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Abstract 

Thermo-gelling injectable nanogels, with no burst release of loaded drug, were prepared 

by a simple route by combining self assembled nanocapsules of amphiphilically modified 

chitosan with glycerophosphate di-sodium salt and glycerol. The potential as a depot drug 

delivery system was demonstrated in vivo through the therapeutic effect of ethosuximide 

(ESM) loaded nanogels, suppressing spike wave discharges (SWDs) in Long Evan rat model. 

Simultaneously clearance of gels from the site of administration was monitored non-

invasively using MRI. The gel structure was characterized using TEM and SEM, confirming 

the gels to be an assembly of nanocapsules and using two-photon microscopy to visualize the 

network structure. In vitro drug release studies using ESM revealed that the nanogels 

exhibited extended, mostly Fickian release. Finally, all investigated formulations displayed 

excellent cytotoxicity data determined by MTT assay using human retinal pigmented 

epithelium cells. All presented properties are highly desirable for injectable depot gels for 

drug delivery. 
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1. INTRODUCTION 

In this study we set out to prepare chitosan based injectable drug loaded hydrogels 

without burst release, where a gel-network and drug encapsulation could be achieved using a 

single modified chitosan component, enabling extremely simple preparation procedure. This 

is of relevance as thermo-gelling formulations can be easily administrated to provide 

sustained systemic or local therapeutic effect when loaded with drugs or [1-4], but with burst 

release of a fraction of loaded drug being a commonly observed problem [5]. In addition, drug 

release of small hydrophilic molecules is often completed in less than 24 h [6]. The concept of 

solving this problem by encapsulating the drug into carriers subsequently embedded in the 

thermo-gelling matrix has been successful demonstrated previously [4, 6, 7]. However, to the 

authors’ knowledge all previous studies involve different components and preparation steps 

for the drug loading into nanocarriers and preparation of the thermo-gelling solution, 

respectively. 

When designing an injectable medical hydrogel the following requirements need 

considered and met for an ideal performance of the formulation, as stated by [8]: (1) a sol-to-

gel transition before and after injection into the sites of injury, (2) a biodegradable or 

gradually dissolving character, (3) both the hydrogel and the degradation products should be 

biocompatible, and (4) the gel should present desirable properties for the intended application, 

for instance, sustained release profile for drug delivery systems, or cell adhesive capabilities 

for tissue engineering.  

Chitosan (CS) is a polysaccharide which has been widely studied for use in biomedical 

applications as it presents desirable properties such as: biocompatibility, biodegradation, 

bioadhesivity, anti-bacterial effects and no toxicity [9-12].  

One common and straight forward approach to achieve CS solutions with thermo-

induced gelling is to include polyol salts such as; disodium-, ammonium hydrogen-, glycerol-, 

sorbitol-, fructose- or glucose-phosphate salts. These transform purely pH-dependent chitosan 

solutions into temperature-controlled pH-dependent chitosan solutions [2, 13-17]. Such 

solutions are typically liquids at low temperatures, but form gels at elevated temperatures, 

making them suitable as injectable in vivo gelling systems.  

Recently, chitosan based nanoscale drug-carriers formed from a new type of amphiphilic 

chitosan, namely carboxymethyl-hexanoyl chitosan (CHC) was successfully synthesized in 

this lab. Native chitosan was modified by partial substitution with hydrophilic carboxymethyl 

groups to increase the solubility of the chitosan polysaccharide chain in water and by partial 

substitution with hydrophobic hexanoyl groups to increase the amphiphilic character [18]. 

The CHC demonstrated self-assembly into nanocapsules about 200 nm in size in aqueous 

environment, and the capsules demonstrated good drug loading properties [18-20]. In a 

previous study, we demonstrated extremely slow release of hydrophobic drug from such CHC 

nanocarriers embedded in a macroscopic calcium alginate gel [21]. Based on those earlier 
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findings and the previously mentioned reports on preparation of thermo-gelling chitosan 

solutions using polyol salts, it was investigated if CHC could be used both to encapsulate 

drug, minimizing burst release, and to form a thermo-gelling network in the presence of a 

polyol salt. Such a formulation would allow for extremely easy sample preparation and 

because of the previously reported low cytotoxicity and host irritation of CHC it would hold 

great potential as an injectable drug depot platform [21, 22]. 

