minor$$Iaa$$Iaa$$Minor$$Minor$$Minor$$Minor$$Iaa$$Iaa$$Iaa$$Iaa$$Iaa$$Minor$$Iaa$$Iaa$$Iaa$$Iaa$$Iaa$$Minor$$Iaa$$Iaa$$Iaa$$Iaa$$Iaa$$Minor$$Minor$$Iaa$$Iaa$$Iaa$$Iaa$$Minor$$Minor$$Iaa$$Iaa$$Iaa$$Iaa$$Minor$$Minor$$Iaa$$Iaa$$Iaa$$Iaa$<math>MinorMinor$Iaa$$Iaa$$Iaa$$Iaa$$Major$$Major$$Trace$$Iaa$$Iaa$$Iaa$$Iaaa$$Iaaa$$Iaaa$$Iaaa$$Iaaa$$Iaaa$$Iaaa$$Iaaa$$Iaaa$$Iaaa$$Iaaa$$Iaaa$$Iaaa$$Iaaa$$Iaaa$$Iaaa$$Iaaa$$Iaaa$$Iaaaa$$Iaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$</math></td><td>barkbark ashsoils$Org^3$$L_{aa}^{aa}$$L_{NH4Cl}^5$$Org^3$$L_{aa}^{aa}$$Org^3$$L_{aa}^{aa}$$Org^3$MinorMinorMinorMinorMinorMinorMinorMinorMinorIMinorMinorMinorMinorMinorMinorIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII</td></tdi<></td></t<></td>	barkbarOrg³L.~a."L.NH4ClOrg³MinorIIIMinorIIIMinorIIIMinorIIIMinorIIIMinorIIIMinorIIIMinorMinorMinorIMinorMinorTraceMajorMajorMajorTraceITraceIIIInaceIII <t< td=""><td>barkbark ashOrg³La.,4NH4C1Org³La.,4MinorIa.,4Org³La.,4MinorMinorMinorMinorMinorIa.,4MinorMinorMinorIa.,4Ia.,4MinorMinorIa.,4Ia.,4MinorMinorIa.,4Ia.,4Ia.,4MinorIa.,4Ia.,4MinorMinorIa.,4Ia.,4Ia.,4MinorIa.,4Ia.,4Ia.,4MinorIa.,4Ia.,4Ia.,4MinorIa.,4Ia.,4Ia.,4MinorMinorIa.,4Ia.,4MinorMinorIa.,4Ia.,4MinorMinorIa.,4Ia.,4MinorMinorIa.,4Ia.,4MajorMinorIa.,4Ia.,4TraceIa.,4Ia.,4Ia.,4TraceIa.,4I</td><td>barkbark ashs$Org^3$$L_{a^{a^a}}$$L_{NH4Cl}^5$$Org^3$$L_{a^{a^a}}$$Org^3$MinorMinorMinorMinorMinorMajorMinorIIMinorMinorMajorMinorIIIIIMinorIIIIIMinorMinorMinorIIMinorMinorIIIIMinorMinorIIIIMinorMinorIIIIMajorMajorTraceMajorMajorITraceIIIIITraceII<tdi< td=""><td>barkbark