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SUMMARY 

Proteins are very large biological molecules, responsible for many functions in living 

cells and organisms. Ever since they were recognized as a distinct class in 1789 by 

Antoine Fourcroy and others, proteins were, and still are due to their vital importance 

and high complexity, subject of studies of scientists from various fields of science all 

over the world. It was discovered, that each protein consists of one or more chains of 

amino acids compactly folded in space. This fully folded structure protein attain from 

the initial unfolded structure through intermediate ones. Moreover, scientists believe 

that protein properties and functions strongly depend on these structures. 

Fully folded structure, called native state, is the most preferable, due to the lowest 

overall free energy, so once it is reached, it holds for a long time, which increases 

chances for success in the experimental research of it (using, for example, X-ray 

crystallography or Nuclear Magnetic Resonance techniques). Unfortunately, this is not 

the case for intermediate structures, due to the either too fast (hard to record and notice) 

or too slow (hard to separate) folding process. That is when united physical, 

mathematical, and computer research dominates. 

This master thesis work presents a mathematical approach for studying intermediate 

protein structures. These intermediate structures, usually called meta stable states, are 

usable in multiple fields of research. For example, biochemistry and pharmaceutics are 

using them to optimize the shape of the drug molecules for achieving the best possible 

binding properties with respect to the target molecules;  In biophysics it helps to find the 

folding pathways in the potential energy landscape; and in computational biology to 

reduce the amount of data needed to be stored obtained from the molecular dynamics 

simulations and also so that the problem can be partitioned into smaller pieces and be 

run in parallel on multiple computers. 

The goal of this work was to establish, if it is possible to apply spectral method for 

finding meta stable states of proteins. This was achieved through 3 major steps. First 

step was to obtain data for analysis, namely to perform molecular dynamics simulations 

resulting in the protein dynamics trajectory. Second step was to prepare this data for the 

analysis, namely to divide conformational trajectory into microstates and construct 

transition probability matrix. And, finally, the third step was to analyze data, by 

applying spectral method, which resulted in meta stable states. 

Tests were performed on the small peptide (peptide is the name for protein with the 

length of the chain less than 100 amino acids) consisting of only 4 amino acids named 

Valine-Proline-Alanine-Liucine (VPAL) [32]. This peptide, despite of its small size, 

attains properties of a protein, i.e. (folds through / has) meta stable states, however, 

because of its size, it makes it possible to get results comparatively quickly. 

Results obtained for VPAL-peptide were confirmed by those known in literature, which 

let us to conclude that it is possible to apply spectral method for finding meta stable 

states.   
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General structure outlining main topics of the performed Master thesis research is 

schematically shown on the figure 1. 
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Introduction 

The goal of the research was to find meta stable protein structures, appearing during the 

protein folding, applying spectral method. Chapter 1 contains short history of the 

protein research. Chapter 2 places meta stable structures among others; Chapter 3 shows 

the importance of the protein folding research, by explaining how the "correctly" and 

"incorrectly" folded proteins effect functions of living organisms; Chapter 4 explains 

why and how meta stable structures are formed (considering protein from the 

thermodynamic point of view); in Chapter 5 molecular dynamics simulations are 

discussed, to show how the data for the analysis, namely protein dynamics trajectory, is 

collected (considering protein from the mechanic point of view); Chapter 6 introduces 

some definitions and properties of Markov chains and describing them transition 

probability matrices; Chapter 7 reminds definitions of eigenvalues and eigenvectors and 

shows connections between their properties, properties of the transition probability 

matrices and properties of the Markov chains; and finally Chapter 8 introduces spectral 

method. Results obtained from the application of the spectral method for finding meta 

stable structures (or states) of the Valine-Proline-Alanine-Liucine peptide (VPAL-

peptide) are published in the Journal of Chemical Physics (see [32]). 

 

1  Short history of the protein research 

Proteins were first recognized as a distinct class in 1789 by Antoine François de 

Fourcroy. 

The word "protein" comes from Greek word prota, which means "of primary 

importance". This name was introduced by the Swedish chemist Jöns Jakob Berzelius in 

1838 for large organic compounds with almost equivalent empirical formulas. This 

name was used because the studied organic compounds were primitive, but seemed to 

be very important for animal nutrition [1]. 

The next crucial step of the protein study was made by James B. Sumner in 1926 by 

showing that enzymes could be isolated and crystallized. 

In 1955 Sir Frederick Sanger determined the complete amino acid sequence of the first 

protein - insulin. This was a first prove, that all proteins have specific structure. 

In 1958 first three-dimensional structures were solved by X-ray diffraction analysis by 

Max Perutz (for hemoglobin) and Sir John Cowdery Kendrew (for myoglobin). 

Since then scientists all over the world established amino acid sequences and three-

dimensional structures for thousands of proteins and stored this information in Protein 

Data Bank. 
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2  Protein folding and structures 

 “The amino acid sequences of polypeptide  

chains (…) only make functional sense when  

they are in the three dimensional   

arrangement that characterizes them in   

the native protein structure”   

C. B. Anfinsen, 1972, Nobel Lecture 

Proteins are very complex biological molecules, so different scientists distinguish 

different types of protein structures, depending on the focus of their research. For 

example, one type of classification includes primary, secondary, tertiary, and quaternary 

structures, while another one separates initial, intermediate, and final structures. For our 

purposes we will consider the second type of classification. It is used for distinguishing 

structures, appearing during three major stages of protein folding, characteristics of 

which are summarized in table 1. 

 

 Table 1. Protein folding stages and their characteristics 

Stage number Structure Name Chain description Structure characteristics 

Stage 1 Initial Unfolded Unstable 

Stage 2 Intermediate Partly folded Meta stable 

Stage 3 Final Fully folded (Quite) Stable 

 

 

Our research is focused on the intermediate structures or meta stable structures 

appearing during the second stage. In the following subsections we will describe each 

stage in more detail introducing some common terms and pointing out some of the main 

difficulties arising in the studies of each stage. 
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2.1 Stage 1: Polypeptide chain and its characteristics 

Proteins are made of amino acids linked into linear chains, called polypeptide chains. 

Proteins are formed by one or several such chains. These chains are very flexible, so 

one can think of them as of "open" beads necklaces. Just as the necklace they can have 

different length and sequence combinations. 