Indeed, when CHC nanocapsules in water were mixed with glycerol and sodium β-

glycerophosphate (β-GP) thermo-gelling solutions were formed. The formed CHC hydrogels 

were characterized with regard to; gelation time, rheological properties and structure using 

two-photon microscopy (TPM), SEM and TEM. The in vitro drug release from the formed 

gels was investigated using the highly water-soluble drug Ethosuximide (ESM). Cell 

cytotoxicity was investigated using a MTT assay. Finally, the feasibility of the CHC hydrogels 

as an injectable depot drug delivery system was demonstrated through the successful 

suppression of spike wave discharges (SWDs) in rats, combined with in vivo magnetic 

resonance imaging (MRI) of hydrogel clearance from the site of injection.  

2. METHODS 

2.1. Materials 

Carboxymethyl hexanoyl Chitosan (CHC), M.W. = 150000 g/mol and viscosity = 2500-

3500 cP (4 % solution),was bought from Advanced Delivery Technology Inc., Hsinchu, 

Taiwan under the name AC-SAC (nanocarrier), and its chemical identity was confirmed to be 

similar to previously reported CHC [18] using NMR (supplementary material Fig. S1). 

Glycerol, Ethosuximide (ESM), Pyrene and chemicals to prepare simulated body fluid (SBF); 

NaCl, NaHCO3, KCl, K2HPO4, MgCl2, HCl, CaCl2, Na2SO4, (CH2OH)3CNH2 were bought 

from Sigma-Aldrich. β-glycerol phosphate disodium salt hydrate (β-GP) was bought from 

Merck. Genipin was purchased from Challenge Bioproducts Co., Taiwan. 

2.2. Preparation of CHC thermo-gelling solutions 

Solutions with thermally induced sol-gel transition were prepared as follows: 1-3g (x) of 

CHC powder was dissolved in 100 ml distilled water (DW), the solution was then cooled in 

an ice bath. Subsequently, 0.5, 1 or 1.5 g (y) β-GP was dissolved in 9 ml of the CHC solution 

under stirring on ice. After mixing, 0-1 ml (z) glycerol + DW (total volume 1 ml) was 

dropped into 9 ml of the CHC/β-GP solution in ice bath to prepare 10 ml CHC-β-GP-glycerol 

hybrid solution. The samples were named accordingly Cx-βy-Gz. See supplementary material 

Table S1 for amounts used and sample naming. 

2.3. Gelation time and rheological analysis 

The time required at 37 
○
C to form a gel (designated as gelation time) was determined 

using a vial tilting method, where no flow within 1 minute of inverting the vial was the 

criterion for gel state [23, 24] 

Rheological properties of samples were monitored when pre-gelling solution was moved 
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from 4 to 37 
○
C using an ARES rheometer (Rheometric Scientific, Piscataway, NJ) ) fitted 

with a cone-plate tool, at a frequency of 10 rad / s and a strain of 1 %. The diameter of the 

plate was 25 mm. The force and displacement were recorded, and the dynamic storage (G’) 

and loss modulus (G”) were determined as functions of time. 

2.4. Morphological characterization of CHC nanogels 

Morphological evaluation of formed and subsequently dried or freeze-dried CHC gels 

was performed by transmission electron microscopy (TEM) and scanning electron 

microscopy (SEM), respectively. The phase distribution in wet nanogels was analysed using 

two-photon microscopy (TPM) analysis of gel formed from CHC nanocarriers that were 

loaded with pyrene (10
-4

 M) as previously described [20]. The structure of eroded gel 

fragments was determined by SEM analysis nanogel fragments released after submersion in 

DW for one day (see supplementary material for details). 

2.5. In vitro drug release 

In vitro release studies in SBF were conducted on nanogels loaded with 0.1 g of the 

antiepileptic drug ethosuximide (ESM), crosslinked with genipin (100ppm) [25] to eliminate 

the effect of gel disintegration (see supplementary material for details).  

