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On the Capacity of the Block-Memoryless
Phase-Noise Channel
Giuseppe Durisi, Senior Member, IEEE

Abstract—Bounds are presented on the capacity of the block-
memoryless phase-noise channel. The bounds capture the first two
terms in the asymptotic expansion of capacity for SNR going to
infinity and turn out to be tight for a large range of SNR values of
practical interest. Through these bounds, the capacity dependency
on the coherence time of the phase-noise process is determined.

I. INTRODUCTION
The AWGN channel with phase noise is a widely used model

to capture imperfect carrier-phase tracking in wireless commu-
nications and certain impairments in fiber-optic communica-
tions [1]. The surging data-rate demands in microwave backhaul
links, which can be accurately modeled as AWGN channels im-
paired by phase noise, has recently motivated a renewed interest
in characterizing the capacity of phase-noise channels.
When the phase-noise process varies slowly, i.e., its coher-

ence time is much larger than the inverse of the signal band-
width, the phase-noise samples in the discretized channel input-
output (I/O) relation are correlated. A simple way to model this
correlation is to assume that the phase-noise samples remain
constant over a block of N ≥ 1 samples before changing to
an independent realization [2]. The resulting channel model is
commonly referred to as block-memoryless phase-noise chan-
nel. This model is attractive because correlation is captured by
a single parameter, i.e., the coherence timeN of the phase-noise
process.
To date, the capacity of the block-memoryless phase-noise

channel is not known in closed form. Nuriyev and Anastasopou-
los [2] proved that the capacity-achieving input distribution ex-
hibits a circular symmetry and that the resulting input-amplitude
distribution is discrete with an infinite number of mass points.
They also showed that in the low-SNR regime one can approxi-
mate capacity accurately by using only few mass points, whose
position can be found by numerically solving a nonconvex opti-
mization problem. In themedium- and high-SNR regimes (SNR
above 15 dB), however, this numerical approach is unfeasible
due to the large number of mass points needed to approximate
capacity accurately.

Contributions: In this letter, we derive bounds on the ca-
pacity of the block-memoryless phase-noise channel that are
tight over a large range of SNR values of practical interest.
Specifically, the bounds allow us to identify the first two terms in
the asymptotic expansion of capacity for SNR going to infinity,
and, hence, to characterize capacity accurately at high SNR.
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Notation: Uppercase boldface letters denote matrices and
lowercase boldface letters designate vectors. TheN×N identity
matrix is denoted by IN ; Γ(·) stands for the Gamma function
and ψ(·) is Euler’s digamma function. For two functions f(x)
and g(x), the notation f(x) = O(g(x)), x → ∞, means that
lim supx→∞

∣

∣f(x)/g(x)
∣

∣ < ∞, and f(x) = o(g(x)), x → ∞,
means that limx→∞

∣

∣f(x)/g(x)
∣

∣ = 0. We denote expectation
by E[·], and use the notation Es[·] to stress that expectation is
taken with respect to the random variable s. With CN (0,R)
we designate the distribution of a circularly-symmetric complex
Gaussian random vector with covariance matrixR. We say that
a random variable r has Gamma distribution with parameters
α > 0 and β > 0, and write r ∼ Gamma(α,β), if its
probability density function (pdf) qr(r) is given by

qr(r) = rα−1e−r/β/ (βαΓ(α)) , r ≥ 0. (1)

Finally, log(·) indicates the natural logarithm.

II. SYSTEM MODEL

We consider a discrete-time AWGN channel impaired by
phase noise. The phase-noise process is assumed to stay con-
stant over a block of N samples and to change independently
from block to block. Within one block, the channel I/O relation
is given by

yk = ejθxk + wk, k = 1, . . . , N.

Here, θ denotes the phase noise, which is assumed uniformly
distributed on [0, 2π). Stacking the symbols transmittedwithin a
block in a vector x = [x1 · · · xN ] and, similarly, stacking noise
and output signals in corresponding vectors y andw enables us
to write the I/O relation in vector form as follows:

y = ejθx+w. (2)

We assume that w ∼ CN (0, IN ) is independent of θ, and that
x is independent of θ and w. We focus on the scenario where
coding is performed over multiple blocks. For this scenario,
the relevant performance metric is the channel ergodic capacity,
which is given by

C(ρ) =
1

N
sup
Qx

I(x;y) (3)

as a consequence of the block-memoryless assumption. The
supremum in (3) is over the set of input probability distribu-
tions Qx that satisfy the average-power constraint