ashsoil$Org^3$$L_{aa}^{a}$$L_{NH4C1}^{5}$$Org^3$$L_{aa}^{a}$$Org^3$$L_{aa}^{a}$$Org^3$$L_{aa}^{a}$$Minor$$Minor$MinorMinorMinor$Minor$$Iaa$$Minor$MinorMinor$Minor$$Iaa$$Iaa$$Minor$$Minor$$Minor$$Minor$$Iaa$$Iaa$$Iaa$$Iaa$$Iaa$$Minor$$Iaa$$Iaa$$Iaa$$Iaa$$Iaa$$Minor$$Iaa$$Iaa$$Iaa$$Iaa$$Iaa$$Minor$$Minor$$Iaa$$Iaa$$Iaa$$Iaa$$Minor$$Minor$$Iaa$$Iaa$$Iaa$$Iaa$$Minor$$Minor$$Iaa$$Iaa$$Iaa$$Iaa$<math>MinorMinor$Iaa$$Iaa$$Iaa$$Iaa$$Major$$Major$$Trace$$Iaa$$Iaa$$Iaa$$Iaaa$$Iaaa$$Iaaa$$Iaaa$$Iaaa$$Iaaa$$Iaaa$$Iaaa$$Iaaa$$Iaaa$$Iaaa$$Iaaa$$Iaaa$$Iaaa$$Iaaa$$Iaaa$$Iaaa$$Iaaa$$Iaaaa$$Iaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$</math></td><td>barkbark ashsoils$Org^3$$L_{aa}^{aa}$$L_{NH4Cl}^5$$Org^3$$L_{aa}^{aa}$$Org^3$$L_{aa}^{aa}$$Org^3$MinorMinorMinorMinorMinorMinorMinorMinorMinorIMinorMinorMinorMinorMinorMinorIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII</td></tdi<></td></t<>	barkbark ashOrg³La.,4NH4C1Org³La.,4MinorIa.,4Org³La.,4MinorMinorMinorMinorMinorIa.,4MinorMinorMinorIa.,4Ia.,4MinorMinorIa.,4Ia.,4MinorMinorIa.,4Ia.,4Ia.,4MinorIa.,4Ia.,4MinorMinorIa.,4Ia.,4Ia.,4MinorIa.,4Ia.,4Ia.,4MinorIa.,4Ia.,4Ia.,4MinorIa.,4Ia.,4Ia.,4MinorMinorIa.,4Ia.,4MinorMinorIa.,4Ia.,4MinorMinorIa.,4Ia.,4MinorMinorIa.,4Ia.,4MajorMinorIa.,4Ia.,4TraceIa.,4Ia.,4Ia.,4TraceIa.,4I	barkbark ashs Org^3 $L_{a^{a^a}}$ L_{NH4Cl}^5 Org^3 $L_{a^{a^a}}$ Org^3 MinorMinorMinorMinorMinorMajorMinorIIMinorMinorMajorMinorIIIIIMinorIIIIIMinorMinorMinorIIMinorMinorIIIIMinorMinorIIIIMinorMinorIIIIMajorMajorTraceMajorMajorITraceIIIIITraceII <tdi< td=""><td>barkbark