2.6. In vivo studies  

In vivo therapeutic effect of ESM released from implanted CHC nanogels was evaluated 

as follows. ESM loaded nanogels were subcutaneously injected into five Long Evan rats (300 

g, National Laboratory Animal Centre, Taiwan) which spontaneously present spike-wave 

discharges (SWDs) [26, 27]. The SWDs of Long Evan rats have been suggested to be an 

absence like seizure activity that is known to be suppressed by the antiepileptic drug ESM 

[26, 28, 29]. An electrophysiological method to record spike-wave discharges (SWDs) was 

used to evaluate the therapeutic effects of ESM released from the implanted CHC nanogels. 

Furthermore, magnetic resonance imaging (MRI) was noninvasively performed to investigate 

the clearance, of implanted CHC nanogels in vivo. Animal experiments and treatment of test 

animals were performed according to institutional ethical guidelines. Approval for the animal 

experiments was obtained from the Animal Research Committee of National Chiao-Tung 

University and National Taiwan University (see supplementary material for details). 

2.7. Cell culture cytotoxicity  

Different formulations of nanogels were investigated with regard to cytotoxicity by an 

MTT cell proliferation assay using ARPE-19 cells (see supplementary material for details). 

2.8 Statistical analysis 

For evaluation of in vivo therapeutic effect repeated measures analysis of variance 

(ANOVA) was used. Differences with p values of less than 0.05 were considered statistically 

significant. All statistical analyses were performed using SPSS (Statistical Package for the 

Social Sciences, version 10.0; SPSS, Chicago, IL, USA) for Windows. Other data are when 

applicable reported as mean ± SD, with number of replicates indicated. 
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3. RESULTS 

3.1. Gelation of the CHC hydrogels 

CHC self-assembles into nanocapsules in aqueous environment. At acidic to neutral pH 

the nanocapsules carry positive charges on their shell, derived from the protonation of amino 

groups. Here β-GP was used to neutralize the positive charge and reduce repulsive force 

between CHC nanocapsules at elevated temperatures, giving rise to a sol-gel transition with 

increased temperature. Furthermore, glycerol was added to provide increased gel strength, 

based on our previous experiences. Fig. 1a shows the concept of CHC nanogel preparation. 

The CHC pre-gelling solution is virtually a viscous liquid at low temperature, i.e. 4 - 10 
○
C, which exhibits flow under its own weight. However, the solution formed a gel within 

reasonable time when exposed to 37 
○
C or above, as demonstrated in Fig. 1b. 

The gelation time of different formulations when pre-gelling solution was moved from 4 to 37 
○
C was determined using the vial tilting method, see supplementary material Table S1. It was 

found that β-GP was a prerequisite for thermally induced gelling. Furthermore, a considerable 

reduction in the gelation time was observed for all formulations with increasing CHC content. 

The gelation time also decreased with increased addition of both β-GP and glycerol. No 

gelation was observed after 24 h for the samples with the lowest CHC content and no 

glycerol, irrespectively of β-GP content. The longest observed gelation times were > 1 h, 

while the shortest observed gelation time was about 150 s for the sample with the highest 

investigated CHC, β-GP and glycerol contents (C3-β15-G10). 

Rheological analysis revealed that initially the loss modulus G’’ was larger than the 

storage modulus G’, often taken as a criterion for a liquid. However, during the thermally 

induced gelation G’ increased more rapidly than G’’, so that a crossover point was observed 

(supplementary material Fig. S3). Such a crossover is often taken as a sign of gelation and the 

observed crossover-times were in reasonable agreement with the gelation times determined 

using the vial tilting method. 

3.2. Structure of the CHC hydrogels 

TEM analysis of dried gel revealed that the nanogel was composed of numerous 

nanocapsules Fig. 2a. The diameters observed in TEM was about 50 - 200 nm, which is 

similar to previous observations [19]. 

SEM analysis of freeze dried gel samples revealed structures interpreted as capsules 

having sizes ranging from about 100 nm to 500 nm (Fig. 2b). The fact that the observed sizes 

are larger than those observed using TEM is most likely due to swelling of the particles in 

solution. It is important to point out that CHC is in fact a minority component in the gels, the 

theoretical concentration per dry mass of the freeze dried samples ranged from about 35 % to 

14 % and the CHC concentration per volume would be as low as about 2 %. Thus major part 

of the samples would not be nanocapsules even if all CHC was present in that form. 