E
[

‖x‖2
]

≤ Nρ. (4)

Because the noise variance is normalized, ρ is equal to the SNR.
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No closed-form expression for C(ρ) is available to date. For
the case N = 1, Lapidoth [3] determined the first two terms in
the asymptotic expansion of C(ρ) for ρ → ∞. Specifically, he
showed that

C(ρ) =
1

2
log(ρ)− 1

2
log(2) + o(1), ρ→ ∞. (5)

Non-asymptotic capacity bounds forN = 1 are presented in [4].
For the general case N ≥ 1, the following asymptotic capacity
expansion is available [2]:

C(ρ) =

(

1− 1

2N

)

log(ρ) +O(1), ρ→ ∞. (6)

Note that the asymptotic capacity expansion in (6) (for the
general case N ≥ 1) is less accurate than the one in (5) (for
the special case N = 1) because in (6) the second term in the
expansion of C(ρ) for ρ→ ∞ is not determined explicitly.
In this letter, we present non-asymptotic bounds on C(ρ) for

the general case N ≥ 1. The bounds turn out to be tight for
a large range of SNR values of practical interest. Furthermore,
they allow us to refine (6) and determine the second term in
the asymptotic expansion of C(ρ) for ρ→ ∞. Specifically, we
establish the following result.
Theorem 1: The capacity of the channel (2) is given by

C(ρ) =

(

1− 1

2N

)

log(ρ) + cN + o(1), ρ→ ∞ (7)

where

cN !

(

1− 1

2N

)

log

(

2N

2N − 1

)

+
1

N

[

log

(

Γ(N − 1/2)

Γ(N)

)

− 1

2
log(4π)

]

. (8)

Proof: See Section III-D.
Note that by setting N = 1 in (7) and (8), and recalling that
Γ(1/2) =

√
π, one recovers (5).

The rest of this letter is organized as follows: in Section III-A
we provide some intuition on the structure of the capacity-
achieving input distribution at high SNR. Then, we use this
intuition to construct a capacity lower bound (Section III-B) and
an upper bound (Section III-C) that agree up to a o(1) term,
and, hence, allow us to establish Theorem 1. In Section IV, we
present an additional capacity lower bound that, although not
asymptotically tight in the sense of (7), yields (together with
the upper bound in Section III-C) an accurate capacity charac-
terization for a large range of SNR values of practical interest.

III. BOUNDING CAPACITY AT HIGH SNR
A. Geometric Intuition
We start by providing some geometric intuition that sheds

light on theway the capacity boundsused to establish Theorem1
are constructed. Let the capacity pre-log χ be defined as the
asymptotic ratio between capacity and the logarithm of SNR as
SNR grows to infinity, i.e.,

χ = lim
ρ→∞

(

C(ρ)/ log(ρ)
)

.

The capacity pre-log can be interpreted as the fraction of
signal-space dimensions available for communications [5]. We

shall next heuristically determine this fraction for the block-
memoryless phase-noise channel in (2). The multiplication of
the input vector x ∈ CN by the phase noise term ejθ makes
one of the 2N real parameters characterizing x not recoverable
(from ejθx) at the receiver. This means that, even in the absence
of the additive noisew, the received signal carries only 2N − 1
real parameters describingx. Hence, the fraction of signal-space
dimensions available for communication is (2N − 1)/(2N) =
1− 1/(2N), in agreement with (6) and (7).
On the basis of this observation, we choose the following

distribution to evaluate themutual information on the right-hand
side (RHS) of (3) and, hence, obtain a capacity lower bound: we
take x isotropically distributed, to exploit the circular symmetry
of the I/O relation (2), and ‖x‖2 distributed as the sum of the
square of 2N − 1 independent real Gaussian random variables.
This results in a Gamma distribution. To obtain a capacity upper
bound that matches the lower bound (up to a o(1) term), we use
the duality approach, a technique introduced in [6] to character-
ize the capacity of fading channels under no a priori channel
knowledge at the transmitter and the receiver. The essence of
duality is that it allows one to by-pass the supremization in (3)
and obtain tight capacity upper bounds by choosing an appropri-
ate probability distribution on the output y. As distribution we
choose the one induced on the noiseless channel output ejθx
by the probability distribution on x used to obtain the lower
bound. The approach just outlined generalizes to N ≥ 1 the
proof technique used in [3] for the case N = 1.