First let's talk about the length. Polypeptide structures build from 2 to 100 amino acids 

are usually called peptides, longer structures are classified as proteins. [1] A typical 

protein contains 200-300 amino acids. But much larger proteins also exist. The largest 

to date is titin, a protein found in skeletal cardiac muscle; one version of it contains 

34,350 amino acids in a single chain! [2] 

As for the sequence combinations, the sequence of the polypeptide chain is defined by a 

gene with a genetic code. There are only 20 standard amino acids, that appear in living 

organisms. But in total the number of different proteins, which is possible to produce 

from 20 amino acids is enormous. For example, for a protein constructed of 10 amino 

acids it is possible to have 20
10

 different sequence combinations, which is 

approximately equal to 10
13

 or 10 trillions of different structures. For example, only in 

E. coli cell scientists established about 3000 different proteins. [1]  

 

2.2 Stage 2: Protein folding and intermediate structures 

After the chain is formed, it starts packing in space into a compact, fully folded 

structure, to minimize protein's overall free energy. This packing is called protein 

folding. It is not random, but through a specific time-ordered sequence of intermediate 

structures, known as “folding pathway”, which was confirmed theoretically and 

experimentally: theoretically in 1968 by Cyrus Levinthal, who pointed out that protein 

containing 100 amino acids would need 9104×  years to fold, if it would test at least two 

conformational possibilities per amino acid (“Levinthal’s paradox” [3,4]), while instead 

it takes in general only 31 1010 −
− seconds; and experimentally in 1975 by Christian 

Anfinsen and Harold Scheraga, who established that a protein chain folds spontaneously 

and reproducibly to a unique three dimensional structure, when placed in aqueous 

solution [5]. 

 

2.3 Stage 3: Folded protein and native state 

There exist two kinds of fully folded protein structures: native and misfolded. Native 

structure (or state) of the protein is the one responsible for the protein's proper 

functioning. Unlike the misfolded state, native state corresponds to the global minimum 

of the free energy. 
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Once proteins fold, they stay in such state for a long time, but not forever. After some 

time folding process is replaced by the process of unfolding, which makes proteins - 

dynamical systems, being in constant motion. 

 

3  Importance of studying protein folding 

It is a common knowledge, that proteins are very important for all living organisms. 

First of all, they are involved in almost all processes occurring in living organisms, and 

second of all, this involvement can be both positive, caused by the "correctly" folded 

proteins into native state, resulting in proper functioning and life, and negative, caused 

by the misfolded and damaged proteins, resulting in illness or even death.  

Positive involvement is described in the next subsection, where a brief summary of 

proteins functions is presented (see table 2), for more detailed description see [1]. And 

negative involvement is briefly described in the subsection after that, where some 

known diseases are mentioned. 

 

3.1 Performed functions 

Table 2. List of the functions performed by different proteins 

Functional group name Description of the function  Examples of proteins 

Enzymes 

Proteins that catalyze 

chemical and biochemical 

reactions within living cell 

and outside. 

DNA- and  

RNA-polymerases 

Hormones 

Proteins that are 

responsible for the 

regulation of many 

processes in organisms. 

insulin, 

 endorfine 

Transport proteins 

These proteins are 

transporting or store some 

other chemical compounds 

and ions. 

hemoglobin,  

myoglobin,  

albumin 
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Antibodies 

Proteins that involved into 

immune response of the 

organism to neutralize large 

foreign molecules, which 

can be a part of an 

infection. 

 

Structural proteins 

 These proteins are 

maintain structures of other 

biological components, like 

cells and tissues. 

collagen, elastin,  

α-keratin, sklerotin 

Motor proteins 

These proteins can convert 

chemical energy into 

mechanical energy. 

actin, myosin 

Receptors 

These proteins are 

responsible for signal 

detection and translation 

into other type of signal. 

id rhodopsin - light 

detecting protein 

Signaling proteins 

This group of proteins is 

involved into signaling 

translation process. 

GTPases 

Storage proteins 

These proteins contain 

energy, which can be 

released during metabolism 

processes in the organism. 

egg ovalbumin,  

milk casein 

 

 

3.2 Caused diseases and abnormalities 

Diseases caused by the misfolded and damaged proteins can be divided in two groups. 

Diseases of group number one are characterized by the absence or disappearing of a key 

protein, as, due to its misfolding, it has been recognized as disfunctional and eliminated 

by the cell’s own machinery (see table 3). Diseases of group number two are 

characterized, on the opposite, by the presence or deposition of the misfolded proteins 

in the insoluble aggregates within the cell (see table 4). [6] 
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Table 3. Diseases of group number one, caused by the absence of a key protein 

Name of the disease Name of the absent misfolded protein 

Cystic fibrosis CFTR protein 

Marfan syndrome Fibrillin 

Fabry disease alpha galactosidase 

Gaucher’s disease beta glucocerebrosidase 

Retinitis pigmentosa 3 Rhodopsin 

Some cancers Different 

 

Table 4. Diseases of group number two, caused by the presence of the misfolded protein 

Name of the disease Name of the deposited misfolded protein 

Alzheimer’s disease amyloid beta and tau 

Type II diabetes Amylin 

Parkinson’s disease alpha synuclein 

Creutzfeldt-Jakob disease prion protein 

Congestive heart failure transthyretin deposited in the heart tissue 

Peripheral neuropathy transthyretin deposited in the nerves tissue 
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The research team, led by William L. Klein, found, that toxic proteins, called “amyloid 

ß-derived diffusible ligands” (ADDLs, pronounced “addles”), from the brain tissue of 

individuals with Alzheimer’s disease specifically attack and disrupt synapses, the nerve 

cell sites responsible for information processing and memory formation, causing 

memory loss, loss of balance or tremors [7]. 

 

4  Free energy minimization as a driven force of protein folding  

4.1 Free energy 

Thermodynamically, proteins are described by the free energy, usually, Gibbs free 

energy [23]. It is defined as: 

G = H - TS, 

where  

• H is the enthalpy (SI unit is Joule [J]),  

• S is the entropy (SI unit is Joule per Kelvin [J/K]),  

• T is the temperature (SI unit is Kelvin [K]). 

 

4.1.1 Enthalpy and potential energy 

The enthalpy is defined as [23]: 

H = U + p�, 

where 

• U is the internal energy (SI unit is Joule [J]), 

• p is pressure (SI unit is Pascal [Pa]), 

• � is volume (SI unit is cubic meter [m
3
]). 

In turn, the internal energy is 

U = Ep + Ek, 

where 



 

• Ep is the potential energy (SI unit is Joule [J]),

• Ek is the kinetic energy (SI unit is Joule [J]).

Note! Further on, potential energy notation is changed from E

For proteins the major contribution to the enthalpy is made by the potential energy

[26,28]. 

Potential energy function is usually written as a sum of potential energy "subfunctions", 

each of which describes specific type of the atom interaction. Suc

divided into two groups separating interactions between connected and unconnected 

atoms. Interactions between connected atoms may involve two (bond

interactions), three (bond-angle interactions), and four atoms (torsional

interactions) at the same time, while interactions between unconnected atoms always 

involve pairs of atoms (Van der Waals and electrostatic interactions). On the figure 2 

schematically shown relations between the positions of atoms and 

potential energy "subfunction

important to note, that there exist much more types of interactions then it is mentioned 

here and, depending on the number of them included in the potential energy funct

researchers distinguish different kinds of the potential energy functions (see [8,9,10]).
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is the potential energy (SI unit is Joule [J]), 

is the kinetic energy (SI unit is Joule [J]). 

Further on, potential energy notation is changed from Ek to V. 