ashsoil$Org^3$$L_{aa}^{a}$$L_{NH4C1}^{5}$$Org^3$$L_{aa}^{a}$$Org^3$$L_{aa}^{a}$$Org^3$$L_{aa}^{a}$$Minor$$Minor$MinorMinorMinor$Minor$$Iaa$$Minor$MinorMinor$Minor$$Iaa$$Iaa$$Minor$$Minor$$Minor$$Minor$$Iaa$$Iaa$$Iaa$$Iaa$$Iaa$$Minor$$Iaa$$Iaa$$Iaa$$Iaa$$Iaa$$Minor$$Iaa$$Iaa$$Iaa$$Iaa$$Iaa$$Minor$$Minor$$Iaa$$Iaa$$Iaa$$Iaa$$Minor$$Minor$$Iaa$$Iaa$$Iaa$$Iaa$$Minor$$Minor$$Iaa$$Iaa$$Iaa$$Iaa$<math>MinorMinor$Iaa$$Iaa$$Iaa$$Iaa$$Major$$Major$$Trace$$Iaa$$Iaa$$Iaa$$Iaaa$$Iaaa$$Iaaa$$Iaaa$$Iaaa$$Iaaa$$Iaaa$$Iaaa$$Iaaa$$Iaaa$$Iaaa$$Iaaa$$Iaaa$$Iaaa$$Iaaa$$Iaaa$$Iaaa$$Iaaa$$Iaaaa$$Iaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$</math></td><td>barkbark ashsoils$Org^3$$L_{aa}^{aa}$$L_{NH4Cl}^5$$Org^3$$L_{aa}^{aa}$$Org^3$$L_{aa}^{aa}$$Org^3$MinorMinorMinorMinorMinorMinorMinorMinorMinorIMinorMinorMinorMinorMinorMinorIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII</td></tdi<>	barkbark ashsoil Org^3 L_{aa}^{a} L_{NH4C1}^{5} Org^3 L_{aa}^{a} Org^3 L_{aa}^{a} Org^3 L_{aa}^{a} $Minor$ $Minor$ MinorMinorMinor $Minor$ Iaa $Minor$ MinorMinor $Minor$ Iaa Iaa $Minor$ $Minor$ $Minor$ $Minor$ Iaa Iaa Iaa Iaa Iaa $Minor$ Iaa Iaa Iaa Iaa Iaa $Minor$ Iaa Iaa Iaa Iaa Iaa $Minor$ $Minor$ Iaa Iaa Iaa Iaa $Minor$ $Minor$ Iaa Iaa Iaa Iaa $Minor$ $Minor$ Iaa Iaa Iaa Iaa $MinorMinorIaaIaaIaaIaaMajorMajorTraceIaaIaaIaaIaaaIaaaIaaaIaaaIaaaIaaaIaaaIaaaIaaaIaaaIaaaIaaaIaaaIaaaIaaaIaaaIaaaIaaaIaaaaIaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	barkbark ashsoils Org^3 L_{aa}^{aa} L_{NH4Cl}^5 Org^3 L_{aa}^{aa} Org^3 L_{aa}^{aa} Org^3 MinorMinorMinorMinorMinorMinorMinorMinorMinorIMinorMinorMinorMinorMinorMinorIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