B. A Lower Bound on Capacity
To obtain a capacity lower bound, we evaluate the mutual

information on the RHS of (3) for the probability distribution
introduced in Section III-A. Specifically, let x = ‖x‖ · vx,
where vx = x/‖x‖. We take vx uniformly distributed on
the unit sphere in CN . Furthermore, we choose ‖x‖2 =
Nρ s/(N − 1/2), where s ∼ Gamma(N − 1/2, 1) is in-
dependent of vx. As E[s] = N − 1/2, the average power
constraint (4) is satisfied with equality. Next, we use that, by
definition, I(x;y) = h(y)− h(y |x) and bound the two differ-
ential entropy terms separately. For the first term, we proceed
as follows:

h(y)
(a)
≥ h(y |w)

(b)
= h(ejθx)

(c)
= h(‖x‖2) + log

(

πN/Γ(N)
)

+ (N − 1)E
[

log
(

‖x‖2
)]

(d)
= N log

(

2Nρ

2N − 1

)

+ h(s) + log

(

πN

Γ(N)

)

+ (N − 1)E[log(s)]

(e)
= N log

(

2Nρ

2N − 1

)

+ log

(

Γ(N − 1/2)

Γ(N)

)

+ (N − 1/2)

+ log
(

πN
)

+
1

2
ψ(N − 1/2). (9)

Here, (a) follows because conditioning reduces entropy [7,
Sec. 8.6], in (b) we used that differential entropy is invariant to
translations [7, Thm. 8.6.3] and that w and (x, θ) are indepen-
dent; in (c) we used the change of variable lemma to compute
h(ejθx) in polar coordinates [6, Lem. 6.17 and Lem. 6.15]; we
also exploited that ejθx is isotropically distributed; (d) follows
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because ‖x‖2 = Nρ s/(N − 1/2) and from [7, Eq. (8.66)];
finally, (e) follows because, for z ∼ Gamma(α, 1),

E[log(z)] = ψ(α)

h(z) = (1− α)ψ(α) + α+ log
(

Γ(α)
)

.

We next bound h(y |x). Let {w̃l}Nl=1 be independent and iden-
tically distributed CN (0, 1) random variables. Furthermore,
let ỹ be a N -dimensional random vector with entries ỹ1 =
ejθ‖x‖+ w̃1 and ỹl = w̃l, l = 2, . . . , N . As y and ỹ are related
by a unitary transformation, we have that

h(y |x) = h(ỹ |x) = log(πe)N−1 + h(ỹ1 | ‖x‖). (10)

Because the phase of w̃1 is uniformly distributed on [0, 2π), the
random variable ỹ1 = ejθ‖x‖+ w̃1 has the same distribution as
ŷ1 = ejθ[‖x‖+ ŵ1] where ŵ1 ∼ CN (0, 1). Let now θ̂1 denote
the phase of ŷ1. Then,

h(ỹ1 | ‖x‖) = h(ŷ1 | ‖x‖)
(a)
= h(θ̂1 | |ŷ1|2 , ‖x‖)− log(2) + h(|ŷ1|2 | ‖x‖)
(b)
= log(π) + h(|ŷ1|2 | ‖x‖) (11)
(c)
≤ log(π) +

1

2
Es

[

log

[

(2πe)

(

1 +
4Nρ

2N − 1
s

)]]

. (12)

Here, (a) follows from [6, Lem. 6.16]; in (b) we used that θ
is uniformly distributed on [0, 2π) and, hence, θ̂1 is uniformly
distributed on [0, 2π) as well, and independent of |ŷ1|2 and
‖x‖; finally (c) follows because |ŷ1|2 has variance 1 + 2‖x‖2
given ‖x‖, and because the Gaussian distribution maximizes
differential entropy under a variance constraint [7, Thm. 8.6.5].
Substituting (12) into (10), subtracting (10) from (9), and then
dividing by N , we obtain: C(ρ) ≥ L1(ρ), where

L1(ρ) ! log

(

2Nρ

2N − 1

)

+
1

2N

{

log

(

Γ(N − 1/2)

Γ(N)

)

−log(2π)

+ ψ(N − 1/2)− Es

[

log

(

1 +
4Nρ

2N − 1
s

)]}

(13)

with s ∼ Gamma(N − 1/2, 1).