Furthermore, there is the possibility that some CHC existed as free polymer chains rather than 
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capsules and there was a big risk that any capsule structures present would be destroyed 

during the freeze drying process. Any material other than nanocapsules present in the samples 

would make the detection of nanocapsules difficult due to them being covered by the layer-

like structures formed during freeze-drying. The fact that nanocapsules could be observed 

after freeze-drying, despite the complicating factors discussed above, clearly indicates the 

presence of nanocapsules in the formed gels. From the TEM and SEM results it is concluded 

that CHC did exist as nanocapsules in the formed gels. 

To get an indication on the structure of the formed network, nanogel loaded with the 

hydrophobic fluorescent substance pyrene was analysed using TPM. Pyrene would mainly be 

located in the hydrophobic domains of CHC, thus the acquired images reflects the formed 

CHC network. The TPM-analysis revealed that the nanogel was composed of a continuous 

network, with phase domains having sizes in the micrometer range (Fig. 2c). 

It was observed that the nanogels disintegrated upon submersion in DW or SBF 

(Supplementary material Fig. S4). SEM analysis of fragments released from the bulk CHC gel 

during submersion in DW revealed that the gels disintegrated through the released of particles 

having sizes of several hundreds of nanometres (Fig. 2d), where the released particles were 

composed of an assembly of smaller objects. 

3.3. In vitro drug release 

Given the observation that the CHC nanogels disintegrated into nano-sized fragments in 

release media, a small amount of genipin was added to crosslink and thus stabilize the 

nanogels prior to in vitro release studies, this to eliminate any influence from gel erosion 

(disintegration) on the release profiles and release kinetics. The addition of genipin did not 

significantly influence the initial (1-2) days release from the gels (supplementary material Fig. 

S4). CHC nanogels loaded with 10 mg / ml of the hydrophilic antiepileptic drug ethosuximide 

(ESM) were prepared using different amounts of β-GP and glycerol in the pre-gelling 

solutions. As seen in Fig. 3, gels prepared without glycerol and with low amounts of β-GP 

displayed a rapid release of the loaded drug with 50 % of the drug being released in about 2 

days. Increasing β-GP or glycerol content lead to a slower release, with only about 20 % of 

the loaded drug being released after 20 days for the formulation C3-β15-G0. Of importance is 

that none of the formulations displayed burst release. To get an indication of the mechanism 

of the drug release, the cumulative release up to about 60 %, as suggested by others [30, 31], 

was fitted to the equation: 

 (1) 

where Mt is the amount of drug released at time t, M∞ is the amount of drug released at 

infinite time, k and n are both constants. The value of n is commonly taken as an indication of 

the release mechanism, where a value of 0.5 for slabs, or 0.43 for spheres suggests diffusion 

controlled (Fickian) release, while a value of 1 for slabs or 0.85 for spheres suggests 
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relaxation controlled release. Values in between indicates an anomalous release mechanism 

[30, 31]. The fit of Eq. 1 to release data suggests that the in vitro release was rather well 

described by Fickian release mechanism (see Table 1 and fit to data in Fig. 3). 

3.4. In vivo therapeutic effect and nanogel clearance 

To evaluate the in vivo performance of drug loaded nanogels, Long Evan rats, which 

spontaneously present SWDs [26, 27], were used as test subjects. The SWDs of Long Evan 

rats have been suggested to be an absence like seizure activity that is known to be suppressed 

by the antiepileptic drug ESM [26, 28, 29]. Thus, the therapeutic effect of ESM loaded 

nanogels in the chosen model was expected to give good initial indications on the feasibility 

of the nanogels for future drug delivery therapy. The rats received a 1 ml subcutaneous 

implant of the nanogel C3-β5-G5, containing 10 mg / ml ESM, and gelation at the site of 

administration was confirmed using MRI. The ESM treatment reduced the number of 

recorded SWDs to about 50 % on days 1 - 3 after injection. From day 4 the number of SWDs 

increased, reaching pre-treatment levels at days 6 - 7. In addition, the amplitude of the SWDs 

that did occur during days 2 – 3 was much less than that observed prior to treatment and 

during days at which the number of SWDs was not significantly reduced. MRI analysis 

revealed that the nanogel clearance was completed during a time period similar to the duration 

of the therapeutic effect. The clearance initially proceeded at a relatively low rate up to day 2, 

between days 2 – 5 it accelerated, leading to about 20 % of the gel remaining at day 5. At day 

7, the implanted nanogel was all but gone (Fig. 4). 