For proteins the major contribution to the enthalpy is made by the potential energy

Potential energy function is usually written as a sum of potential energy "subfunctions", 

each of which describes specific type of the atom interaction. Such interactions are 

divided into two groups separating interactions between connected and unconnected 

atoms. Interactions between connected atoms may involve two (bond-length 

angle interactions), and four atoms (torsional-angle 

teractions) at the same time, while interactions between unconnected atoms always 

involve pairs of atoms (Van der Waals and electrostatic interactions). On the figure 2 

schematically shown relations between the positions of atoms and the curves of the 

functions", describing different types of the interactions.

important to note, that there exist much more types of interactions then it is mentioned 

here and, depending on the number of them included in the potential energy funct

researchers distinguish different kinds of the potential energy functions (see [8,9,10]).

(a) 

For proteins the major contribution to the enthalpy is made by the potential energy 

Potential energy function is usually written as a sum of potential energy "subfunctions", 

h interactions are 

divided into two groups separating interactions between connected and unconnected 

length 

angle 

teractions) at the same time, while interactions between unconnected atoms always 

involve pairs of atoms (Van der Waals and electrostatic interactions). On the figure 2 

curves of the 

, describing different types of the interactions. It is 

important to note, that there exist much more types of interactions then it is mentioned 

here and, depending on the number of them included in the potential energy function, 

researchers distinguish different kinds of the potential energy functions (see [8,9,10]). 
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(b) 

(c) 



 

Figure 2. Schematic pictures of the relations between

positions of atoms and curves of the potential energy 

describing (a) bond

(c) torsional-angle interactions, and 

 

4.1.2 Entropy 

For proteins, entropy describes two quantities. 

other words variety of possible three dimensional structures (or configurations). The 

more protein is organized, the lower its entropy

native structure has the lowest entropy. Second quantity is 

Protein's polypeptide chain contains hydrophilic and hydrophobic parts

protein hydrophobic parts are buried in the protein's interior, to minimize their contact 

with aqueous environment, which results in the lower entropy of the protein
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(d) 

Schematic pictures of the relations between the

of atoms and curves of the potential energy "subfunction

bond-length interactions, (b) bond-angle interactions,

angle interactions, and (d) non-bonded interactions

For proteins, entropy describes two quantities. First quantity is order and disorder, or in 

possible three dimensional structures (or configurations). The 

more protein is organized, the lower its entropy [24,25,26,27], as one might expect 

native structure has the lowest entropy. Second quantity is hydrophobic interactions. 

hain contains hydrophilic and hydrophobic parts. 

protein hydrophobic parts are buried in the protein's interior, to minimize their contact 

with aqueous environment, which results in the lower entropy of the protein

the 

functions", 

angle interactions, 

bonded interactions 

First quantity is order and disorder, or in 

possible three dimensional structures (or configurations). The 

, as one might expect 

hydrophobic interactions. 

. In the folded 

protein hydrophobic parts are buried in the protein's interior, to minimize their contact 

with aqueous environment, which results in the lower entropy of the protein [28]. 
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4.2 Protein folding and free energy landscape 

As was shown above, during protein folding, both enthalpy and entropy decrease, and 

hence the overall free energy. 

Free energy function constructs free energy surface, commonly known as free energy 

landscape. Each point of this landscape corresponds to the energy of the protein in 

some structure (or configuration) and belongs to the (3N+1)-dimensional space, where 

N is the number of atoms in the protein. High multidimensionality of the landscape, 

makes it impossible to perform it on paper, however, since experiments show, that there 

is only one most stable structure of any protein, scientists believe, that by its nature it is 

similar to a funnel, and not a smooth one (schematically in is shown on Fig.3 and 

Fig.4a). Global minimum of the energy landscape corresponds to the native structure, 

while local ones correspond to the meta stable structures, separated from each other by 

saddles and barriers. 

 

Coordinates

F
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e
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e
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y

Free  energy  landscape

Meta stable

structures

Free energy

corresponding 

to meta stable

structures

 

Figure 3. Schematic picture of the protein free energy landscape 
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Another important characteristic of the energy landscape, which can also be concluded 

from the experiments and (the above) observations, is that its shape is changed 

depending on the protein's environment. For example, when a protein is fully hydrated 

(or simply saying surrounded by water), its energy landscape is seen to be considerably 

smoothed (Fig.4b) (which was one of the reasons, why the test molecule, presented in 

the published article [32], was solvated in water). One more characteristic comes from 

the existence of the misfolded proteins, whose free energy landscape must have at least 

one more deep "funnel" resulting in a local minimum with such a high barrier, that it 

cannot be "overcome" for a long time. 

 

        

  (a)            (b) 

Figure 4. Schematic picture of the energy landscape for the 

 non-hydrated (a) and hydrated (b) protein,  

i.e. protein without and with water. (taken from [29]) 

 Dark blue color corresponds to the lowest energy  

and orange one to the highest energy. 

 

5  Molecular dynamics simulations of protein folding  

5.1 Ways to study protein folding 

Protein folding is observed to occur during 31 1010 −
− seconds both in vivo (Latin for 

"within the living", i.e. in live isolated cells) and in vitro ("within the glass", i.e. in a test 

tube) [5], which complicates a lot experimental study and collection of data about 

intermediate structures. However, accumulated knowledge about proteins and recent 

development of the computer technology resulted in the new techniques of protein 

studies, namely in silico  (i.e. via computer simulations). These simulations are done by 



 

the molecular dynamics simulation packages, among which Folding@Home, 

Rosetta@Home, AMBER, G

 

5.2 Molecular dynamics simulations

All molecular dynamics simulation packages follow roughly the same major simulation 

steps. But since data, used in this master thesis work, was obtained with the help of 

GROMACS, we will briefly describe major steps of this package. More detailed 

information can be found in [10].

In the most general way molecular dynamics simulations ca

the black box, shown on figure 5

 

 

Figure 5

dynamics simulations in the most general way

5.2.1 Input 

First step of simulations is a preparation of the input data and specification of all 

parameters of the system. By input data we understand initial positions 

velocities of all atoms of the protein (or peptide) molecule

velocities �� respectively. As for parameters, 

(mostly the ones, which are mentioned in the 

with descriptions can be found in [10
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the molecular dynamics simulation packages, among which Folding@Home, 

Rosetta@Home, AMBER, GROMACS, CHARMM, Abalone and others

Molecular dynamics simulations 

All molecular dynamics simulation packages follow roughly the same major simulation 

ince data, used in this master thesis work, was obtained with the help of 

GROMACS, we will briefly describe major steps of this package. More detailed 

information can be found in [10]. 

In the most general way molecular dynamics simulations can be described in

the black box, shown on figure 5. 