C. An Upper Bound on Capacity
Let qy(y) denote an arbitrary pdf on y. By duality [6,

Thm. 5.1], for every input probability distribution Qx we have
that

I(x;y) ≤ −Ey[log(qy(y))]− h(y |x). (14)

The expectation on the RHS of (14) is with respect to the prob-
ability distribution induced on y by Qx through (2). Note also
that for every input distribution Qx satisfying (4)

1−
[

E
[

‖x‖2
]

+N
]

/
[

N(ρ+ 1)
]

≥ 0. (15)

Fix now λ ≥ 0 and an arbitrary pdf qy(y) on y. We can upper-
bound C(ρ) in (3) using (14) and (15) as follows:

C(ρ) ≤ 1

N
sup
Qx

{

−Ey[log(qy(y))]− h(y |x)

+ λ

(

1−
E
[

‖x‖2
]

+N

N(ρ+ 1)

)}

. (16)

As in (3), the supremum is over the set of Qx satisfying (4).
Let y =

√
r · vy , where r = ‖y‖2 and vy = y/‖y‖. To

evaluate the first term on the RHS of (16), we take qy(y) so
that r ∼ Gamma(α,β), with α to be optimized later, and
β = N(ρ + 1)/α. Furthermore, we take vy uniformly dis-
tributed on the unit sphere inCN and independent of r. Let qr(r)
denote the resulting pdf of r. By using polar coordinates,

− Ey[log(qy(y))] = −Ey

[

log
(

qy(
√
r · vy)

)]

(a)
= −Ey[log(qr(r))] + log

(

πN/Γ(N)
)

+ (N − 1)Ey[log(r)]

(b)
= (N − α)Ey[log(r)] + α

Ey[r]

N(ρ+ 1)

+ log
(

πNΓ(α)/Γ(N)
)

+ α log(N(ρ+ 1)/α) . (17)

Here, in (a) we used that

qr,vy
(r,vy) = qy

(√
r · vy

)

· rN−1/2

as a consequence of the change of variable theorem, and that

qr,vy
(r,vy) = qr(r) · Γ(N)/(2πN )

by construction; (b) follows from (1) with β = N(ρ+1)/α. Let

dλ,α ! log(Γ(α)/Γ(N)) + λ−N + 1.

Substituting (17) and (10) into (16), and then using (11) and that
Ey[r] = E

[

‖y‖2
]

= E
[

‖x‖2
]

+N , we obtain

C(ρ) ≤ 1

N
sup
Qx

{

α log

(

N(ρ+ 1)

α

)

+ dλ,α

+ (N − α)Ey[log(r)] − h(|ŷ1|2 | ‖x‖)

+ (α− λ)
E
[

‖x‖2
]

+N

N(ρ+ 1)

}

. (18)

To eliminate the supremum over Qx, we next bound the last
three terms on the RHS of (18) (the only terms that depend
on Qx) as follows. Let

gλ,α(s, ρ) ! (N − α)Eθ,w

[

log(r) | ‖x‖ =
√
s
]

− h(|ŷ1|2 | ‖x‖ =
√
s) + (α− λ)

s+N

N(ρ+ 1)
.

Then

(N−α)Ey[log(r)]−h(|ŷ1|2 | ‖x‖)+(α−λ)
E
[

‖x‖2
]

+N

N(ρ+ 1)

≤ max
s≥0

{

gλ,α(s, ρ)
}

. (19)

Substituting (19) into (18), and minimizing the resulting bound
over α > 0 and λ ≥ 0, we obtain: C(ρ) ≤ U(ρ), where

U(ρ) = min
α>0

min
λ≥0

1

N

{

α log

(

N(ρ+ 1)

α

)

+ dλ,α +max
s≥0

{

gλ,α(s, ρ)
}

}

. (20)
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D. Proof of Theorem 1
To prove Theorem 1, we show that the lower bound L1(ρ)

in (13) and a refined version of the upper bound U(ρ) in (20)
have the same asymptotic expansion as the one in (7). ForL1(ρ),
it is sufficient to note that

Es

[

log

(

1 +
4Nρ

2N − 1
s

)]

= E[log(s)] + log

(

4Nρ

2N − 1

)