3.5. Cytotoxicity of CHC nanogels 

Since the CHC nanogels were mainly composed of water and chitosan, they were likely 

to be highly biocompatible, as reported for native thermo-gelling chitosan gels [32]. The 

cytotoxicity of different formulations of CHC nanogels was investigated by the MTT assay 

using Human retinal pigmented epithelium cells (ARPE-19). As seen in Fig. 5, only a very 

small decrease in cell viability could be detected for the nanogels with the highest β-GP and 

glycerol contents (C3-β15-G0 and C3-β5-G10), for all other investigated samples there was 

no significant difference in cell viability compared to the control. 

4. Discussion 

A novel injectable thermo-gelling nanogel with no burst release was developed based on 

combination of nanocapsules of CHC, β-GP and glycerol.  

Different formulations were investigated with regard to gelation time when transferred 

from 4 
○
C to 37 

○
C. The results presented in Table 1 revealed that the gelation time was 

strongly dependent on composition of the pre-gelling solution. In particular,  

β-GP was a prerequisite for thermo induced gelation and the gelation time was dramatically 

decreased with increasing CHC content. This reduction in gelation time is surely a result of 

more CHC macromolecules or preferably, nanocapsules aggregating or coagulating, reaching 

a continuous network in a shorter time under the same chemical environment. The formed 
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gels had a phase separated structure with micrometer sized CHC containing regions forming a 

continuous network, as seen from two photon microscopy analysis of pyrene loaded 

nanocapsules (Fig. 2c). Furthermore, the observations revealed that gelation is largely 

promoted not only by β-GP, as reported previously for native chitosan [32, 33], but also by the 

presence of glycerol. Rheological analysis revealed that CHC solutions containing glycerol 

formed harder gels than those prepared using only β-GP (supplementary material Fig. S3). 

The rheological analysis also revealed that the storage modulus of the reported gels evolved 

similarly to previous reported chitosan based thermogelling systems [6, 14, 16], forming 

relatively weak gels in comparison to systems based on synthetic thermogelling polymers [7, 

15] or in situ gelling systems that utilizes mechanisms other than thermo-gelation [15, 21]. 

The used CHC is known to exist as self-assembled nanocapsules in solution [19, 20]. 

TEM analysis of prepared and subsequently dried gels as well as SEM analysis of freeze-

dried gels revealed that nanocapsules were also present in the formed gels, as seen in Fig. 2a, 

b. Thus, the network in the nanogels was probably composed of nanocapsules connected 

through physical interactions, e.g., hydrophobic interactions and hydrogen bonds. As such, the 

CHC nanogels likely had a network structure significantly different from conventional 

chitosan-based hydrogels reported in literature where the continuous network is composed of 

polymer chains. The non-covalent nature of the network should allow for time dependent 

disintegration of the hydrogels, which would be desirable for transient implant applications. 

Indeed, after long-term incubation in SBF or DW, the bulk CHC gels were found to swell and 

slowly disintegrate (Supplementary material Fig. S4). As seen from SEM analysis of released 

gel fragments (Fig. 2d), the gels mainly disintegrated through the release of nano-sized 

fragments, in turn composed of an assembly of smaller objects, likely CHC nanocapsule 

assemblies. Given the simple disintegration route, it seemed probable that the gels could also 

disintegrate in vivo, and that the resulting nanoparticles and primary nanocapsules could be 

efficiently transported away from the remaining bulk gel.  

The fact that the CHC nanogels were composed of self-assembled CHC nanocapsules, 

which have been shown to efficiently encapsulate drugs and have extended release profiles 

[19, 20], surely suggests that the gels could be exceptionally suitable for depot drug delivery 

applications in which a sustained release with minimal burst release is desired. In vitro release 

studies revealed that in accordance with the aim of this study no burst release was observed 

for any of the formulations (Fig. 3). The fitting of Eq. 1 to data suggests, guided by previous 

works [30, 31], that the in vitro drug release from the gels was rather diffusion controlled. It 

needs to be emphasized that the lack of burst release and in some cases very slow release 

strongly indicates that the drug was indeed encapsulated in the nanocapsules, and that 

diffusion out of those are the rate limiting step. The differences in release rates between the 

formulations were probably due to different network structures in the gels and differences in 

the chemical environment in the gels. The exact reason would be interesting to investigate 
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further, but is beyond the scope of this study.  