5. Black box scheme, describing molecular  

dynamics simulations in the most general way 

 

First step of simulations is a preparation of the input data and specification of all 

parameters of the system. By input data we understand initial positions and (optional) 

velocities of all atoms of the protein (or peptide) molecule, given by coordinates 

respectively. As for parameters, some of them are mentioned in table 

(mostly the ones, which are mentioned in the published article [32]), while the 

with descriptions can be found in [10]. 

the molecular dynamics simulation packages, among which Folding@Home, 

others. 

All molecular dynamics simulation packages follow roughly the same major simulation 

ince data, used in this master thesis work, was obtained with the help of 

GROMACS, we will briefly describe major steps of this package. More detailed 

n be described in terms of 

 

 

First step of simulations is a preparation of the input data and specification of all 

and (optional) 

given by coordinates �� and 

some of them are mentioned in table 5 

, while the full list 
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Table 5. List of the parameters with a short description. 

Parameters Short description 

Parameters used in the 

simulations performed 

for the numerical 

experiment 

Type of the potential 

energy function, 

referred to  

as force field 

Potential energy functions differ from 

each other by the number of terms or 

"subfunctions" they contain, which in 

turn depends on the number of 

interactions taken into account. While 

choosing this function one should 

keep in mind two things: two little 

terms will result in unrealistic 

description of the system and too 

much terms will cause long 

simulation time. 

53a6 

Shape of the container 

Protein (or peptide) molecule is 

usually surrounded by a box, filled 

with water molecules. To minimize 

simulation time, one can choose the 

box shape in such a way, that it 

"repeats" the shape of the molecule. 

Among the possible shapes are cubic, 

octahedron, and rhombic 

dodecahedron. 

Cubic 

Boundary conditions 

It is common to apply periodic 

boundary conditions to avoid surface 

artifacts, so that a water molecule that 

exits to the right, reappears on the 

left.  

Periodic boundary 

conditions 

Size of the container 

(in nm) 

If the boundary conditions are chosen 

to be periodic, it is important to 

choose a sufficiently large box, so 

that the water molecules would not 

interact significantly with their 

periodic copies. 

3 x 3 x 3  (nm) 
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Type of the water 

molecules 

Many water models are developed in 

a specific force field within a specific 

package, and then (sometimes 

correctly) adopted to other force 

fields. For example, SPC and SPC/E 

water models were developed for 

GROMACS, TIP3P for AMBER, and 

modified TIP3P for CHARMM [11]. 

To calculate interactions between 

atoms of the molecule in liquid water, 

one need a model of the individual 

water molecule that tells where the 

charges reside. SPC water molecule 

has three centers of concentrated 

charge, which leads to an incorrect 

value for the permanent dipole 

moment, which in turn is 

compensated by the increase of HOH 

angle to 109.47°, from the observed 

value of 104.5° [12]. 

Simple Point Charge 

(SPC) 

Thermostat 

System is normally coupled to a 

thermostat, that scales velocities 

during the integration to maintain 

constant temperature and container 

size to maintain constant pressure.  

Berendsen thermostat 

Output step 

Output step indicates how often one 

wants to save molecule configuration 

to the output file, along with other 

chosen characteristics such as energy, 

temperature, pressure etc. 

Every 0.5 ps 

or 

0.0005 ns 

 

 

5.2.2 The algorithm 

Molecular dynamics simulations is an iterative process. Major steps of the first iteration 

of this process are presented on the figure 6. Following iterations are the same, but 

without the input step and possibly without the output step, depending on the specified 

value of the output step parameter. 
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Figure 6. 

 Global scheme of the 

first iteration of the 

molecular dynamics 

simulations [10]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

InputInputInputInput    

Update configurationUpdate configurationUpdate configurationUpdate configuration 

a) find new positions and velocities 

 

 

 

 

 

 

 

b) apply constrains and  

update positions and velocities 

OutputOutputOutputOutput 

(if required) 

    

Compute :Compute :Compute :Compute : 

a) forces 

 

 

 

 

 

 

 

 

b) potential and kinetic energies 

c) temperature and pressure 

	� = − �
���� 

	� = � 	���  

The force on any atom � 

is computed by calculating the force 

between non-bonded atom pairs 

plus the forces due to bonded interactions, 

plus restraining and/or external forces. 

 

������� = 	��� 

����� = ��  ;        ����� = 	��� 

Movement of the atoms is simulated 

by numerically solving  

Newton’s equations of motion 

or 
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Let's just briefly mention that forces are defined as the negative gradient of the potential 

energy function V(q1,q2,...,qN): 

	� = − �����  ,     � = 1 … �, 

where q represents three Cartesian coordinates x, y, and z, specifying positions of atoms. 

The default molecular dynamics integrator in GROMACS is the so-called leap-frog 

algorithm [30] for the integration of the equations of motion. However, the equations 

of motion are modified for the temperature coupling and pressure coupling, and 

extended to include the conservation of constraints, so in this case the velocity Verlet 

algorithm [31] (also implemented in GROMACS) is more preferable [10]. 

 

5.2.3 Output 

The most important output of the simulations is the trajectory file, which contains 

coordinates of all atoms of the molecule and (optionally) velocities recorded every time 

step specified by the "output step" value. In addition to that one can also have file with 

other characteristics of the system. 

Intuitively, one might expect, that trajectory obtained from such simulations contains 

protein's "folding pathway", i.e. time-ordered sequence of intermediate structures 

ordered from the most unfolded to the most folded one. Unfortunately, this is not true, 

even though simulated dynamics globally does describe protein folding. Trajectory file, 

indeed, contains sequence of structures, but they are not organized. Schematically, 

obtained configuration trajectory projected on the energy landscape is shown on the 

figure 7. From the figure one can see, that it is almost impossible to capture meta stable 

structure of the protein, corresponding to one local minimum of the energy landscape, 

instead there is a group of structures "living" in the same valley. Moreover, structures 

belonging to the same valley appear (let's say for now) "randomly" (or not successively) 

in the trajectory sequence. 

The goal of this Master thesis was to distinguish these groups of structures having the 

trajectory of the molecular dynamics simulations. 

If one considers protein structures as states and is able to prove, that trajectory has 

Markov property, i.e. that transition to the next structure (or state) does not depend on 

the history of transitions between previous structures, then one can consider trajectory 

of structures as a Markov chain, and, applying spectral method, one can find groups of 

structures belonging to the same valley. In the table 6 term correspondence between the 

protein theory, Markov chain theory and the published article [32], containing 

numerical experiment, is presented. 



 

Table 6. Term correspondence.

Protein theory 

Protein structures 

Group of structures 

belonging to the same 

valley 

 

 

Figure 

molecular dynamics simulation trajectory

on the 
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. Term correspondence. 

Markov chain theory Published article

States Microstates

Classes (almost closed 

recurrent classes) 

Meta stable states

Figure 7. Schematic projection of the  

molecular dynamics simulation trajectory 

on the contour plot of the free energy landscape 

ed article 

Microstates 

Meta stable states 
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6  Markov chain. Transition probability matrix 

Let's begin by introducing some definitions. Let's consider system characterized by a set 

of "states". As time passes, this system evolves by transitioning from one state to 

another. If time is discrete and the number of states is countable, the system is called 

discrete. If transitions in such system occur randomly according to some probability 

distribution, then evolution of the system is called a discrete stochastic process. Such 

process is called memoryless, if the probability of the transition from one state to 

another does not depend on the history of the process (the sequence of previous states). 