 ${}^{1}A = site Långön$ ${}^{2}B = site Österbybruk$

³Original

⁴Leached in process water "a"

⁵Leached in NH₄Cl

Table 4. Fractions of metals and soil matrix components released after 2 hours of leaching using various leaching agents. All amounts are given as w% released compared to the total amount in the original samples A1, A1a, A2 and B1. The pH values at the start and end of each leaching experiment are also included.

Leach	Sta	En	Al	As	Ba	Pb	Co	Cu	Cr	Mn	Мо	Ni	V	Zn
ing	rt	d												
agent	pН	р												
		н												
							[w%]	<u> </u>					l	
Process	water	n												
A1	0.2	0.2	<u>46</u> 46	<u>36</u> 36	<u>16</u> 16	<u>8.0</u> 8	<u>75</u> 75	<u>72</u> 72	<u><1.0</u>	<u>76</u> 76	<1.0	<u>100</u> 4	<u>49</u> 49	<u>35</u> 35
	0.2	0.12	<u></u>	<u>50</u> 50	1010	<u>0.0</u> 0	<u>,,,</u> ,,,	<u></u> , _	4	<u></u>	<u></u>	<u>100</u> 1	<u></u> ,	<u></u>
			1.01	1001	1.0			0505					10.10	1001
A1a	0.2	0.2	<u>4.0</u> 4	<u>100</u> 4	<u><1.0</u>	<u>2.0</u> 2	<u>4.0</u> 4	<u>87</u> 87	<u><1</u> €	<u>23</u> 23	<u>6161</u>	<u>5.0</u> 5	<u>43</u> 43	<u>100</u> 4
				00	<1				4					00
A2	0.2	0.2	<u>16</u> 16	<u><1.0</u>	<u>5.0</u> 5	<u><1.0</u>	<u>4.0</u> 4	<u>97</u> 97	<u>4.0</u> 4	<u>15</u> 15	<u>_2_</u> +	<u>8.0</u> 8	<u>17</u> 17	<u><1.0</u>
				<1		<1								<1
B1	0.2	0.2	<u>21</u> 21	<u>10</u> 10	<u><1.0</u>	<u>22</u> 22	<u>63</u> 63	<u>93</u> 93	<u>19</u> 19	<u>55</u> 55	<u>5.0</u> 5	<u>96</u> 96	<u>23</u> 23	<u>57</u> 57
					<1									
Process	water	a				l	l							
A1	<0.	<0	<u>50</u> 50	<u>50</u> 50	<u>10</u> 10	<u>53</u> 53	<u>82</u> 82	<u>9292</u>	<u>5.0</u> 5	<u>83</u> 83	<u><1.0</u>	<u>100</u> +	<u>54</u> 54	<u><1.0</u>
	1	.1									<1	00		<1
Ala	<0.	<0	<u>6.0</u> 6	<u>100</u> +	<u><1.0</u>	<u>2.0</u> 2	<u>6.0</u> 6	<u>100</u> +	<u>3.0</u> 3	<u>2626</u>	<u>93</u> 93	<u>6.0</u> 6	<u>45</u> 45	<u>100</u> +
	1	.1	<u>0.0</u> 0	<u>100</u> 1	<u></u>	<u></u> _	<u>0.0</u> 0	<u>++++</u> +	<u>510</u> 0	<u>=0</u> 20	2010	<u></u> 0	<u></u>	<u>00</u>
4.2		.1 <0	2121			2020	1010		1010	2626		1414	2020	
A2	<0.		<u>21</u> 21	<u><1.0</u>	<u>5.0</u> 5	<u>39</u> 39	<u>1212</u>	<u>9191</u>	<u>10</u> 10	<u>26</u> 26		<u>14</u> 14	<u>20</u> 20	<u><1.0</u>
	1	.1		<1										<1
B1	<0.	0.1	<u>24</u> 24	<u>52</u> 52	<u>2.0</u> 2	<u>20</u> 20	<u>82</u> 82	<u>10</u> 10	<u>20</u> 20	<u>45</u> 45	<u>6.0</u> 6	<u>85</u> 85	<u>23</u> 23	<u><1.0</u>
	1													<1
HCl	1		1	1	1	1	1	I	1	1	1	1	I	1
A1	2.0	3.6	<u><1.0</u>	<u>4.0</u> 4	<u>4.0</u> 4	<u>1.0</u> 1	<u>28</u> 28	<u>2.0</u> 2	<u><1.0</u>	<u>47</u> 47	<u><1.0</u>	<u>28</u> 28	<u><1.0</u>	<u>31</u> 31