Based on the release data and analysis the nanogels have potential for long term 

sustained release, such as drug depot formulations. The therapeutic effect of ESM was 

demonstrated in vivo utilizing Long Evans Rats as the animal model, and was found to 

coincide with the in vivo clearance of the hydrogels from the site of administration (Fig. 4). 

Apparently therapeutic drug levels were not reached until day 1, and remained until day 4, in 

contrast, for free ESM there is a rapid initial response 1 h after administration [34] and the 

effect is significantly lower already after 24 h. From the in vivo release study it can be 

concluded that the nanogels seem promising as a depot sustained release platform. However, 

further animal studies will be needed to investigate the in vivo performance of different 

nanogel compositions, using different drugs.  

Given the promising in vivo results, the cytotoxicity of the nanogels was evaluated using 

Human retinal pigmented epithelium cells. The results revealed that the all investigated 

nanogel formulations exhibited very low cytotoxicity (Fig. 5), further strengthening the 

potential of said nanogels in biomedical applications.  

5. Conclusion 

In summary, the presented nanogels display excellent properties with regard to usage as 

an injectable depot drug delivery system. The preparation procedure is very easy as CHC both 

encapsulate the drug, with reduced burst release and release rate as consequences, and is the 

gel network forming constituent. The gels display sol-gel transition when exposed to 

physiological temperature, excellent cytotoxicity data and successful usage as a depot drug 

delivery system in vivo. The gels presented in this proof of concept study displays many 

interesting properties that could be investigated in detail. In particular, future studies would be 

to develop the characterization of the in vivo performance using different gel formulations, 

animal models and drugs and to investigate the use of the nanogels in cancer therapy or other 

indications. On a more fundamental level it would be interesting to characterize the gel 

network formation during the gelation and to investigate how structure and composition 

influences properties such as in vitro drug release, mechanical properties and in vivo 

disintegration of the gels. 
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Figure legends 

Fig. 1 The concept of CHC nanogel preparation and thermo-gelling. (a) Positively charged 

nanocapsules were neutralized by glycerophosphate di-sodium salt, glycerol was added to 

improve the hardness of formed CHC nanogels. (b) CHC solution (C2-β5-G10) before and 

after thermally induced gelation. 

Fig. 2 Microscopy images of CHC gels. (a) TEM image of CHC nanogel (C3-β5-G10) dried 

after gelation. (b) SEM image showing CHC nanogel (C3-β5-G5) after freeze-drying. (c) Two 

photon microscopy image of pyrene loaded CHC nanogel network (C3-β5-G5) dimensions 

are 424x424x255 um, insert is 1-D image. (d) SEM images of gel fragments released from 

submerged nanogel (C3-β5-G10).  

Fig. 3 Cumulative drug release for (a) Different formulations loaded with ESM; C3-β5-G0 

(■),C3-β5-G5 (♦), C3-β5-G10 (●) and C3-β15-G0 (▲) Error bars indicate one standard 

deviation (n = 3). Dashed lines are fit of Eq. 1 to data with exponents (n) as seen in table 1. 

Fig. 4 Therapeutic effect and in vivo disintegration of ESM loaded, subcutaneously implanted 

CHC nanogels. (a) Typical SWDs recorded one day before injection (B1), immediately after 

injection (D0), and 2 – 7 days after injection (D2 –D7). (b) MR images of the implanted CHC 

nanogel at different times. (c) Hourly number of SWDs and remaining gel volume before and 

at given times after injection. Data presented as mean, error bars indicate one standard 

deviation (n = 5). 

Fig. 5 Cell Viability of ARPE-19 cells cultured in media containing various formulations of 

CHC nanogels. Error bars indicate one standard deviation (n = 3). 



Table 1. The n and R
2
 values for formulations used for in vitro release experiments, from fit 

of data to Eq. 1. 

Sample n R
2 

ESM-C3-β5-G0 0.56 1.0 

ESM-C3-β5-G5 0.50 0.99 

ESM-C3-β5-G10 0.38 0.98 

ESM-C3-β15-G0 0.51 1.0 
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