+ o(1), ρ→ ∞ (21)

with E[log(s)] = ψ(N − 1/2), and to substitute (21) into (13).
To refineU(ρ), we exploit the fact that the high-SNRbehavior

of C(ρ) does not change if we constrain the input distribution
to be supported outside a sphere of arbitrary radius. This result,
known as escape-to-infinity property of the capacity-achieving
input distribution [6, Def. 4.11], is formalized in the following
lemma (see [6], [5] for an intuitive interpretation).
Lemma 2: Fix an arbitrary s0 > 0 and let K = {x ∈

CN : ‖x‖2 ≥ s0}. Denote by C(K)(ρ) the capacity of the
channel (2)when the input signal is subject to the average-power
constraint (4) and to the additional constraint that x ∈ K almost
surely. Then

C(ρ) = C(K)(ρ) + o(1), ρ→ ∞
with C(ρ) given in (3).

Proof: The lemma follows directly from [8, Thm. 8] and [6,
Thm. 4.12].
Fix s0 > 0. By performing the same steps leading to (20),
but accounting for the additional constraint that x ∈ K almost
surely and also setting α = N − 1/2 (as for the lower bound)
and λ = α, we obtain: C(K)(ρ) ≤ U (K)(ρ), where

U (K)(ρ) !

(

1− 1

2N

)

log

(

2N(ρ+ 1)

2N − 1

)

+
1

N

[

log

(

Γ(N − 1/2)

Γ(N)

)

+
1

2
+max

s≥s0

{

g̃(s)
}

]

(22)

with g̃(s) ! gα,λ(s, ρ) | α=λ=N−1/2. As lims→∞ g̃(s) =
−(1/2) log(4πe) (see [3, Eq. (9)] and [6, App. X]), we can
make (22) to be arbitrarily close to (7) by choosing s0 suffi-
ciently large. This concludes the proof of Theorem 1.

IV. THE LOW- AND MEDIUM-SNR REGIMES
Differently from the upper bound U(ρ), the lower bound

L1(ρ) turns out to be not accurate for small ρ values. Lack of
tightness of L1(ρ) is due to the inequality (a) in (9), which
is rather crude at low SNR. To avoid (a), one can take x ∼
CN (0, ρIN ), which yields

h(y) = N log(1 + ρ) + log(πe)N . (23)
Combining (23) with (10) and proceeding as in (12), one gets
C(ρ) ≥ L2(ρ), where

L2(ρ) ! log(1 + ρ)− 1

2N

{

log(2πe) + Es[log(1 + 2ρs)]
}

(24)
with s ∼ Gamma(N, 1). We remark that the Gaussian input
distribution yielding (24) was also used in [2] to establish (6).
Also note that L2(ρ) is not asymptotically tight in the sense
of (7).

V. NUMERICAL RESULTS AND CONCLUSIONS

Fig. 1. The capacity lower bounds L1(ρ) and L2(ρ) (solid lines), and the
capacity upper bound U(ρ) (dashed line) as a function of SNR ρ for N = 2
and N = 10.

Fig. 1 shows the capacity lower bounds L1(ρ) and L2(ρ)
and the upper bound U(ρ) as a function of ρ for N = 2 and
N = 10. The bounds L2(ρ) and U(ρ) are surprisingly tight
over the entire range of SNR values considered in the figure,
and, hence, describe capacity accurately. Although L2(ρ) is
not asymptotically tight in the sense of (7), the asymptotic gap
betweenL2(ρ) andC(ρ) decays quickly as a function ofN . For
the case N = 10, this gap is smaller than 7× 10−5.

Concluding remarks: We conclude by observing that the
capacity bounds presented in this letter are derived under the
assumption of uniform phase noise. An interesting open issue
is whether our analysis can be generalized to other phase-noise
distributions commonly used in thewireless and fiber-optic com-
munities (e.g., wrapped Gaussian, truncated Gaussian and von
Mises/Tykhonov distributions).
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(AEÜ), vol. 65, no. 8, pp. 707–712, Aug. 2011, invited paper.

[6] A. Lapidoth and S. M. Moser, “Capacity bounds via duality with applica-
tions to multiple-antenna systems on flat-fading channels,” IEEE Trans. Inf.
Theory, vol. 49, no. 10, pp. 2426–2467, Oct. 2003.

[7] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed.
New York, NY, U.S.A.: Wiley, 2006.

[8] A. Lapidoth and S. M. Moser, “The fading number of single-input multiple-
output fading channels with memory,” IEEE Trans. Inf. Theory, vol. 52,
no. 2, pp. 437–453, Feb. 2006.