			<1						<1		<1		<1	
Ala	2.0	3.6	<u><1.0</u>	<u>39</u> 39	<u><1.0</u>	<u><1.0</u>	<u>1.0</u> +	<u>2.0</u> 2	<u><1.0</u>	<u>10</u> 10	<u>19</u> 19	<u>1.0</u> 1	<u>6.0</u> 6	<u>.05</u> 5
			<1		<1	<1			<1					
A2	2.0	3.9	<u><1.0</u>	<u>1.0</u> 4	<u>1.0</u> 4	<u><10</u>	<u>40</u> 4	<u>20</u> 20	<u>1.0</u> 4	<u>17</u> 17		<u>6.0</u> 6	<u><1</u> €	<u>44</u> 44
			<1			<1							4	
B1	2.0	5.4	<u><1.0</u>	<u><1.0</u>	<u>1.0</u> 4	<u><1.0</u>	<u><1.0</u>	<u><1</u> €	<u><1.0</u>	<u><1.0</u>	<u><1.0</u>	<u><1.0</u>	<u><1.0</u>	<u>6.0</u> 6
			<1	<1		<1	<1	4	<1	<1	<1	<1	<1	
NH ₄ Cl				1	1		1	1		1	1	1	1	
A1	9.6	9.6	<u>3.0</u> 3	<u>21</u> 21	<u>15</u> 15	<u>5.0</u> 5	<u>7.0</u> 7	<u>67</u> 67	<u>1.0</u> 4	<u>56</u> 56	<u>43</u> 43	<u>100</u> 4	<u>.04</u> 4	<u>86</u> 86
												00		
Ala	9.6	9.6	<u><1.0</u>	<u>8.0</u> 8	<u>3.0</u> 3	<u><1.0</u>	<u><1.0</u>	<u>6.0</u> 6	<u>1.0</u> 4	<u>3.0</u> 3	<u>100</u> 4	<u>2.0</u> 2	<u>8.0</u> 8	<u><1.0</u>
			<1			<1	<1				00			<1
A2	9.6	9.6	<u>1.0</u> 4	<u>4.0</u> 4	<u>2.0</u> 2	<u>1.0</u> 4	<u>3.0</u> 3	<u>79</u> 79	<u>3.0</u> 3	<u>13</u> 13	=-	<u>23</u> 23	<u>1.0</u> 4	<u>7.0</u> 7
B1	9.6	9.6	<u><1.0</u>	<u>1.0</u> 4	<u>5.0</u> 5	<u><1.0</u>	<u>4.0</u> 4	<u>26</u> 26	<u><1.0</u>	<u><1.0</u>	<u>1.0</u> 4	<u>7.0</u> 7	<u><1.0</u>	<u>13</u> 13
			<1			<1			<1	<1			<1	
Lactic a	cid	1	L			L			L					L
A1	1.7	2.0	<u>29</u> 29	<u>41</u> 41	<u>5.0</u> 5	<u>9.0</u> 9	<u>5252</u>	<u>48</u> 48	<u>3.0</u> 3	<u>67</u> 67	<u>30</u> 30	<u>66</u> 66	<u>35</u> 35	<u>5252</u>
A1a				0101						<u>1515</u>	<u>100</u> +			
1114	1.7	2.0	<u>1.0</u> 4	<u>81</u> 81	<u><1.0</u>	<u>4.0</u> 4	<u>2.0</u> 2	<u>18</u> 18	<u><1.0</u>	<u>15</u> 15	1001	<u>2.0</u> 2	<u>30</u> 30	<u>1.0</u> +
	1.7	2.0	<u>1.0</u> 4	<u>81</u> 81	<u><1.0</u> <1	<u>4.0</u> 4	<u>2.0</u> 2	<u>18</u> 18	<u><1.0</u> <1	<u>15</u> 15	00	<u>2.0</u> 2	<u>30</u> 30	<u>1.0</u> +
Ala A2	1.7 1.7	2.0	<u>1.0</u> + <u>14</u> 14	<u>8181</u> <u>14</u> 14		<u>4.0</u> 4 <u>8.0</u> 8	<u>2.0</u> 2 <u>7.0</u> 7	<u>1848</u> <u>100</u> 4		<u>15</u> +5 <u>26</u> 26		<u>2.0</u> 2 <u>8.0</u> 8	<u>30</u> 30 <u>14</u> 14	<u>1.0</u> + <u>8.0</u> 8