Finally, process having all of these characteristics, namely memoryless discrete 

stochastic process with a finite number of states, is called a finite Markov chain. 

[13,14] 

Finite Markov chain with N states is characterized by the N x N  transition probability 

matrix P, whose entries ��� describe probability of the transition from state � to state  , �,  = 1,2, … , �. Transition probability matrix P is called row-stochastic, if all of its 

entries are nonnegative real numbers ( ��� > 0,   ∀�,  ) and the sum of each row is one 

(∑ ��� = 1,�  ∀�,  ). [13]  

Note! From now on we will consider only row-stochastic transition probability matrices 

and we will refer to them as simply transition probability matrices. 

Note! There are several different ways to construct transition probability matrix from 

the protein molecular dynamics simulations trajectory. One of the techniques is 

described in details in the published article [32]. 

State j is accessible from state i, if ��� > 0. States i and j communicate, if they are 

accessible to each other. Two states are said to be in the same class, if they 

communicate with each other (see Example 1). [19] 
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Example 1 

 

 

 

 

Let we have a Markov chain represented 

by the following graph. This Markov 

chain has 3 classes: 

• Class 1 contains states 1 and 2  

• Class 2 contains states 3, 4 and 5 

• Class 3 contains state 6 

 

 

A state i  is said to be transient, if, given that we start in state i, there is a non-zero 

probability that one will never return to i. [14] If the state is not transient, it is 

recurrent. Thus, a recurrent is the state one keep coming back to (after one or more 

transitions), while transient is the state one eventually leave forever. Furthermore, it is 

possible to prove, that all states belonging to the same class are either all transient or all 

recurrent [20]. Hence, if they all are transient, the class is called transient, and if they all 

are recurrent, the class is called recurrent (see Example 2). For finite Markov chains all 

recurrent classes are closed (and vice versa) [20], which means that once there was a 

transition to any state belonging to this class, all further transitions will be only between 

the states of this class. 

The question we will consider now is how to determine whether the class is recurrent or 

transient. This property depends on the transitions between states, which in turn, are 

described by the transition probability matrix, so transition probability matrix should 

contain information on whether the class is recurrent or transient. And it does. However 

in some cases this information can be obtained solely from the structure of the matrix 

and in some cases much deeper analysis of the matrix should be performed to get it.  

We know, that for the recurrent class any state of this class is "accessible" to any other 

state of this class, so transition probability between all states of the same class should be 

more than zero, we also know, that recurrent class is closed and there are no transitions 

to the states beyond this class, so transition probability to those states should be zero. 

This leads to a conclusion that, if the sequence of the states is such, that states belonging 

to the same class are standing next to each other, then recurrent classes are represented 

by square blocks along the main diagonal in the transition probability matrix (see 

Example 2). 

 6  3 

 1  2 

 5  4 
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But what happens if states belonging to the same class are not standing next to each 

other in the transition probability matrix? Then recurrent classes, if they exist, can be 

found with the help of the spectral method based on the analysis of eigenvalues and 

eigenvectors (Chapter 8). 

Example 2 

 

 

 

 

Let we have transition probability matrix 

describing Markov chain from the 

example 1, constructed in such a way, 

that states belonging to the same class 

are standing next to each other. Then 

• Class 1 is recurrent and closed 

• Class 2 is transient 

• Class 3 is recurrent and closed 

 

7  Eigenvalues and eigenvectors  

Eigenvalues and eigenvectors reflect certain properties of the matrices, which play key 

role in spectral method, so in this Chapter we will introduce some definitions and 

properties of eigenvalues and eigenvectors of different kinds of square matrices. In 

subsections 7.1 and 7.2 we will consider two types of square matrices (positive and 

block-diagonal respectively) and concentrate on answering four main questions : 

1. What are the definitions of eigenvalue and eigenvector? 

2. How can one find them? 

3. How many eigenvalues does one square matrix has and what properties do they 

have? 

4. How many eigenvectors does one square matrix has and what properties do they 

have? 

In the following subsections of this Chapter we will concentrate on showing how 

properties of eigenvalues and eigenvectors of different types of transition probability 

matrices reflect properties of the Markov chains these matrices describe. 

 

   1/2    1/2      0        0        0        0 

   3/4    1/4      0        0        0        0 

     0      2/5      0      2/5      0     1/5 

     0        0        0        0        1        0 

     0        0      2/3      0      1/3      0 

     0        0        0        0        0        1 
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7.1 Eigenvalues and eigenvectors of a square matrix 

Let's consider a square n x n matrix A, all elements of which are real and positive. Given 

a square matrix A, the number λ is said to be an eigenvalue of A, if there exists a 

nonzero vector v satisfying  

Av=λv. 

In this case, v is called a right eigenvector of A corresponding to the eigenvalue λ [15].  

Note! Further on right eigenvector will be referred to by simply eigenvector. 

To find eigenvalues, one solves equation  

det(A- λI)=0,                                                   (1) 

where I is the identity matrix of the same size as A. Once this is done, one can find 

corresponding eigenvectors by solving homogeneous system  

(P- λI)v=0               (2) 

for each found eigenvalue. 

Now let's see how many eigenvalues one square matrix can have. According to the 

Leibniz formula, determinant of any square n x n matrix A can be found as 

�&�(() = � *+,(-) . (�,/(�)
0

�12/∈45
, 

where the sum is computed over all permutations - of the set 61,2, … , ,7 and *+,(-) is 

equal to +1 for even permutations and -1 for odd permutations, depending on the 

number of switches of numbers performed for obtaining a new permutation sequence 

(for more details see [18]). This shows, that det(A- λI) must be a polynomial in λ of 

degree n, which means that equation (1) has n roots and consequently one square matrix 

A has n eigenvalues λi, i=1,2,...,n. These roots might be all different, all the same, or 

part of them can be different, while the other part (or parts) is (are) the same. In the case 

of k identical roots, it is said, that eigenvalue has algebraic multiplicity k. [17]  

Some more information about eigenvalues. Perron–Frobenius theorem, proved by 

Oskar Perron (1907) and Georg Frobenius (1912), asserts that a real square matrix with 

positive entries has a unique largest real eigenvalue and that the corresponding 

eigenvector has strictly positive components [16]. Other eigenvalues, can be positive, 

negative or complex. 
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Now let's discuss eigenvectors. First of all let's point out that we are interested only in 

linearly independent eigenvectors. If there is no identical roots and all eigenvalues have 

algebraic multiplicity 1, then there are as many linearly independent eigenvectors as 

there are eigenvalues. However, if algebraic multiplicity of some eigenvalue is k>1, 

then there exist m≤k linearly independent eigenvectors corresponding to this 

eigenvalue, and hence there are (n-k+m) linearly independent eigenvectors in total for 

the square n x n matrix. [21] 