					<1				<1		00			
					<1			<u>100</u> 4	<1		00			
A2	1.7	1.9	<u>14</u> 14	<u>14</u> 14	<1 <u>2.0</u> 2	<u>8.0</u> 8	<u>7.0</u> 7	<u>100</u> + 00	<1 <u>6.0</u> 6	<u>26</u> 26	00 	<u>8.0</u> 8	<u>14</u> 14	<u>8.0</u> 8
A2	1.7	1.9	<u>14</u> 14	<u>14</u> 14	<1 <u>2.0</u> 2	<u>8.0</u> 8	<u>7.0</u> 7	<u>100</u> + 00	<1 6.0€ <1.0	<u>26</u> 26	00 	<u>8.0</u> 8	<u>14</u> 14	<u>8.0</u> 8
A2 B1	1.7	1.9	<u>14</u> 14	<u>14</u> 14	<1 <u>2.0</u> 2	<u>8.0</u> 8	<u>7.0</u> 7	<u>100</u> + 00	<1 6.0€ <1.0	<u>26</u> 26	00 	<u>8.0</u> 8	<u>14</u> 14	<u>8.0</u> 8
A2 B1 EDDS	1.7	1.9 2.3	<u>14</u> 14 <u>18</u> 18	<u>14</u> 14 <u>14</u> 14	<1 2.02 1242	<u>8.0</u> 8	<u>7.0</u> 7 <u>31</u> 31	<u>100</u> + 00 <u>18</u> +8	<1 6.06 ≤1.0 <1	<u>2626</u> <u>30</u> 30	00 =- <u>4.0</u> 4	<u>8.0</u> 8 <u>22</u> 22	<u>14</u> 14 <u>8.0</u> 8	<u>8.0</u> 8 <u>31</u> 31
A2 B1 EDDS	1.7	1.9 2.3	<u>14</u> 14 <u>18</u> 18	<u>14</u> 14 <u>14</u> 14	<1 2.02 1242	<u>8.0</u> 8	<u>7.0</u> 7 <u>31</u> 31	<u>100</u> + 00 <u>18</u> +8	<1 6.06 ≤1.0 <1	<u>2626</u> <u>30</u> 30	00 =- <u>4.0</u> 4	8.08 22222 1004	<u>14</u> 14 <u>8.0</u> 8	<u>8.0</u> 8 <u>31</u> 31
A2 B1 EDDS A1	1.7 1.7 7.0	1.9 2.3 6.7	<u>14</u> 14 <u>18</u> 18 <u>9.0</u> 9	<u>14</u> 14 <u>14</u> 14 <u>28</u> 28	<1 <u>2.02</u> <u>1242</u> <u>2.02</u>	8.08 6.06 4646	<u>7.0</u> 7 <u>31</u> 31 <u>70</u> 70	<u>100</u> + 00 <u>18</u> +8	<1 6.06 <1.0 <1 2.02	<u>2626</u> <u>3030</u> <u>3333</u>	00 =- <u>4.0</u> 4	8.08 22222 1004 00	<u>1414</u> <u>8.08</u> <u>2525</u>	8.08 3131 6464
A2 B1 EDDS A1	1.7 1.7 7.0	1.9 2.3 6.7	<u>14</u> +4 <u>18</u> +8 <u>9.0</u> 9 ≤ <u>1.0</u>	<u>14</u> 14 <u>14</u> 14 <u>28</u> 28	<1 <u>2.02</u> <u>1242</u> <u>2.02</u>	8.08 6.06 4646	<u>7.0</u> 7 <u>31</u> 31 <u>70</u> 70 ≤ <u>1.0</u>	<u>100</u> + 00 <u>18</u> +8	<1 <1.0 <1.0 <1.0 <1.0 <1.0	<u>2626</u> <u>3030</u> <u>3333</u>	00 =- <u>4.0</u> 4	8.08 22222 1004 00	<u>1414</u> <u>8.08</u> <u>2525</u>	<u>8.0</u> 8 <u>31</u> 34 <u>64</u> 64 ≤ <u>1.0</u>

				<1						<1		<1			
Î	¹ Measurement uncertainties are 20-30%not measured														

² –not measured

Table 4. Fractions of metals and soil matrix components released after 2 hours of leaching using various leaching agents. All amounts are given as w% released compared to the total amount in the original samples A1, A1a, A2 and B1. The pH values at the start and end of each leaching experiment are also included.

Leaching	Start	End	Al	As	Ba	Pb	Co	Cu	Cr	Mn	Мо	Ni	V	Zn
agent	рН	pН												
					l	[w%	6] ¹	I	I				I	
Process wa	ter n													
A1	0.2	0.2	46	36	16	8.0	75	72	<1.0	76	<1.0	100	49	35
Ala	0.2	0.2	4.0	100	<1.0	2.0	4.0	87	<1	23	61	5.0	43	100
A2	0.2	0.2	16	<1.0	5.0	<1.0	4.0	97	4.0	15	_2	8.0	17	<1.0
B1	0.2	0.2	21	10	<1.0	22	63	93	19	55	5.0	96	23	57
Process wat	ter a													
A1	<0.1	<0.1	50	50	10	53	82	92	5.0	83	<1.0	100	54	<1.0
A1a	<0.1	<0.1	6.0	100	<1.0	2.0	6.0	100	3.0	26	93	6.0	45	100
A2	<0.1	<0.1	21	<1.0	5.0	39	12	91	10	26	_	14	20	<1.0
B1	<0.1	0.1	24	52	2.0	20	82	10	20	45	6.0	85	23	<1.0
HCl														
A1	2.0	3.6	<1.0	4.0	4.0	1.0	28	2.0	<1.0	47	<1.0	28	<1.0	31
Ala	2.0	3.6	<1.0	39	<1.0	<1.0	1.0	2.0	<1.0	10	19	1.0	6.0	.05
A2	2.0	3.9	<1.0	1.0	1.0	<10	40	20	1.0	17	_	6.0	<1	44
B1	2.0	5.4	<1.0	<1.0	1.0	<1.0	<1.0	<1	<1.0	<1.0	<1.0	<1.0	<1.0	6.0
NH ₄ Cl		1		I	I	I	I	1	I	I	I	I	I	I
A1	9.6	9.6	3.0	21	15	5.0	7.0	67	1.0	56	43	100	.04	86
Ala	9.6	9.6	<1.0	8.0	3.0	<1.0	<1.0	6.0	1.0	3.0	100	2.0	8.0	<1.0
A2	9.6	9.6	1.0	4.0	2.0	1.0	3.0	79	3.0	13	_	23	1.0	7.0
B1	9.6	9.6	<1.0	1.0	5.0	<1.0	4.0	26	<1.0	<1.0	1.0	7.0	<1.0	13
Lactic acid			1	<u> </u>	I	I	<u> </u>	1	I	<u> </u>	<u> </u>	<u> </u>	I	<u> </u>
A1	1.7	2.0	29	41	5.0	9.0	52	48	3.0	67	30	66	35	52
		1	I											

A1a	1.7	2.0	1.0	81	<1.0	4.0	2.0	18	<1.0	15	100	2.0	30	1.0
A2	1.7	1.9	14	14	2.0	8.0	7.0	100	6.0	26	-	8.0	14	8.0
B1	1.7	2.3	18	14	12	6.0	31	18	<1.0	30	4.0	22	8.0	31
EDDS														
A1	7.0	6.7	9.0	28	2.0	46	70	70	2.0	33	12	100	25	64
A1a	7.0	5.4	<1.0	22	2.0	15	<1.0	1.0	<1.0	6.0	97	1.0	23	<1.0
A2	7.0	6.7	6.0	9.0	6.0	16	7.0	99	5.0	28	-	9.0	6.0	36
B1	7.0	7.0	<1.0	1.0	3.0	5.0	3.0	9.0	<1.0	1.0	<1.0	4.0	1.0	60

¹ Measurement uncertainties are 20-30%.

² –not measured

	A1	A1a	A2	B1							
Element		[mg/kg DS]									
As	2 <u>.0</u>	<1 <u>.0</u>	3 <u>.0</u>	15							
Ва	80	840 ¹	70	1100							
Pb	30	250	8 <u>.0</u>	180							
Cd	<1 <u>.0</u>	<1 <u>.0</u>	<1 <u>.0</u>	<1 <u>.0</u>							
Со	<1 <u>.0</u>	15	3	240							
Cu	1700	340	700	100							
Cr	15	40	10	1800							
Мо	3 <u>.0</u>	<1 <u>.0</u>	_2	4100							
Ni	<1 <u>.0</u>	70	6 <u>.0</u>	154							
V	5 <u>.0</u>	50	25	1000							
Zn	300	<1 <u>.0</u>	300	570							

Table 5. Calculated total amounts of selected metals present in the soil residues, which remain after leaching in process water "a" for samples A1, A1a, A2, and B1.

¹Italic style; Above Swedish guidelines for less sensitive land use

²–not analyzed