Proposition 7.1 If a square matrix A has a constant row sum r, then A has the 

eigenvalue r with the corresponding eigenvector x, whose entries are all 1. [21] 

Proposition 7.2 If v is an eigenvector of some square matrix, then Cv, where C is some 

constant, is also an eigenvector of this matrix. [21] 

 

7.2 Eigenvalues and eigenvectors of a block-diagonal square matrix 

Let's consider a square N x N  block-diagonal matrix A, such that 

( = 9 ((2) 0   ⋯0 ((�) ⋯⋯ ⋯   ⋯     00⋯     0    0         ⋯ ((;)
<, 

where each block A
(i)

 is a square matrix of size n
(i)

 x n
(i)

 (i=1,2,...,s), such that 

� ,(�) = �;
�12  

Eigenvalues and eigenvectors of such matrix can be found in two ways both leading to 

the same results. Since matrix is square, one can use the same technique as the one 

described for square matrices in the subsection 7.2. Another way of finding eigenvalues 

and eigenvectors is the following : 

• First, one finds eigenvectors and eigenvalues for each block A
(i)

 

(i=1,2,...,s) separately; 

• then, one adds (N-n
(i)

) zero-elements to the eigenvectors so that 
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��=(2) = (��=,2(2) ,   ��=,�(2) ,   …,   ��=,0(=)(2)>??????@??????A0(=)
,   0,   0,   … ,   0>???@???A0(B) ,   …,   0,   0,   … ,   0>???@???A0(C) )D ,

��B(�) = ( 0,   0,   … ,   0>???@???A0(=) ,    ��B,2(�) ,   ��B,�(�) ,   …,   ��B,0(B)(�)   >???????@???????A0(B)
, …,   0,   0,   … ,   0>???@???A0(C) )D ,

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯��C(;) = ( 0,   0,   … ,   0>???@???A0(=) ,    0,   0,   … ,   0>???@???A0(B) ,   … ,   ��C,2(;) ,   ��C,�(;) ,   …,   ��C,0(C)(;)>??????@??????A0(C)
)D ,

 

where  � = 1,2, … , ,(�) and i=1,2,...,s, i.e. ∑  � = �.;�12  

• after that, one unites all found eigenvalues and eigenvectors 

• and finally, one re-arranges eigenvalues (along with the corresponding 

eigenvectors) in the descending order and re-names them 

 

Example 3 

First let's consider the following square block-diagonal matrices : 

 

((2) = F1 1 21 2 12 1 1G, ((�) = H1 33 1J, ((K) = H1 44 1J. 
 

Now let's find their eigenvalues and eigenvectors : 

 

�2(2) = 4, 
 �2(2) = (1 1 1)D; 

��(2) = 1,  ��(2) = (1 −2 1)D; 
�K(2) = −1, 

 �K(2) = (−1 0 1)D; 

�2(�) = 4, 
 �2(�) = (1 1)D; 

��(�) = −2, 
 ��(�) = (−1 1)D; 

�2(K) = 5, 
 �2(K) = (1 1)D; 

��(K) = −3, 
 ��(K) = (−1 1)D; 

 

Let's point out, that all considered matrices have constant row sum, so by proposition 

7.1 each of them has one eigenvalue equal to this sum and the corresponding 

eigenvector, whose elements are all equal to 1. 

Now, using these 3 matrices, let's construct one square block-diagonal matrix A : 
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A= 

 

 

 

 

It has the following eigenvalues and eigenvectors : 

 

a ) before re-arranging and re-naming 

 

�2(2) = 4, 
��(2) = 1, 
�K(2) = −1, 
�2(�) = 4, 
��(�) = −2, 
�2(K) = 5, 
��(K) = −3, 

�2(2) = (1   1    1    0   0   0   0)D; 
��(2) = (1  − 2    1    0   0   0   0)D; 
�K(2) = (−1   0    1    0   0   0   0)D; 
�2(�) = (0   0    0   1   1   0   0)D; 
��(�) = (0   0    0  − 1    1   0   0)D; 
�2(K) = (0   0    0    0   0   1   1)D; 
��(K) = (0   0    0    0   0  − 1   1)D; 

 

b) after re-arranging and re-naming 

 

�2 = 5, 
�� = 4, 
�K = 4, 
�N = 1, 
�O = −1, 
�P = −2, 
�Q = −3, 

�2 = (0   0    0    0   0   1   1)D; 
�� = (0   0    0    1   1   0   0)D; 
�K = (1    1    1    0   0   0   0)D; 
�N = (1  − 2    1    0   0   0   0)D; 
�O = (−1   0    1    0   0   0   0)D; 
�P = (0   0   0  − 1    1   0   0)D; 
�Q = (0   0    0    0   0  − 1   1)D; 

 

 

Let's point out, that even though eigenvalue  � = 4 has algebraic multiplicity 2 for the 

matrix A, it "came" from different blocks, so it has two linearly independent 

eigenvectors. 

1      1      2      0      0      0      0 

1      2      1      0      0      0      0 

1      1      2      0      0      0      0 

0      0      0      1      3      0      0 

0      0      0      3      1      0      0 

0      0      0      0      0      1      4 

0      0      0      0      0      4      1 
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7.3 Eigenvalues and eigenvectors of a transition probability matrix 

describing Markov chain with only one closed recurrent class 

Let's consider a transition probability matrix describing Markov chain with only one 

closed recurrent class, i.e. square matrix with real positive elements, such that each row 

sums to 1. This matrix has a constant row sum 1, so by the proposition 7.1 the largest 

(also called dominant or Perron-Frobenius) eigenvalue is always 1 and its algebraic 

multiplicity is 1. Eigenvector corresponding to this eigenvalue has identical non-zero 

elements either all equal to 1 by proposition 7.1 or to some constant C by proposition 

7.2, where v=x. (see example 4) 

 

Example 4 

Let’s consider three transition probability matrices R(2), R(�), and R(K), each 

describing one recurrent class of some Markov chain, where 

 

R(2) = F1/5 2/5 2/52/6 3/6 1/65/8 1/8 2/8G R(�) = V1/3 2/31/4 3/4W R(K) = V3/8 5/83/4 1/4W 

 

Now let's find their eigenvalues and iegenvectors : 

 

�2(2) = 1,  �2(2) = (1 1 1)D; 
��(2) = −0.31, 

 ��(2) = (−0.93 0.18 1)D; 
�K(2) = 0.26, 

 �K(2) = (0.21 −0.97 1)D; 

�2(�) = 1, 
 �2(�) = (1 1)D; 

��(�) = 0.08, 
 ��(�) = (−2.67 1)D; 

�2(K) = 1,  �2(K) = (1 1)D; 
��(K) = −0.38, 

 ��(K) = (−0.83 1)D; 
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7.4 Eigenvalues and eigenvectors of a transition probability matrix, 

describing Markov chain with two or more closed recurrent classes, with a 

block-diagonal structure 

Let's consider a block-diagonal transition probability matrix describing Markov chain 

with  two or more closed recurrent classes, i.e. square block-diagonal matrix with real 

positive elements inside each block and zero-elements outside blocks, such that each 

row of the matrix sums to 1 and each block describes one closed recurrent class. Recall, 

that eigenvalues of this matrix can be found as an ordered union of eigenvalues found 

for each block separately (subsection 7.2). Also recall, that dominant eigenvalue for 

each block should be 1 (subsection 7.3). So, algebraic multiplicity of the eigenvalue 1 of 

the matrix should be the same as the number of blocks or the number of recurrent 

classes in the Markov chain, which this matrix describes. Each eigenvector 

corresponding to this eigenvalue has block structure with two sets with identical values, 

one with zeros and another one either with ones by proposition 6.1, or with some 

constant C by proposition 7.2. Moreover, amount of non-zero identical elements is the 

same as the size of the block it "arrived" from, or, in other words, as the amount of 

states belonging to the recurrent class described by this block. (see example 5) 

 

Example 5 

Let's consider transition probability matrix describing Markov chain with three 

recurrent classes, such that states 1, 2, and 3 belong to the first class, states 4 and 5 to 

the second class, and states 6 and 7 to the third class, and let transitions in these classes 

are described by the matrices from the example 4: 

 

R =
Z
[[
[\

1/5 2/5 2/52/6 3/6 1/65/8 1/8 2/8
  0    0    0    0    0    0  

  0    0    0    0    0    0    0    0     0     0    0    0  1/3 2/31/4 3/4   0    0    0    0   0    0    0   0    0    0    0    0    0    0  3/8 5/83/4 1/4]
^̂
_̂

 

 

It has the following eigenvalues and eigenvectors (already re-arranged and re-named) 
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�2 = 1, 
�� = 1, 
�K = 1, 

�N = 0.26, 
�O = 0.08, 

�P = −0.31, 
�Q = −0.38, 

�2 = (0   0    0    0   0   1   1)D; 
�� = (0   0    0    1   1   0   0)D; 
�K = (1   1    1    0   0   0   0)D; 
�N = (0.21  − 0.97    1    0   0   0   0)D; 
�O = (0   0    0    − 2.67   1   0   0)D; 
�P = (−0.93   0.18    1    0   0   0   0)D; 
�Q = (0   0    0    0   0   − 0.83   1)D; 

 

7.5 Eigenvalues and eigenvectors of a transition probability matrix, 

describing Markov chain with two or more almost closed recurrent classes, 

with a block-diagonal structure 

First, let's define almost closed recurrent class of the Markov chain. We will call the 

class almost closed recurrent, if any state belonging to this class has much higher 

probability to transit to another state of the same class, then to the state belonging to 

another class. Block-diagonal transition probability matrix describing such class is such, 

that blocks on the main diagonal have positive real elements with values much higher 

than all others. 

First of all, let's point out that, while both, eigenvalues and eigenvectors of such matrix, 

can be found using the technique described in the subsection 7.1, only eigenvalues can 

be found using the technique described in the subsection 7.2. 

Eigenvalues of such matrix have three main properties: 

1. As eigenvalues of the transition probability matrix describing Markov chain 

with only one closed recurrent class, the largest eigenvalue is 1 and its algebraic 

multiplicity is 1. 

2. As eigenvalues of the block-diagonal transition probability matrix describing 

Markov chain with two or more closed recurrent classes, eigenvalues can be 

found separately for each block along the main diagonal and then united, re-

arranged in the descending order and re-named. 

3. And a unique property is that there are so many eigenvalues close to 1 (or just 

separated from all others by a gap), that with the eigenvalue 1 their amount 

becomes equal to the number of blocks along the diagonal, or to the amount of 

the almost closed recurrent classes in the Markov chain. 
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Eigenvector properties will be considered in more details in Chapter 8. Here we will just 

mention that, since there is only one eigenvalue equal to one, there is only one 

corresponding eigenvector with the identical non-zero elements either all equal to 1 by 

proposition 7.1 or to some constant C by proposition 7.2. 

 

7.6 Eigenvalues and eigenvectors of a transition probability matrix, 

describing Markov chain with two or more closed recurrent classes, which 

does not have block-diagonal structure 

Let's consider a transition probability matrix describing Markov chain with two or more 

closed recurrent classes, such that states belonging to the same class does not stand next 

to each other in the transition probability matrix, i.e. transition probability matrix does 

not have block-diagonal structure. 

Eigenvalues and eigenvectors of such matrix can be found by using technique described 

in the subsection 7.1. 

These eigenvalues and eigenvectors have the same properties as the ones described in 

the subsection 7.4, namely, the dominant eigenvalue is 1 and its algebraic multiplicity is 

the same as the amount of closed recurrent classes in the Markov chain; and 

eigenvectors corresponding to these eigenvalues have two sets of identical elements 

(zero and non-zero ones). Each eigenvector has the same amount of non-zero elements 

as the amount of states belonging to one of the classes, but since these states are spread 

out in the transition probability matrix, non-zero elements are also spread out, 

moreover, in the same way. 

 

Example 6 

Let's consider transition probability matrix describing Markov chain with three 

recurrent classes, whose states' transition probabilities are taken from the example 5, 

but the order of the sates comparing to that in the example 5 is changed to {1, 6, 4, 3, 5, 

2, 7}: 

R =
Z
[[
[\

1/5 0 00 3/8 00 0 1/3
2/5   0    0    0    0  2/3

2/5   0    0  5/8  0    0  5/8   0     0     0    0  1/4 2/8   0  0 3/4 1/8   0    0    0  2/6 0     0   0 3/4   0  1/6   0    0    0  3/6 0 0 1/4]
^̂
_̂

 



30 

 

It has the following eigenvalues and eigenvectors 

 

�2 = 1, 
�� = 1, 
�K = 1, 

�N = 0.26, 
�O = 0.08, 

�P = −0.31, 
�Q = −0.38, 

�2 = (0   1    0    0   0   0   1)D; 
�� = (0   0    1    0    1    0   0)D; 
�K = (1   0    0    1   0   1   0)D; 
�N = (−0.21   0    0    − 1.03   0   1   0)D; 
�O = (0   0    − 2.67    0   1   0   0)D; 
�P = (−5.26   0    0    5.67   0   1   0)D; 
�Q = (0  − 0.83    0    0   0   0   1)D; 

 

Note, that eigenvalues of this matrix are the same as in example 5 and the 

corresponding them eigenvectors have also 2, 2, and 3 elements equal to 1. Moreover, 

states 6 and 7 belong to the same class and were placed on the positions 2 and 7 

respectively in the transition probability matrix, at the same positions first eigenvector 

have non-zero elements equal to 1. The same observation can be made for the states {4, 

5} and {1, 2, 3}.  

7.7 Eigenvalues and eigenvectors of a transition probability matrix, 

describing Markov chain with two or more almost closed recurrent classes, 

which does not have block-diagonal structure 

Let's consider a transition probability matrix describing Markov chain with two or more 

almost closed recurrent classes, such that it does not have block-diagonal structure. 

Eigenvalues and eigenvectors of such matrix can be found by using technique described 

in the subsection 7.1. 

These eigenvalues and eigenvectors have the same properties as the ones described in 

the subsection 7.5, except for the possibility to find eigenvalues for each block 

separately, as there is no blocks. 

 

 



 

8  Spectral method 

Spectral method is used for finding classes in Markov chains by considering describing 

them transition probability matrices and analyzing their eigenvalues and eigenvectors

(Fig.8). Recall, that set of eigenvalues of the matrix is called 

method is based on the analysis of eigenvalues, it got the name spectral.

 

Figure 8. Black box scheme describing Spectral method

 

(Dominant) eigenvalues are used to answer the question of how many classes is there? 

While significant eigenvectors

which class? 

First question was discussed in details in 

second one.  

Let's start by introducing the definition of the 

when Markov chain has two or more closed recurrent classes

algebraic multiplicity more than one, so

corresponding to this eigenvalue

almost closed recurrent classes

we will call significant eigenvectors correspond

separated from others by a gap).

The main idea of the method is to 

chain, where classes become more evident. 

to the coordinates specified by the elements of the significant eigenvectors, 

eigenvector contains coordinate in one direction

each eigenvector is the same as number of states in the Markov chain and observe, that 

dimension of the new space is defined by the amount of the significant eigenvectors. 
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Let's start by introducing the definition of the significant eigenvectors. 

two or more closed recurrent classes, dominant eigenvalue has 

algebraic multiplicity more than one, so we will call significant eigenvectors 

eigenvalue. In the case, when Markov chain has two or more 

almost closed recurrent classes, dominant eigenvalue has algebraic multiplicity one, so

we will call significant eigenvectors corresponding to the eigenvalues closest to 1 (or 

separated from others by a gap). 

The main idea of the method is to introduce a new space for the states of the Markov 

, where classes become more evident. In this space each state is placed according 

dinates specified by the elements of the significant eigenvectors, 

contains coordinate in one direction. Recall, that number of elements in 

each eigenvector is the same as number of states in the Markov chain and observe, that 

nsion of the new space is defined by the amount of the significant eigenvectors. 

Spectral method is used for finding classes in Markov chains by considering describing 

them transition probability matrices and analyzing their eigenvalues and eigenvectors 

, so, since the 

method is based on the analysis of eigenvalues, it got the name spectral. 

 

Black box scheme describing Spectral method 

are used to answer the question of how many classes is there? 

are used to answer the question of which state belongs to 

7, so now we will concentrate on the 

. In the case, 

, dominant eigenvalue has 

we will call significant eigenvectors 

two or more 

, dominant eigenvalue has algebraic multiplicity one, so 

ing to the eigenvalues closest to 1 (or 

of the Markov 

In this space each state is placed according 

dinates specified by the elements of the significant eigenvectors, so that each 

Recall, that number of elements in 

each eigenvector is the same as number of states in the Markov chain and observe, that 

nsion of the new space is defined by the amount of the significant eigenvectors. 
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Once all states are transformed to the new space, one performs clustering using, for 

example, K-means clustering method and finds which state belongs to which class. 

 

Example 7 

Let's consider Markov chain from the example 5 and 6. And let's assume, that we don't 

know how many classes does it contain and which state belong to which class. Suppose 

we want to find it out, given the transition probability matrix describing this Markov 

chain from the example 6. 

Recall, that this matrix had the following eigenvalues : 

 

�2 = 1,    �� = 1,    �K = 1,    �N = 0.26, 
 �O = 0.08,    �P = −0.31,    �Q = −0.38, 

 

from which we conclude first, that there are 3 classes in this Markov chain and second, 

that there are 3 significant eigenvectors : 

 

�2 = (0   1    0    0    0    0   1)D; 
�� = (0   0    1    0    1    0   0)D; 
�K = (1   0    0    1    0    1   0)D , 

 

which in turn means that we have to transform given states to the three dimensional 

space and assign them coordinates : 

 

• for the state 1 (0, 0, 1) 

• for the state 6 (1, 0, 0) 

• for the state 4 (0, 1, 0) 

• for the state 3 (0, 0, 1) 

• for the state 5 (0, 1, 0) 

• for the state 2 (0, 0, 1) 

• for the state 7 (1, 0, 0) 
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We can see that states 1, 3, and 2 have the same coordinates, so they are transformed to 

the same point in the new space, and hence they belong to the same class. The same 

observation can be made for the states 6, 7 and then 4, 5.  

Observe, that obtained classes are the same as introduced in the example 5. 

 

Sometimes, to show (or to see) that the classes in the Markov chain are found correctly, 

it is common to re-arrange given transition probability matrix, so that states belonging 

to the same class would be next to each other in the matrix, which would reveal its 

block-diagonal structure. 

 

Example 8 

Let's consider Markov chain with 570 states, described by the transition probability 

matrix presented on the figure 9. 

 

 

Figure 9. Transition probability matrix 

 



34 

 

It's eigenvalues presented on the figure 10. 

 

 

Figure 10. Eigenvalues of the transition  

probability matrix from the figure 6 

 

There is one dominant eigenvalue equal to 1 and 3 more eigenvalues separated from the 

others by a gap, from which we conclude first of all, that there are 4 classes in the 

Markov chain, and second of all that there are 3 significant eigenvectors (second, third, 

and fourth). So, states are transformed to the three dimensional space and clustered 

using K-means clustering method. Results are shown on the figure 11, where different 

colors indicate different classes. 

 
Figure 11. States in the new three dimensional space, 

 where different colors indicate different classes 
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According to the obtained results, we re-arranged initial transition probability matrix, 

which revealed its block-diagonal structure (Fig.12), showing that classes were found 

correctly. 

 

 

Figure 12. Re-arranged initial transition probability matrix, 

 which now revealed its block-diagonal structure 

 

Conclusions 

Studying of intermediate protein structures, so called meta stable structures, appearing 

during protein folding process, may answer some of the most important questions in 

protein research, such as how come proteins fold this fast; what causes "correct" and 

"incorrect" protein folding; is it possible to predict three dimensional protein structure 

knowing only the amino acid sequence in the polypeptide chain. 

This master thesis work presents spectral method, which, using Markov chain theory 

and interconnected properties of Markov chains, their transition probability matrices, 

and their eigenvalues and eigenvectors, allows to find meta stable structures of proteins, 

appearing during their molecular dynamics simulations. 

Moreover, during this master thesis work spectral method was applied for finding meta 

stable states of the VPAL-peptide, giving quite good results, published in the Journal of 

Chemical Physics (see [32]), confirmed by those known in literature. 
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